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Abstract
Word Sense Induction (WSI) is the task of discovering senses of an ambiguous word by grouping usages of this
word into clusters corresponding to these senses. Many approaches were proposed to solve WSI in English and a
few other languages, but these approaches are not easily adaptable to new languages. We present multilingual
substitution-based WSI methods that support any of 100 languages covered by the underlying multilingual language
model with minimal to no adaptation required. Despite the multilingual capabilities, our methods perform on par with
the existing monolingual approaches on popular English WSI datasets. At the same time, they will be most useful
for lower-resourced languages which miss lexical resources available for English, thus, have higher demand for

unsupervised methods like WSI .
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1. Introduction

The task of word sense induction (WSI) is to clus-
ter occurrences (instances) of an ambiguous word
into clusters corresponding to the senses of this
word. E.g., for (1) He sat on the bank of the river,
(2) He cashed a check at the bank, and (3) That
bank holds the mortgage on my home, the desired
clusters are {1} and {2, 3}.

The core assumption in WSl is the lack of a pre-
defined sense inventory. If a word sense inventory
is available, the clustering task can be reformulated
as a classification task over senses in this inventory.
It is usually referred to as Word Sense Disambigua-
tion (WSD) in this case. It is worth noticing that WSI
is more relevant than WSD for lower-resourced lan-
guages where linguistic resources are scarce.

Although many approaches exist for WSI, the
SOTA or near-SOTA ones are language-specific
and are not easily adaptable to new languages.
Our main goal is to create a WSI system that works
seamlessly in many languages. The contributions
of this paper are the following.

1. Multilingual WSI methods are proposed that
generalize to any language supported by the un-
derlying multilingual language model with minimal’
to no adaptation while performing on par with the
state-of-the-art WSI approaches for English?.

2. We perform rigorous evaluation and analysis
of various configurations of our system on datasets

'For 78 languages supported by both the Stanza
(Qi et al., 2020) lemmatizer and the XLM-R multilingual
LM (Conneau et al., 2020) only one Hearst-like pattern
should be translated.

2Code is available at https://github.com/
deniskokosss/mwsi.git.

in 11 languages.

3. We discover remarkable abilities of a multi-
lingual masked language model after monolingual
unsupervised finetuning to generate cross-lingual
lexical substitutes performing on par with the mono-
lingual ones for WSI.

2. Related Work

WSI can be formulated as either a hard clustering
problem, meaning each instance must be put to a
single cluster, or a soft clustering problem where
each instance must receive some weights or proba-
bilities of belonging to each cluster. SemEval 2010
task 14 (Manandhar et al., 2010) and SemEval
2013 task 13 (Jurgens and Klapaftis, 2013) are
the standard WSI benchmarks in English requiring
hard and soft clustering, respectively. RUSSE’2018
(Panchenko et al., 2018), and RuDSI (Aksenova
et al., 2022) are publicly available WSI benchmarks
in Russian requiring hard clustering.

To the best of our knowledge, no prior work has
attempted to design a multilingual WSI model. How-
ever, recently in (Pasini et al., 2021) a benchmark
and several methods for multilingual WSD have
been introduced. Their multilingual methods rely
on XLM-R (Conneau et al., 2020), a Transformer-
based masked language model trained on a corpus
of 100 languages. For WSD methods labeled train-
ing data for each word sense and/or sense defini-
tions are required. This limits the applicability of the
proposed methods for lower-resourced languages.

As for monolingual WSI methods, one popular
approach implemented in (Lau et al., 2013; Wang
et al., 2015; Komninos and Manandhar, 2016; Am-
playo et al., 2019) relies on the Latent Dirichlet
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Figure 1: Substitution-based approach to Word Sense Induction.

Allocation method of topic modeling. AutoSense
(Amplayo et al., 2019), the latest and the best-
performing method in this group, incorporates topic
and sense latent variables, as well as a switch vari-
able to determine whether to use the local context
of the target word or the whole instance.

The performance of WSI methods improved sig-
nificantly with the adoption of neural masked lan-
guage models. Recently, PolyLM (Ansell et al.,
2021) introduced a transformer-based architecture
for learning sense embeddings from an unlabeled
corpus. PolyLM allocates eight embeddings for
each word to represent up to eight different senses
per word. The model is trained to make these
embeddings distinct and helpful for the standard
masked language modeling task. An important de-
tail is that PolyLM relies on a word-level vocabulary.
However, a multilingual word-level vocabulary will
be prohibitively large and it is not clear how this
model can be adapted to work with a subword-level
vocabulary.

Another class of methods for WSI, including Al-
KU (Bagkaya et al., 2013), LSDP ELMo (Amrami
and Goldberg, 2018), LSDP BERT (Amrami and
Goldberg, 2019), BERT NoDP (Amrami and Gold-
berg, 2019; Eyal et al., 2022) and +embs (Arefyev
et al., 2020), employ lexical substitution. A lex-
ical substitute is a word that can replace some
target word in a given sentence without making
the sentence ungrammatical, and also have the
same or similar/related meaning. These methods
use a two-step process (see Figure 1): first, gen-
erate a vector of lexical substitutes for each in-
stance using a substitution model and then cluster
the resulting substitute vectors. An important ad-
vantage of lexical substitution methods for WSl is
their interpretability. Each cluster can be labeled
with a few substitutes that describe this particular
sense. It is worth noticing that lexical substitution

is a long-standing NLP task by itself. There are
several human-annotated benchmarks for lexical
substitution: COInCo (Kremer et al., 2014) and Se-
mEval2007 task 10 (McCarthy and Navigli, 2007)
in English, GermEval 2015 (Miller et al., 2015) in
German, and SemDisFr 2014 (Fabre et al., 2014)
in French. We employ these datasets for intrin-
sic comparison of our lexical substitution methods
and studying the relations between target words
and lexical substitutes generated by these methods.
Next we describe the process of generating substi-
tutes in two of the substitution-based WSI methods,
BERT LSDP (Amrami and Goldberg, 2019) and
+embs (Arefyev et al., 2020). These methods show
SOTA results on English WSI benchmarks.

BERT LSDP (Language model Substitutions with
Dynamic Patterns) follows the substitution-based
approach to WSI and uses BERT to produce lexical
substitutes. In theory, BERT can estimate prob-
abilities of lexical substitutes by simply replacing
the target word with the <mask> token. However,
Amrami and Goldberg (2019) show that such sub-
stitutes are too general and often unrelated to the
target word. BERT LSDP overcomes this issue and
"injects" the information about the target word into
substitutes. Specifically, it averages two vectors of
unnormalized probabilities (logits) of potential sub-
stitutes. The first vector of logits is taken from the
BERT MLM head directly at the first token of the tar-
getword in a given instance without masking it. The
second vector of logits is taken from the <mask> to-
ken after replacing the target word with the dynamic
pattern "<T> (or even <mask>)". For example, for
the sentence "This cat is cute" the input to BERT
after applying the dynamic pattern is "This cat (or
even <mask>) is cute." Arefyev and Bykov, 2021
have shown that combining substitutes from two
symmetric dynamic patterns, e.g. "<T> (or even
<mask>)" and "<mask> (or even <T>)" consistently
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improves WSI performance compared to using one
of these patterns alone. This was demonstrated for
several patterns on a WSI dataset in Russian.

The substitution-based method "+embs" (Arefyev
et al., 2020) relies on non-contextualized embed-
dings to inject the target word. The "general" sub-
stitutes are first produced by a language model with
the target word masked. These substitutes are then
reranked based on the apriori similarity to the target
word. More specifically, the probabilities of substi-
tutes to appear in the given context as estimated
by a masked language model are multiplied by the
exponentiated and re-normalized cosine similari-
ties between their non-contextualized embeddings
and the non-contextualized embedding of the target
word. Several underlying language models were
tested with +embs. XLNET (Yang et al., 2019) has
shown superior performance, while the results with
BERT are comparable to BERT LDSP.

3. Substitution-based Methods for
Multilingual WSI

3.1. From BERT to XLM-R

Incorporating a multilingual language model into
BERT-based methods for WSI seems straightfor-
ward. XLM-R (Conneau et al., 2020) is a publicly
available Masked Language Model (MLM) trained
on a corpus of 100 languages. Theoretically, it can
replace BERT (Devlin et al., 2018) in the monolin-
gual methods and make them multilingual. How-
ever, we found the results after this replacement
unsatisfactorily low and had to analyze the under-
lying reasons to improve the quality.

The main reason is the difference in tokenization
between BERT and XLM-R. Despite having a sig-
nificantly larger token vocabulary (250k in XLM-R
versus 30k in English BERT), the average number
of tokens per word is significantly higher on average
for XLM-R due to its multilinguality. Figure 2 shows
the distribution of the number of XLM-R tokens per
word for human-written lexical substitutes in En-
glish, French, and German substitution datasets.
While only approximately 15% of English substi-
tutes consist of multiple tokens in BERT, for XLM-R
this number increases to 20% and reaches 40% for
French substitutes and 55% for German substitutes.
The original BERT LSDP method only produces
single-subword substitutes, thus limiting the diver-
sity of substitutes yielded by XLM-R. Arefyev and
Bykov (2021) have shown that two-subword XLM-R
substitutes achieve significantly better WSI results
for Russian. In general we want all reasonable
substitutes to be generated independently of their
length. Thus, we introduce methods that produce
substitutes of variable length.

Employing the multilingual and cross-lingual ca-
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Figure 2: Cumulative distribution of the number of
XLM-R and BERT tokens per substitute in human-
annotated lexical substitution datasets. English
substitutes are from ColnCo (Kremer et al., 2014),
German substitutes are from GermEval 2015 (Miller
et al.,, 2015), and French substitutes are from
SemDis 2014 (Fabre et al., 2014). Multi-word sub-
stitutes are not taken into account.

pabilities of XLM-R, we experiment with generation
of substitutes in the language of the input word
occurrence, and also cross-lingual substitutes in
English or Russian independently of the input lan-
guage.

3.1.1. Concat

In the Concat substitute generator substitutes are
generated by a masked language model that re-
ceives an instance with a target word replaced by 1,
2, or 3 consecutive <mask> tokens.® For example,
an instance "cats are cute" turns into three input
sequences:

"<mask> are cute",

"<mask><mask> are cute",

"<mask><mask><mask> are cute".

For each input we select & most probable tokens
for the first mask and decode tokens for the follow-
ing masks using greedy decoding*, resulting in &
generated sequences of subwords. We then post-
process these sequences by merging subwords
into words and keeping only the first word from
each sequence®. The resulting probability of a sub-

®We do not generate substitutes consisting of more
than 3 subwords because such substitutes are very rarely
suggested by humans as figure 2 shows. Experimental
results on the importance of the used number of masks
for WSI are presented in Appendix C.

“We tried using beam search instead, but did not
observe significant improvements.

®We do not use the whole multi-word expressions
generated because they increase the sparsity of the sub-
stitute vectors without providing intuitive benefits.
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stitute is the product of conditional probabilities of
its subwords. In total, 3k substitutes are generated
and k£ most probable are selected among them.

3.1.2. WCM

The Word Continuation Masking (WCM) approach
requires self-supervised finetuning of the original
masked language model, unlike concat. The idea
of WCM is to train the masked language model
to produce tokens of a lexical substitute one at a
time, similarly to autoregressive language models,
while leveraging both left and right contexts during
generation. This kind of finetuning can be done on
an unlabeled corpus of texts.

The autoregressive generation of substitutes can-
not be adequately implemented for masked lan-
guage models out of the box. For instance, in case
when only one mask is present (e.g., "cats and
<mask> are cute") only single-token substitutes will
likely be generated by an MLM. The first tokens
of multi-token words will have low probabilities be-
cause the model "sees" only one mask and "un-
derstands" that there is no space for a multi-token
word.

WCM is similar to the standard masked language
modeling objective with an important difference.
Similarly to BERT 15% of tokens in an input text are
masked and the objective is to restore the masked
tokens. However, in WCM the boundaries of the
words fully or partially replaced by a <mask> are
then identified. All tokens of such words following
the <mask> token are removed. The tokens that
precede the <mask> token and the tokens of other
words are left intact. Thus, the model is trained to
predict the first token of a masked word or to con-
tinue a word without knowing the exact length of
this word. During inference, masks get inserted into
the context one by one to generate substitutes of
arbitrary length. For example, the following decod-
ing path is possible: "cats and <mask> are cute",
"cats and capy<mask> are cute", "cats and capy-
bara<mask> are cute”, resulting in a three-token
substitute "capybaras”.

We trained WCM, WCM-en, and WCM-ru, three
models based on XLM-R and finetuned with the
WCM objective. WCM is trained on texts in all 100
languages supported by XLM-R, preserving the
original proportions of languages, while WCM-en
is trained only on texts in English and WCM-ru only
on texts in Russian®.

5We trained each model for 2 epochs on ~6GB of
texts randomly sampled from CommonCrawl100 (Wen-
zek et al., 2020).

3.1.3. Monolingual fine-tuning results in
cross-lingual substitutes

We empirically observe a remarkable property of
monolingual WCM finetuning. WCM-en and WCM-
ru always yield substitutes in the finetuning lan-
guage, not in the language of the input text. Sur-
prisingly, these substitutes often constitute a rea-
sonable description of the meaning of the target
word. For example, for a sentence a la <mask>
comme & la guerre!” the top-5 substitutes by WCM-
en are words in English that are semantically similar
to the masked target word in French: war, peace,
liberty, faith, freedom. The same behavior holds for
more complex examples, such as the ones found
in WSI datasets.

The possibility of generating sensible English
substitutes for a word occurrence in any language
allows using English lemmatizer instead of search-
ing for a lemmatizer for each input language. This
significantly simplifies adaptation of our WSI meth-
ods to new languages. Cross-lingual substitutes in
English may also enable direct utilization of rich En-
glish knowledge resources for other languages, but
we leave this for future research. It also provides
interpretable sense labels in English for an ambigu-
ous word in any language. We provide examples
of such labels in section 5.

3.2. Target Injection

A straightforward approach to generate substitutes
with a masked language model is to replace the tar-
get word with the <mask> token. This way the lan-
guage model produces substitutes that fit a given
context. However, these substitutes may not be
semantically related to the original target word. Tar-
get injection helps to condition the language model
substitutes on the target word and get substitutes
better describing its meaning. We adapt two target
injection methods described in Section 2 to multi-
lingual applications.

SDP (Symmetric Dynamic Patterns). Due to
the intuitive nature of dynamic patterns for target
injection, they are straightforward to adapt to multi-
lingual applications. We select the "<T> (or even
<mask>)" pattern with its symmetric counterpart
"<mask> (or even <T>)" for our experiments follow-
ing (Amrami and Goldberg, 2019). We have exper-
imented with several other patterns and observed
no significant differences in WSI performance (refer
to Appendix A for details). We use Google Trans-
late to translate the patterns to the target language.
It is the only action required to adapt our methods to
any of the 78 languages supported by both XLM-R
and the Stanza lemmatizer employed to lemmatize
substitutes.

A French proverb & la guerre comme a la guerre!,
translates as at war as at war.
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We also try simplifying the adaptation even fur-
ther and experiment with applying non-translated
versions of the dynamic patterns in English or
Russian along with the cross-lingual WCM-en and
WCM-ru models, resulting in code-switched inputs
to these models. This gives a WSI method that
supports all 100 languages of XLM-R without any
adaptation.

In our implementation of the target injection with
SDP, the probabilities of substitutes for two symmet-
ric patterns are multiplied with smoothing®. Thus,
the substitutes in the top & for both dynamic pat-
terns will rise to the top of the ranking.

+embs. In the original +embs method, the substi-
tutes can only consist of a single BERT token, which
is a problem for multilingual WSI as discussed pre-
viously. The original method uses the embedding
layer of a language model as the source of non-
contextualized embeddings, however, this does not
generalize to multi-token substitute generation.

We use FastText (Bojanowski et al., 2016) em-
beddings instead of relying on the embedding layer
of the MLM. Fasttext provides out-of-the-box non-
contextualized embeddings for all languages sup-
ported by XLM-R. We compute the distances be-
tween the FastText embeddings of the target word
and each of 3k most probable substitutes yielded
by a multi-token substitute generator. As in the orig-
inal method, all 3k non-contextualized similarities
pass through a temperature softmax. It helps align
the peaky distribution from the substitute generator
with a more flat distribution of FastText similarities.
The final ranking of substitutes is the product of the
non-contextualized (FastText) and the contextual-
ized (MLM) distributions.

3.3. Multilingual WSI Methods

Our methods for multilingual WSI follow the general
substitution-based approach to WSI. We generate
k substitutes of 1 to 3 XLM-R tokens with one of
the multi-token substitute generators described in
Section 3.1. We use one of the methods from Sec-
tion 3.2 for target injection. We see no theoretical
preference in any of the given options and rely on
experiments to determine the best configuration.
Intuitively, a reasonable number of lexical substi-
tutes & for a word in a sentence should not exceed 5
or 10. It is often difficult to find many synonyms for
a target word in a given context. However, (Amrami
and Goldberg, 2019) have experimentally found
the optimal k£ = 200 for BERT LSDP on WSI bench-
marks in English. We confirm their findings on a
WSI dataset in Russian for our SDP method. The
WSI performance for SDP reaches a plateau only

8|f a substitute is not present among top & substitutes
of one of the patterns, it is assigned the probability of
1e-5.

at k =~ 100 (see Appendix B). In the case of +embs,
however, we found that k = 20 is optimal with per-
formance significantly declining for larger values
of k. Thus, we have chosen k& = 150 for SDP and
k = 20 for +embs. We further discuss possible
reasons for this distinction in section 5.

The next step in the substitution-based methods
is to build a numeric vector for each instance based
on the generated substitutes. We lemmatize the
substitutes with the Stanza lemmatizer®. It sup-
ports 78 of 100 XLM-R languages out of the box.
We experimentally compared Stanza to other multi-
lingual and monolingual lemmatizers and observed
no significant impact on WSI results’®. We then
build a TF-IDF vector from the lemmatized substi-
tutes for each instance.

Finally, TF-IDF vectors are clustered. This step is
language-independent. While plenty of clustering
methods exist, we choose simple agglomerative
clustering with cosine distance and average link-
age, following previous work on WSI (Amrami and
Goldberg, 2019; Arefyev et al., 2020). For each
target word in the dataset, we perform clustering
with the number of clusters ranging from 2 to 9
and select the clustering with the highest Calinski-
Harabasz score (Calinski and Harabasz, 1974), an
unsupervised score of clustering quality. In the
soft clustering benchmarks we use a trivial hard-to-
soft clustering conversion, where the hard cluster
is assigned a probability of 1. While more com-
plicated clustering approaches may increase the
overall WSI performance, our primary focus is on
the substitute generation, as we consider it to be
the most language-dependent step in the lexical-
substitution WSI pipeline.

4. WSI Evaluation

4.1.

We use the existing WSI datasets as well as
datasets created for other lexical semantic tasks
for our multilingual WSI experiments.

The most popular WSI benchmarks for English
are SE10 (SemEval-2010 task 1, Manandhar et al.,
2010) and SE13 (SemEval-2013 task 13, Jurgens
and Klapaftis, 2013). They were annotated man-
ually. SE10 provides gold hard clustering of in-
stances, while SE13 provides gold soft clustering.

RUSSE’'2018 (Panchenko et al.,, 2018) is a
shared task that presented three manually anno-
tated WSI datasets in Russian: wiki-wiki, bts-rnc

Datasets

®https://stanfordnlp.github.io/stanza/lemma.html

'we experimented with Spacy
(https://spacy.io/api/lemmatizer), WordNet lemma-
tizer (nltk.stem.wordnet) and PyMorphy2 (Korobov,
2015a). The differences in WSI metrics are within 5%
and are not consistent between datasets and languages.
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Instances Senses Avg instance
Dataset Instances words  perword perword length (words)
SE10 8915 100 89.2 3.9 64.9
SE13 4664 48 97.2 - 30.3
bts-rnc-ru-test-private 4335 34 127.5 3.0 25.0
DeWUG-de-Sense 826 24 34.4 2.8 33.4
XL-WSD-bg 3259 380 8.6 24 3.3
XL-WSD-de 117 14 8.4 2.1 28.3
XL-WSD-en 3126 396 7.9 2.8 26.3
XL-WSD-es 213 36 5.9 2.2 31.4
XL-WSD-fr 181 33 5.5 2.2 34.9
XL-WSD-gl 972 184 5.3 2.8 4.9
XL-WSD-it 319 54 5.9 2.3 31.7
XL-WSD-ko 865 164 5.3 25 6.0*
XL-WSD-s| 1711 70 24.4 3.2 22.2
XL-WSD-zh 6774 696 9.7 3.5 35.0*

Table 1: Basic statistics for the used datasets. ISO 639 is used to encode language names.

* Number of hieroglyphs

and active-dict. We employ the private test subset
of bts-rnc-ru in our experiments''. Bts-rnc-ru also
has a predefined train subset, which we use for
hyperparameter selection and ablation study.

We use the largest existing Word Sense Disam-
biguation dataset XL-WSD (Pasini et al., 2021) for
WSI to extend the number of languages for evalu-
ation. The test subset of XL-WSD provides sense
annotations for over 50 thousand instances in 18
languages. We replace the provided sense defi-
nitions with cluster labels. We only apply minimal
filtering to the test subset of XL-WSD, keeping all
the target words with at least two senses and at
least three instances. We include only 10 out of
18 languages of XL-WSD because datasets in the
other eight languages frequently contain only one
instance per sense. We also use train subsets of
XL-WSD in English and Slovenian with a stricter
filter (at least eight instances per word) as our dev
sets.

We employed the dataset in German DWUG de
Sense (Schlechtweg et al., 2021, Schlechtweg,
2022) which, unlike XL-WSD, is human-annotated.
Originally, DWUG de Sense is designed to study
the change in word usage in particular senses over
time. The annotators were given a task to map
target words to one of the predefined sense defi-
nitions in instances from "old" (XIX century) and
"new" (XX century) corpora. We concatenated the
"old" and the "new" parts of the dataset with no
further processing'?. Like in XL-WSD, we replaced
sense definitions with cluster labels.

To summarize, we use SE10, SE13, the test sub-

""Wiki-wiki dataset contains easy examples and has
been solved with a perfect score in the competition and
active-dict has a significantly lower instances per target
word ratio.

2We only removed three instances that are longer
than 512 tokens.

set of bts-rnc-ru, the XL-WSD in 10 languages, and
DeWUG de Sense for WSI evaluation. Basic statis-
tics for the used datasets are provided in table 1.
Notably, the converted datasets (DWUG de Sense
and XL-WSD) have a much lower instances per
word ratio in comparison to SE10, SE13, and bts-
rnc-ru. It makes the task of WSI more challenging,
as in many cases clustering must be performed in
a very sparse vector space. Also, instances for Bul-
garian and Galician in XL-WSD are short. They do
not contain full sentences but rather short phrases.

4.2. Results

We include a total of 6 configurations in our ex-
periments. We employ four multi-token substitute
generators (concat, WCM, WCM-en, and WCM-ru)
and combine them with two target injection methods
(SDP and +embs). As mentioned above, WCM-en
and WCM-ru always yield substitutes in English
and Russian, respectively, for context in any lan-
guage. We exclude WCM-en +embs and WCM-ru
+embs from experiments. These configurations re-
quire aligned cross-lingual embeddings, which we
consider a source of additional error.

4.2.1. Comparison to Monolingual Methods

We compare our methods to existing monolingual
ones on established WSI benchmarks: bts-rnc-ru,
SE10, and SE13. The results are provided in Table
2.

Our SDP-based methods perform on par with
SOTA English monolingual approaches in hard clus-
tering on SemEval 2010 and do not fall far behind
on SemEval 2013 with trivial hard-to-soft clustering
conversion. For +embs the results are noticeably
worse. We discuss possible explanations for this
fact in Section 5. It is worth mentioning that BERT
LSDP (Amrami and Goldberg, 2019), PolyLM Large
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(Ansell et al., 2021), XLNET +embs (Arefyev et al.,
2020), and our methods have roughly the same
number of parameters (350 million) in the underly-
ing neural language models.

In bts-rnc-ru, our systems fall behind only of
(Arefyev and Bykov, 2021) that uses a fixed number
of clusters for all words. This number is fitted on
the train set of bts-rnc, and is unlikely to transfer to
other languages or datasets.

Notably, WCM-en is the second best-performing
configuration on the Russian benchmark bts-rnc-ru
while producing only English substitutes. We con-
firm that substitutes are indeed in English while the
dataset is in Russian by building a simple character-
based classifier. Russian and English have differ-
ent alphabets, therefore we consider a substitute
to be in English if all its characters are Latin. Over
99% of the generated substitutes get classified as
English. We also performed a visual inspection,
confirming this result. WCM-ru is close to WCM-en
on English benchmarks with over 99% of substi-
tutes in Russian.

4.2.2. Multilingual WSI evaluation

We also evaluate the proposed methods on our
custom WSI benchmarks XL-WSD and DWUG de
Sense. We employ a trivial adaptation of the sub-
stitute generator from the original BERT LSDP ap-
proach as a baseline. In the baseline, XLM-R re-
places BERT as an underlying model, but multito-
ken substitutes are not allowed. Like in the original
method, the target injection relies on both the un-
masked instance and the non-symmetric dynamic
pattern. However, we replace the original clustering
approach with ours to allow for a better comparison
of the substitute generators.

The results on all the test datasets we use for
WSI are presented in Table 3. All of our meth-
ods surpass the baseline on each dataset, proving
the effectiveness of our approach in a multilingual
setup. No configuration is an overall winner.

We include two more configurations in this ex-
periment: WCM-en SDP-en and WCM-ru SDP-
ru. These configurations are identical to WCM-
en SDP and WCM-ru SDP, respectively, but do
not involve the translation of the dynamic patterns.
WCM-en SDP-en uses the pattern in English for all
languages, and WCM-ru SDP-ru always uses the
pattern in Russian. Due to the properties of WCM-
en and WCM-ru they also do not require the use of
a mulitlingual lemmatizer. We can see from Table 3
that WCM-en SDP-en shows strong WSI results
and requires no adaptation to new languages..
We thus consider WCM-en SDP-en to be a truly
multilingual WSI system.

System F-S V-M AVG
Concat SDP 67.7 41.7 53.1
Concat +embs | 62.5 32.0 44.7
WCM SDP 65.1 39.4 50.7
WCM +embs 64.1 26.9 41.5
WCM-en SDP 66.3 39.0 50.8
WCM-ru SDP 65.5 37.2 49.4
BERT LSDP 713 01 40.4 +18 | 53.6 +12
XLNET +embs 54.2
PolyLM Large* | 67.5 43.6 54.3
AutoSense 61.7 9.8 24.5
System FBC FNMI AVG
Concat SDP 65.1 19.6 35.7
Concat +embs | 59.6 14.0 28.8
WCM SDP 62.5 16.4 32.0
WCM +embs 61.7 13.7 29.1
WCM-en SDP 64.0 18.8 34.6
WCM-ru SDP 62.2 17.4 32.9
BERT LSDP 64.0 +05 21.4 405 | 37.0 +os5
XLNET +embs 37.3
PolyLM Large* | 66.7 23.7 39.7
ELMo LSDP 57.5 11.3 25.4
AutoSense 61.7 7.96 22.2
System ARI
Concat SDP 51.6
Concat +embs 49.1
WCM SDP 48.9
WCM +embs 44.2
WCM-en SDP 50.4
WCM-ru SDP 50.2
Arefyev and Bykov (2021) 57.3
Arefyev et al. (2019) 451
RUSSE’2018 competition best [1] 33.8
RUSSE’2018 competition baseline [1] | 21.3

Table 2: Evaluation results in English on SE10
(top), SE13 (middle) and in Russian on bts-rnc-ru-
test-private (bottom). The best result in each group
is in bold, the overall best result is also underlined.
* PolyLM Large was not presented in the original paper
(Ansell et al., 2021), the results are from the authors’
official repository.

5. Semantic Relations between
Substitutes and Target Words

To get more insights on substitute generation, we
also perform a direct evaluation of our substitute
generators on existing lexical substitution datasets:
SemEval2007 task 10 (McCarthy and Navigli, 2007)
in English, GermEval 2015 (Miller et al., 2015) in
German and SemDisFr 2014 (Fabre et al., 2014) in
French. The results are presented in Figure 3. The
performance of target injection methods on these
datasets is opposite to WSI (in line with the results
from Arefyev et al., 2020): +embs performs better
than SDP "or even" or other dynamic patterns.

To find an explanation for the divergence of re-
sults on lexical substitution and WSI, we classify re-
lations between target words and substitutes based
on WordNet (Miller, 1995) relations for different
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SE10 SE13 bts-r | DWUG XL-WSD

en en ru de bg de en es fr al it ko sl zh
Baseline 242 235 354 | 404 50 1.1 184 205 20.6 7.6 20.7 11.6 3.9 204
Concat SDP 38.1 304 47.7 | 41.9 11.9 18.0 329 34.4 27.8 11.6 23.5 24.9 18.5 30.3
WCM SDP 349 254 48.9 | 395 10.0 23.4 33.0 29.0 27.3 10.8 22.0 179 13.5 26.8
WCM-en SDP 35.8 28.8 50.4 | 41.2 18.1 22.7 31.9 37.0 24.7 9.3 29.9 25.6 17.8 27.8
WCM-en SDP-en | 35.8 28.8 47.5 | 50.8 16.8 25.1 31.9 38.0 33.1 10.6 27.2 225 15.7 26.8
WCM-ru SDP 33.3 28.1 50.2 | 46.3 14.8 20.5 31.4 39.3 33.7 10.5 30.6 25.6 14.3 27.3
WCM-ru SDP-ru 284 23.1 50.2 | 46.4 13.5 19.7 30.0 335 21.2 10.1 24.4 234 123 25.2

Table 3: WSI evaluation results. The metric is Adjusted Rand Index (ARI, Hubert and Arabie, 1985).

target injection methods. WordNet provides "syn-
onym" relations of the synsets as well as hyponymy
relations. We classify the relations between the
target word and the substitute into the following
classes:

Direct hyponym, direct hypernym, or synonym if
the two words have synsets in WordNet with corre-
sponding relations. For examplem "onion" is a di-
rect hyponym of "vegetable", "vegetable" is a direct
hypernym of "onion", and "middle" is a synonym of
"center".

Transitive hyponym or transitive hypernym if there
is a path of only hyponym or hypernym relations
from the target word to the substitute. "Onion" is
a transitive hyponym of "food" (onion, vegetable,
food), and "food" is a transitive hypernym of "onion".

Co-hyponym if two words share a direct hyper-
nym, co-hyponym-3 if they share a hypernym of a
hypernym. "Onion" and "garlic" are co-hyponyms,
and "onion" and "apple" are co-hyponyms-3.

Figure 4 represents the distribution of relation
classes for "or even" and +embs target injection
methods on all instances from SE10 where target
words are nouns. SDP "or even" yields substitutes
with "unknown relation" more frequently. However,
SDP substitutes still allow for better clustering ac-
cording to WSI evaluation.

We review the most discriminative substitutes for
target words in SE10 as a qualitative analysis of the
generated substitutes. A substitute is discrimina-
tive if it appears frequently in instances for a given
sense and rarely in other senses. More formally,
the substitutes for each sense get ranked by divid-
ing the number of occurrences of the substitute in
this sense by the number of occurrences of that
substitute in other senses, according to gold sense
clustering.

The top 3 discriminative substitutes for several
senses of three target words from SE10 are pre-
sented in Table 4. Firstly, we confirm that WCM-ru
yields cross-lingual substitutes for instances in the
WSI datasets, and these substitutes fit the context
quite well. Secondly, we find examples of substi-
tutes that seem useful for WSI but which are not lex-
ical substitutes in a traditional sense. E.g., "blood"
and "animal" indeed help distinguish a "blood cell"

semeval germeval semdisfr
+embs
uand also“ I
"or even” I
"and" I
o
0 20 0 5 0 10
Recall@10 Recall@10 Recall@10

Figure 3: Evaluation of substitute generators on
the lexical substitution datasets . Blue is the concat
substitute generator and orange is the WCM.

co_hyponym target injection

m +embs
"or even"

direct_hypernym

direct_hyponym

relation

synonym
transitive_hypernym
transitive_hyponym
unknown_relation
0.0

0.2 0.4

probability

0.6

Figure 4: Distribution of Wordnet hyponymy rela-
tions for different target injection methods. Only
top-20 substitutes are used for each instance.

from a "prison cell" but it is hard to describe the
exact relation between the target word "cell" and
these substitutes.

In general, we conclude that the superior perfor-
mance of SDPs on WSI can be explained by the
presence of words that are not lexical substitutes by
conventional definition (they cannot replace the tar-
get word in the sentence) but tend to co-occur with
the target word. It may also explain the optimal WSI
k in +embs being lower than in SDP. While +embs
is better at producing closely related substitutes,
SDP substitutes are more diverse. Words usually
do not have many closely related substitutes and
+embs quickly "runs out" of adequate substitutes.

6. Conclusion

By harnessing the capabilities of the multilingual
masked language model XLM-R and carefully
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| Target word | Context Example Concat +embs | Concat SDP | WCM-ru SDP |
b ... the highest institution organization qnnosuuk (official)
ody - . .

. legislative body govern committee yupexaenue(establishment)

(33 instances) . L .
of China ... organization office rocynapcrso(state)

body ... the body’s shape, bodily, personality, muscle, | mbrimma(muscle), Barusi
(70 instances) | immune response... | muscle health (sight), kpacora(beauty)
body ... his body bore dead, victim, victim, debris, nmytnectio(property), dpuar
(78 instances) | several wounds... remain grave (flag), xoureitnep(conatiner)
cell ... to its prison jail, room, apartment, xopumop(corridor), rapaxx
(11 instances) | cell shortage ... house cellar, detention (garage), kabuner(cabinet)
cell Eélcl);ﬂ:/ito?vzg?r?the tissue blood BI/IpyC(VirU(S), |

; n tumor virus opranu3M(organism
(88 instances) body’s immune ... stem animal HOBOOGpazosanue(tumor)
display ..onaTV Icd, monitor, LCD, digital, anasor(analogue), aucrueit
(11 instances) | display ... system component (display) mouuTop (monitor)
display ... diamonds sale, showcase, | sell, presentation, npozazxa (sale), Kkynurs
(19 instances) | on display... view public (to buy), mpomars (to sell)

Table 4: Top-3 discriminative substitutes for Concat +embs, Concat SDP, and WCM-ru SDP for three

nouns from the SE10 dataset.

adapting existing monolingual WSI methods, we
were able to build a multilingual WSI system that
does not require any adaptation to be used in a new
language. We performed extensive experiments
across several languages and datasets to prove
that our approach is robust and performs on par
with the state-of-the-art monolingual methods. We
also discovered that by simply finetuning XLM-R
with the WCM obijective in a single language, we
obtain a model capable of producing cross-lingual
lexical substitutes, and these substitutes allow for
adequate WSI performance.

7. Limitations

In terms of languages, our system has only one
minimal requirement. The language of an instance
must be one of 100 languages supported by XLM-
R. However, we have only tested our systems on
limited academic benchmarks with sense annota-
tions. These benchmarks may not reflect all the
nuances of word usage in real corpora.

Our methods tackle WSI as a hard clustering
task, which suggests distinct borders between the
senses of an ambiguous word. The existence of
such borders is hardly the case for many words
in the natural languages (Jurgens and Klapaftis,
2013). More than that, our WSI systems always
consider the target word to be ambiguous, i.e., hav-
ing at least two senses. We do not tackle the prob-
lem of ambiguity detection in our work. Overall, we
believe that deeper research into clustering meth-
ods for WSl is required to use current WSI systems
"in the wild".
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Figure 5: Evaluation of different configurations of our system on the WSI dev sets.

is the upper bound for ARI achievable given a vec-
torizer, a clusterer, and a grid on clustering hyper-
parameters. It is calculated with the clustering hy-
perparameters selected individually for each target
word to maximize ARI. We observe maxARI to be
more stable to variations in substitute generator
parameters compared to regular ARI.

The results of the evaluation are presented in
Figure 5. The first observation is that all the con-
figurations surpass the baseline in ARI on all the
dev datasets. The same can be said for maxARI
in 16 out of 18 configurations. In general, SDPs
perform better than +embs. We can see that more
complicated patterns "and also" and "or even" per-
form slightly better than simpler patterns "and" and
"or".

B. Selection of the number of
substitutes

We optimized the number of substitutes (k) in our
methods based on maxARI on the train subset of
bts-rnc-ru for each target injection method. The
results are presented in Figure 6. The WSI perfor-

Name
"andll

Symmetric Patterns
<T> and <mask>
<mask> and <T>

<T> or <mask>
<mask> or <T>

<T> (and also <mask>)
<mask> (and also <T>)
<T> (or even <mask>)
<mask> (or even <T>)

uor

"and also"

"or even"

Table 5: The symmetric dynamic patterns used in
our experiments.

Train subset of bts-rnc-ru

nand®
"and also"
nort

"or even"
+embs

max ARI

25 50 75 100 125

Figure 6: The relation between k& and maxARI on
the train subset of bts-rnc-ru for different target
injection methods. Concat is used for multi-token
substitute generation.

mance for SDP reaches a plateau only at £ ~ 100.
In the case of +embs, however, we found that k = 20
is optimal. The performance significantly declines
for larger values of k.

C. The importance of multi-subword
substitutes for WSI

Figure 7 shows the WSI performance depending on
the length of substitutes generated. When compar-
ing the more stable maxARI metric, we see small
but consistent benefits from using substitutes of
variable length for SE10, SE13, bts-rnc-ru, DWUG
de Sense. Combining 1-, 2-, and 3-subword sub-
stitutes with the concat method usually performs
best. For the same datasets generating only single-
subword substitutes results in a clear drop in per-
formance. For XL-WSD the results are mixed.
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Figure 7: The relation between WSI metrics (ARI
and maxARI) and the length (in subwords) of sub-
stitutes generated. The Concat method is used
when combining substitutes of different lengths.

D. MaxARI on the test sets

Table 6 extends Table 3 and includes maxARI eval-
uation for the test sets. Overall, the differences
in maxARI between configurations are more sub-
tle, compared to regular ARI. The gap between
ARI and maxARI is more noticeable for XL-WSD,
than for other benchmarks. It means that Calinski-
Harabasz score is worse at determining the optimal
number of clusters in XL-WSD compared to other
datasets. We think it can be explained by differ-
ences in statistics for these datasets, highlighted in
Section 4.1. Specifically, they contain many words
with very few examples, all belonging to different
senses. Such words can be ideally clustered when
swiping through the number of clusters from 2 to 9.
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SE10 SE13 bts-r | DWUG XL-WSD

en en ru de bg de en es fr gl it ko sl zh
Baseline 242 235 354 | 404 50 1.1 184 205 206 7.6 20.7 11.6 3.9 204
Concat SDP 38.1 30.4 477 | 41.9 11.9 18.0 329 344 27.8 11.6 23.5 24.9 18.5 30.3
WCM SDP 349 254 489 | 395 10.0 23.4 33.0 29.0 27.3 10.8 22.0 179 13.5 26.8
WCM-en SDP 35.8 28.8 50.4 | 41.2 18.1 22.7 31.9 37.0 24.7 9.3 29.9 25.6 17.8 27.8
WCM-en SDP-en | 35.8 28.8 47.5 | 50.8 16.8 25.1 31.9 38.0 33.1 10.6 27.2 22.5 15.7 26.8
WCM-ru SDP 33.3 28.1 50.2 | 46.3 14.8 20.5 31.4 39.3 33.7 10.5 30.6 25.6 14.3 27.3
WCM-ru SDP-ru | 28.4 23.1 50.2 | 46.4 13.5 19.7 30.0 33.5 21.2 10.1 244 23.4 123 252
Baseline 349 318 46.0 | 51.5 21.8 26.6 47.8 50.7 50.3 31.2 49.3 38.2 135 41.1
Concat SDP 442 38.2 58.0 | 60.3 32.3 33.8 57.6 67.7 51.5 37.4 54.4 49.3 27.7 49.5
WCM SDP 43.3 354 56.8 | 57.3 27.6 334 56.9 58.4 53.7 33.6 54.0 41.2 23.9 451
WCM-en SDP 446 379 60.5 | 60.7 38.3 35,5 57.3 65.0 53.8 36.7 60.1 48.4 28.3 46.3
WCM-en SDP-en | 44.6 379 57.1 | 64.8 38.0 36.9 57.3 63.6 59.6 37.3 56.5 46.7 24.8 46.6
WCM-ru SDP 41.7 36.8 58.1 | 60.6 349 36.2 55.1 66.8 64.8 36.2 53.9 50.3 25.0 46.4
WCM-ru SDP-ru | 40.0 334 58.1 | 58.1 32.4 36.1 56.1 60.1 51.5 35.1 52.2 455 23.0 44.1

Table 6: Extended WSI evaluation results. The metrics are ARI (top) and maxARI (bottom).
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