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Abstract

Prior work on multilingual sentence embedding has demonstrated that the efficient use of natural language inference
(NLI) data to build high-performance models can outperform conventional methods. However, the potential benefits
from the recent “exponential” growth of language models with billions of parameters have not yet been fully
explored. In this paper, we introduce Multilingual Sentence T5 (m-ST5), as a larger model of NLI-based multilingual
sentence embedding, by extending Sentence T5, an existing monolingual model. By employing the low-rank
adaptation (LoRA) technique, we have achieved a successful scaling of the model’s size to 5.7 billion parameters.
We conducted experiments to evaluate the performance of sentence embedding and verified that the method
outperforms the NLI-based prior approach. Furthermore, we also have confirmed a positive correlation between
the size of the model and its performance. It was particularly noteworthy that languages with fewer resources or
those with less linguistic similarity to English benefited more from the parameter increase. Our model is available at
https://huggingface.co/pkshatech/m-ST5.
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1. Introduction

Sentence embedding is a versatile and fundamen-
tal technique of NLP and has been studied exten-
sively (Kiros et al., 2015; Logeswaran and Lee,
2018; Reimers and Gurevych, 2019; Yan et al.,
2021; Meng et al., 2021; Carlsson et al., 2021;
Kim et al., 2021; Muennighoff, 2022). In partic-
ular, the recently proposed SimCSE (Gao et al.,
2021), a simple and data-efficient method based
on contrastive fine-tuning of existing pre-trained text
encoders such as BERT, greatly advanced the fron-
tier and attracted much attention. This technique
can be naturally used with other kinds of model
architectures. For example, in their Sentence T5,
Ni et al. (2022) adopted T5, an encoder-decoder
model.

Multilingual sentence embedding, which projects
sentences from diverse languages into a shared
semantic space, is an important extension of this
problem, and many techniques have been pro-
posed (Section 2). Of these, we particularly fo-
cus on a multilingual extension of SimCSE, namely
mSimCSE (Wang et al., 2022), because of its data
efficiency. In particular, even though the fine-tuning
requires just a natural language inference (NLI)
dataset consisting of around 2 million sentences, it
showed comparable results with supervised tech-
niques based on larger parallel corpora.

Now, the natural question that arises here is
whether such a learning strategy scales to larger
models with billions of parameters. To answer this
question, this paper examines the performance of a
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Figure 1: Concept diagram of m-ST5.
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Figure 2: Comparison of model size and perfor-
mance of the proposed method.

fine-tuned model based on mT5 (Xue et al., 2021),
a larger model than XLM-RoBERTa (Conneau et al.,
2020), which is the base model of mSimCSE. We
extend the existing large-scale monolingual model
Sentence T5 to multilingual scenarios.

The proposed method performed well on some
benchmarks, including cross-lingual STS (XSTS)

https://huggingface.co/pkshatech/m-ST5
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(Cer et al., 2017a) and sentence retrieval (Artetxe
and Schwenk, 2019; Zweigenbaum et al., 2017).
Besides, it outperformed a monolingual model in
Japanese, a language far distant from the ones
used for training. We have further confirmed a
positive correlation between the model size and its
performance, as shown in Figure 2, which is often
referred to as the scaling law and found in other
language models (Ni et al., 2022; Kaplan et al.,
2020). The observation that the scaling law holds
for multilingual sentence embeddings suggests that
the constraint of insufficient amount of training data
in low-resource languages may be alleviated by
using large-scale pre-trained models.

2. Related Work

Recently, multilingual models (Devlin et al., 2019;
Conneau and Lample, 2019; Conneau et al., 2020;
Wei et al., 2021; Chi et al., 2022; Xue et al., 2021)
have been intensively studied as they have lan-
guage transferability, the ability to adapt to a new
language in a few or zero shots. It should also
be noted that the transferability varies by task and
language pair and is not always effective, espe-
cially between distant languages (Pires et al., 2019;
Lauscher et al., 2020).

As an important branch of multilingual NLP, var-
ious techniques for multilingual sentence embed-
ding have been studied. A major challenge in this
field is how to acquire semantic proximity between
sentences in different languages. A natural ap-
proach would be the use of parallel corpora (Artetxe
and Schwenk, 2019; Yang et al., 2020; Feng et al.,
2022), though this approach is data-hungry, and
it is costly to maintain such corpora. Some tech-
niques have been proposed that can alleviate such
problems, such as a distillation-based approach
(Reimers and Gurevych, 2020), introduction of ad-
versarial training strategy to reduce language iden-
tifier information from semantic vectors (Chen et al.,
2019; Keung et al., 2019), the use of word align-
ment between parallel sentences (Cao et al., 2020),
and so on.

In this paper, we particularly focus on the NLI-
based contrastive training strategy, specifically the
multilingual extension of SimCSE (Gao et al., 2021),
namely mSimCSE (Wang et al., 2022). It was
shown that mSimCSE could acquire inter-language
alignments without explicit parallel corpora, and
even monolingual NLI corpora could yield good
fine-tuning results.

3. Proposed Method: m-ST5

In this paper, we propose the Multilingual Sentence
T5 (m-ST5) as a new extension of Sentence T5
(Ni et al., 2022). Similarly to ST5, our method is

based on fine-tuning of a pre-trained T5 model (Raf-
fel et al., 2020), which is one of the most popu-
lar encoder-decoder language models. However,
since we are interested in multilingual sentence em-
bedding, we need to use a multilingual model as our
baseline. We then used Multilingual T5 (mT5) (Xue
et al., 2021), which was pre-trained on mC4, a large-
scale multilingual corpus covering 101 languages.
To build a sentence embedding model, only the
encoder part of the enc-dec model is needed, as
in Sentence T5. For example, the encoder module
(5.7B params) out of the pre-trained mT5-xxl (13B
params) is extracted. The encoder converts a sen-
tence into token-wise embedding, and these token
representations are averaged together to produce
a sentence embedding.

Naturally, the vector obtained this way is not
sufficient for sentence embedding in quality, and
fine-tuning of the encoder is required. To this
end, following mSimCSE (Wang et al., 2022), we
trained m-ST5 in a contrastive manner using the
NLI dataset for a task to predict whether a given hy-
pothesis sentence is an entailment, a contradiction,
or neutral to another premise sentence. Specifi-
cally, m-ST5 is trained to minimize the distances
between positive pairs (entailment) and maximize
the distances between negative ones (contradic-
tion). Furthermore, unrelated in-batch sentences
are also incorporated as negative samples because
such a trick promotes the uniformity of the semantic
space (Gao et al., 2021).

Additionally, in multilingual learning scenarios
using cross-lingual NLI data (XNLI) (Conneau et al.,
2018), it should also be taken into account which
languages the positive and negative samples are
drawn from. In this study, following mSimCSE, we
draw triplets, each of which consists of a premise
and two hypotheses (entailment and contradiction)
from different languages, as shown in Figure 1.

4. Experiment

4.1. Cross-lingual Experiments

We first evaluated the quality of sentence embed-
ding by sentence retrieval tasks (Tatoeba, Artetxe
and Schwenk, 2019; and BUCC, Zweigenbaum
et al., 2017) and cross-lingual STS task (XSTS,
Cer et al., 2017a). Details of the evaluation task
are provided in Section 7. For all tasks, cosine
similarity was used as the measure of similarity.
We compared the performance with the following
methods: mSimCSE (Wang et al., 2022), LASER
(Artetxe and Schwenk, 2019), and LaBSE (Feng
et al., 2022). Of these, LASER and LaBSE were
trained in a fully supervised manner.

In order to feasibly train our models on a single
A100 GPU with 80GB of VRAM, we used the tech-
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Train Fine Tuning Tatoeba tasks (Accuracy) BUCC (F1) XSTS tasks (Spearman’s ρ)
Model method Data Tatoeba-14 Tatoeba-36 avg. ar-ar ar-en es-es es-en tr-en

Contrastive Learning

mSimCSE Full FT XNLI 93.2∗ 91.4∗ 95.2∗ 79.4∗ 72.1∗ 85.3∗ 77.8∗ 74.2∗

en-NLI 89.9∗ 87.7∗ 93.6∗ 81.6∗ 71.5∗ 87.5∗ 79.6∗ 71.1∗

m-ST5

LoRA XNLI 96.3 94.7 97.6 76.2 78.6 84.4 76.2 75.1
(query+value) en-NLI 93.9 92.9 96.6 83.2 79.5 87.7 84.9 79.2

LoRA XNLI 96.5 94.8 97.7 77.3 77.8 85.0 77.7 75.0
(all-linear) en-NLI 94.0 93.1 96.7 84.5 82.9 89.2 86.3 79.7

Fully Supervised
LASER - - 95.3† 84.4† 93.0‡ 68.9‡ 66.5‡ 79.7‡ 57.9‡ 72.0‡

LaBSE - - 95.3† 95.0† 93.5‡ 69.1‡ 74.5‡ 80.8‡ 65.5‡ 72.0‡

Table 1: Evaluation results using Tatoeba, BUCC, and XSTS. Each score is the average of the performance
over three trials with different random seeds. Scores with ∗ , † and ‡ were excerpted from (Wang et al.,
2022), (Feng et al., 2022), and (Reimers and Gurevych, 2020), respectively.

Model Train method FT Data hi fr de af te tl ga ka am sw
Contrastive Learning

mSimCSE Full FT XNLI 96.2 94.8 98.8 90.6 96.2 80.9 65.1 92.4 82.4 67.8
en-NLI 94.4 93.9 98.6 85.6 92.9 70.0 54.8 89.2 79.5 42.1

m-ST5

LoRA XNLI 98.0 96.2 99.7 95.6 98.2 94.3 83.0 95.4 93.1 91.2
(query+value) en-NLI 97.5 95.7 99.4 94.5 97.3 93.1 81.6 93.3 90.7 68.5

LoRA XNLI 97.8 96.4 99.6 95.6 97.9 94.1 84.3 95.6 94.3 91.5
(all-linear) en-NLI 97.6 95.7 99.3 94.5 97.2 93.5 82.4 93.9 91.7 68.8

Fully Supervised
LASER - - 94.7 95.7 99.0 89.4 79.7 - 5.2 35.9 42.0 42.4
LaBSE - - 97.8 96.0 99.4 97.4 98.3 97.4 95.0 95.9 94.0 88.5

Table 2: Accuracy of Tatoeba retrieval task. Target languages are the same as in (Wang et al., 2022).

nique of LoRA (Hu et al., 2021), which enables
training of very large models with limited computa-
tional resources. In this paper, we examined two
LoRA conditions. One is to apply the LoRA tech-
nique only to the query and value matrices, fol-
lowing the original LoRA paper (Hu et al., 2021),
which reported that fine-tuning only the query and
value matrices is effective. The other is to apply
LoRA to all linear layers, following the QLoRA pa-
per (Dettmers et al., 2023) which showed that the
highest performance is obtained by fine-tuning all
linear layers. In both cases, the rank of the matrices
was r = 8, and the batch size was 128 in our exper-
iment. Other details of the experimental setup are
in Section 8. The training data was chosen from the
following NLI datasets: en-NLI = SNLI (Bowman
et al., 2015) + MNLI (Williams et al., 2018), and
XNLI (Conneau et al., 2018). Details of the training
data are in Section 9.

Table 1 shows the evaluation results on the
above three tasks. We may observe that the pro-
posed method (m-ST5) outperformed the exist-
ing mSimCSE. Notably, even monolingual (en-NLI)
fine-tuning of m-ST5 outperformed multilingual
(XNLI) fine-tuning of mSimCSE. It is also ob-
served that all-linear LoRA gave better results than

query+value LoRA. The difference was especially
noticeable when en-NLI data was used for training.

We also found that it depends on the task which
of XNLI/en-NLI fine-tuning data gave better results.
Specifically, we have observed that cross-lingual
training data (XNLI) was notably more effective in
sentence retrieval tasks, while monolingual data
(en-NLI) was more effective for the XSTS task. It
may reflect differences in the nature of the evalu-
ation metrics, i.e. the sentence retrieval tasks are
only concerned with the sentences with top rele-
vance, while the STS task considers ranking that
requires more elaborate knowledge on each con-
cept. Here, the XNLI-based learning prioritizes the
alignment of different languages, resulting in sparse
occurrences of each word and making it harder to
acquire elaborated word knowledge. In this respect,
monolingual learning using en-NLI, with its oppo-
site properties where the same word often appears
both in positive and negative samples, would have
been more effective in STS.

Table 2 further details the accuracy of English-*
sentence retrieval in various languages. While
mSimCSE did not perform well for low-resource
languages (e.g. ga) or phylogenetically distant
languages from English (e.g. sw), the proposed
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method produced high scores of over 90% for all
of such languages except Irish (ga). Overall, the
performance has improved, and the results are ap-
proaching those of fully supervised methods.

4.2. Comparison with Monolingual
Models

To evaluate the transferability of the proposed
method, we conducted experiments on Japanese,
Korean and Chinese languages which are phylo-
genetically very distant from English but are rich in
evaluation resources and the population of potential
users. The performance of our method (m-ST5) on
monolingual STS tasks was compared with these
monolingual models, as well as the multilingual
models.

Baseline Models As monolingual baselines, we
used the Japanese BERT-large1, the Korean
RoBERTa-large from KLUE (Park et al., 2021),
and the Chinese RoBERTa-large (Cui et al., 2020).
We will call these models ‘ja-BERT’, ‘ko-RoBERTa’
and ‘zh-RoBERTa’ for simplicity. As multilingual
models, we used the LaBSE and mSimCSE. The
LaBSE model was from Hugging Face Hub2, and
the mSimCSE model was reproduced based on the
original paper (Wang et al., 2022).

Fine-tuning and Evaluation Data The training
data used for fine-tuning were XLNI, en-NLI, and
monolingual NLI datasets for each language. (Note
that XNLI do not contain Japanese and Korean
languages.) For evaluation, STS data in each lan-
guage, as well as English STS data (STS-B, Cer
et al., 2017b) were used. Note that the English
STS is not the main focus of this section, but is for
reference.

The Japanese monolingual NLI dataset was
JSNLI (Yoshikoshi et al., 2020), and the evaluation
STS dataset was JSTS in JGLUE (Kurihara et al.,
2022). The Korean dataset was KorNLI/KorSTS
(Ham et al., 2020). The Chinese NLI dataset was
CMNLI in CLUE (Xu et al., 2020), and the STS
dataset was STS-B test set in C-MTEB (Xiao et al.,
2023). We will refer to these fine-tuning and evalu-
ation data as {ja, ko, zh}-{NLI, STS}, for simplicity.

Table 3 shows the evaluation results of STS
tasks in three languages mentioned. The pro-
posed model with the LoRA layer added only to
query+value matrices showed inferior results to the
existing multilingual model, mSimCSE. Neverthe-
less, this problem was solved by adding the LoRA

1https://huggingface.co/cl-tohoku/
bert-large-japanese-v2

2https://huggingface.co/sentence-transformers/
LaBSE

layers to all linear layers, and by increasing the
number of trainable parameters (Dettmers et al.,
2023).

The average score of the results for these lan-
guages was higher than that of the existing mul-
tilingual models. The performance for each lan-
guage was as follows: in Chinese, the proposed
method outperforms the monolingual counterpart
(zh-RoBERTa), and in Japanese, the performance
of the proposed method is equivalent to that of the
monolingual counterpart (ja-BERT). In particular,
even when the target language data was not used
for training at all (i.e., only en-NLI was used), the
performance of m-ST5 was comparable to these
monolingual models.

This could be attributed to two factors: The first
would be that m-ST5 has high cross-lingual trans-
ferability, and the second would be the large size
and high quality of the en-NLI dataset.

These results suggest that fine-tuning multilin-
gual models for monolingual tasks is a promising
option when pre-trained large monolingual mod-
els are not available. Moreover, high performance
could be achieved without using target language
data during fine-tuning.

In Korean language, however, the opposite trend
has been observed. The monolingual model
trained on the monolingual corpus was significantly
better than m-ST5, transfer-learned from a multi-
lingual model. In our observation, this could be at-
tributed to the quality of tokenizers. In general, the
tokenization of Korean language is not a straight-
forward task (Park et al., 2021), and the tokenizer
of our base multilingual model does not seem to
be sufficiently tuned in this respect. On the other
hand, the tokenizer of ko-RoBERTa seems to have
been carefully crafted.

4.3. Scaling Law

It has been suggested that the performance of lan-
guage models scale with the increase of the model
size. In this section, we investigate whether this is
the case for our approach as well as Sentence T5
(Ni et al., 2022). We compared the performance
of three pre-trained mT5 models of different sizes
(564M, 1.7B, and 5.7B) when fine-tuned query and
value matrices using XNLI or en-NLI.

Figure 2 shows the scaling law of the perfor-
mance of Spearman’s ρ on XSTS and the accuracy
of multilingual sentence retrieval on Tatoeba-36.
Table 4 details the performance on XSTS for vari-
ous language pairs. In this table, a trend could be
observed that languages far from English (i.e., ar
and tr) tended to benefit more from the increase in
model size. Particularly interesting in this table is
the fact that monolingual fine-tuning becomes more
effective as the model size is scaled up. This result

https://huggingface.co/cl-tohoku/bert-large-japanese-v2
https://huggingface.co/cl-tohoku/bert-large-japanese-v2
https://huggingface.co/sentence-transformers/LaBSE
https://huggingface.co/sentence-transformers/LaBSE
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Model Train method FT Data en-STS ja-STS ko-STS zh-STS avg.
ja-BERT

Full FT
ja-NLI – 83.6 – – –

ko-RoBERTa ko-NLI – – 83.4 – –
zh-RoBERTa zh-NLI – – – 71.2 –

m-ST5
(ours)

LoRA
(query+ value)

XNLI 80.3 81.4 73.4 73.0 77.3
en-NLI 85.6 82.7 77.2 77.3 80.7

LoRA
(all-linear)

XNLI 84.2 82.1 78.0 74.7 79.8
en-NLI 88.1 84.1 81.1 79.6 83.2

mSimCSE Full FT XNLI 78.3 79.0 72.9 69.6 75.0
en-NLI 87.2 81.2 80.1 80.4 82.2

LaBSE – – 74.1 76.1 70.5 68.4 72.3

Table 3: Comparison with monolingual models. ‘ja’, ‘ko’ and ‘zh’ refer to Japanese, Korean and Chinese,
respectively. LaBSE was evaluated using a model published on Hugging Face Hub, and mSimCSE was
evaluated using a model reproduced based on the original paper.

Model FT Data ar-ar ar-en es-es es-en tr-en
mT5-large XNLI 62.0 58.2 77.6 56.8 53.8

(564M) en-NLI 68.8 49.1 82.1 59.5 48.8
mT5-xl XNLI 71.8 71.7 81.7 68.0 66.3
(1.7B) en-NLI 78.2 73.9 87.3 76.8 72.1

mT5-xxl XNLI 76.2 78.6 84.4 76.2 75.1
(5.7B) en-NLI 83.2 79.5 87.7 84.9 79.2

Table 4: Comparisons of models’ performance on
SemEval 2017 STS shared task when scaling up
model size.

suggests that cross-lingual transferability emerges
when the model becomes larger.

5. Conclusion

In this paper, we proposed the Multilingual Sen-
tence T5 (m-ST5), an extension of Sentence T5 to
multilingual. m-ST5 demonstrated excellent perfor-
mance in multilingual tasks such as cross-lingual
sentence retrieval and cross-lingual STS. It also
performed well in a monolingual task, demonstrat-
ing the effectiveness of the proposed model in low-
resource languages where no large-scale, high-
performance model exists. Furthermore, we in-
vestigated the correlation between the size of the
model’s parameters and changes in performance,
confirming that performance changes follow the
scaling laws and that performance improvements
are particularly notable in low-resource languages.
Note that we are planning to release the trained
model of the proposed m-ST5.

Ethics Statement

Since this method is an embedding model and does
not generate language, the risk of generating harm-
ful sentences would not need to be considered. On
the other hand, since the biases contained in the

training data are incorporated as is, the vectors gen-
erated may implicitly contain such biases, and the
possibility of serious discriminatory results in some
applications cannot be denied. In actual applica-
tions, maximum measures are needed to prevent
such disadvantages.
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7. Evaluate task detail

Tatoeba-{14 and 36}: A community-based cor-
pus of English sentences and their translations into
more than 400 languages, from which Artetxe and
Schwenk (2019) generated a dataset for multilin-
gual NLP tasks. We conduct evaluations on sen-
tence retrieval tasks with pairs of English sentences
and sentences in other languages. There are two
settings: one with 14 languages and another with
36 languages.

Data r lr XSTS tatoeba tatoeba BUCC
avg. 14 36 avg.

XNLI
4 5e-5 78.1 96.2 94.6 97.6
8 5e-5 78.1 96.3 94.7 97.6
16 1e-5 76.3 96.1 94.6 97.4

en-NLI
4 5e-4 83.0 94.0 92.9 96.5
8 5e-4 82.9 93.9 92.9 96.6
16 5e-4 82.7 93.8 92.6 96.8

Table 5: Performance when changing the rank of
the LoRA adaptation matrix.

BUCC: It is a bitext mining task to predict trans-
lated sentences from a collection of sentences in
two languages. It consists of English and one of
the 4 languages (German, French, Russian and
Chinese) (Zweigenbaum et al., 2017). Following
XTREME (Hu et al., 2020), we regarded sentence
pairs whose similarity exceeded the pre-defined
threshold as translations of each other, and the
results were evaluated using F-measure.

XSTS: The cross-lingual semantic textual simi-
larity (XSTS) (Cer et al., 2017a), which is a multi-
lingual extension of the vanilla STS that evaluates
the correlation of the ranking of semantic similarity
with human judgement. The sentence pairs of the
dataset are either in the same language or different
languages.

8. Training detail

Batch size and number of epochs: In our ex-
periment, the batch size was 128. In the prelim-
inary experiments, batch sizes of 64, 128, and
256 were considered, but no significant differences
were found. Also, the number of epochs was set
to 1.

Learning rate We used AdamW as the optimizer
(Loshchilov and Hutter, 2019). We investigated the
learning rate at 10−5, 5× 10−5, 10−4, 5× 10−4, and
used the one that showed the best performance on
the STS Benchmark (Cer et al., 2017a) dev set.

LoRA configuration: The rank of the LoRA adap-
tation matrix was r = 8 and the weight was α = 32.
We tried ranks r = 4, 8, and 16, but did not observe
significant differences in performance. The details
of the differences are shown in Table 5.

Model size and training data volume Table 6
compares the model size and training data volume.
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Model Size Training Data
LASER 0.2B 200M pairs
LaBSE 1.8B 17B sents + 6B pairs

mSimCSEXNLI 0.3B 2.5TB data + 2M pairs
m-ST5XNLI 5.7B 6.3T tokens + 2M pairs
m-ST5en-NLI 5.7B 6.3T tokens + 0.2M pairs

Table 6: Size and data datails of the models used
in the experiment.

9. Training data detail

In contrastive learning with NLI dataset, premise-
hypothesis pairs that share the same premise are
concatenated to create a triplet consisting of a
premise and two hypotheses (entailment and con-
tradiction).

en-NLI: This training dataset is the concatenation
of Stanford NLI (Bowman et al., 2015) and MultiNLI
(Williams et al., 2018). Both datasets contain only
English texts. The ready-to-use dataset consisting
of triplets made from these datasets can be down-
loaded from the official repository of SimCSE34.
This dataset consists of 275,601 triplets.

XNLI: The XNLI dataset is a crowd-sourced trans-
lation of MultiNLI dataset into 15 languages. The
number of triplets included in the training data was
1,963,485.

JSNLI: The JSNLI dataset is a machine transla-
tion of the SNLI dataset into Japanese (Yoshikoshi
et al., 2020). The train set contains around 533k
premise-hypothesis pairs with labels. By the pre-
processsing described above, we obtained 176,309
triplets.

10. Languages used in the
experiment

Table 7 shows the list of languages used in the ex-
periments in this paper. All the languages displayed
in this table are included in mC4, the pre-training
data for mT5 (Xue et al., 2021). Note that in the
mC4 specification document, Hebrew and Tagalog
(Filipino) are denoted as ‘iw’ and ‘fil’, respectively.

3https://github.com/princeton-nlp/SimCSE
4https://huggingface.co/datasets/princeton-nlp/

datasets-for-simcse

https://github.com/princeton-nlp/SimCSE
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse
https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse
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code language family Tatoeba BUCC XSTS XNLI en-NLIJSNLI KorNLI CMNLI
14 36 Table 2

en English IE / Germanic ✓ ✓ ✓ ✓ ✓ ✓ ✓
af Afrikaans IE / Germanic ✓ ✓
am Amharic Semitic ✓
ar Arabic Semitic ✓ ✓ ✓ ✓
bg Bulgarian IE / Balto-Slavic ✓ ✓ ✓
bn Bengali IE / Indo-Iranian ✓
de German IE / Germanic ✓ ✓ ✓ ✓ ✓ ✓
el Greek IE / Greek ✓ ✓ ✓
es Spanish IE / Italic ✓ ✓ ✓ ✓
et Estonian Uralic ✓
eu Basque isolate ✓
fa Persian IE / Indo-Iranian ✓
fi Finnish Uralic ✓
fr French IE / Italic ✓ ✓ ✓ ✓ ✓ ✓
ga Irish IE / Celtic ✓
he (iw) Hebrew Semitic ✓
hi Hindi IE / Indo-Iranian ✓ ✓ ✓ ✓
hu Hungarian Uralic ✓
id Indonesian Austronesian ✓
it Italian IE / Italic ✓ ✓
ja Japanese Japonic ✓ ✓
jv Javanese Austronesian ✓
ka Georgian Kartvelian ✓ ✓
kk Kazakh Turkic ✓
ko Korean Koreanic ✓ ✓ ✓
ml Malayalam Dravidian ✓
mr Marathi IE / Indo-Iranian ✓
nl Dutch IE / Germanic ✓ ✓
pt Portuguese IE / Italic ✓
ru Russian IE / Balto-Slavic ✓ ✓ ✓ ✓
sw Swahili Bantu ✓ ✓ ✓ ✓
ta Tamil Dravidian ✓
te Telugu Dravidian ✓ ✓
th Thai Kra-Dai ✓ ✓ ✓
tl (fil) Tagalog Austronesian ✓ ✓
tr Turkish Turkic ✓ ✓ ✓ ✓
ur Urdu IE / Indo-Iranian ✓ ✓ ✓
vi Vietnamese Austroasiatic ✓ ✓ ✓
zh Chinese Sino-Tibetan ✓ ✓ ✓ ✓ ✓ ✓

Table 7: List of languages used in the experiments.
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