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Abstract
End-to-End Automatic Speech Recognition (ASR) models have significantly advanced the field of speech pro-
cessing by streamlining traditionally complex ASR system pipelines, promising enhanced accuracy and efficiency.
Despite these advancements, there is a notable absence of freely available medical conversation speech corpora
for Burmese, which is one of the low-resource languages. Addressing this gap, we present a manually curated
Burmese Medical Speech Conversations (myMediCon) corpus, encapsulating conversations among medical
doctors, nurses, and patients. Utilizing the ESPnet speech processing toolkit, we explore End-to-End ASR models
for the Burmese language, focus on Transformer and Recurrent Neural Network (RNN) architectures. Our corpus
comprises 12 speakers, including three males and nine females, with a total speech duration of nearly 11 hours
within the medical domain. To assess the ASR performance, we applied word and syllable segmentation to
the text corpus. ASR models were evaluated using Character Error Rate (CER), Word Error Rate (WER), and
Translation Error Rate (TER). The experimental results indicate that the RNN-based Burmese speech recognition
with syllable-level segmentation achieved the best performance, yielding a CER of 9.7%. Moreover, the RNN
approach significantly outperformed the Transformer model.
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1. Introduction

Automatic Speech Recognition (ASR) technology
has emerged as a pivotal tool in the medical
domain, offering a myriad of benefits to health-
care professionals and patients alike (Hoyt and
Yoshihashi, 2010). Its ability to convert spoken
language into written text has proved invaluable
in scenarios such as real-time transcription of
physician-patient interactions, which not only fa-
cilitates accurate documentation but also allows
healthcare providers to focus more on the patient
rather than on note-taking. Additionally, ASR has
the potential to streamline workflow in medical set-
tings by enabling voice-activated systems that as-
sist in scheduling, data retrieval, and even pre-
liminary diagnoses based on vocalized symptoms.
However, based on studies conducted by Goss

et al. (2019) and Sima (2016), the accuracy of
speech recognition in the medical field varies, be-
tween 78% and 92%.

In recent years, the modeling and decoding pro-
cesses in ASR systems have been noticeably sim-
plified by end-to-end (E2E) architectures. A sin-
gle neural network that implicitly incorporates the
acoustic model (AM), pronunciation lexicon, and
language model (LM) that make up a traditional
hybrid system converts speech into text by prop-
agating the model in the forward direction. E2E
models were believed to achieve comparable re-
sults with the hybrid systems only when trained on
large datasets, but since the majority of E2E model
trainings are purely data-driven, the performance
is highly dependent on the scale of training data (Li
et al., 2021). Generally, ASR technologies require
a large amount of speech data for a system to work
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well (Scharenborg et al., 2017).
There are very few R&D works on Burmese ASR

(Naing et al., 2015; Mon et al., 2019a,b) and it still
requires extensive experimentation compared to
English. To the best of the authors’ knowledge,
there is scarce publicly available speech corpora
for Burmese (Oo et al., 2020). The lack of re-
source in speech corpora for Burmese is one of the
main barriers why ASR for Burmese is not as de-
veloped as English or other developed languages.
Moreover, until now, there has been no Burmese
speech corpus for the medical domain. Therefore,
the main motivation for this study is to develop a
publicly available medical domain speech corpus
for Burmese and apply E2E ASR technologies for
the evaluation of our proposed speech corpus.

This paper is organized as follows. A brief re-
view of the related works is provided in Section 2.
The nature of the Burmese language is described
in Section 3. Details of the developed myMedi-
Con corpus are given in Section 4. The meth-
ods applied and the experimental settings are ex-
plained in Section 5. This section introduces the
characteristics of RNN (Subsection 5.1) and Trans-
former (Subsection 5.2) approaches used in our
Burmese ASR models, presents data statistics for
the system experiments (Subsection 5.3), and de-
scribes the evaluation metrics (Subsection 5.4).
Section 6 reports the experimental results and dis-
cusses these results. Section 7 conducts an error
analysis to examine the inaccuracies of the ASR
models and suggests potential areas of improve-
ment. Finally, Section 8 concludes the paper with
future works.

2. Related Work

There are a few studies on Burmese ASR from
different domains. A Burmese large vocabulary
continuous speech recognition system for travel-
tour domain was contributed by Naing et al. (2015).
In this system, 3 different acoustic models were
investigated using a created phonemically bal-
anced corpus, which included 4K sentences and
40 hours of speech. These models included a
Gaussian Mixture Model (GMM) and two Deep
Neural Networks (DNNs). 100 utterances from 25
speakers in an open evaluation set were used in
the experiment. The word error rate (WER) or syl-
lable error rate (SER) results for the sequence dis-
criminative training DNNs reached up to 15.63%
and 10.87%, respectively.

Mon et al. (2019a) presented a Burmese speech
corpus for ASR. In this study, a speech corpus
called UCSY-SC1 (University of Computer Stud-
ies Yangon - Speech Corpus1) is developed for
Burmese ASR research. The corpus consists of
two different domain types: daily conversations

and news. The experiments utilized various data
sizes, with evaluation conducted on two distinct
test sets: TestSet1 for web news and TestSet2 for
recorded conversational data. Word error rates of
15.61% on TestSet1 and 24.43% on TestSet2 are
the results of the Burmese ASR using this corpus.

Based on the existing literature and previous
work concerning Burmese ASR systems, there ap-
pears to be no established end-to-end Burmese
ASR system specifically tailored for the medical
domain. Additionally, there are no publicly avail-
able resources for Burmese ASR within this do-
main. Given this gap, we aimed to develop our
own myMediCon corpus encompassing medical
domain. This initiative was undertaken to pioneer
the investigation of the first end-to-end Burmese
ASR system using our newly developed speech
corpus from the medical domain. Subsequently,
we evaluated the performance of this system em-
ploying deep learning models, namely, Recurrent
Neural Networks (RNN) and Transformer architec-
tures, within the ESPnet framework.

3. Burmese

There are approximately a hundred languages spo-
ken in Myanmar. Burmese or Myanmar language
is the official language of Myanmar (Htun et al.,
2021). It is classified as a member of the Tibeto-
Burman language family. It is also the most widely
spoken language in Myanmar. About 32 million
people speak Burmese as their first language,
while another 10 million speak it as a second lan-
guage. In Burmese text, words are represented
as continuous strings of characters without any ex-
plicit word boundary markings. Notably, there are
no spaces between words in Burmese. Burmese
comprises 33 basic consonants, 12 vowels, 4 me-
dials, and extension vowels, vowel symbols, de-
vowelizing consonants, diacritic marks, specified
symbols, and punctuation marks.

Burmese is a tonal language. This means that
all syllables have prosodic features that are an inte-
gral part of their pronunciation and that affect word
meaning. Prosodic contrasts involve not only pitch,
but also phonation, intensity (loudness), duration,
and vowel quality (Mon et al., 2019b). The phonol-
ogy of Burmese is intricately structured, arising
from the combination of vowels and consonants.
The phonological structure of Burmese is defined
by the utilization of singular vowels, or combina-
tions of one vowel and consonant, represented by
consonant combination symbols or sign Virama
(“္”, U1039) (Consortium, 2023). In Burmese,
each vowel has its distinct and specific sound. Due
to the relative scarcity of the available language
resources, Burmese is often considered to be an
under-resourced language (Oo et al., 2020).
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4. Building myMediCon Corpus

Developing speech corpora is a fundamental step
in the creation of speech processing systems such
as ASR and Text-to-Speech (TTS), especially for
low-resourced languages, it holds critical signifi-
cance. Moreover, the performance of a speech
recognizer is heavily contingent upon the quality
and relevance of the speech corpora. The primary
contribution of this work is the manual construc-
tion of a corpus called ”myMediCon,” consisting of
Burmese Medical Speech Conversations.

The construction of a speech corpus can pri-
marily be approached through two methods. The
first method entails the collection of pre-existing
speech data, which is then manually transcribed
into text. The second method involves the creation
of a text corpus initially, followed by the recording
of speech as the collected text is read aloud. In
this work, we employed the latter method.

Burmese Sentence: ကငéဆß îဖစé Ĉàâငé လßè ၊
äဒÞကéတß ။

English Translation: Could it be cancer, Doc-
tor?

Burmese Sentence: ခငéဗêßè မìß ဆáèခêàă äရßဂÞ ၊
äသëèတàâè äရßဂÞ ကåçသàâ çäသß
äရßဂÞ အäîခအäန မêàăè äတë
ရìà ပÞ သလßè ။

English Translation: Do you have any
medical problems like
diabetes mellitus, high
blood pressure?

Burmese Sentence: ခငéဗêßè မìß ရငéဘတé äအßငçé
တßကåçသàâ çäသß Ĉìလâæè äရßဂÞ
îပဿနß မêàăè ရìà ပÞ သလßè ။

English Translation: Do you have any heart
problems like angina?

Burmese Sentence: သã ç ကàâ အနß သကéသß
ဖàâ ç အàâငéဘãပĉàâဖနé အစßè
ပÞရßစáတäမß သâæè ဖàâ ç
အïကæäပè ပÞ ။

English Translation: Advise him to use parac-
etamol instead of ibupro-
fen for pain relief.

Table 1: Example word-level segmented
Burmese sentences of the myMediCon corpus.

The medical sentences for the text corpus
were sourced from the “Samson Handbook of
Plab 2 and Clinical Assessment” (Samson, 2015).
These sentences encompass conversations be-
tween patients and doctors, names of diseases
and medicines, and treatment methodologies (San
et al., 2022). Examples of word-level segmented

SpeakerID Utterance Duration
spk00 1001 2 hr, 1 min, 41 sec
spk01 14592 26 hr, 16 min, 35 sec
spk02 14592 37 hr, 33 min, 5 sec
spk03 1000 2 hr, 56 min 28 sec
spk04 1000 1 hr, 57 min, 40 sec
spk05 2000 3 hr, 52 min, 24 sec
spk06 1500 3 hr, 5 min, 21 sec
spk07 1000 1 hr, 48 min, 23 sec
spk08 500 59 min, 3 sec
spk09 500 46 min, 55 sec
spk10 4092 7 hr, 53 min, 9 sec
spk11 3000 4 hr, 48 min, 59 sec

Table 2: Total duration and utterances of each
speaker in myMediCon corpus.

Burmese sentences are illustrated in Table 1.
Three university students manually translated the
medical sentences from English to Burmese. The
text corpus in the medical domain comprises a to-
tal of 14,592 medical sentences, encompassing
232,999 words and 15,431 unique words.

In constructing the speech corpus, a total of
14,592 Burmese medical sentences were col-
lected. The recordings were conducted us-
ing a TASCAM (DR44-WL) recorder, an audio-
recording software on a laptop (Dell i7 8th Gen),
Voice Memos app from MacBook, built-in audio-
recording apps on various Android devices (Oppo
recorder on Oppo F 17, Redmi recorder on Redmi
Note 6 Pro and Redmi Note 10 Pro, and Xiao Mi
recorder on Mi Note 12 Pro) and Voice Memos
apps on iOS devices (iPhone 7 +, iPhone 11 Pro
Max, and iPhone 14 +). The corpus comprises ut-
terances from 12 speakers, including 3 males and
9 females. Among these, 7 speakers are native
Burmese speakers, while the remaining 5 are indi-
viduals from different ethnic nationalities of Myan-
mar namely, Pa’O, Kachin, Dawei, and Mon who
speak Burmese as their second language. The
age range of the speakers is between 20 and 30
years. The cumulative duration of the audio utter-
ances is 93 hours, 59 minutes and 43 seconds,
with individual audio utterance durations ranging
from 1.8 to 35 seconds. The total duration along-
side the number of utterances recorded by each
speaker in the medical domain speech corpus is
presented in Table 2.

5. Methods and Experimental Setup

We developed end-to-end ASR models utilizing
two neural network architectures, RNN (Recur-
rent Neural Network) and Transformer, to evalu-
ate the performance of these models on our self-
compiled speech corpora from medical domain.
For this endeavor, we employed ESPnet (Watan-
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abe et al., 2018), a comprehensive end-to-end
speech processing toolkit that encompasses a
range of speech processing tasks such as end-
to-end speech recognition, text-to-speech conver-
sion, speech translation, speech enhancement,
speaker diarization, and spoken language under-
standing, among others. ESPnet leverages Py-
Torch as its deep learning engine and adheres to
Kaldi-style data processing, feature extraction, for-
matting, and recipe protocols, thereby furnishing a
complete setup for an array of speech processing
experiments1 (Inaguma et al., 2020).

5.1. Recurrent Neural Network (RNN)
Recurrent Neural Networks (RNNs) are a class
of deep learning (DL) methods employed in ASR,
known for their flexibility in formatting both bidirec-
tional and unidirectional models (Suyanto et al.,
2020). They are used to detect patterns in sequen-
tial data due to their inherent capability to capture
temporal dependencies (Schmidt, 2019).

In our research, we devised an efficacious ASR
model utilizing the ESPnet framework and an ar-
chitected RNN design. A significant emphasis was
placed on hyperparameter tuning to optimize the
model configuration for peak performance. A piv-
otal component of our ASR system is the encoder,
based on the Visual Geometry Group-RNN (VGG-
RNN) architecture. Comprising four bidirectional
LSTM (Long Short-Term Memory) layers with an
output size of 320, it is tailored to capture com-
plex temporal patterns in the input speech data.
Particularly, we employed a projection mechanism
and adjusted dropout rates to enhance the model’s
generalizability while mitigating overfitting.

The accuracy of transcription is bolstered by the
decoder, a unidirectional LSTM layer with 320 hid-
den units, further refining the learned represen-
tations. Our training strategy amalgamated a ro-
bust scheduling mechanism with the Adadelta opti-
mizer, set at a learning rate of 1.0. Specifically, we
utilized the ReduceLROnPlateau scheduler with
patience set to 1 and mode set to minimize, en-
suring dynamic adjustment of learning rates con-
tingent on validation performance.

5.2. Transformer
Transformer is a sequence-to-sequence (seq2seq)
architecture originally proposed for neural ma-
chine translation (NMT) that has rapidly replaced
recurrent neural networks (RNNs) in natural lan-
guage processing tasks. Transformer learns se-
quential information via a self-attention mecha-
nism instead of the recurrent connection employed
in RNNs (Karita et al., 2019).

1Available at https://github.com/espnet/espnet

In this study, we used a transformer architec-
ture to design and implement an ASR model. The
configuration of our model was adjusted to maxi-
mize performance, balancing important factors like
attention heads, linear units, and dropout rates.
Based on the transformer framework, the encoder
has 12 blocks with four attention heads each, en-
abling complex feature extraction and representa-
tion. We utilized attention dropout and positional
dropout techniques to improve the model’s learn-
ing capabilities. Additionally, our model gains from
convolutional input layers, which improves its ca-
pacity to recognize complex patterns in the speech
data.

The decoder, which consists of three trans-
former blocks, uses a similar attention configura-
tion to ensure efficient context integration while
decoding. Additionally, our model includes label
smoothing with a weight of 0.1 and joint Connec-
tionist Temporal Classification (CTC) - attention
training with a weight of 0.3 for the CTC that has
been carefully calibrated. We used a warmup
learning rate scheduler that linearly increases and
exponentially decreases the learning rate during
training to ensure stable convergence. The train-
ing process was optimized using the Adam opti-
mizer with a learning rate of 0.001. Our ASR sys-
tem is built to be reliable, utilizing 256-dimensional
embeddings and 4 attention heads, which helps it
capture intricate linguistic patterns in speech data.

5.3. Data Statistics
In the ASR system experiments, we utilized
a Burmese speech corpus consisting of 5,400
Burmese sentences, with each speaker contribut-
ing 450 sentences. These sentences were ran-
domly selected from our comprehensive myMedi-
Con and text corpus developed for the medical do-
main. It includes a total of 82,218 words and 7,212
unique words. There is no overlap between our ex-
tracted sentences. In the extracted speech corpus,
the total duration of audio utterances is 10 hours,
46 minutes, and 1.35 seconds. Each audio utter-
ance ranges between 1.8 and 35 seconds in dura-
tion. The corpus comprises recordings from a total
of 12 speakers, including 3 males and 9 females.
The total duration and the amount of utterances
recorded by each speaker in the extracted medi-
cal domain speech corpus for the experiments of
ASR models are shown in Table 3.

We performed three experiments by random
sub-sampling validation to evaluate the perfor-
mance of our ASR models. The detailed statis-
tics on the train, development or validation, and
test sets for the three experiments are displayed
in Table 4, Table 5, and Table 6. In each experi-
ment, the sentences from all sets are not overlap.
In the first experiment, the training set comprised
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11 speakers, with 2 males and 9 females, while
the development set included 2 speakers, with 1
male and 1 female. The test set consisted of 12
speakers, with 3 males and 9 females. Similarly, in
the second experiment, the training set comprised
11 speakers, with 3 males and 8 females, while
the development set involved 2 speakers, both fe-
males. The test set included 12 speakers, with
3 males and 9 females. In the third experiment,
there were 12 speakers in each set, with 3 males
and 9 females distributed equally.

SpeakerID Utterance Duration
spk00 450 55 min, 50 sec
spk01 450 39 min, 57 sec
spk02 450 1 hr, 16 min, 18 sec
spk03 450 1 hr, 25 min 51 sec
spk04 450 55 min, 44 sec
spk05 450 50 min, 30 sec
spk06 450 53 min, 46 sec
spk07 450 38 min, 23 sec
spk08 450 52 min, 57 sec
spk09 450 42 min, 45 sec
spk10 450 46 min, 53 sec
spk11 450 47 min, 02 sec

Table 3: Total duration and utterances of each
speaker in the extracted Burmese Speech corpus
for the system.

Datasets Utterance Duration
Train 4200 8 hr, 23 min, 1 sec
Dev 600 1 hr, 9 min, 45 sec
Test 600 1 hr, 13 min, 14 sec

Table 4: Statistics on train, development and test
sets used for the first experiment of the system.

Datasets Utterance Duration
Train 4200 7 hr, 50 min, 28 sec
Dev 600 1 hr, 43 min, 27 sec
Test 600 1 hr, 12 min, 12 sec

Table 5: Statistics on train, development and test
sets used for the second expriment of the system.

Datasets Utterance Duration
Train 4200 8 hr, 25 min, 43 sec
Dev 600 1 hr, 9 min, 45 sec
Test 600 1 hr, 9 min, 7 sec

Table 6: Statistics on train, development and test
sets used for the third experiment of the system.

5.4. Evaluation Metrics
Word Error Rate (WER), Character Error Rate
(CER), and Translation Error Rate (TER) are com-
mon metrics used in evaluating the performance of
ASR, Optical Character Recognition (OCR), and
Machine Translation (MT) systems, respectively.
WER is calculated as S+D+I

N , where S, D, and I
represent the number of substitutions, deletions,
and insertions, respectively, and N is the total
number of words in the reference. Similarly, CER
is computed as S+D+I

N , but at the character level.
TER extends the idea to machine translation eval-
uation, and is calculated as S+D+I+Sh

N , where Sh
represents the number of shifts, which are word
movements in the text. These metrics provide a
quantitative measure of the accuracy and quality
of the respective systems, with lower values indi-
cating better performance.

6. Results and Discussion

In this section, we present the average and the
best evaluation results of the three experiments for
End-to-End (E2E) Burmese ASR. Three separate
experiments were used for the evaluation, each
with a different random split dataset.

The RNN model’s average performance
throughout all experiments offers favorable re-
sults. In RNN model, for the word-level corpus
type, the average WER was 40.2%, and the
average CER and TER were 13.6% and 20.7%,
respectively. Concurrently, for the syllable-level
corpus type, the RNN model achieved an average
WER of 25.8%, with average CER and TER of
14.1% and 20.9%, respectively.

The Transformer model performed at a compet-
itive rate with slightly higher average error rates
than the RNN model. The Transformer model
yielded an average WER of 53.4%, CER of 18.5%,
and TER of 27.3% for word-level corpus type. Sim-
ilarly, the Transformer model produced an average
WER of 26.4% for syllable-level corpus type, with
averages for CER and TER of 12.7% and 19.5%,
respectively.

The best evaluation outcomes among the three
experiments for E2E Burmese ASR models em-
ploying RNN and Transformer architectures are de-
picted in Table 7 and Table 8, respectively. Further-
more, we conducted a comparison between word-
level and syllable-level segmentations. Given that
a syllable is a fundamental unit in Burmese (Thu
et al., 2021), we utilized a syllable segmentation
tool named “sylbreak” to convert Burmese words
to syllable levels2.

2Available at https://github.com/ye-kyaw-
thu/sylbreak
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Corpus Types WER% CER% TER%
Word 36.4 11.5 17.3
Syllable 19.0 9.7 14.7

Table 7: The best evaluation results of RNN
model for E2E Burmese ASR with word error rate
(WER), character error rate (CER) and translation
error rate (TER) among the three experiments.

Corpus Types WER% CER% TER%
Word 50.7 17.3 25.5
Syllable 23.1 11.2 17.1

Table 8: The best evaluation results of Trans-
former model for Burmese ASR with word error
rate (WER), character error rate (CER) and transla-
tion error rate (TER) among the three experiments.

Observing the results, it is discernible that
syllable-level segmentation significantly enhances
the accuracy of both RNN and Transformer mod-
els. For instance, transitioning from word to syl-
lable segmentation reduces the WER from 36.4%
to 19.0% in the RNN model, and from 50.7% to
23.1% in the Transformer model. This pattern of
improvement is consistent across all three evalua-
tion metrics, underscoring the efficacy of syllable-
level segmentation in capturing the nuances of
Burmese speech, a language where syllables play
a fundamental role.

Upon comparing the RNN and Transformer mod-
els, the RNN model exhibits superior performance
across all metrics and segmentation levels. For
example, at syllable-level segmentation, the RNN
model achieves a lower WER of 19.0%, compared
to the Transformer’s WER of 23.1%. The trend
remains consistent in CER and TER metrics as
well. These findings are pivotal as they not only
demonstrate the relative robustness of the RNN
model in handling Burmese speech recognition
tasks but also emphasize the importance of choos-
ing an appropriate segmentation level based on
the linguistic characteristics of the target language.
This insight is crucial for further advancements in
Burmese ASR systems, potentially aiding in the de-
velopment of more accurate and efficient models.

Furthermore, it is worth noting that the lower per-
formance of the Transformer model could be at-
tributed to our low-resource setting. Despite hav-
ing a larger corpus of approximately 93 hours, 59
minutes, and 43 seconds, due to limited GPU
and computing resources, we opted to use only
about 11 hours from the developing corpus for
the experiments, which was built with data from
12 speakers. Transformers typically require exten-
sive data and meticulous hyperparameter tuning,
including warm-up procedures, to achieve optimal
performance, which might not have been feasible

given our resource constraints and the experimen-
tal setup.

7. Error Analysis

Error analysis was conducted to examine the inac-
curacies of the ASR models in generating hypothe-
ses, utilizing SCLITE (NIST, 2021) for the analysis.
Tables 9 and 10 present the top 10 error exam-
ples from the RNN models. We discovered that
the majority of the issues stemmed from phonetic
discrepancies, text encoding, or word segmenta-
tion challenges. A phonetic error occurs when
the model estimates a word that phonetically re-
sembles another word (for example; “Ĉìငçé” is pro-
nounced as “nhin.” and “နå ç” is pronounced as “ne.”).
Some errors are related to incorrect typing order of
Burmese syllables within the corpus, leading to dif-
ferent syllable segmentation and thereby impact-
ing the ASR model’s performance (for example; “ငçé”
and “နå ç”). Our analysis suggests that enlarging the
speech corpus and normalizing the text transcrip-
tions could mitigate such errors.

No. Frequency REF ⇒ HYP
1: 26 မì ⇒ မìß
2: 17 ရ ⇒ ရß
3: 12 တ ⇒ တစé
4: 9 ငçé ⇒ နå ç
5: 9 ငçé ⇒ îမငé
6: 9 äသß ⇒ äတßç
7: 8 စ ⇒ စßè
8: 8 စß ⇒ စßè
9: 8 တåç ⇒ နå ç
10: 8 တëငéè ⇒ တëငé

Table 9: Top 10 errors of RNN ASR model with
syllable segmentation

No. Frequency REF ⇒ HYP
1: 10 မì ⇒ မìß
2: 9 တßလå ⇒ လå
3: 9 တåç ⇒ နå ç
4: 9 Ĉìငçé ⇒ နå ç
5: 7 အäလèခêàနé ⇒ ကàâယéအäလèခêàနé
6: 7 ကæမäကßငéèစëß ⇒ စëß
7: 7 îဖစéäစ ⇒ äစ
8: 6 မìß ⇒ ထåမìß
9: 6 တßကàâ ⇒ ကàâ
10: 8 ထëကé ⇒ äသëèထëကé

Table 10: Top 10 errors of RNN ASR model with
word segmentation
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8. Conclusion and Future Work

In this work, we have unveiled a pioneering en-
deavor towards low-resourced End-to-End (E2E)
Burmese ASR in the medical domain utilizing RNN
and Transformer architectures within the ESPnet
framework. Through the meticulous curation of
a specialized Burmese Speech corpus, encom-
passing nearly 11 hours of medical dialogues
from 12 distinct speakers, we have laid a founda-
tional stone for exploring ASR potentials in under-
resourced languages like Burmese. Our compre-
hensive evaluation underscores the significance of
appropriate segmentation methodologies demon-
strating superior performance with syllable-level
segmentation over word-level segmentation, espe-
cially in the context of the RNN model which no-
tably outperformed the Transformer model across
all evaluation metrics.

The empirical results accentuate the RNN
model’s robustness, achieving the lowest CER
of 9.7% amidst all configurations, thereby shed-
ding light on its suitability for Burmese ASR tasks.
Moreover, the noteworthy reduction in WER and
TER with syllable-level segmentation articulates
the importance of aligning segmentation strategies
with the linguistic nuances of the target language.
Our error analysis elucidates that addressing pho-
netic discrepancies, text encoding, and word seg-
mentation challenges, possibly through enlarging
the speech corpus and normalizing text transcrip-
tions, holds the potential to further refine the accu-
racy of the ASR models.

In conclusion, this study not only contributes
a valuable resource to the sparse landscape
of Burmese ASR but also provides pivotal in-
sights into the interplay of segmentation strate-
gies and model architectures. The promising re-
sults, despite the corpus’ size limitations, invoke
an optimistic outlook for further enhancements in
Burmese ASR accuracy and efficiency through
extended speech corpora, advanced end-to-end
ASR techniques, data augmentation, and transfer
learning explorations. These directions will be the
main focus of our future work as we move forward
to advance Burmese ASR, particularly in domain-
specific applications like medical dialogues, to-
wards real-world usability and higher accuracy
benchmarks. In addition, we are planning to pub-
lish our developed myMediCon corpus, which fo-
cus on the medical domain for future Burmese
speech researchers.
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