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Abstract
Knowledge Base Question Answering (KBQA) systems play a pivotal role in the domain of natural language processing
and information retrieval. Its primary objective is to bridge the gap between natural language questions and structured
knowledge representations, especially for complex KBQA. Despite the significant progress in developing effective and
interconnected KBQA technologies, the recent emergence of large language models (LLMs) offers an opportunity to
address the challenges faced by KBQA systems more efficiently. This study adopts the LLMs, such as Large Language
Model Meta AI (LLaMA), as a channel to connect natural language questions with structured knowledge representa-
tions and proposes a Three-step Fine-tune Strategy based on large language model to implement the KBQA system
(TFS-KBQA). This method achieves direct conversion from natural language questions to structured knowledge
representations, thereby overcoming the limitations of existing KBQA methods, such as addressing large search and
reasoning spaces and ranking massive candidates. To evaluate the effectiveness of the proposed method, we conduct
experiments using three popular complex KBQA datasets. The results achieve state-of-the-art performance across all
three datasets, with particularly notable results for the WebQuestionSP dataset, which achieves an F1 value of 79.9%.

Keywords: knowledge base question answering, large language models, information retrieval

1. Introduction

Knowledge Base Question Answering (KBQA) sys-
tems have become a prominent research area in
the field of natural language processing (NLP) and
information retrieval (IR) (Deng et al., 2020). These
systems aim to bridge the gap between unstruc-
tured natural language questions and structured
knowledge representations, thereby enabling users
to retrieve precise and meaningful answers from
vast knowledge bases (KBs), such as WordNet
(Miller, 1995), DBpedia (Auer et al., 2007), Free-
base (Bollacker et al., 2008), and Yet Another Great
Ontology (YAGO) (Suchanek et al., 2007). The ex-
isting KBQA methods primarily comprise informa-
tion retrieval-based (IR-based) approaches (Sax-
ena et al., 2020; Zhang et al., 2022; Shi et al.,
2021) and semantic parsing-based (SP-based) ap-
proaches (Das et al., 2021; Chen et al., 2021; Ye
et al., 2022; Gu and Su, 2022; Shu et al., 2022).
The former faces a large reasoning space. The lat-
ter, in the context of multi-hop question answering
(QA), must rank and find targets from numerous
candidates (e.g., candidate logical forms and can-
didate schemas), which is a challenging task. Fur-
thermore, owing to errors in entity linking, a valid
target logical form may not exist among the can-
didates (Ye et al., 2022). Obviously, this is not an
easy task, particularly for multi-hop QA. It requires
the support of high performance hardware and has
a semantic gap between natural language ques-
tions and structured knowledge representations.
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Figure 1: The objective of the semantic parsing-
based (SP-based) method is to map questions into
target logical forms and subsequently transform
them into executable programs, such as SPARQL,
to retrieve the desired answers. To achieve this
goal, we introduce TFS-KBQA, a Three-step Fine-
tune Strategy based on large language model for
KBQA, which employs three strategies.

Recently, there has been a rapid advancement
of large language models (LLMs), such as GPT-3
(Brown et al., 2020), Pattern and Language Model
(PaLM) (Chowdhery et al., 2022), Galacica (Taylor
et al., 2022), and Large Language Model Meta AI
(LLaMA) (Touvron et al., 2023a). These models
have demonstrated a robust ability to comprehend
and address various complex NLP tasks (Zhao
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et al., 2023). For example, ChatGPT 1, as one of
the most prominent applications of LLMs, demon-
strates its remarkable language prowess. The im-
pressive language comprehension ability of LLMs
demonstrates their capability to address the chal-
lenges in KBQA tasks and holds promise in bridging
the gap between natural language questions and
structured knowledge representations.

Therefore, this study introduces a Three-step
Fine-tune Strategy based on LLMs for implement-
ing the KBQA system called TFS-KBQA, which
exploits the power of LLMs to effectively address
KBQA tasks. Herein, we employ LLaMA, a well-
known LLM with superior performance across nu-
merous NLP tasks, as the chosen model for our
strategy. In our implementation of the KBQA task,
we employ three distinct strategies that work in tan-
dem to determine the final answer to the question
and significantly enhance the overall performance,
as depicted in Figure 1. The first strategy lever-
ages the powerful translation ability of LLaMA dur-
ing fine-tuning, enabling us to directly convert the
question into the corresponding logical form using
the logical form generator guided by the provided
prompt (see Strategy ① illustrated in Figure 1). The
second strategy starts by utilizing the translation
ability of LLaMA during fine-tuning to acquire the
item generator. This allows for direct conversion of
the question into relevant items, such as schema
(structured knowledge representation) and entities,
guided by the given prompt. Subsequently, we cap-
italize on the generation ability of LLaMA through
fine-tuning to generate the logical form according
to the obtained schemas and entities (see Strategy
② shown in Figure 1). Upon obtaining the logical
forms using Strategies 1 and 2, we proceed to link
the entity mentions to the corresponding entities in
the KB through the process of entity linking, thus
obtaining the target logical form. Subsequently, we
effortlessly convert the target logical form into an
executable program (e.g., SPARQL) and execute it
in the KB to retrieve the answer to the question. In
Strategy 3, the model relies on the provided prompt
to harness the generation ability of LLaMA during
fine-tuning, thereby effectively mapping the ques-
tion to the answer. This enables us to directly ob-
tain the answer from the model without additional
conversion (see Strategy ③ depicted in Figure 1).

By adopting these three strategies, we smoothly
convert the question into a logical form, which is
then transformed into an executable query, thereby
effectively deriving the answer. Consequently,
this approach overcomes the limitations of previ-
ous methods, such as addressing large reasoning
spaces, the challenge of ranking numerous can-
didates, and finding the target logical form. More-
over, these three strategies capitalize on the diverse

1https://openai.com/blog/chatgpt

capabilities of LLaMA, effectively complementing
each other and resulting in better overall perfor-
mance in the KBQA task. Using TFS-KBQA, we
achieved competitive performance on three widely
recognized complex KBQA datasets: WebQues-
tionSP (WebQSP) (Yih et al., 2016), ComplexWe-
bQuestions (CWQ) (Talmor and Berant, 2018), and
ComplexQuestions (CQ) (Bao et al., 2016). In par-
ticular, we obtained an F1 value of 79.9% for the
WebQSP dataset. This result further validates the
feasibility and effectiveness of utilizing LLMs for
KBQA tasks, particularly in bridging the seman-
tic gap between natural language questions and
structured knowledge representations. For exam-
ple, consider the question “Where was Johannes
Messenius born?". Although the semantic expres-
sions of the keywords “where...born" and schema
“place_of_birth" are similar, they may not match ex-
actly at the character level, indicating a semantic
gap between natural language questions and struc-
tured knowledge representations. However, the
success of our method in generating logical forms
and schemas highlights the remarkable ability of
LLMs to understand natural language. Our first
attempt to use LLaMA in KBQA tasks is successful,
and we hope that our study will serve as inspiration
for further research in this direction.

The main contributions of this study are summa-
rized as follows: (1) We leverage the powerful natu-
ral language understanding ability of LLM to explore
the application of LLaMA in KBQA tasks, thereby
effectively bridging the semantic gap between nat-
ural language questions and structured knowledge
representations. (2) Our TFS-KBQA employs three
strategies to implement the KBQA task, which fa-
cilitates the mapping transformation from natural
language questions to logical forms, thereby over-
coming challenges related to handling large rea-
soning spaces and numerous candidates. Addi-
tionally, these strategies complement each other to
ultimately improve the performance of the KBQA
system. (3) In Strategy 2, we achieve the transfor-
mation from question to logical form through two
gradual steps. Each step reduces the formal differ-
ence between the input and output, thus obtaining
a more accurate logical form. (4) We conduct a
comprehensive evaluation of our TFS-KBQA on
three widely recognized complex KBQA datasets,
and obtain highly competitive results.

2. Related Works

2.1. Knowledge Base Question
Answering

The current KBQA methods primarily focus on
IR-based and SP-based methods. The IR-based
method compares the semantic similarity between
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questions and their candidate answers (subgraphs)
and selects the candidates with the highest scores
as the final answers to the questions. The main ob-
jective is to retrieve a question-relevant subgraph
and perform reasoning on it, resulting in a smaller
reasoning space compared with retrieving the an-
swer to the question across the entire KB (Zhang
et al., 2022; Zhou et al., 2021; He et al., 2021; Shi
et al., 2021).

SP-based methods first convert the question into
a logical form, then further transform it into a struc-
tured query, and finally obtain the answer to the
question. Ye et al. (2022) introduced a rank-and-
generate KBQA approach, which initially ranks the
candidate logical forms using a contrastive ranker
and then generates the final logical form based
on the top-K logical forms. However, generating
candidate logical forms, particularly for complex
questions, may lead to numerous candidates. This
could make it challenging for the ranker to identify
the target logical form from the candidates and can
increase hardware demands. Moreover, because
of errors in entity linking, the candidates might not
contain the target logical form. Based on the study
conducted by Ye et al. (2022), Shu et al. (2022)
further explored the use of pre-trained language
models (PLMs) by improving zero-shot mention
detection, matching entity-independent semantics
with schema retrievers, and reducing generation
errors with constrained decoding.

Similarly, Chen et al. (2021) and Das et al. (2021)
adopted a two-step approach to transform ques-
tions into logical forms. The former employed a re-
triever to obtain relevant KB items (e.g., entities and
schema) and then utilized a transducer to generate
the logical form. Moreover, the latter used a neural
retriever to retrieve similar queries (and their logical
forms) and generated a logical form based on the
retrieved cases. To reduce the search space, Gu
and Su (2022) proposed a generation-based model
that directly transforms the question into a logical
form using the seq2seq method. This method effec-
tively addresses the challenges of a large search
space and schema linking in KBQA through dy-
namic program induction and dynamic contextual-
ized encoding. Additionally, Lan and Jiang (2020)
incorporated constraints into query graphs to prune
the search space and introduced a modified staged
query graph generation method to handle complex
questions with multi-hop relations and constraints.
Zhang et al. (2023) extracted relevant fine-grained
knowledge components from the KB and reformu-
lated them into middle-grained knowledge pairs to
generate the final logical expressions. Gu et al.
(2023) proposed a generic framework for grounded
language understanding that capitalizes on the dis-
criminative ability of language models and achieved
success in the field of KBQA.

2.2. Pre-trained Language Model on
KBQA

Following the emergence of neural language mod-
els, the rapid development of PLMs has significantly
advanced the field of KBQA, making them the pri-
mary choice for solving KBQA tasks (Saxena et al.,
2020; Chen et al., 2021; Das et al., 2021; Gu and
Su, 2022; Cao et al., 2022; Yan et al., 2021; Yu
et al., 2022a). PLMs, which are language models
pre-trained on large-scale corpora, have demon-
strated remarkable capabilities in understanding
natural language and handling complex QA tasks.
For example, Ye et al. (2022) proposed the Rank-
and-Generate KBQA (RnG-KBQA) method, which
utilizes BERT in the logical form ranking stage and
employs the sequence-to-sequence (seq2seq) gen-
eration method (T5) to convert query sequences
into logical form sequences during the target logical
form generation stage. Similarly, Shu et al. (2022)
introduced the TIARA method, where BERT was
used in the schema retrieval phase, and T5 was
applied in the target logical form generation phase.

With the continuous advancement in hardware
and the availability of large-scale corpora, re-
searchers have been actively developing LLMs,
such as GPT-X, LLaMA, and PaLM. These models
use a significant number of parameters and demon-
strate robust language understanding and gener-
ation capabilities, thereby enabling their wide ap-
plication in various NLP tasks. LLMs have demon-
strated remarkable success in various tasks, includ-
ing text classification, machine translation, question
answering, and dialogue systems, making them a
prominent and mainstream approach in the field of
NLP (Yu et al., 2022b; Kasneci et al., 2023; Aher
et al., 2023; Zhu et al., 2023; Singhal et al., 2023;
Tinn et al., 2023). This has created an opportu-
nity to leverage LLMs for KBQA and to address the
challenges unique to this domain. Consequently,
we opt to utilize LLaMA, which currently exhibits su-
perior performance in various NLP tasks, for KBQA
and introduce the TFS-KBQA, which can effectively
overcome the challenges associated with retrieving
target candidates from a massive candidate pool
and address a large search space.

3. Our Approach

Our TFS-KBQA leverages the potential of LLaMA
in NLP tasks and implements the KBQA task using
three different strategies, as shown in Figure 1.
To comprehensively demonstrate the design and
achievement of TFS-KBQA, we present a detailed
and systematic investigation of each of the three
strategies in subsequent sections.
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Figure 2: The architecture of Strategy 1 implements
the direct conversion from the question to the target
logical form.

Instruction (I1): Please translate the following questions into their 
corresponding logical forms.
Input: Who was vice president after kennedy died?
Output: ( join ( r government.us_president.vice_president ) [ john f. kennedy ] )

T1

3.1. Preliminaries
A KB generally contains a substantial number
of triples, which are represented in the form of
<Subject, Predicate, Object>. Each of these
triples is referred to as a fact. We generally
represent facts as <s, r, o>, where s denotes
an entity; o denotes an entity or literal, such
as data time and integer values; and r denotes
the binary relation between s and o. For ex-
ample, consider the following fact: <m.01b716,
people.person.place_of_birth, m.01m8_w>, where
“m.01b716" and “m.01m8_w" represent entities and
“people.person.place_of_birth" represents the bi-
nary relation.

In our task, the primary objective is to convert
a natural language question Q into an equivalent
logical form L, which can easily be converted into
a SPARQL query to retrieve the answer. There-
fore, we adopt s-expressions to represent the KB
query, following the precedent set by previous stud-
ies (Gu et al., 2021; Ye et al., 2022; Gu and Su,
2022; Shu et al., 2022). S-expressions strike a
balance between compactness, composition, and
readability, making them conducive to effectively
utilizing the seq2seq model for the Q-to-L transfor-
mation (Gu et al., 2021). For example, for the ques-
tion “Who was the vice president after Kennedy
died?", the equivalent logical form is “(join (r gov-
ernment.us_president.vice_president) m.0d3k14)."

3.2. Strategy 1
By leveraging the advantages of LLMs in the field
of NLP, instruction-based fine-tuning for addressing
downstream tasks is a technique that has demon-
strated significant effectiveness in recent LLM de-
velopments (Taori et al., 2023; Wang et al., 2022).
In Strategy 1, we define a task T1, which comprises
a given dataset D1 = {(X1

i , Y
1
i )}Ni=1 containing

N input–output instances and a specific task in-
struction I1. After fine-tuning, we obtain model
M1, which can directly convert a given natural lan-

Question Sequence

Natural Language Prompt

LLaMA for Translation

Target Items

LLaMA
for Generation

Target Logical 
Form

Natural Language 
Prompt

p

p

p

1

2

Entities

Schema

Figure 3: The architecture of Strategy 2 involves
transforming the question into the target logical
form in two steps.

t1
Instruction (It1): Please translate the following questions into their 
corresponding relations and extract entities mentioned in the questions.
Input: Who was vice president after kennedy died?
Output: government.us_president.vice_president ; john f. kennedy

t2
Instruction (It2): Please generate the target logical form according to the 
following sentence.
Input: government.us_president.vice_president ; john f. kennedy
Output: ( join ( r government.us_president.vice_president ) [ john f. kennedy ] )

T2

guage question into the target logical form. For
model M1, when provided with the task instruction
I1 and the corresponding input X1

i , we can obtain
the target logical form Y 1

i , where M(I1, X
1
i ) = Y 1

i ,
for i ∈ {1, 2, ..., N}. As an illustration, we uti-
lize the pre-trained general LLaMA, its parame-
ters, and a training dataset, along with our defined
instruction “Please translate the following ques-
tions into their corresponding logical forms.", to per-
form fine-tuning. This process results in a logical
form generator model. After the model undergoes
instruction-based fine-tuning and receives the ques-
tion “Who was vice president after Kennedy died?",
the corresponding output of the model is “(join (r
government.us_president.vice_president) [john f.
kennedy])" (see Task T1).

3.3. Strategy 2
In Strategy 1, we achieve a direct transformation
from natural language questions to logical forms.
We believe that the span of this transformation from
the question to the logical form is quite significant,
which rigorously tests the ability of LLaMA to com-
prehend and generate natural language. Even a
minor error in the model can lead to incorrect logical
forms, potentially affecting the performance of the
KBQA task. Therefore, in Strategy 2, we propose
dividing the conversion process from a question to
a logical form into two steps. The first step involves
converting the question into the following KB rele-
vant items: schemas and entities. By adopting this
approach, the LLaMA only needs correctly under-
stand the question and perform the transformation
to items at the semantic level, without generating
any semantically unrelated characters, such as “),"
“[," “r," “join," and “argmax." In Step 2, we generate
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the target logical form based on the items obtained
in the first step. During this phase, LLaMA only
needs understand the structure of the logical form
and make necessary additions to the items to arrive
at the final target logical form. By dividing the gener-
ation of the target logical form into these two steps,
we gradually reduce the formal differences between
the input and output at each stage. This enables us
to obtain more accurate logical forms and enhances
the overall performance of the KBQA.

In Strategy 2, we decompose Task T2 into two
subtasks: t1 and t2. Below, we provide a detailed
introduction to these two subtasks. For task t1,
we construct a dataset Dt1 = {(Xt1

i , Y t1
i )}Ni=1,

which contains N 2 input–output instances along
with the specific task instruction It1. Using
the LLaMA and performing fine-tuning on the
dataset Dt1, we obtain the model Mt1, which can
effectively transform natural language questions
into relevant KB items. For instance, given
the instruction “Please translate the following
questions into their corresponding relations and
extract entities mentioned in the questions," after
fine-tuning the dataset Dt1, we obtain the item
generator model Mt1. When the model receives
the input “Who was vice president after Kennedy
died?", the corresponding output of the model
is “government.us_president.vice_president;
John F. Kennedy," where “govern-
ment.us_president.vice_president" denotes
the schema and “john f. kennedy" denotes the
entity mentioned in the question (see Task T2
(t1)). Compared with task T1, task t1 reduces the
formal difference between the input and output,
thereby enabling a more effective transformation
from natural language questions to semantically
relevant KB items. This improvement enhances
the performance of task t1, which is the premise
for obtaining a more accurate target logical form.

In task t2, we construct a dataset Dt2 =
{(Xt2

i , Y t2
i )}Ni=1 that comprises N input–output in-

stances and a specific task instruction It2. The
primary objective of this task is to complement the
relevant KB items obtained in task t1 by introducing
specific symbols and characters, such as “)," “[,"
and “join", to facilitate the conversion of the items
into the target logical forms. For instance, given
the task instruction “Please generate the target log-
ical form based on the following sentence" and the
dataset Dt2, we fine-tune the model on this dataset
to obtain the model Mt2. When the model receives
the input “government.us_president.vice_president;
john f. kennedy", the corresponding output is “(join
(r government.us_president.vice_president) [john
f. kennedy])" (see Task T2 (t2)). In summary, this
task complements the information obtained in task

2Across various tasks using the same dataset, the
number of instances remains consistent.
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Figure 4: The architecture of Strategy 3 allows for
the direct generation of the target answers to the
question.

Instruction (I3): Please provide answers to the following questions based on 
your understanding.
Input: Who was vice president after kennedy died?
Output: Lyndon B. Johnson

T3

t1 by incorporating specific symbols, resulting in
the generation of the target logical form. This is
a simplified and less complex task compared to
task T1 within the LLaMA. Moreover, because sim-
pler tasks are more suitable for LLaMA, we can
obtain a more accurate target logical form, thereby
improving the performance of KBQA tasks.

3.4. Strategy 3
Inspired by the study conducted by Yu et al. (2022a),
we decided to use the powerful natural language
understanding capabilities of LLaMA for direct ques-
tion answering. Strategy 3 complements the ques-
tion answers generated by the target logical forms
in Strategies 1 and 2, thereby further improving the
KBQA performance. In this strategy, we define Task
T3 and construct the dataset D3 = {(X3

i , Y
3
i )}Ni=1

that contains specific task instructions I3 and N
input–output instances. By fine-tuning the LLaMA
on the dataset D3, we obtain the answer generator
model M3, which efficiently provides answers when
we input questions. For example, given the ques-
tion “Who was the vice president after Kennedy
died?" and the task instruction“Please provide an-
swers to the following questions based on your un-
derstanding.", our model M3 yields the following an-
swer to the question: Lyndon B. Johnson (see Task
T3). Overall, leveraging the capabilities of LLaMA
and implementing Strategy 3 allow us to directly
obtain accurate answers to questions, thereby im-
proving the overall performance of KBQA.

3.5. Entity Linking
In Freebase, the Machine-Generated Identifier
(MID) 3 is an important element for uniquely identi-
fying the entities; its form is similar to “m.012_0k9".
Entity linking maps an entity mention to its corre-
sponding MID in Freebase. For example, given
an entity “john f. kennedy," we map it to its corre-
sponding MID “m.0d3k14" in Freebase.

3https://developers.google.cn/freebase?hl=zh-cn
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Although obtaining the final target logical form is
critical in solving the KBQA task, the entity linking
process is also very important. For example, in the
RnG-KBQA method proposed by Ye et al. (2022),
an incorrect result from entity linking can lead to
the absence of the target logical form among the
candidate logical forms, directly affecting the per-
formance of the ranker model. To ensure improved
entity linking accuracy, we employ two implementa-
tion methods. One of the methods involves utilizing
the Google knowledge graph search application
programming interface (API) 4, which is used in
QGG (Lan and Jiang, 2020) to implement entity link-
ing. The other approach utilizes the most advanced
entity linking system, ReFinED 5, as proposed by
Tom Ayoola (2022b,a). This system offers higher
accuracy and significantly reduces costs compared
to existing approaches. By employing these two
methods, we enhance the accuracy of entity linking,
thereby contributing to the overall effectiveness of
the KBQA system.

4. Experiments

4.1. Datasets
We validate our TFS-KBQA on three representative
complex KBQA datasets.
WebQSP was created by Yin et al. (2016) to eval-
uate the costs and benefits of gathering semantic
parse labels, including semantic parses for ques-
tions. It comprises a training set with 3,298 samples
and a test set with 1,639 samples.
CWQ was introduced by Talmor and Berant (2018)
and is an extended version of WebQSP with more
hops and constraints. Following previous practices,
we split the training, validation, and test sets into
27,623, 3,518, and 3,531 samples, respectively.
CQ was released by Bao et al. (2016) and includes
2,100 QA pairs, with 1,300 and 800 for training and
testing, respectively. Notably, this dataset does not
provide ground truth query graphs. Therefore, we
assess the success of our fine-tuned model when
applied to this dataset.

4.2. Evaluation Metrics
For WebQSP, we use F1 and Hits@1 as metrics,
where F1 is computed using the official evalua-
tion script. Hits@1 is calculated according to the
method provided by Shu et al. (2022), where we
randomly select an answer for each question 100
times and calculate the average Hits@1 6. For the

4https://developers.google.com/knowledge-graph
5https://github.com/amazon-

science/ReFinED/tree/main
6SP-based methods yield unordered answers, which

are usually evaluated by F1 rather than Hits@1.

other two datasets, we follow standard practice and
report the F1 score, which is calculated based on
the predicted results and the gold answer set.

4.3. Implementation Details
Our models are based on LLaMA foundation mod-
els. For our experiment, we utilized the latest ver-
sion of LLaMA-2, which was developed and pub-
licly released by Meta. LLaMA-2 is available in
different sizes: 7 billion, 13 billion, and 70 billion pa-
rameters. In our study, we fine-tuned the 7 billion
and 13 billion parameter LLaMA variants (meta-
llama/Llama-2-7b-hf 7 and meta-llama/Llama-2-
13b-hf 8), following the approach outlined by Tou-
vron et al. (2023b). During the training process,
we adopted the LoRA partial parameter fine-tuning
method, used the AdamW optimization method
(Loshchilov and Hutter, 2018) for 3 epochs, and uti-
lized one NVIDIA v100-32G GPU with a batch size
of 8. The peak learning rate was set to 3e-4, and the
maximum input length was limited to 128 tokens.
We performed continuous training based on the
fine-tuned (LoRA) model. This process involved
merging the fine-tuned LoRA model with the base
model to generate a new base model, followed by
another round of fine-tuning. Additionally, to further
enhance the KBQA performance, we comprehen-
sively considered the results obtained from both the
13B and 7B parameter models. Our experiments
showed that if the results from the former model
are incorrect, the latter model may produce the cor-
rect results, indicating a degree of complementarity
between the two. For further details on other pa-
rameter settings, please refer to the source code
available on GitHub 9.

4.4. Baselines for Comparison
We comprehensively compared our TFS-KBQA
with state-of-the-art (SOTA) models on three
datasets. Our main focus is to compare the RnG-
KBQA (Ye et al., 2022), ReTraCk (Chen et al.,
2021), ArcaneQA (Gu and Su, 2022), TIARA (Shu
et al., 2022), and FC-KBQA (Zhang et al., 2023)
methods with TFS-KBQA because they share com-
mon characteristics with it. In particular, these meth-
ods first obtain the target logical form and then
convert it into an executable program to execute
the query, which is a widely used strategy in the
current advanced methods. However, the most
significant difference between them depends on
the approaches and strategies used to obtain the
target logical form. For example, RnG-KBQA em-
ploys BERT to rank candidate logical forms and

7https://huggingface.co/meta-llama/Llama-2-7b-hf
8https://huggingface.co/meta-llama/Llama-2-13b-hf
9https://github.com/shouh/TFS-KBQA
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T5 to generate the target logical forms based on
the top-K candidates. ArcaneQA utilizes dynamic
program induction and dynamic-contextualized en-
coding strategies to generate the target logical form
using their generation-based model. FC-KBQA is a
fine-to-coarse composition framework designed to
extract knowledge components and subsequently
generate the final logical expressions. Additionally,
there are other methods, such as QGG (Lan and
Jiang, 2020), that focus on query-graph generation,
SR (Zhang et al., 2022), which relies on subgraph
retrieval, Pangu (Gu et al., 2023), which is a generic
framework for grounded language understanding,
and TransferNet (Shi et al., 2021) infers the answer
by transferring entity scores along relation scores
over multiple steps.

4.5. Results
In this section, we present the results of our TFS-
KBQA on three datasets. Tables 1, 2, and 3 demon-
strate that TFS-KBQA outperforms the previous
SOTA approach (Pangu) in the WebQSP dataset,
achieving higher F1 score at 79.9% (+0.3). The
Hits@1 is 79.8%, which does not exceed the IR-
based method (SR) 10. In the CWQ dataset, our
TFS-KBQA surpasses the current SOTA approach
(Program Transfer) by a significant margin, achiev-
ing an F1 score of 63.6% (+4.9). Similarly, in the
CQ dataset, our TFS-KBQA outperforms the cur-
rent SOTA method (QGG) with a competitive F1
score of 44.0% (+0.7). These experimental results
demonstrate that the strong semantic understand-
ing ability of LLMs enables our method to handle
more complex questions. For example, CWQ has
more hops and constraints. Moreover, our TFS-
KBQA achieves an improvement in KBQA perfor-
mance through the mutual promotion and supple-
mentation of various strategies.

We further conducted an ablation experiment to
assess the effect of the three proposed strategies
on the final KBQA task. Analyzing the experimental
results across the three datasets, it is evident that
the removal of any of these strategies decreases
KBQA performance. This demonstrates that when
simultaneously employing these three strategies
for KBQA tasks, they complement each other. If
a question cannot be answered by Strategy 1, the
result of Strategy 2 can be used as an answer.
Similarly, when Strategies 1 and 2 fail to provide
answers, Strategy 3 can directly address the ques-
tion. Notably, the omission of Strategy 3 results in
a significant decrease in KBQA performance. For

10The answers to the questions using the IR-based
method are ordered, and the top-1 answer is considered
the best. In contrast, answers obtained using SP-based
methods are typically unordered. Hence, the two meth-
ods differ in terms of Hits@1.

Method F1 Hits@1
IR-based Methods

TransferNet (Shi et al., 2021) − 71.4

NSM (He et al., 2021) 67.4 74.3

SR (Zhang et al., 2022) 74.5 83.2
SP-based Methods

QGG (Lan and Jiang, 2020) 74.0 −
ReTraCk (Chen et al., 2021) 71.0 71.6

RnG-KBQA (Ye et al., 2022) 75.6 −
ArcaneQA (Gu and Su, 2022) 72.8 −
Program Transfer (Cao et al., 2022) 76.5 74.6

TIARA (Shu et al., 2022) 76.7 73.9

Pangu (Gu et al., 2023) 79.6 −
FC-KBQA (Zhang et al., 2023) 76.9 −
TFS-KBQA (Ours) 79.9 79.8

-Only use LLaMA-2-13b 79.5 79.5
-Only use LLaMA-2-7b 78.5 78.4
-w/o ReFinED entity linking 78.5 78.6
-w/o ELQ entity linking ∆ 79.2 79.2
-w/o Google API entity linking 78.2 78.3
-w/o Strategy 1 78.5 78.6
-w/o Strategy 2 79.7 79.6
-w/o Strategy 3 77.4 76.9

Table 1: Results of F1 and Hits@1 for TFS-KBQA
and the compared baselines on WebQSP. The two
blocks of the baselines are IR-based and SP-based
methods. ∆: We add the ELQ entity linking results
commonly used in many studies to this dataset.
Please note that ‘w/o’ is the abbreviation of without.

instance, in the WebQSP dataset, the removal of
Strategy 3 causes the F1 score to decrease from
79.9% to 77.4%. This underscores the significance
of directly generating answers using the instruc-
tion + fine-tuning method, which serves as a valu-
able supplement for effectively addressing complex
KBQA tasks.

Additionally, to ensure the accuracy of entity link-
ing results, we employ two entity linking methods:
ReFinED and Google API. It is important to high-
light that we incorporated the entity linking results
from ELQ (Li et al., 2020), which is a widely used
entity linker in numerous studies, into the WebQSP
dataset (Ye et al., 2022; Shu et al., 2022). By ana-
lyzing the experimental results presented in Table
1–3, it shows that the removal of any entity linker
results in a decrease in the KBQA performance,
indicating that different entity linkers can comple-
ment each other. For instance, consider the entity
mention “palace of knossos." The ReFinED method
yields the entity linking result “m.0ksnn," while the
Google API yields “m.0123zb8k," with “m.0ksnn"
being the correct entity (see the case study in the
Appendices for detail.). Conversely, there are in-
stances in which the entity linking result of the Re-
FinED method is incorrect, and the Google API
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Method F1
PullNet (Sun et al., 2019) 47.2

QGG (Lan and Jiang, 2020) 40.4

NSM (He et al., 2021) 48.8

TransferNet (Shi et al., 2021) 48.6

RnG-KBQA (Ye et al., 2022) 42.3

Program Transfer (Cao et al., 2022) 58.7
FC-KBQA (Zhang et al., 2023) 53.1

TFS-KBQA (Ours) 63.6
-Only use LLaMA-2-13b 62.9
-Only use LLaMA-2-7b 62.2
-w/o ReFinED entity linking 61.1
-w/o Google API entity linking 61.4
-w/o Strategy 1 60.0
-w/o Strategy 2 62.7
-w/o Strategy 3 49.1

Table 2: Comparison between our TFS-KBQA and
the baselines on CWQ.

provides the correct entity. This indicates the sig-
nificance of entity linking in solving KBQA tasks
because there are numerous cases in which our
method correctly obtains the logical form, but en-
tity linking errors result in inaccuracies in the final
logical form.

Furthermore, we conducted experiments using
both the LLaMA-2-7b model with 7-billion param-
eters and the LLaMA-2-13b model with 13-billion
parameters to validate the enhanced capabilities of
larger LLaMA-2 models in natural language un-
derstanding and processing. Based on the re-
sults presented in Tables 1, 2, and 3, we ob-
served that compared to LLaMA-2-13b, utilizing
only LLaMA-2-7b resulted in varying degrees of per-
formance degradation in KBQA tasks. Particularly
for CQ datasets, its F1 value dropped from 44.0%
to 41.1%. This discrepancy can be attributed to
the increased complexity of the CQ datasets com-
pared with that of the WebQSP datasets, which
highlights the fact that larger LLMs possess supe-
rior language understanding and reasoning abili-
ties, making them advantageous for tackling more
intricate questions. It is essential to note that larger
LLMs also requires higher performance hardware.
Deploying LLaMA-2-7b requires an NVIDIA TITAN-
RTX-24G GPU, while LLaMA-2-13b requires an
NVIDIA V100-32G GPU. For the larger LLaMA-
2-70b model, an NVIDIA A800-80G GPU is es-
sential. Therefore, when the hardware conditions
permit, opting for a larger LLM may yield benefits.
Therefore, under favorable hardware conditions, it
can be inferred that using a larger LLaMA-2-70b
model could potentially further enhance KBQA per-
formance. Furthermore, owing to the absence of
ground truth query graphs in the CQ dataset, we

Method F1
Constraint-Based (Bao et al., 2016) 42.3

Embedding-Based (Luo et al., 2018) 42.8

QGG (Lan and Jiang, 2020) 43.3
TFS-KBQA (Ours) 44.0

-Only use LLaMA-2-13b 43.7
-Only use LLaMA-2-7b 41.1
-w/o ReFinED entity linking 42.8
-w/o Google API entity linking 42.7
-w/o Strategy 1 43.4
-w/o Strategy 2 43.3
-w/o Strategy 3 30.4

Table 3: F1 on CQ compared to baseline methods.
Because this dataset does not provide the ground
truth query graphs, we first employ the model that
has been fine-tuned on the CWQ dataset to ob-
tain the target logical form in Strategies 1 and then
obtain 440 correct samples out of the initial 1,300
samples. We then use these correct samples to
fine-tune our model.

employed a fine-tuned model trained on WebQSP
and CWQ to process the training dataset. This pro-
cess yielded 440 correct samples out of the initial
1,300 samples, thereby enabling us to fine-tune var-
ious models and surpass the current SOTA method
(QGG). Consequently, we anticipate that incorpo-
rating more training samples may lead to further
improvements in the performance on this dataset.

In the following analysis, we will examine vari-
ous prediction cases. We observe that Strategy
1, which directly converts natural language ques-
tions into logical forms, performs better on simple
questions (one-hop or two-hop) than on complex
questions (three hops or more). For complex ques-
tions, the predicted logical forms mostly agree with
the golden logical forms, but deviations in certain
details or schemas lead to final errors. For exam-
ple, as shown in Table 4, our prediction and golden
results differ in the form of the schema, resulting
in KBQA errors. To improve KBQA performance,
we utilize Strategy 2 to complement the prediction
results of Strategy 1.

When the logical form obtained using Strategy
1 cannot be used for querying, we consider the
results of Strategy 2. Strategy 2 involves two sub-
tasks. The first subtask (t1) directly maps the ques-
tion to relevant KB items. The second subtask (t2)
generates a logical form based on the predicted
items. Because we obtain the correct schema and
entity in the first subtask, we eventually obtain the
correct logical form. For example, the question
“What currency is used in the jurisdiction where the
Cabinet of Peru is located?" cannot be answered
using Strategy 1, but through our experiment, we
found that it can be resolved using Strategy 2. How-
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Example
[Strategy 1]
Question: What currency is used in the jurisdiction where the Cabinet of Peru is located?
Predict: ( join ( r location.country.currency_used ) ( join government.governmental_jurisdiction.government
[ cabinet of peru ] ) )
Golden: ( join ( r location.country.currency_used ) ( join government.governmental_jurisdiction.governing_officials
( join government.government_position_held.governmental_body [ cabinet of peru ] ) ) )
[Strategy 2]
Question: What languages are spoken where Haitian Creole is spoken?
Predict (t1): location.country.languages_spoken location.country.languages_spoken ; haitian creole
Golden: location.country.languages_spoken location.country.official_language ; haitian creole
Predict (t2): ( join ( r location.country.languages_spoken ) ( join location.country.languages_spoken [ haitian
creole ] ) )
Golden: ( join ( r location.country.languages_spoken ) ( join location.country.official_language [ haitian creole ] ) )
[Strategy 3]
Question: What artist recorded Elf’s Lament?
Predict: singer, actor, film producer, songwriter, record producer, radio personality, music artist, artist, songwriter
Golden: actor, singer, songwriter
[Entity Linking]
Question: What is the type of government practiced in the country where the Israeli Lira is used?
Logical Form: ( join ( r location.country.form_of_government ) ( join location.country.currency_formerly_used [
israeli lira ] ) )
Target Logical Form: ( join ( r location.country.form_of_government ) ( join location.country.currency_formerly_
used m.04r5x5 m.036g0k ) )

Table 4: The examples of three strategies on the CWQ dataset include a wrong example for each
strategy. Red words represent the inconsistent schema items. The content contained in [ ] represents
entity mentions. Blue word represents the wrong entity linking result, and brown word represents the
golden entity linking result.

ever, if the first subtask prediction fails in Strategy 2,
it will directly lead to an incorrect logical form in the
second subtask. For example, as depicted in Table
4, for the question “What languages are spoken
where Haitian Creole is spoken?", we obtain the
wrong schema “location.country.language_spoken"
in the first subtask. Although “language_spoken"
and “official_language" in the golden schema are
semantically the same, the difference in form re-
sults in the final error.

When both Strategies 1 and 2 fail, we resort to
Strategy 3 to generate answers directly. However,
as shown in the Table 4, we found that the answers
we obtain may be more or less than the correct an-
swers, or they may be entirely different. If the cor-
rect answers cannot be obtained through Strategy
3, then our TFS-KBQA cannot answer the question.
Moreover, errors leading to the final KBQA results
can arise from entity linking. When obtaining the
logical form, we use entity linking technology to link
entity mentions to the KB. If entity linking yields
incorrect results, we will not obtain the correct an-
swer to the question. For example, as shown in
Table 4, given the question “What is the type of
government practiced in the country where the Is-

raeli Lira is used?", we obtain the correct logical
form. However, when we link “Israeli Lira" to the
KB through entity linking, we incorrectly connect
it to entity “m.04r5x5" instead of the golden entity
“m.036g0k", leading to the wrong target logical form,
which eventually causes the KBQA error.

5. Conclusion

In this study, we utilize the latest LLaMA-2 to pro-
pose the TFS-KBQA method for KBQA tasks. This
method implements KBQA tasks using three strate-
gies, enabling it to use LLMs more effectively. Si-
multaneously, the three methods complement each
other, synergistically contributing to the overall per-
formance of our KBQA system. By evaluating the
three widely used complex KBQA datasets, the
experimental results demonstrate that employing
LLMs for KBQA tasks is a straightforward, feasi-
ble, and universal approach. This study represents
an initial exploration of employing LLMs for KBQA
tasks. In the future, we aim to conduct more exten-
sive studies based on this foundation. For example,
we will explore how to obtain more appropriate in-
structions for a specific task.
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