
LREC-COLING 2024, pages 12259–12270
20-25 May, 2024. © 2024 ELRA Language Resource Association: CC BY-NC 4.0

12259

NLoPT: N-gram Enhanced Low-Rank Task Adaptive Pre-training
for Efficient Language Model Adaption

Hao Gu1,2,Jiangyan Yi1,2,†, Zheng Lian1,2, Jianhua Tao3,4, Xinrui Yan1,2
1State Key Laboratory of Multimodal Artificial Intelligence Systems,Institute of Automation,

Chinese Academy of Sciences, Beijing, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China

3Department of Automation, Tsinghua University, China
4Beijing National Research Center for Information Science and Technology,

Tsinghua University
guhao2022@ia.ac.cn, jiangyan.yi@nlpr.ia.ac.cn

lianzheng2016@ia.ac.cn, jhtao@tsinghua.edu.cn, yanxinrui2021@ia.ac.cn

Abstract
Pre-trained Language Models (PLMs) like BERT have achieved superior performance on different downstream
tasks, even when such a model is trained on a general domain. Moreover, recent studies have shown that
continued pre-training on task-specific data, known as task adaptive pre-training (TAPT), can further improve
downstream task performance. However, conventional TAPT adjusts all the parameters of the PLMs, which
distorts the learned generic knowledge embedded in the original PLMs weights, and it is expensive to store a
whole model copy for each downstream task. In this paper, we propose NLoPT, a two-step n-gram enhanced
low-rank task adaptive pre-training method, to effectively and efficiently customize a PLM to the downstream
task. Specifically, we first apply Low-Rank Adaption (LoRA), a prevalent parameter-efficient technique, for
efficient TAPT. We further explicitly incorporate the task-specific multi-granularity n-gram information via the cross-
attention mechanism. Experimental results on six datasets from four domains illustrate the effectiveness of NLoPT,
demonstrating the superiority of LoRA based TAPT and the necessity of incorporating task-specific n-gram information.
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1. Introduction

Large Language Models (LLMs) (Touvron et al.,
2023; Chowdhery et al., 2023) have achieved su-
perior performance in a wide range of natural lan-
guage processing tasks. When applied in the task
of text classification, LLMs like ChatGPT (Ope-
nAI, 2022), are prompted to generate results for a
test sample by conditioning the model on a few in-
context examplars or instructions describing the
task. In spite of the success that LLMs have
achieved superior performance comparable to su-
pervised baselines or even state-of-the-art results
in a variety of text classification benchmarks, these
models can be costly in terms of token and time us-
age, especially when many LLM calls are needed.
Thus, it is still prevalent to adopt pre-training then
fine-tuning paradigm for encoder-only Pre-trained
Language Model (PLMs) like BERT (Devlin et al.,
2019), along with its variations such as RoBERTa
(Liu et al., 2019) and ALBERT (Lan et al., 2020).

However, it is not optimal to directly fine-tune
a general BERT-based pre-trained model on a
domain-specific task because PLMs are often pre-
trained in a general domain, which means there
are domain gaps between the pre-training stage
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and fine-tuning stage (Zhang et al., 2021b). To
mitigate the problem of domain shift, existing work
SciBERT (Beltagy et al., 2019) and BioBERT (Lee
et al., 2020) were trained from scratch with domain
corpus. However, these methods heavily rely on
a large-scale domain-specific corpus which is la-
borious and expensive to construct (Zhang et al.,
2021a). Therefore, considerable efforts had been
dedicated to adapting PLMs to a target task by con-
ducting continuous pre-training, i.e., starting from a
general model (e.g., BERT) and continuously pre-
training with a similar objective on domain-specific
corpus. Gururangan et al. (2020) proposed domain
adaptive pre-training (DAPT) and task adaptive pre-
training (TAPT). DAPT and TAPT primarily differ in
the way they utilize data. DAPT employs a large
corpus of unlabeled domain-specific text, making
time and hardware accessibility still the major con-
straints for developing such systems. In contrast,
TAPT solely leverages the training data of the down-
stream task for continuous pre-training. Moreover,
numerous studies (Kim et al., 2021; Diao et al.,
2021; Nishida et al., 2021) had demonstrated that
DAPT and TAPT can improve the downstream task
performance. In this work, we focus on TAPT as
it is more resource-efficient and practical. Never-
theless, there are still two main challenges in TAPT
that remain insufficiently addressed.
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Firstly, conventional TAPT adjusts all parame-
ters of the PLMs using task-specific data, which
is susceptible to catastrophic forgetting. Further-
more, full-parameter TAPT can be costly, as it re-
quires storing a model copy for each individual
downstream task. Alternatives such as adapter
(Houlsby et al., 2019; Kim et al., 2021) and sparse
tuning (Guo et al., 2021) were proposed to over-
come the first challenge. These methods, however,
remain inefficient in terms of parameters and com-
putation, as they either introduce inference latency
or necessitate complex training steps. To mitigate
these limitations, motivated by the recent success-
ful application of Low-Rank Adaptation (LoRA) (Hu
et al., 2022) in instruction tuning of LLMs such as
LLaMA (Touvron et al., 2023), we employ the LoRA
technique for efficient TAPT in this work.

As for the second challenge, conventional full-
parameter TAPT ignores that many specialized do-
mains contain specific words not included in the
vocabulary of PLMs. These domain-specific vocab-
ularies that provide a compact representation of
the target domain play a vital role in the domain
adaptation of PLMs. Yao et al. (2021) introduced
a framework that expands task-specific vocabu-
lary automatically by augmenting task-specific sub-
word units. Nishida et al. (2021) was designed to
align the static word embedding of a PLM with the
word embedding derived in the target domain with
FastText (Bojanowski et al., 2017). Nevertheless,
all these works overlook the multi-grained domain
information carried by n-grams and fail to utilize it
effectively. Diao et al. (2021) utilized an unlearn-
able n-gram matching matrix to bridge the domain
gap between source and target vocabulary. In con-
trast, we incorporate n-gram information via the
cross-attention mechanism.

In this paper, we address the two aforementioned
problems during conventional TAPT by proposing
NLoPT: N-gram enhanced Low-Rank Task adap-
tive Pre-training, which consists of two stages:
LoRA TAPT and N-gram Fusion. Specifically,
in LoRA TAPT, we apply LoRA for task adaptive
pre-training to capture task-specific knowledge effi-
ciently. Several learnable LoRA modules are in-
serted in a PLM, then we train the LoRA mod-
ules and Masked Language Model (MLM) Head
with the MLM loss on the task corpus. Note that
parameters of the underlying PLM are frozen to
prevent forgetting general knowledge stored in the
original parameters. In N-gram Fusion, we inject
task-specific multi-granularity n-gram information.
In detail, we first merge the trained LoRA mod-
ules with the general model, resulting in a task-
specific PLM. Then, we utilize a Pointwise Mutual
Information (PMI) based method to extract task-
specific n-grams from the downstream task. Sub-
sequently, the task-specific n-gram information is in-

jected through a cross-attention mechanism based
fusion module. Afterwards, the n-gram fusion mod-
ule and the classifier are supervised fine-tuned
on the target task using cross-entropy loss. Ex-
perimental results demonstrate that NLoPT can
effectively customize a PLM to a domain-specific
downstream task.

In summary, the main contributions of this paper
are as follows:

• We introduce NLoPT, a two-step process con-
sisting of LoRA TAPT and N-gram Fusion, to
customize a PLM to a domain-specific task ef-
fectively. Specifically, We first apply the LoRA
technique for efficient TAPT, then we inject
task-specific n-gram information via a cross-
attention based module.

• Extensive experiments on six datasets across
four domains show the effectiveness of our
proposed method NLoPT, demonstrating the
superiority of LoRA TAPT and the necessity of
incorporating n-gram information.

2. Related Work

2.1. Unsupervised Domain Adaption
Existing unsupervised domain adaption methods
can be broadly classified into two categories. (1)
The model-centric approaches involve augment-
ing feature space (Ben-David et al., 2020) or de-
signing new loss function (Ganin et al., 2016). (2)
The data-centric approaches aim to develop bet-
ter data selection schemes (Han and Eisenstein,
2019). A popular model-centric method (Gururan-
gan et al., 2020) is to continually train a general
PLM with task-relevant unlabeled data, leading to
performance improvement of downstream tasks.
However, these works require updating all parame-
ters during adaption, which may distort the generic
knowledge learned by the general PLM. Our work
builds on these methods and makes them more
parameter-efficient.

2.2. Parameter-Efficient Technique
As the size of pre-trained models continues to in-
crease, storing a separate copy of the model for
each downstream task becomes impractical. Con-
sequently, a recent focus has been on the emerged
parameter efficient techniques.

Adapter, introduced by (Houlsby et al., 2019),
is the first to present the concept of parameter-
efficient tuning, which involves inserting lightweight,
task-specific layers or modules to a pre-trained
model and only tuning their parameters. By enhanc-
ing the input sequence with continuous trainable
tokens, the prompt based parameter-efficient meth-
ods (Lester et al., 2021; Liu et al., 2021a; Li and
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Figure 1: The overall structure of our method NLoPT. In this work, we use RoBERTa for experiment. Left:
LoRA TAPT; right: N-gram Fusion.

Liang, 2021; Liu et al., 2021b), which are compara-
ble to a continuous and differentiable extension of
prompt engineering (Hambardzumyan et al., 2021),
selectively update these new tokens while keeping
the remaining parameters fixed. The observation
(Aghajanyan et al., 2021) that PLMs inherently ex-
hibit a low-rank property has sparked its broad ap-
plication in various parameter-efficient tuning meth-
ods, such as LoRA (Hu et al., 2022), Compacter
(Mahabadi et al., 2021). In addition, numerous
studies have demonstrated that these parameter-
efficient methods can achieve performance on par
with full-parameter fine-tuning.

3. Preliminary

In this section, we give a brief description of
Low-Rank Adaption (LoRA). LoRA is an effective
parameter-efficient technique tailored for Trans-
former architectures given its extraordinary perfor-
mance as reported in (Hu et al., 2022). LoRA re-
duces the number of trainable parameters by incor-
porating rank decomposition matrices into linear
operation. Specifically, for a pre-trained weight
W0, LoRA composes its update ∆W0 into two low-
rank matrices WA and WB as shown in equation
1, where WA ∈ Rm×r,WB ∈ Rr×n,and the rank
r ≪ min(m,n).

∆W0 = αWAWB (1)

For any linear projection that takes a specific input
x, LoRA modifies the output h as:

h = W0x+∆W0x = W0x+ αWAWBx (2)

Keep in mind that during adaption, W0 is frozen
while θlora = {WA,WB} forms the trainable mod-
ule. As recommended by (Hu et al., 2022), WA is
initialized as a random Gaussian initialization and
WB is initialized to all zeros at the beginning of train-
ing. α serves as a hyperparameter that modulates
the effect of the adaption process. Despite LoRA’s
flexibility in being applied to any linear operation,
we choose, for simplicity, to follow the practice es-
tablished in (Hu et al., 2022), where it’s only utilized
in the query and value projection matrices of the
attention module.

4. Method

Figure 1 shows the overall framework of NLoPT
which consists of two stages, LoRA TAPT and N-
gram Fusion. In LoRA TAPT, we conduct contin-
uous pre-training for a general PLM with LoRA.
Specifically, we train the learnable LoRA module
and Masked Language Model (MLM) Head with
MLM loss to facilitate more effective domain knowl-
edge transferring. In N-gram Fusion, we merge
the trained LoRA module with the original PLM to
get the task-specific PLM. We then enhance the
task-specific PLM with multi-granularity n-gram in-
formation from the task domain through the Cross-
Attention based N-gram Fusion (CANF) module.
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Finally, we fine-tune the CANF module and the clas-
sifier on the task dataset supervised while keeping
the task-specific PLM frozen.

In this section, we first introduce LoRA TAPT.
Subsequently, we introduce the n-gram extraction
module and CANF module in detail.

4.1. LoRA TAPT
To help a general model to acquire task-specific
knowledge, we explore a LoRA based TAPT ap-
proach to adapt the model to the target domain.
Initially, we select a Pre-trained Masked Language
Model F . We then train the LoRA module and MLM
Head with the Masked language model loss on
the task corpus. We inherit from the conventional
masking strategy (Devlin et al., 2019). Specifically,
assume we have an input sequence X from task
corpus D, denoted as X = (x1, x2, ...xn). A subset
of tokens Y ∈ X are sampled for substitution, ac-
counting for 15% of the tokens in X. Subsequently,
80% Y are replaced with a special token [MASK],
10% are replaced with random tokens, and 10%
are left unchanged. The task is to recover the orig-
inal tokens in Y . The objective function can be
formulated as follow:

LMLM =EX∼D(EY

∑
xi∈Y

(− logP (xi|X/Y ; Θ)) (3)

where X/Y represents the masked sequence of X
with tokens specified in Y and Θ represents the
trainable parameters. Note that we only make the
injected LoRA module and MLM head trainable
while keeping the parameters of the original PLM
frozen, which makes our LoRA TAPT can capture
transferable features for task domain and preserve
the general knowledge embedded in the original
PLM weights.

Furthermore, compared to full-parameter TAPT,
LoRA TAPT does not require any modifications to
the model structure or the training process. Conse-
quently, our LoRA TAPT method can be seamlessly
extended to scenarios where model architectures
or objectives differ.

4.2. N-gram Fusion
The N-gram Fusion step comprises two key com-
ponents: the N-gram Extraction Module, which
aims to extract task-specific n-grams from a given
downstream task dataset, and the CANF module,
which injects task-specific n-gram information into
the model.

N-gram Extraction Module N-grams basically
denote a sequence of consecutive words within
a given window. Here, we extract task-specific n-
grams using an unsupervised method. Suppose a

sentence S from task dataset D can be formulated
as S = w1w2 . . . wn. For any two adjacent words
xpre and xnext, we compute their Pointwise Mutual
Information (PMI) as:

PMI(xpre, xnext) = log
P (xpre, xnext)

P (xpre) · P (xnext)
(4)

where P (xpre) and P (xnext) denote the probability
of words xpre and xnext respectively. P (xpre, xnext)
stands for the probability that xpre and xnext

will co-occur. The main intuition is if a high
PMI(xpre, xnext) score is observed, then xpre and
xnext are more likely to occur simultaneously rather
than independently, thus forming an n-gram. Con-
sequently, we place a delimiter when the PMI of two
adjacent words is less than a specified threshold.
This allows us to regard those successive words
that are not separated by a delimiter as potential
task-specific n-grams. We segment each sentence
in the training set of the target task using the afore-
mentioned method. Subsequently, by extracting
the most frequently appeared n-grams, we form a
task-specific n-gram set, denoted as M, in which
each n-gram has a minimum frequency of f . In our
experiment, we extract task-specific unigrams (task-
specific vocabulary, glycine, for example), bigrams
(phenol natural, for example) and trigrams.

CANF Module First, we merge the trained LoRA
module during LoRA TAPT with the general PLM to
form the task-specific PLM, denoted as F ′. Then
we frozen the parameters of F ′. To make F ′ aware
of the task-specific multi-granularity information, we
incorporate n-gram representation at the L-th layer
of F ′. We can obtain a task-specific n-gram set
M with the n-gram extraction module, then the em-
bedding of task-specific n-grams can be derived
via an n-gram embedding layer. We design CANF
module, an n-gram fusion module based on the
cross-attention mechanism, denoted as Fngram,
aiming to inject the task-specific n-gram represen-
tation into the model. The input Q of CANF module
comes from the L-th layer hidden states of F ′ cor-
responding to the input sequence, denoted as HL.
Both K and V are from the output of the n-gram
embedding layer, denoted as G. Afterwards, IL+1,
which is the input of (L+ 1)-th layer of F ′, can be
formulated as:

IL+1 = HL + Fngram(Q = HL,K = V = G) (5)

Finally, we feed the hidden state corresponding to
the [CLS] token into the classifier for classification.
Here, we simply operate a linear layer to obtain the
probabilities. The CANF module and the classifier
are fine-tuned on the labeled task dataset with the
cross-entropy loss.
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5. Experiment Settings

In this section, we first introduce six datasets.
Following that, the comparison methods, evalua-
tion metrics and implementation details are repre-
sented, respectively.

5.1. Datasets
Following standard practice (Gururangan et al.,
2020), we conduct our experiments across six text
classification tasks spanning four domains, includ-
ing biomedical(BioMed), computer science(CS),
News, and Reviews. The datasets are described
as follows.

• ChemProt (Kringelum et al., 2016) is a dataset
manually annotated from 5,031 abstracts, with
the aim of identifying potential relations be-
tween chemicals and proteins.

• RCT (Dernoncourt and Lee, 2017), a dataset
based on PubMed for sequential sentence
classification, consists of around 200,000 ab-
stracts, totaling 2.3 million sentences, each
labeled with their role in the abstract.

• ACl-arc (Jurgens et al., 2018), a dataset sam-
pled from the ACL Anthology Reference Cor-
pus, contains approximately 2,000 citations
annotated for their function.

• SciErc (Luan et al., 2018), a dataset that com-
prises 500 scientific abstracts, is annotated
specifically for relation classification.

• HyperPartisan (Kiesel et al., 2019), designed
for partisanship classification, incorporates
645 articles from hyperpartisan news sources
that exhibit extreme left-wing or right-wing bi-
ases.

• IMDB (Maas et al., 2011) is a binary senti-
ment analysis dataset, conprised of 50,000
balanced reviews gathered from the Internet.

More details about the statistics of the datasets
can be found in Table 1.

5.2. All Comparison Methods
In this subsection, we will give a introduction of the
comparison methods in experiments conducted in
Section 6.

We compare different combinations of n-gram
fusion approaches and TAPT strategies. For n-
gram fusion approaches, we consider no n-gram,
TDNA, our proposed CANF module. TDNA is an
n-gram incorporation method proposed in (Diao
et al., 2021), designed to equip the model with
n-gram information via an n-gram matching ma-
trix. For TAPT methods, we compare LoRA TAPT

with both Vanilla Fine-Tuning (i.e., without TAPT),
Full-parameter TAPT, and Adapter TAPT. Details of
different TAPT methods are described as follows:

• Vanilla Fine-Tuning (FT) directly fine-tunes
the PLM on downstream tasks without con-
ducting TAPT.

• Full-parameter TAPT (F-TAPT) (Gururangan
et al., 2020) trains the entire parameters of the
PLM during TAPT.

• Adapter TAPT (A-TAPT) (Kim et al., 2021)
inserts random initialized MLP-like module be-
tween Transformer block. During training, all
the pre-trained parameters are frozen and only
the newly inserted adapter layers are trainable.

5.3. Evaluation
Following existing works (Diao et al., 2021), we
use macro-F1 for ACl-arc, SciErc, Hyperpartisan,
IMDB, and micro-F1 for ChemProt and RCT. Macro-
F1 and Micro-F1 are both commonly used evalua-
tion metrics in multi-class classification problems.
Macro-F1 separately computes the F1 score for
each class, and then takes the average. In con-
trast, Micro-F1 assigns equal weight to each individ-
ual instance or prediction, regardless of the class.
This characteristic is beneficial in class-imbalanced
scenarios, which is true for ChemProt and RCT.

5.4. Implementation Details
All models are implemented in Pytorch. We lever-
age the pre-trained RoBERTa-base model and
checkpoint from Huggingface’s Transformer library
(Wolf et al., 2020). We utilize FastText (Bojanowski
et al., 2017) for a warm start for n-gram embed-
dings. We use AdamW (Loshchilov and Hutter,
2019) optimizer with β1 = 0.9, β2 = 0.98, ϵ = 1e− 6.
We set the learning rate following the previous work
(Diao et al., 2021). When conducting TAPT, the set-
tings are as follows: the bottleneck is set to 64
for Adapter TAPT, and the default rank r is 8 for
our LoRA TAPT. The CANF module position (L in
Figure 1) is set to 11 by default.

6. Experimental Results

In this section, to verify the effectiveness and effi-
ciency of our proposed method NLoPT, we exten-
sively experiment on six datasets across four do-
mains. The experimental results are summarized
in Table 2.

6.1. Effectiveness of LoRA TAPT
Below we delve deeper into two primary discoveries
to verify the effectiveness of LoRA TAPT.
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Domain Dataset Task Type # of Class # of Sentences
Train Dev Test

BioMed ChemProt (CP) relation classification 13 4,169 2,427 3,469
RCT abstract sent. roles 5 180,400 30,212 30,135

CS ACl-arc (AC) citation intent 6 1,688 114 139
SciErc (SE) relation classification 7 3,219 455 974

News HyperPartisan (HP) partisanship 2 515 65 65
Reviews IMDB review sentiment 2 20,000 50,000 25,000

Table 1: Statistics of the six task datasets in four target domains.

N-gram BioMed CS News Reviews
No TDNA CANF CP RCT AC SE HP IMDB

FT
✓ 81.250.40 87.060.01 73.381.03 82.640.31 88.302.47 94.260.04

✓ 82.050.11 87.110.02 73.902.79 83.800.15 88.921.32 94.030.29
✓ 82.600.32 87.210.01 74.390.53 84.540.28 89.911.61 94.430.17

F-TAPT
✓ 83.170.29 87.490.02 75.252.20 84.660.08 91.081.32 95.280.07

✓ 83.290.13 87.470.03 76.290.95 85.140.21 90.152.47 95.180.27
✓ 83.990.09 87.810.01 77.141.31 86.000.13 92.421.42 95.960.29

A-TAPT
✓ 82.760.15 87.430.01 74.121.92 85.060.40 88.961.07 95.020.22

✓ 82.840.07 87.270.04 74.240.57 85.110.49 89.231.41 95.080.38
✓ 83.520.21 87.550.08 75.342.32 85.211.04 90.220.24 95.420.08

L-TAPT
✓ 82.980.13 87.410.06 74.370.54 84.590.03 90.280.29 95.260.10

✓ 83.070.08 87.450.03 75.020.56 85.110.16 89.610.56 95.420.14
✓ 83.750.04 87.600.05 75.730.41 85.580.06 91.891.30 95.810.19

F-TAPT† ✓ 82.60.4 87.70.4 67.41.8 79.71.5 68.51.9 95.50.1
A-TAPT† ✓ 82.70.4 87.40.1 69.32.5 82.41.0 70.80.8 95.60.1

Table 2: Perfomances comparison on different combinations of TAPT methods and n-gram fusion strategies.
For the sake of simplicity, we denote the Fine-Tuning, full-parameter TAPT, Adapter TAPT, LoRA TAPT
as FT, F-TAPT, A-TAPT, L-TAPT respectively. We report average scores across five random seeds, with
standard deviations as subscripts. F-TAPT†, A-TAPT† are taken from Gururangan et al. (2020) and Kim
et al. (2021) for comparison, respectively. The highest result of each dataset is bolded and performance
of our NLoPT is highlighted in grey.

# of Params Storage Size
F-TAPT 115.26M 478MB
A-TAPT 3.02M 9.2MB
L-TAPT 0.94M 1.2MB

Table 3: Here, we provide a comparison of various
TAPT methods. # of params refers to the number
of trainable parameters during TAPT and storage
size indicates the disk space required for different
TAPT methods.

Comparison with full-parameter TAPT We find
that LoRA TAPT outperforms models without TAPT
and exhibits comparable performances to the full-
parameter TAPT scenario. LoRA TAPT consistently
exceeds models without TAPT (i.e., fine-tuning) by
a substantial margin on all classification tasks, no
matter whether task-specific n-gram knowledge is
used. The experimental results align with previ-
ous studies (Gururangan et al., 2020; Diao et al.,
2021; Yao et al., 2021), indicating that continuous
pre-training of a PLM on a target corpus can facil-

itate the acquisition of target domain knowledge,
leading to enhanced performance on downstream
tasks. Moreover, although the overall performance
of LoRA TAPT is inferior to full-parameter TAPT, the
difference between LoRA TAPT and full-parameter
TAPT is negligible. On average, the difference on
BioMed, CS, News, and Reviews is -0.13%, -0.47%,
-0.80%, -0.02% on no n-gram setting, and -0.22%,
-0.91%, -0.53%, -0.15% when n-gram information
is fused through CANF module, respectively. Cru-
cially, as depicted in Table 3, our proposed LoRA
TAPT only requires 1.2MB while the full-parameter
TAPT requires 478MB of disk space to store the
model for downstream task fine-tuning. This obser-
vation illustrates that LoRA TAPT can significantly
reduce the required disk space without sacrificing
downstream task performance.

Comparison with Adapter TAPT LoRA TAPT
brings more significant performance improvements
when compared with Adapter TAPT. As shown in
Table 2, LoRA TAPT with either n-gram or not is
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Method BioMed CS News Reviews
CP RCT AC SE HP IMDB

NLoPT (10%) 68.481.46 77.600.68 46.133.53 52.924.60 66.983.87 89.860.90
NLoPT (20%) 75.570.87 79.830.47 50.713.01 67.091.62 71.635.38 91.300.49
NLoPT (50%) 81.250.74 82.920.28 66.212.19 81.231.14 80.951.83 92.730.32
NLoPT (100%) 83.750.04 83.650.22 75.730.41 85.580.06 91.891.30 93.550.09

gpt-3.5-turbo 56.85 68.60 50.36 67.35 72.31 78.38

Table 4: Comparison performances between our proposed NLoPT under different data size ratio and
zero-shot gpt-3.5-turbo.

Rank r r = 1 r = 4 r = 8 r = 16 r = 32 r = 64 r = 128
# of Params 0.68M 0.79M 0.94M 1.24M 1.82M 3.01M 5.36M
Storage Size 0.16MB 0.58MB 1.20MB 2.30MB 4.6MB 9.1MB 19MB

RCT w/o n-gram 87.120.01 87.260.03 87.410.06 87.390.04 87.410.03 87.440.02 87.470.02

w/ n-gram 87.240.03 87.400.02 87.600.05 87.620.02 87.650.04 87.620.04 87.690.03

SE w/o n-gram 83.250.08 84.010.20 84.590.03 84.470.09 84.600.16 84.840.14 84.700.17
w/ n-gram 84.120.18 84.630.39 85.580.06 85.570.27 85.670.24 85.960.12 86.000.09

HP w/o n-gram 87.541.42 89.560.91 90.281.29 91.130.60 91.121.74 91.752.57 91.772.45

w/ n-gram 88.840.98 90.510.95 91.891.30 91.440.64 92.110.96 92.411.51 93.060.59

IMDB w/o n-gram 94.750.19 95.030.09 95.260.10 95.240.06 95.290.05 95.260.12 95.310.04

w/ n-gram 95.360.15 95.440.14 95.810.19 95.790.04 95.820.08 95.850.16 95.880.14

Table 5: Performances averaged over 5 independent runs on the RCT, SE, HP and IMDB dataset with
different rank r on two settings, i.e. without n-gram and with CANF module. w/ and w/o indicate whether
the model is equipped with n-gram or not.

more effective at improving downstream task perfor-
mance than Adapter TAPT. Specially, our method
outperforms Adapter TAPT on 7 out of 8 datasets.
As suggested by the results in 3, although Adapter
TAPT has more trainable parameters, it only sur-
passes LoRA TAPT by 0.05% on average on the
SE dataset, while poorer performance on other
datasets. We attribute these experimental results to
the enhanced efficiency of LoRA TAPT in selecting
useful knowledge for downstream tasks compared
to Adapter TAPT.

6.2. Superiority of CANF Module
Table 2 illustrates that, regardless of the TAPT meth-
ods, the RoBERTa model enhanced with the CANF
module consistently outperforms the one without
it across all datasets. This clearly demonstrates
the effectiveness of the CANF module. Notably,
we find that the CANF module can yield consid-
erable gains in certain datasets. For example, it
can bring an average performance improvement of
1.37% on the AC dataset. A plausible explanation
might be the significant domain discrepancy be-
tween the RoBERTa pre-training and the Computer
Science (CS) domain. Therefore, the incorpora-
tion of multi-grained information from task-specific
n-grams can yield substantial gains. Moreover, we
compare CANF module with TDNA. As described
in Table 2, CANF module demonstrates superior
performance in comparison to TDNA on all settings.

Specifically, when we compare the improvements
over four domains, we observe gains of 0.43%,
0.67%, 1.63% and 0.48% in the BioMed, CS, News,
and Reviews domains, respectively. Overall, our
CANF module can consistently benefit downstream
task performances and surpasses TDNA on all set-
tings.

7. Analysis

In this section, we first compare NLoPT under dif-
ferent dataset size ratios with ChatGPT, then we
analyze several aspects of NLoPT, including the
effects of rank r during LoRA TAPT and effects
of the position of CANF module. The details are
shown as follows.

7.1. Comparison with ChatGPT

The recent remarkable success of LLMs has shifted
the research paradigm of natural language process-
ing, as exemplified by ChatGPT (OpenAI, 2022). In
this subsection, we compare NLoPT under different
data sizes with zero-shot ChatGPT. Specifically, we
first randomly select 10% from IMDB dataset and
1% from RCT dataset to constrain all the datasets
within the order of thousands. Then we sample dif-
ferent ratios (i.e., 10%, 20%, 50%, 100%) of the six
datasets for supervised fine-tuning. Experimental
results are reported in Table 4.
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(a): RCT micro-F1

(c): HP macro-F1

(b): SE macro-F1

(d): IMDB macro-F1

Figure 2: Performances of RCT, SE, HP and IMDB datasets with regard to different CANF module
positions, i.e., L in Figure 1, under both with FT (i.e., no TAPT) and LoRA TAPT settings.

Surprisingly, we find that NLoPT trained with a
ratio of 10% can still outperform zero-shot gpt-3.5-
turbo on three of six classification tasks. When
the ratio comes to 20%, NLoPT can outperform
zero-shot gpt-3.5-turbo on five of six classification
tasks. A plausible explanation is that ChatGPT still
lacks the reasoning ability in addressing tasks that
require domain-specific knowledge.

7.2. LoRA Rank r

The LoRA rank r is the hyperparameter that allows
a straightforward way to balance performance and
parameter efficiency. Here, we turn our attention to
the effect of rank r on model performance. We use
RCT from BioMed, SE from CS, HP from News
and IMDB from Reviews for our analysis. Table 5
reveals the effect of LoRA rank r on downstream
task performance.

We find that increasing the rank r may not always
lead to performance improvements. For example,
the peak performance of SciErc under no n-gram
setting is achieved when r equals 64. Moreover,
the model exhibits significant performance improve-
ment as the rank r increases, provided r is less than
8. Nevertheless, when r exceeds 8, the rate of in-
crease in performance relative to r starts to plateau.
This observation suggests that a low rank, such as
r = 8, which has only 29.4k trainable parameters

during LoRA TAPT, is sufficient for task adaptive
pre-training.

7.3. CANF Module Position

In this subsection, We explore the impact of the
position of the CANF module, i.e., the position
where task-specific n-gram information is injected,
on the performance of downstream tasks. Similar
to subsection 7.2, we use RCT, SC, HP, and IMDB
datasets for analysis. We conduct experiments on
two settings, including FT (i.e., no TAPT) and LoRA
TAPT.

As shown in Figure 2, We observe that as the
position where CANF module is plugged increases,
there is initially a decline in performance on down-
stream tasks, followed by an improvement on all
datasets. Notably, the best performance is con-
sistently obtained when we fuse n-gram informa-
tion at the 11-th layer of the RoBERTa. This is
not surprising, as BERT-based MLMs tend to cap-
ture high-level semantic features in higher layers
(Jawahar et al., 2019). This analysis indicates that
incorporating task-specific n-gram information at
the final layer is the most effective method to equip
RoBERTa with task-specific multi-granularity infor-
mation.
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8. Conclusion

In this work, we present NLoPT, a simple yet effec-
tive two-step process aiming to tailor a Pre-trained
Masked Language Model to a domain-specific
downstream task. We first apply LoRA for task-
adaptive pre-training, and then inject task-specific
multi-granularity n-gram information via a cross-
attention based n-gram fusion module CANF. We
verify NLoPT on six datasets from four domains.
The experimental results show that explicitly incor-
porating task-specific n-grams can offer large gains.
In addition, our LoRA TAPT performs competitively
to conventional full-parameter TAPT and surpasses
Adapter TAPT on downstream tasks. Further anal-
ysis reveals the effects of LoRA rank r and CANF
module position on downstream tasks.
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