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Abstract

In this study we approach the detection of null subjects and impersonal constructions in Spanish using a machine

translation methodology. We repurpose the Spanish AnCora corpus, converting it to a parallel set that transforms

Spanish sentences into a format that allows us to detect and classify verbs, and train LSTM-based neural machine

translation systems to perform this task. Various models differing on output format and hyperparameters were

evaluated. Experimental results proved this approach to be highly resource-effective, obtaining results comparable

to or surpassing the state of the art found in existing literature, while employing modest computational resources.

Additionally, an improved dataset for training and evaluating Spanish null-subject detection tools was elaborated

for this project, that could aid in the creation and serve as a benchmark for further developments in the area.
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1. Introduction

A subject is a syntactic element, typically ex-

pressed as a noun phrase, which acts as a spec-

ifier for a verb phrase. The subject often, though

not always, corresponds to a verbal argument in

an agent-like semantic role. For instance, con-

sider the following sentences in English:

• 1a) The man drinks coffee.

• 2a) Are they here?

• 3a) It rains.

• 4a) Close the door!

A subject (signaled by bold text) can be identified

in sentences (1a) through (3a) whereas example

(4a), a command, shows no explicit element that

can be identified as its subject although context

allows us to assert the existence of an elided sub-

ject (‘you’) who is expected to ‘close the door’. It

might also be noted that while the subjects for sen-

tences (1a) and (2a) correspond to a real world

entity (what is known as a referent), no such actor

can be defined for sentence (3a): no referent can

be identified for the ‘it’ in ‘it rains’, this is an imper-

sonal construction which requires a referent-less

‘dummy pronoun’ in order to fill what would other-

wise be a syntactic gap in the subject position.

In standard English, overt or explicit subjects are

always required except in imperative sentences;

a subject-less sentence such as “*drinks coffee”

results ungrammatical to most speakers.

This is not the case for other languages. In partic-

ular, there is a great number of languages dubbed

‘null-subject languages’ where any kind of sen-

tence may be constructed without marking the

subject explicitly. In such languages, the referent

corresponding to the subject role (if any) is either

hinted at by other syntactical or morphological fea-

tures, such as verb agreement, or simply left to

context. This is a special case of the more gen-

eral ‘pro-drop languages’, which allow the omis-

sion of pronouns in different parts of the sentence,

not only in the subject. One example of a null-

subject language is Spanish, where the sample

sentences presented before might be expressed

as follows:

• 1b) El hombre bebe café.

• 2b) ¿Están aquí?

• 3b) Llueve.

• 4b) ¡Cierre la puerta!

While example (1b) contains an explicit subject (el

hombre, ‘the man’), no subjects are present in ex-

amples (2b) through (4b). Such sentences are

considered to have ‘null subjects’. It should be

noted that sentence (2b) could also be expressed

using an overt subject (¿Están ellos aquí?), more

in line with the corresponding English example

(2a), but this is entirely optional and bears little

importance for interpretation as the existence of a

third person plural referent in subject position can

already be inferred from the verb due to Spanish

subject-verb agreement. On a similar vein, sen-

tence (1b) could be expressed with a null subject

(Bebe café.) leaving the identity of the person who

drinks coffee up to context.

A different situation can be identified for the third

example sentence. Similarly to English, rainfall

and other weather verbs are expressed in Spanish

through impersonal verbs (like llover, ‘to rain’) for

which no referent can be found. However, Span-

ish grammar departs from that of English in that a

null subject construction is required in this case,
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obviating the need for ‘dummy pronouns’ such as

the ‘it’ in (3a); translating ‘it rains’ as “*él llueve”

results ungrammatical. As a consequence, all im-

personal constructions are necessarily expressed

as null subject clauses in Spanish.

It should be noted that Spanish grammar al-

lows many different impersonal constructions be-

sides weather verbs, including existential clauses

(“hay”, “hubo”, corresponding to English ‘there is’,

‘there were’) and sentences referring to a generic,

unspecified actor such as “se trabaja mejor en

equipo” (‘it is better to work on teams’). The latter

category involves verbs which could also appear in

personal usages, making this a contextual distinc-

tion, so this phenomenon cannot be fully identified

by simply checking against a list of intrinsically im-

personal verbs.

The identification of null-subject and impersonal

sentences is a necessary step for the syntactic

parsing of a null-subject language (for example

see Chiruzzo and Wonsever (2018) and Chiruzzo

(2020)), bears significant relevance for semantic

language processing tasks (as subjects often cor-

respond to the primary role of a verb) and has

implications for machine translation into a non-

null-subject language such as English, where ref-

erents must be resolved and dummy pronouns

introduced to conform to the syntax of the tar-

get language, or even for machine translation be-

tween pro-drop languages (see for example Ferl-

ito (2021) for a discussion). Due to these reasons,

the automatic detection of these phenomena con-

stitutes a relevant Natural Language Processing

(NLP) task.

2. Related Work

The problem of null-subject detection in Spanish

has received moderate academic attention. Early

takes on the subject include Ferrández and Peral

(2000) which proposed a rule-based approach

which achieved up to 88% accurate results, al-

though evaluated against a very limited corpus,

and without the distinction between null-subject

as a result of omissions and impersonal usages

where null-subject is mandatory.

This distinction was incorporated in later works

such as Rello et al. (2012) and González and

Martínez (2018). In those studies, a number of

features including a verb’s lemma and immediate

context were processed through clustering algo-

rithms such as K* (Rello et al., 2012) and support

vector machines (González and Martínez, 2018).

Results were evaluated on larger, more repre-

sentative corpora such as EZSIC in Rello et al.

(2012) and González and Martínez (2018) and the

AnCora corpus (Delor, Mariona and Martí, Anto-

nia and Recasens, M., 2022) for González and

Martínez (2018).

A neural network approach to this problem was

presented in Gerez et al. (2019), where they built

several classifiers based on different features and

a variety of neural networks such as feed-forward

neural networks (FFNN), convolutional neural net-

works (CNN) and Long Short-Term Memory net-

works (LSTM).

To the extent of our knowledge, no published study

has yet approached the problem as a sequence-

to-sequence transformation as proposed in this

work. This concept was motivated by the suc-

cessful application of machine translation-like se-

quence to sequence techniques to syntactic pars-

ing as shown in Vinyals et al. (2015).

3. A Machine Translation Approach

to the Problem

The term Machine Translation (MT) refers to a

number of techniques intended to translate text

from a natural language (such as English, Span-

ish or Mandarin) into another through an auto-

mated method. In the last decade, MT research

has been focused on Neural Machine Translation

(NMT), where a neural network is purposed to

build a sequence-to-sequence model. In such a

model, the input is treated as a sequence of to-

kens (typically corresponding to words and punc-

tuation in the source language) which are succes-

sively processed to generate an output sequence

whose tokens map to the desired output. These

models often make use of recursive neural net-

work implementations such as LSTM (Long Short-

Term Memory networks) which, with the addition

of attention mechanisms to weight the relevance

of past inputs, are able to process long sequences

to a great degree of effectiveness, leading to con-

tinued improvements to the state of the art for MT

tasks.

Many of the concepts and methods introduced for

NMT are applicable to a wider range of NLP tasks

which can be modelled as sequence to sequence

transformations. For instance, the extraction of a

certain feature or the addition of markers such as

parsing tags or missing punctuation could be mod-

elled as a translation problem between a certain

kind of input and output sequences. By crafting

a custom parallel corpus matching the expected

input and output pairs for the problem, an NMT

framework could be trained to map inputs to the

problem to the expected output.

This approach was pioneered by Vinyals et al.

(2015), where NMT techniques were adapted to

build a highly effective syntax parser for English

by mapping English plaintext to a linearized rep-

resentation of the target syntax representation, ef-

fectively treating such a representation “as a for-

eign language”.

This methodology has been adapted in further
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works such as Stanovsky and Dagan (2018)

where a machine translation model was repur-

posed to build a semantic parser for English.

In this study, we propose a machine translation

model to “translate” text in Spanish into an inter-

mediary representation that will allow us to classify

verb phrases as having an explicit subject, a null

subject or corresponding to an impersonal usage.

Experiments were run on PyTorch LSTM-based

NMT models trained using the OpenNMT frame-

work (Klein et al., 2017).

In order to develop such an application, it is nec-

essary to define the input and output formats that

will define the source and target “languages” for

the translationmodel, assemble a sufficiently large

parallel corpus to successfully train the neural net-

work, and explore the combination of external

model parameters (hyperparameters) that will re-

sult in the best achievable performance. Consid-

erations about these topics will be explored in the

following sections.

4. Corpora

Neural machine translations models are com-

monly trained and evaluated on aligned parallel

corpora, consisting of a collection of paired in-

puts and outputs in the source and target lan-

guages. Ideally, the parallel corpus should be vast

and comprehensive enough to be sufficiently rep-

resentative of any input the application may en-

counter during its operation.

In order to identify null-subjects and impersonal

constructions in Spanish, this study required an

annotated corpus where Spanish sentences were

marked for the desired features, preferably one

based on a diverse array of source materials so

as to guarantee an adequate level of compre-

hensiveness. An existing language resource, the

Spanish version of the AnCora corpus (Delor,

Mariona and Martí, Antonia and Recasens, M.,

2022) was identified as starting point for the def-

inition of such a corpus. The AnCora corpus

is a multi-level annotated corpus containing over

16,000 sentences and 500,000 words of Spanish

text sampled from news text covering a diversity

of topics and tagged with multiple annotations for

syntactic structure, semantic roles andmorpholog-

ical derivations, among others. In particular, An-

Cora annotations include markers for most non-

impersonal null-subject constructions as well as

tags that allow to identify a certain subset of imper-

sonal sentences (reflexive impersonal sentences).

AnCora also indicates the part of speech (POS) of

each lexical item, a feature that was incorporated

into the output format for this project. Addition-

ally, this corpus had been used in the evaluation

of previous studies about null-subject recognition

in Spanish, thus providing a good point of compar-

ison between this and earlier results.

As part of this study, the AnCora corpus was pro-

cessed in order to extract the elements that were

relevant to the problem at hand, namely marks re-

lated to null-subject and impersonal clauses. Dur-

ing this process, we found that a fraction of the

phrases in the corpus (amounting to 1324 verbs,

6% of the total) did not bear enough information to

determine whether they had an explicit subject, a

null-subject or whether they were impersonal. We

classified these verbs manually in order to make a

version of AnCora that is suitable for our task. The

information extracted from AnCora as well as the

hand-annotated additions constitute an improved

corpus for null-subject detection, which we named

NullSubjAncoraCorpus, published as part of this

study1. This corpus also incorporates a default

partition into training, development and test splits

based on a de facto standard partition for AnCora

as proposed by the CoNLL 2017 shared task (Ze-

man, 2017). Stats for the NullSubjAncoraCorpus

and its proposed partitions are given in table 1.

Training Development Test Total

Sentences 13,489 1,567 1,623 16,679

Tokens 414,334 48 768 49,018 512,120

Finite verbs 34,925 4,018 4,162 43,105

Explicit subj. 25,047 2,850 2,979 30,876

Null subject 8,835 1,062 1,062 10,959

Impersonal 1,043 106 121 1,270

Table 1: Composition of the NullSubjAncoraCor-

pus and its proposed partitions.

In turn, the extended corpus NullSubjAncoraCor-

pus was transformed into a parallel corpus for

training by extracting input sentences (plaintext)

and output sentences following a format intended

to facilitate the training of the NMT model and the

posterior extraction of the identified features. A

characterization of the output format will be given

in the following section.

5. Development

In the proposed classifiers, an input sentence is

fed into an NMT model which outputs a ‘transla-

tion’, an intermediary sequence in a certain output

format which will encode the expected categories

for each finite verb on the input. This intermedi-

ary sequence is subsequently post-processed to

obtain the classification for each finite verb.

Non-finite verbforms (infinitives, participles and

gerunds) are not classified as they are unable to

head a verb phrase in Spanish and, as such, can-

not be associated to a subject.

1https://github.com/jotadiego/
NullSubjAncoraCorpus

https://github.com/jotadiego/NullSubjAncoraCorpus
https://github.com/jotadiego/NullSubjAncoraCorpus
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5.1. Approaches

Initially, two NMT-based approaches were put

forward for null-subject recognition. These ap-

proaches differ on how null-subjects are repre-

sented in the translation output and correspond-

ingly define different output formats for the model.

The first approach (Approach I) seeks to iden-

tify the phenomenon by incorporating an “elliptical

subject” mark as a token in the translation output.

This method closely follows the way null-subject

clauses are represented in the original AnCora

corpus, which incorporates an empty noun phrase

element tagged as “elliptical” in a position where

an explicit subject would otherwise be expected,

usually preceding the corresponding verb. Under

this approach, a verb phrase is classified as hav-

ing null or explicit subjects depending on whether

their output contains the “elliptical subject” token

or not; the distinction between personal and im-

personal null-subject sentences is not considered.

A second approach (Approach II) consists in mod-

elling null-subject and impersonal verb detection

as a classification problem where each finite verb

is to be classified into the following three cate-

gories:

• 1) Verbs with an explicit subject.

• 2) Verbs with a null-subject (excluding those

resulting from impersonal constructions).

• 3) Verbs in an impersonal usage.

The expected output for Approach II models rep-

resents verbs using different labels depending on

their respective category. Note that a binary dis-

tinction between explicit and null subjects (as the

one implemented by Approach I) is also possi-

ble by merging the second and third classes. In

our initial experiments, we used this binary for-

mat to compare between both approaches, and

found that Approach II significantly outperforms

Approach I (see section 6). Because of this, later

experiments are done only with Approach II, and

the NullSubjAncoraCorpus format corresponds to

this second approach.

5.2. Translation Input and Output
Format

The expected input and output formats for a trans-

lation model are determined by the aligned parallel

corpus used to train the model.

In this study, the input only has minimal pre-

processing consisting on transforming the text to

lowercase in order to prevent purely typographic

variations in capitalization from affecting the result.

Although different output formats are required de-

pending on the approach (section 5.1), there are

considerations that apply to both, such as the

Class Tag

Adjective a

Adverb r

Conjunction c

Date k

Determiner d

Interjection j

Noun n

Numeral z

Preposition s

Pronoun p

Punctuation f

Verb (finite) v

Verb (non-finite) i

Table 2: Part of speech (POS) tags used in the

output formats; additional tags are used depend-

ing on the specific approach for null-subject tag-

ging. Codes are based on EAGLES POS-tagging

conventions as followed by the AnCora corpus.

Modifications were added to distinguish between

finite and non-finite verbforms as only the former

are relevant for the task.

need to consider input sentences that might con-

tain multiple finite verbs and which, accordingly,

will require multiple classification values. For the

purpose of mapping values in the output to verbs in

the input, we decided to use a format where each

token in the input (verb or not) corresponded to

a token in the output. In order to reduce the out-

put space for the model (which results in smaller

networks which might be trained using fewer com-

putational resources), each word in the input was

mapped to a tag corresponding to their part of

speech similarly to a standard POS-tagging task,

as shown on table 2, with additional tags being

used depending on the approach.

For Approach I, a special null-subject mark ‘0’ is

added to verb phrases lacking an explicit subject.

Placement of the 0 tag follows the format given

in the AnCora corpus, where a null-subject com-

monly precedes the verb (a canonical position for

subjects in Spanish) but may sometimes be found

in other positions. As the criteria for null-subject

mark placement within the corpus seems to be in-

consistent, only the presence or absence of a 0

mark in the output for a verb phrase is considered

when evaluationg Approach I models, disregard-

ing the relative positions.

By the Approach I scheme, sample sentences (1b)

through (4b) are expected to generate the follow-

ing outputs;

• 1b-I) El hombre bebe café. → d n v n f

• 2b-I) ¿_ Están aquí? → f 0 v r f

• 3b-I) _ Llueve. → 0 v f
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Class Category Tag

Finite verb Explicit subject v

Finite verb Null subject w

Finite verb Impersonal y

Non-finite verb - i

Table 3: Tags used in the output format, corre-

sponding to the three classification categories for

finite verbs and part of speech (POS) tags for other

lexical items. Codes are based on EAGLES POS-

tagging conventions as followed by the AnCora

corpus, adjusted with the inclusion of additional

tags for null-subject mark.

• 4b-I) ¡Cierre _ la puerta! → f v 0 d n f

Under Approach II, the discrimination is done by

using different output tags for verbs depending on

their category, as shown in table 3.

By the Approach II scheme, sample sentences

(1b) through (4b) are expected to generate the fol-

lowing outputs;

• 1b-II) El hombre bebe café. → d n v n f

• 2b-II) ¿Están aquí? → f w r f

• 3b-II) Llueve. → y f

• 4b-II) ¡Cierre la puerta! → f w d n f

Ideally this would result in input and output sen-

tences being the same length, with the classifica-

tion value for the verb in the i-th position within the
input sequence being recorded in the i-th position

of the output. As NMT models are not perfect and

might occasionally generate extraneous tokens or

fail to generate expected tokens, the length of an

actual output might still differ from that of the in-

put. In such cases, relative positions within each

sequence are used to correlate finite verbs in the

input and classification values in the output.

Imperfections in the translation process might also

result in a mismatch between the number of fi-

nite verbs in the input and the verb classification

values in the output. While spurious verbs could

be simply dismissed (after matching correct verbs

given their relative positions), a missing label for a

given finite verb is to be considered as an error. In

practice this means that, although there are three

possible values for a finite verb in the input (ex-

plicit subject, null-subject, impersonal), the clas-

sifier might output four different cases: the three

valid categories, and an invalid fourth category

corresponding to ‘not detected’.

5.3. Hyperparameters

In Machine Learning a distinction is made be-

tween two classes of model parameters: ordi-

nary or internal parameters whose values might

be adjusted during the learning process and hy-

perparameters, which refer to characteristics that

are fixed throughout the learning process. In the

case of a neural network such as the OpenNMT

models proposed in this study, parameters corre-

spond to the weights of the LSTM neural networks

and attention mechanisms, whose values are suc-

cessively refined during the training of the model,

whereas hyperparameters include such factors as

the architecture of the neural network, how data is

represented and interpreted in the model and the

evaluation criteria, among others.

In this work, we experimented with three such hy-

perparameters: the usage of pre-trained word-

embeddings, the number of hidden layers and the

amount of units per hidden layer.

5.3.1. Word Embeddings

As neural networks operate on numeric values, it

is necessary for an NMT application to transform

a text input into a series of discrete tokens (typi-

cally corresponding to words or other lexical items

such as punctuation marks) with a numerical rep-

resentation such as a real-valued vector of a given

dimensionality. Such representations are known

as word embeddings, as they are able to embed a

word (a token) into an n-dimensional vector space.

The collection of tokens represented by a given

schema is known as the vocabulary of the model,

possible inputs not contemplated within the vocab-

ulary are deemed out-of-vocabulary (OOV) items

and require a fallback strategy such as being con-

flated into a single ‘unknown’ vector.

Although in principle the relationship between a to-

ken and its embedding could be arbitrary, multi-

ple NLP applications report performance improve-

ments when using collections of pre-trained word

embeddings constructed in such a way that vec-

tor similarity correlates to semantic similarity. Pre-

trained word embeddings may be generated from

sufficiently large corpus (typically in excess of ten

million words) through unsupervised learning al-

gorithms such as Word2Vec (Mikolov et al., 2013)

and GloVe (Pennington et al., 2014) where se-

mantic similarity is approximated by statistical cor-

relations on the context of individual words.

In this work, we experimented with non pre-trained

random embeddings generated by the OpenNMT

framework, and with three Spanish word embed-

ding sets: two collections pre-trained on the Span-

ish Billion Word Corpus (SBWC) using the GloVe

and Word2Vec algorithms2, and the ‘emb39’ col-

lection trained with Word2Vec over a 6 billion word

corpus (Azzinari and Martínez, 2016). In all cases,

a vector size of 300 was used.

2https://github.com/dccuchile/
spanish-word-embeddings

https://github.com/dccuchile/spanish-word-embeddings
https://github.com/dccuchile/spanish-word-embeddings
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Figure 1: Diagram of the proposed architecture for

a NMT model with 2 hidden layers of 1000 units.

5.3.2. Neural Network Dimensions

Neural network models considered in this study

follow an encoder-decoder LSTM architecture with

an attention mechanism, with a layered structure

comprised of an input layer, a series of hidden lay-

ers and an output layer. During this project only

models with equal-sized hidden layers (i.e., com-

posed of the same amount of units) were tested.

As a result, the dimensions of a given model in

this study are given by two hyperparameters: the

number of hidden layers m and their size n.
The resulting networks are structured as follows:

• An embedding mechanism translating a pre-

defined vocabulary (compiled from the train-

ing corpus) to the 300-dimensional word-

embedding representation (using a fallback

‘unk’ vector for out-of-vocabulary items).

• The input LSTM layer composed of n units

which receive the 300 values of the word em-

bedding.

• An initial hidden layer of size n which receives

the n outputs of the input layer as well as a

300-dimensional embedding of the last output

of the model.

• m − 1 size n hidden layers processing the n
outputs of the preceding hidden layer.

• The output LSTM, which also contains m lay-

ers, combined with a global attention mecha-

nism, operating on the n-dimensional output

of the final hidden LSTM layer.

• A linear output layer which converts the n-
dimensional into a softmax distribution for the

value of the next token to be output.

The resulting architecture is depicted in Figure 1.

6. Experiments

Experimentation was carried on in a staged man-

ner, with a first series of experiments intended as

Figure 2: Scatterplot of F1 score and accuracy

metrics of 2-layer models as described in table 4.

a proof of concept followed by progressive refine-

ments obtained by adjusting model hyperparame-

ters.

6.1. Binary Classifiers

Experiments were initially run on a binary clas-

sification scenario, contrasting explicit and null

subjects; distinction between personal and imper-

sonal null-subject clauses was incorporated at a

later stage.

In the first stage, models with 1 and 2 hidden lay-

ers comprised of 500 units were tested as well

as variations on the proposed output format (ap-

proaches I and II). Additionally, a comparison was

made between training these models with random

and pre-trained word embeddings (using GloVe

SWBC vectors for the latter). Results for this stage

are reported on table 4.

Appr. Layers Embeddings Accuracy Precision Recall F1 Score

I 1× 500 Random 77,38% 74,04% 51,53% 60,77%

I 1× 500 Glove SBWC 73,65% 68,05% 47,04% 55,62%

I 2× 500 Random 81,16% 72,13% 64,82% 68,28%

I 2× 500 Glove SBWC 82,33% 74,87% 68,07% 71,31%

II 1× 500 Random 67.73% 70.06% 31.55% 43.51%

II 1× 500 Glove SBWC 45.01% 48.97% 9.08% 15.32%

II 2× 500 Random 81.04% 69.06% 73.61% 71.26%

II 2× 500 Glove SBWC 83.03% 73.06% 74.67% 73.85%

Table 4: Results obtained over the development

set for binary classification (explicit vs null subject)

in the first stage of experimentation.

While models built off a single hidden layer dis-

played lackluster performance metrics, models

with 2 hidden layers were able to obtain promis-

ing results, serving as a proof of concept for the

application of an NMT technique to the problem.

Results for 2-layer models as depicted in figure 2

show that models based on Approach II (using v

and w tags for verbs with explicit or null subject,

respectively) achieved better results than models

based on Approach I (using a 0 mark as a null-

subject stand-in). This led us to discard Approach

I models in favor of Approach II for all later exper-

iments.

Furthermore, results hinted at an improvement of
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Figure 3: Scatterplot of F1 score and accuracy

metrics of the models differing on hidden layer size

and word embedding type, as described in table 5.

performance when using pre-trained word embed-

dings, with the model which incorporated Glove

SBWC embeddings consistently outperforming its

random embeddings counterpart. These obser-

vations motivated a second stage of experimen-

tation where further word-embedding collections

were tested, as well as the effect of rising the size

of hidden layers from 500 to 1000 units per layer.

Results for this second series of experiments are

reported on table 5 and shown on figure 3.

Embeddings Layers Accuracy Precision Recall F1 Score

Random 2× 500 81.04% 69.06% 73.61% 71.26%

Random 2× 1000 82.61% 74.27% 78.16% 71.09%

Glove SBWC 2× 500 83.03% 73.06% 74.67% 73.85%

Glove SBWC 2× 1000 83.25% 77.87% 71.99% 74.81%

W2V SBWC 2× 500 80.42% 75.19% 65.77% 70.17%

W2V SBWC 2× 1000 81.74% 76.61% 64.82% 70.22%

emb39 2× 500 80.42% 73.37% 66.63% 69.84%

emb39 2× 1000 82.09% 77.74% 67.11% 72.04%

Table 5: Results obtained over the development

set for binary classification (explicit vs null subject)

in the second stage of experimentation.

Results show that GloVe-based word embeddings

allowed for a significantly better performance,

even when compared to models using Word2Vec

embeddings pre-trained over the same corpus. An

increase from 500 to 1000 units per hidden layer

also appeared to contribute to better performance

although to a lesser degree than the election of a

word embedding collection.

A third round of experimentation was carried on,

focused on evaluating the performance of larger

models with the top-performing Glove SWBC em-

beddings. Models with up to 4 hidden layers and

up to 1500 units per hidden layer were tested. Re-

sults, as depicted on table 6, show the limits of

increasing the model’s dimensionality. In partic-

ular, a sharp decline in performance is observed

when increasing the number of hidden layers to 4

whereas models with 1000 units per layer outper-

formed their counterparts with 1500 units as per

the F1 score metric.

Layers Accuracy Precision Recall F1 Score

2× 500 83.03% 73.06% 74.67% 73.85%

2× 1000 83.25% 77.87% 71.99% 74.81%

2× 1500 83.55% 82.12% 68.07% 74.44%

3× 500 82.66% 76.51% 72.56% 74.48%

3× 1000 84.15% 78.31% 73.52% 75.84%

3× 1500 83.55% 81.39% 67.30% 73.68%

4× 500 66.91% 56.42% 43.69% 49.25%

4× 1000 72.51% 60.60% 46.46% 52.60%

Table 6: Results obtained over the development

set for binary classification (explicit vs null subject)

in the third stage of experimentation.

The best results were observed for models with

3 hidden layers of size 1000. It should be no-

ticed, however, that the increase in performance

is moderate when compared to smaller 2 hidden

layer models whose training is less computation-

ally expensive. Table 7 compares training and ex-

ecution times for the three best performing mod-

els, evidencing a trade-off between better per-

forming larger models and faster to train smaller

models, suggesting that for particular resource-

sensitive applications it might be preferable to opt

for a less resource-intensive variant, even at the

cost of lesser accuracy.

Layers Training steps Training time Processing time F1 score

2× 500 6000 1 hours 10.2 ms 73.85%

2× 1000 12000 2.5 hours 16.2 ms 74.81%

3× 1000 90000 10.5 hours 19.2 ms 75.84%

Table 7: Training and execution stats for se-

lected models. Training steps measure the num-

ber of iterations over the training set; processing

time measures the average time for executing the

model on a sentence from the development set.

Training times as measured using an entry-level

GPU (Nvidia GeForce GTX 1650).

6.2. Ternary Classifiers

The three most promising binary classification

models, as identified on the third experimentation

stage (table 6) were subsequently extended to the

ternary classification case, incorporating the dis-

tinction between null-subject phrases arising from

an optionally omitted subject and null-subject re-

sulting from a verb in an impersonal usage where

no subject can be admitted. As shown in ta-

ble 8, models with 2 hidden layers outperformed

themodel with 3 hidden layers in this scenario, and

were also much faster to train.

6.3. Results

Final results for the NMT-based classification

model are presented in table 9. There appears

to be a correlation between the F1-score for dif-

ferent verb categories and their support within

the corpus, with explicit subjects (which account
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Layers Training steps Training time Macro-F1 score

2× 500 10 000 1 hours 69.82%

2× 1000 12 000 2.5 hours 70.90%

3× 1000 110 000 16.5 hours 56.44%

Table 8: Training stats for ternary classifica-

tion (explicit subject vs null-subject vs impersonal

verb). Macro-F1 score computed over the devel-

opment set.

for 71.7% of finite verbs within the training set)

achieving the best results whereas the impersonal

verb category (corresponding to only 2.9% of finite

verbs in the training set) obtains less accurate re-

sults.

The best performance (as per macro F1 score)

was achieved by a model with two hidden layers

and 500 units per layer. A confusion matrix for this

classifier is given in table 10.

Layers Training steps Explicit subj. F1 Null-subj. F1 Impersonal F1

2× 500 10 000 steps 90.12% 76.85% 50.47%

2× 1000 12 000 steps 90.69% 76.29% 46.43%

3× 1000 110 000 steps 86.05% 63.31% 15.05%

Layers Macro F1 Weighted F1 Accuracy TER

2× 500 72.48% 86.19% 82.96% 4.93%

2× 1000 71.14% 86.41% 84.14% 4.92%

3× 1000 54.80% 79.27% 76.84% 16.31%

Table 9: Performance for the ternary classifica-

tion models (explicit subject, null-subject or imper-

sonal) over the test set. Weighted F1 is the F1

score weighted by each category support. TER

measures the distance between the output of the

NMT model and the expected output sequence.

Actual Detected as Detected as Detected as

category Explicit Null-subject Impersonal Not detected

Explicit 2636 (86.6%) 187 (6.2%) 15 (0.5%) 205 (6.7%)

Null-subject 158 (14.9%) 790 (74.4%) 8 (0.8%) 106 (9.9%)

Impersonal 13 (22.8%) 17 (29.8%) 27 (47.4%) 0 (0%)

(Spurious) 7 6 0 -

Table 10: Confusion matrix for the best perform-

ing model (2 hidden layers with 500 units each).

Category values are retrieved from the output of a

translation model which might occasionally fail to

generate the expected number of results (see sec-

tion 5.2). As a consequence, the classifier may fail

to produce a valid classification value for a verb

(not detected) or produce supernumerary values

(spurious). Results evaluated over the test set.

6.4. Comparison to Previous Work

Table 11 compares the final results for the pro-

posed classifiers and those reported in the ex-

isting literature. It can be concluded that null-

subject classifiers based on a machine translation

approach are able to achieve a performance com-

parable to those of more traditional methods. In

particular, it must be noted that one of the 2x500

model obtained the highest F1 score for Spanish

null subject recognition, 0.769, constituting an im-

provement in the state of the art over the score

reported by Rello et al. (2012) (on a different cor-

pus), and the scores reported for AnCora as well.

The Macro F1 in general is on par with the one re-

ported by (González and Martínez, 2018), which

uses the unmodified version of AnCora.

Model Corpus Explicit S F1 Null-S F1 Impersonal F1 Macro F1

2× 500 NSAnCora 90.1% 76.9% 50.5% 72.5%

2× 1000 NSAnCora 90.7% 76.3% 46.4% 71.1%

3× 1000 NSAnCora 86.1% 63.3% 15.1% 54.8%

González (2018) AnCora 90.9% 71.8% 55.5% 72.7%

Gerez (2019) AnCora 89% 67% 34% 63%

Rello (2012) ESZIC 91.2 75.5% 72.7 79.8

González (2018) ESZIC 89.1% 66.3% 62.2% 73.9%

Table 11: Comparison between results obtained in

this study and previous works on different corpora.

Top results over the AnCora corpus variants are

highlighted.

While our classifier proved capable of distinguish-

ing between explicit and null subject phrases with

a reliability comparable or even surpassing pre-

vious proposals, it was not possible to achieve

a similar level of performance in the identifica-

tion of impersonal verbs. This might be a con-

sequence of the limited number of examples for

this category within the corpus; one way to im-

prove this could be training on a custom corpus

with an artificially increased ratio of impersonal

verb phrases, as in Gerez et al. (2019). Note that

the results for impersonal verbs in González and

Martínez (2018) are not directly comparable, be-

cause they considered only the reflexive imper-

sonal sentences marked in AnCora, while we con-

sidered other cases as well.

As evidenced by the confusion matrix given in ta-

ble 10, failure to detect verbs during the trans-

lation process constitutes a major source of er-

ror. Further analysis of the results indicated that

failed detections were often a consequence of

verbs not being found within the vocabulary com-

piled from the training set and, as a result, be-

ing represented by the generic ‘unk’ token, irre-

spective of their POS. As nouns outnumber verbs

in the corpus, models tend to classify OOV to-

kens as nouns. This problem is compounded by

the fact that Spanish morphology allows for verbs

to take a great number of conjugations depend-

ing on their person, tense, aspect and mood; a

verb appearing in a form not covered in the train-

ing corpus will be treated as an OOV token even

if other inflections of the same lemma are repre-

sented. Possible improvements include the usage

of a larger vocabulary, pre-processing the input to

transform OOV verb forms into a surrogate verbal

value (e.g. Chiruzzo (2020) uses the embedding

of the most frequent word given POS and morpho-

logical features), or the addition of lemma informa-

tion to account for inflectional forms.
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7. Conclusions

In this work, we presented a series of experiments

adapting an NMT approach to the task of detect-

ing explicit subjects, null subjects, or impersonal

verbs in Spanish. Experimental results validated

the approach, achieving results comparable to or

surpassing those reported in prior literature, with a

Macro F1 score of 0.725, in a similar range to the

0.727 score obtained in previous works on a simi-

lar corpus (González and Martínez, 2018), and an

improvement to the state of the art in the recogni-

tion of null-subjects in particular, with an F1 score

of 0.769 for this category.

This approach also proved to be efficient in the us-

age of resources both during the training of the

models and its execution. The top-performing

model was trained within 2.5 hours on a laptop with

an entry-level GPU (Nvidia GeForce GTX 1650,

930-1395 MHz), processing input at a rate of 10.2

ms per sentence. It should also be noted that an

NMT translationmodel has a time complexity of or-

der O(n2) for an entry of length n (due to its usage

of an attention mechanism), in contrast to O(n3)
traditional syntactic parsers that might be applied

to the same task.

In order to generate a custom aligned parallel cor-

pus for the NMT model, a new Spanish-language

corpus focused on null-subject and impersonal

verb recognition was created by extracting infor-

mation out of the existing AnCora corpus (De-

lor, Mariona and Martí, Antonia and Recasens,

M., 2022) and manually annotating instances of

verbs whose classification could not be deduced

from its information. This resulted in a new re-

source dubbed ‘NullSubjAncoraCorpus’ which has

been made available to the public in order to facil-

itate the creation and evaluation of further devel-

opments in the area.
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