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Abstract
Text semantic matching is crucial in natural language processing, applied in information retrieval, question
answering, and recommendation systems. Traditional Chinese text matching methods struggle with semantic
nuances in short text. Recent advancements in multi-granularity representation learning have led to increased
interest in improving text semantic matching models. We propose a novel multi-granularity fusion model that
harnesses WoBERT, a pre-trained language model, to enhance the accuracy of text semantic information capture.
Initially, we process text using WoBERT to acquire semantic representations, effectively capturing individual text
semantic nuances. Next, we employ a soft attention alignment mechanism, enabling multi-granularity fusions
among characters, words, and sentences, thus further improving matching performance. Our approach was
evaluated through experiments on common Chinese short text matching datasets, BQ and LCQMC. Results reveal

a noticeable improvement in performance compared to traditional methods, particularly in terms of accuracy.
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1. Introduction

With the rise of social media and search engines,
the importance of semantic matching in short texts
is gaining increasing prominence. However, tradi-
tional text matching methods face challenges due
to the limited information and complexity of se-
mantic expression in short texts. They commonly
depend on statistical text matching models, such
as the Bag of Words model (BOW) (Harris, 1954)
or Term Frequency-Inverse Document Frequency
(TF-IDF) (Sparck Jones, 1972), which are eval-
uated by comparing word frequencies.Although
these methods perform well on certain long texts,
they face limitations on short texts. For example,
they have difficulty capturing the semantic informa-
tion of short texts due to the lack of contextual in-
formation.

In recent years, with the rapid evolution of deep
learning, there has been significant progress in
short text semantic matching methods rooted in
deep learning. These methods benefit from the
remarkable representational capabilities of deep
models, excelling not only in modeling seman-
tic relationships among texts but also offering
greater flexibility and adaptability across diverse
text matching applications. Word2vec (Mikolov
etal., 2013) is an early deep learning text matching
method, which relies on Skip-gram or Continuous
Bag of Words (CBOW) to build neural word embed-
ding. Besides Word2vec models, Convolutional
Neural Networks (CNN) (Kim, 2014) and Recur-
rent Neural Networks (RNN) (Elman, 1990) were
also extensively used in text processing. CNN
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employs convolution kernels to extract features
from different parts of the text, enhancing short
text matching by capturing local context. How-
ever, fixed-size and structured convolution ker-
nels are not ideal for variable-length text. On
the other hand, RNN’s cyclic structures are adapt-
able to varying input data lengths and time steps.
Long Short-Term Memory (LSTM) (Hochreiter and
Schmidhuber, 1997), Gate Recurrent Unit (GRU)
(Cho et al., 2014), and enhanced RNN structures
were developed to mitigate challenges associated
with vanishing and exploding gradients, which are
common issues in traditional RNN. While LSTM
and GRU are well-suited for handling long-term de-
pendencies, they may still encounter memory con-
straints when dealing with exceptionally lengthy
sequences, particularly without appropriate mea-
sures in place. To address these limitations, re-
searchers have introduced progressively innova-
tive and efficient deep learning models. Among
these, pretrained models have excelled in text
matching tasks. These models undergo pretrain-
ing on extensive language datasets to acquire text
representations and are subsequently fine-tuned
for specific tasks. This approach has infused fresh
energy and vitality into the field of natural language
processing.

Despite the notable achievements of current
methods in text matching tasks, they still encounter
the following challenges: (1) The precision of short
text semantic matching remains insufficient, and
(2) the disregard for multi-granularity semantic in-
formation. To elaborate, short texts, due to their
brevity, often lack the necessary context. As a re-
sult, word choice and order play a crucial role in
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semantics. Furthermore, Chinese short texts en-
compass various semantic levels, including char-
acters, words, and sentences. Multi-granularity
semantic information contributes to a more com-
prehensive and accurate text understanding. How-
ever, current text matching methods primarily em-
phasize the representation of a single granularity,
lacking a holistic consideration of multi-granularity
semantic relationships in short texts. In light of the
aforementioned challenges, this paper proposes
a multi-granularity fusion text semantic matching
model based on WoBERT. Combining the rich se-
mantic information of the pre-training model and
the comprehensive consideration of multi-level se-
mantics by the multi-granularity mechanism, the
WOoBERT model was fine-tuned to align the infor-
mation of character, word and sentence granular-
ity to get a more comprehensive semantic repre-
sentation. The key contributions of this paper are
as follows:

* We introduce a novel multi-granularity fu-
sion method for short text semantic matching
based on WoBERT, aimed at enhancing the
precision of short text similarity calculation.

» The utilization of a multi-granularity fusion
mechanism facilitates the integration of se-
mantic information across various levels, in-
cluding characters, words, and sentences,
leading to a substantial improvement in text
semantic matching performance.

» A comprehensive experimental assessment
on several widely employed text matching
benchmark datasets demonstrates a substan-
tial performance enhancement in our ap-
proach compared to traditional methods.

This paper is structured as follows: Section 2
provides a review of relevant research on pre-
trained models and multi-granularity text match-
ing methods. Section 3 describes the proposed
method. Section 4 presents the experimental re-
sults and analysis. Finally, in Section 5, we con-
clude our work.

2. Related Work

2.1. Text semantic matching based on
pre-training model

Pretrained language models represent a pivotal
technique in the realm of natural language pro-
cessing (NLP), encompassing renowned models
such as BERT (Kenton and Toutanova, 2019),
RoBERTa (Liu et al., 2019), ALBERT (Lan et al.,
2019), WoBERT (Su, 2020), and more. These
models undergo pretraining on extensive text cor-
pora, endowing them with the ability to grasp the

grammatical, semantic, and contextual nuances
of natural language. Typically, these models uti-
lize the encoder component of the Transformer
(Vaswani et al., 2017) architecture as their foun-
dation. They hold a pivotal role in addressing
text semantic matching tasks, equipping the field
of natural language processing with robust tools
and methodologies for a multitude of applications.
Wu et al. (2021) used the integrated method of
BERT and the ascending tree model to explore
the matching relationship between Chinese med-
ical Q&A data. Zhang et al. (2022) used BERT
model and multi-feature convolution to extract se-
mantic features to achieve text semantic matching
tasks. Zou et al. (2022) used RoBERTa as the
backbone model to carry out text semantic match-
ing in a divide-and-conquer approach by decom-
posing keywords and intentions. Reusch et al.
(2021) conducted similarity analysis of mathemat-
ical answer retrieval based on ALBERT, and ex-
plored the ability of ALBERT model in text mod-
eling. The WoBERT model primarily focuses on
word-level information. Inthe work of Dong (2023),
OpenHowNet is harnessed as prior knowledge to
guide semantic fusions, empowering the model
to access multi-level semantic information. Wen
et al. (2021) utilized WoBERT and RoBERTa pre-
trained language models, in conjunction with intra-
domain training methods, to extract medical knowl-
edge from unlabeled medical texts. These inno-
vations significantly bolster the performance and
effectiveness of short text matching models when
processing Chinese text.

However, most of these methods are based
on single-granularity text semantic matching, only
from one level of semantic analysis, can not accu-
rately measure the semantic relationship between
texts. To address these issues, researchers began
exploring methods for multi-granularity fusions.

2.2. Multi-granularity fusion text
semantic matching

The multi-granularity fusion text semantic match-
ing method offers an effective solution to the chal-
lenges encountered in short text matching tasks.
It aims to measure semantic similarity and match-
ing degrees between texts in a more profound and
comprehensive manner by considering different
levels or granularity of semantic information. This
approach combines various levels of feature repre-
sentation to offer more comprehensive and precise
semantic information. Character-level represen-
tations excel at capturing nuanced features and
morphological intricacies within words, while word-
level representations emphasize semantic rele-
vance and contextual information. Additionally,
within the realm of word-level analysis, words may
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Figure 1: Model structure of WSTM

exhibit multiple meanings. Sentence-level repre-
sentations aid the model in acquiring a more com-
prehensive grasp of the overall context, thus en-
hancing its capacity to disambiguate and select the
most suitable meaning. Various researchers have
introduced a range of methods to address diverse
text matching issues. Li et al. (2019) and Chang
etal. (2023) proposed to realize semantic similarity
analysis through the fusion of words and phrases.
Zhang et al. (2015) and Huang et al. (2017), which
decompose text into smaller units to better capture
the internal structure and meaning of words. In ad-
dition, there are many models that use character
and word granularity for deep fusion, such as the
work by Yu et al. (2021), which effectively lever-
ages interactive information to address the chal-
lenging problem of modeling highly general text
pairs across various tasks and languages. Wang
and Yang (2022) simultaneously consider deep
semantic similarity and shallow semantic similar-
ity of input sentences, while also taking into ac-
count granularity at the lexical and character lev-
els to thoroughly explore the similarity information
between sentences. Zhang et al. (2020a) employ
a soft alignment attention mechanism to enhance
the local information of sentences at different lev-
els, allowing them to capture the feature informa-
tion of sentences and the correlation between sen-

tences at various levels from multiple angles.While
these methods leverage multi-granularity informa-
tion to comprehensively understand text seman-
tics from various perspectives, they all rely on the
Word2Vec model for text embedding representa-
tion. Consequently, they may struggle to handle
vocabularies not present in the training data, as
well as adapt to semantic changes between dif-
ferent tasks or contexts. This limitation can lead
to suboptimal performance when dealing with rare
words or domain-specific terms.

3. Model

We have developed a multi-granularity fusion text
semantic matching model called WSTM, which is
based on WoBERT. The overall model structure
is illustrated in Figure 1 and comprises four main
components: a multi-granularity embedding layer,
a multi-granularity fusion coding layer, a matching
layer, and a prediction layer.To begin with, we uti-
lize the WoBERT model to encode the input text
and obtain a multi-granularity embedded represen-
tation. Subsequently, through the multi-granularity
fusion coding layer, embedded representations of
varying granularities interact with each other using
a soft attention alignment mechanism to enrich the
semantic information of the text.Following this, the
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matching layer is employed to compute the simi-
larity between the extracted features. Finally, the
prediction layer utilizes multiple layers of percep-
trons to make the ultimate output predictions.

3.1.

Suppose there are two sentences A and B,
of length m and n respectively, represented
by{Al,AQ, A3...AN}, {.Bl,.BQ7 BgBN}
where A; and B, represents the position of each
character or word in the sentence. Firstly, the text
was processed into a form suitable for WoBERT
model to receive, as shown in Table 1. Subse-
quently, following data preprocessing, these texts
are represented at different granularities as A°,
Av, B¢, B¥ . The WoBERT model is then em-
ployed to convert the text sequences of characters
and words into embedded representations.

Multi-granularity embedding layer

Sentence A1 | IS FE AE S
Will late repayment
credit

/R 2 5 AR A5 7

WAL 255/

affect

A1-Character
A1-Word

Sentence B1 | Ik 1] DAL
Can |l getaloan

B1- Character | F&/n]/DA/Gx/3k/Mg;

B1-Word Fe/ AT DA/ /g

Table 1: Examples of sentence segmentation with
different granularity

3.2. Multi-granularity fusion coding layer
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Figure 2: Multi-granularity fusion coding layer
structure

We utilize a technique that combines and en-
codes semantic information at the character, word,
and sentence levels to establish connections
across multiple semantic layers. The specific
structural representation is depicted in Figure 2.
Initially, we utilize a Bidirectional Long Short-Term
Memory (BiLSTM) to encode the character-level

and word-level vectors of sentences A and B. Bil-
STM has the capability to process text sequences
bidirectionally, taking into account both forward
and backward contextual information simultane-
ously. This ensures a comprehensive understand-
ing of the contextual relevance of each word within
a text sequence, thereby enhancing our grasp of
word semantics and context. Moreover, this ap-
proach assists in optimizing the alignment of con-
text, allowing the model to identify matching seg-
ments within two texts. We utilize variables A¢,
and A} to represent the output states of the encod-
ing module for character embeddings and word
embeddings of A after passing through BiLSTM.
Similarly, for B, we use BS and BY to represent
them, as exemplified in equations 1-4:

AS, = BiLSTM (A°,m),m € (1,2,...,N) (1)

(

W = BiLSTM (A1), € (1,2,....,N) (2)
B = BiLSTM (B®,n),n € (1,2,...,N) (3)
BY = BiLSTM (B",0),0€ (1,2,...,N) (4)

To capture the significant relationships between
various levels within the input sequence, we em-
ploy a soft attention alignment mechanism (Chen
et al.,, 2017) to compute a weighted correlation
between different sequences or vectors. This al-
lows us to more effectively consider these asso-
ciations when transferring information or merging
representations. At the first, we calculate atten-
tion scores between the character-level and word-
level, aiming to identify connections between spe-
cific character-level components and their corre-
sponding word-level counterparts. This is demon-
strated in equations 5 and 6:

ea,, =Ag" AP (5)

ep,, =By - BY (6)

Next, employ the dot product method to calcu-
late the attention scores, denoted as e, ,, and
ep,,. Subsequently, we utilize the softmax func-
tion in sentence A to perform normalization and
weighted summation, establishing fusion relation-
ships between characters and words, as shown in
Equation 7 and Equation 8:

N
M = Z softmax (eqa,,) - A )
=1
N
MY = Z softmaz (ea,,,) - A, (8)
m=1

In these equations, M 5" represents the weighted
sum of the m-th character in sentence A based on
character granularity and the corresponding con-
tent of all words in sentence A based on word gran-
ularity. Similarly, MY represents the weighted
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sum of the |-th word in sentence A based on word
granularity and the relevant content of all charac-
ters in sentence A based on character granularity.
The operation for obtaining the fusion results be-
tween character and word granularity in sentence
B follows the same procedure, as demonstrated in
equations 9-10:

N
Mg’ =3 softmaz (ep,,)- By (9)
o=1
N
Mg = Zsoftmax (es,,) - BS (10)
n=1

Through this process, we generate a multi-
granular representation of sentences A and B
based on character and word fusions. Further-
more, the [CLS] tag in WoBERT, like in BERT, is
situated at the beginning of the input sequence
and serves to represent the semantic information
of the entire sentence or text. We opt to extract
the [CLS] encodings of character and word se-
quences, denoted as A[CCLS], AE"CLS], BfCLS], and
B[“éLS], to represent sentence-level information.
These representations are then aligned with char-
acters and words, facilitating multi-granularity fu-
sions between characters and sentences, as well
as words and sentences. This is exemplified in
equations 11-22:

(11)
(12)
(13)

(14)
(15)

€A = AfCLS]T AL

w T w
€A = A[CLS] - A
c T c
€B.. = B[CLS] - B,

€B,, = [uéLS]T By
Mg = softmaz (ea..) - Aforg),

N
My =" softmaz (ea,,) - AL,

m=1

(16)

MY?® = softmaz (eqa,,) - Al (17)

N
M5 =" softmaz (ea,,) - AY
=1

(18)

Mg = softmax (ep..) - Blops (19)

N

MEC — Z softmaz (ep,.) - By (20)
n=1

Mg?® = softmazx (eg,,) - BioLs) (1)
N

Mg = Z softmazx (ep,,) - By (22)

o=1
In the given context, M$ and M35° represent
the outcomes of soft attention alignment between
sentences and characters in text A, while M}?

and M 3" signify the results of soft attention align-
ment between sentences and words in text A. Sim-
ilarly, Mg and Mj® correspond to the soft atten-
tion alignment outcomes between sentence-level
and character-level fusions in text B, and M and
My denote the results of soft attention alignment
between sentence-level and word-level fusions in
text B. Through these operations, we obtain fusion
characteristic information at three levels of granu-
larity: character, word, and sentence.

3.3. Matching Layer

The multi-granularity fusion results of A and B are
concatenated separately to derive their respective
feature representations for A and B:

Ca = [ME"; MY MG M5 ME®; M3Y) - (23)
Cp = [Mp"; Mg Mg'; Mg Mg Mg"] - (24)

Next, we connect the features of A and B to get

the correlation representation between sentences:

OAB = [CA;CB] (25)

Ultimately, the features described above are pro-

cessed through maximum pooling and average

pooling operations to yield their final semantic rep-
resentations, as depicted in formulas 26-28.

CAypy = Max (Ca) + Mean (Cs)  (26)
CByou = Max (Cp) + Mean (Cp)  (27)
CaB,yy = Max (Cap) + Mean (Cap)  (28)

After acquiring the ultimate semantic representa-
tions of text A and B, we establish a matching
operation to capture the their correspondence, as
demonstrated in equations 29 and 30:

abs:’CA —Cp

® Cp,

pool

(29)
(30)

Finally, we concatenate the matching results to
represent them as F, as shown in equation 31:

pool pool

mul = Ca,,,,

F = [CA Cg Cap abs; mul] (31)

pool ) pool ) pool )

3.4. Prediction Layer

In the prediction layer, a multi-layer Perceptron
(MLP) classifier is employed to predict the final
match. This MLP comprises three dense sub-
layers, with the first two using the RelLU activa-
tion function (Nair and Hinton, 2010), and the final
dense layer utilizing the sigmoid activation func-
tion. Furthermore, our model employs the im-
proved binary cross-entropy (MBCE) (Su, 2017) as
the loss function, as demonstrated in formulas 32-
34:
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Dataset Train Dev Test
BQ 100,000 10,000 10,000
LCQMC 238,766 8,802 12,500

Table 2: Distribution of BQ and LCQMC datasets

(32)

A (ytru67 ypred) =1-6 (ytrue - m) 0 (ypred - m)
—0 (1 —m — ytrue) 0 (1 —m— ypred)
(33

~

L=- Z A(Wtrue, lered) (ytrue 109 Ypred
v (34)

+ (1 — yirue) lOog (1 - ypred))

Here, 6(z) represents the step function, . is
the true label, and y,,.q is the predicted label gen-
erated by our model. The parameter 'm’ regulates
the distance threshold between sample pairs, de-
termining whether the pairs are similar. In most
cases, two sample pairs are considered similar if
their similarity score is less than 'm’, otherwise,
they are classified as dissimilar.

4. Experiment

4.1.

Our experiment involved training and evaluating
on two publicly available Chinese datasets: BQ
(Chen et al., 2018) and LCQMC (Liu et al., 2018).
The LCQMC dataset is a substantial dataset de-
signed for the Chinese intent-matching problem,
comprising 260,068 problem pairs, each catego-
rized as either a positive (match) or negative (mis-
match) relationship. This dataset is commonly
employed to train and assess natural language
processing models, especially text matching mod-
els, for assessing the alignment between two prob-
lems.

The BQ dataset, on the other hand, is a Chinese
corpus utilized for recognizing semantic equiva-
lence in sentences. It encompasses 120,000
question pairs derived from online banking cus-
tomer service logs, primarily used to support sen-
tence semantic equivalence recognition in natural
language processing tasks. The division of BQ
and LCQMC datasets is detailed in Table 2, while
Figure 3 and Figure 4 display the density distribu-
tions of text lengths for BQ and LCQMC, respec-
tively.

Datasets

4.2. Parameter Settings

Our experimental setup utilized an NVIDIA
GeForce RTX 3090 (24GB) graphics card. The

Kernel Density Estimate (KDE) of BQ Corpus Text Length

0.08 4

0.06 4

Density

0.02 4

Min: 1 Max: 130|
T T T T T T

0 20 40 60 80 100 120

Text Length

0.00

Figure 3: Text length probability distribution in BQ
dataset.

Kernel Density Estimate (KDE) of LCQMC Corpus Text Length

E 0.06

0.04 4

0.02

0.00 Min: 2 : . : : Max: 49|

0 10 20 30 40
Text Length

Figure 4: Text length density distribution in
LCQMC dataset

framework for building the model was based
on PyTorch. Table 3 provides an overview of
the parameter settings for our experiment, with
‘threshold’ denoting the threshold value for the
loss function.

4.3. Experimental results and analysis

4.3.1. Comparative Experiment

We conducted a comparative analysis of the two
datasets using multiple models, and the experi-
mental results are presented in Tables 4 and 5. Ta-
ble 4 clearly demonstrates that models built upon
multi-granularity fusion, such as ESIM (Huang
et al.,, 2019), MGF (Zhang et al., 2020b), LET
(Lyu et al., 2021), MSEM (Huang et al., 2019) and
GMN (Chen et al., 2020), outperformed those rely-

BQ LCQMC
max_length 30 30
Batch_size 64 128
dropout 0.5 0.5
threshold 0.5 0.74

Table 3: Parameter Settings
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BQ LCQMC BQ LCQMC
Model ACC F1  ACC  F1 Model ACC F1 ACC  F1
Text-:CNN 6852 69.17 72.80 75.70 BERT 84.61 84.36 8573 86.86
BILSTM 7351 72.68 73.50 77.5 BERT-wwm 84.89 8429 86.80 87.78
BIMPM 81.85 81.73 83.30 84.90 ERNIE 84.67 8420 87.04 88.06
ESIM 8193 8187 8258 84.49 VsBBEERFIT - - gg-ig 6601
MGF 82.86 81.21 8583 86.72 0 - - : :
BT 8392 8303 8481 8608 WSTM(ours) 85.84 85.65 89.05 89.06
MSEM 83.47 83.62 84.33 85.68 _ _ _
GMN 8421 8411 8462 86.00 Tab!e 5: Experimental results of pre-trained mod-
WSTM(ours) 85.84 85.65 89.05 89.06  ©IsinBQand LCQMC datasets

Table 4: Experimental results in BQ and LCQMC
datasets

ing on single-granularity methods like Text-CNN,
BiLSTM (OscarTéackstrém and Das, 2017), and
BiIMPM (Wang et al.,, 2017). This underscores
the feasibility of enhancing matching performance
through the fusion of multi-granularity information.

Additionally, for matching models founded
on multi-granularity fusion, our WSTM method
showed considerable improvements. On the BQ
dataset, our method achieved an increase of
1.63% ~ 3.91% in accuracy and 1.54% ~ 4.44%
in F1 score when compared to other models. On
the LCQMC dataset, the improvements were even
more pronounced, with an increase of 3.22% ~
6.47% in accuracy and 2.34% ~ 4.57% in F1
score. These improvements are attributed to our
utilization of the pre-trained WoBERT model as op-
posed to the conventional Word2Vec model, which
substantially enhanced our model’s performance.

To assess the effectiveness of multi-granularity,
we conducted a performance comparison involv-
ing several BERT-based pre-training models, as
presented in Table 5. These models have tradi-
tionally been designed for text semantic match-
ing tasks based on individual granularities. In
this context, BERT (Kenton and Toutanova, 2019),
BERT-WWM (Cui et al., 2021), and ERNIE (Sun
et al., 2019) operate at the character level, SBERT
(Reimers and Gurevych, 2019) operates at the
sentence level, and WoBERT operates at the word
level. Our findings reveal that our model outper-
forms other single-grained pre-training models, un-
derscoring the significance of incorporating multi-
grained text information for enhancing semantic
matching tasks.

Given that our model employs an MLP in the
prediction layer, the choice of threshold in the sig-
moid activation function within its final layer is a
crucial parameter. This threshold effectively de-
termines whether the model’s predicted output is
considered positive or negative. Figures 5 and 6

illustrate the impact of varying thresholds on our
model’s performance on the two datasets. In the
case of the BQ dataset, the model achieves its opti-
mal overall performance when the threshold is set
at 0.5. On the other hand, for the LCQMC dataset,
the model performs best when the threshold is set
to 0.74. These discrepancies can be attributed to
differences in the characteristics and distribution
of the two datasets. Factors such as the vary-
ing proportions of positive and negative samples
and the degree of separation between these cat-
egories contribute to the selection of the model’s
optimal threshold.

Accuracy and F1 under different threshold values (BQ)

—e— Accuracy
FL score
85.8

0480 0485 0490 0495 0500 0505 0510 0515  0.520
threshol

hold

Figure 5: Effects of different thresholds on BQ
dataset

4.3.2. Ablation experiment

Figures 7 and 8 illustrate the impact of remov-
ing specific elements from our WSTM model on
the BQ and LCQMC datasets. In these figures,
'WSTM-char’ represents the removal of charac-
ter granularity, 'WSTM-word’ signifies the elimi-
nation of word granularity, 'WSTM-sentence’ de-
notes the absence of sentence granularity, and
"WSTM-wobert’ corresponds to the removal of
the WoBERT model in favor of the traditional
Word2Vec model. It is evident that removing the
WoBERT model had the most significant impact on
performance. This resulted in a 2.24% decrease in
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Accuracy and F1 under different threshold values (LCQMC)

—e— Accuracy
F1 score
89.0

88.9

Score(%)

88.8

0720 0725 0730 0735 0740 0745 0750 0755 0760
threshold

Figure 6: Effects of different thresholds on LCQMC
dataset

accuracy in the BQ dataset, along with a 1.62% re-
duction in F1 score. In the case of the LCQMC
dataset, the removal of WoBERT led to a sub-
stantial 3.64% decrease in accuracy and a 2.52%
drop in F1 score. When character granularity,
word granularity, and sentence granularity were re-
moved from the BQ dataset, the accuracy of the
model decreased by 1.35%, 1.43%, and 1.33%,
and the F1 score dropped by 1.27%, 1.37%,
and 1.56%, respectively, compared to our original
model. In LCQMC, the accuracy decreased by
0.96%, 1.23%, and 0.91%, respectively, and the
F1 scores dropped by 0.59%, 0.71%, and 0.70%,
respectively. These results emphasize the feasibil-
ity and importance of applying the WoBERT model
to a multi-granularity fusion text semantic matching
task.

Ablation Experiment (BQ)
87

| WsT™M

3 WsTM-char
E WsTM-word
B WSTM-sentence

867 8584 I WSTM-wobert

854

Scores(%)
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Figure 7: Ablation results of BQ dataset

5. Conclusion

In this study, we delve into a text semantic match-
ing method for multi-granularity fusion leveraging

Ablation Experiment (LCQMC)

EE WSTM
= WSTM-char
904 B WSTM-word
B WSTM-sentence
S WSTM-wobert

91

89.05 89.06

. 88.35 88.36

Scores(%)

accuracy f1_score

Figure 8: Ablation results of LCQMC dataset

the WoBERT pre-trained model. Our findings high-
light several key observations. Firstly, by incor-
porating a multi-granularity fusion mechanism that
integrates information at the character, word, and
sentence levels while conducting semantic fusion
across multiple levels, we achieved improved per-
formance in text matching tasks compared to tra-
ditional single-granularity matching methods, to
some extent. Secondly, replacing the Word2Vec
model with the large-scale pre-trained language
model, WoBERT, enhanced the model’s ability to
comprehend semantic relationships within text. In
conclusion, our research demonstrates that our
model produces satisfactory results across two en-
tirely unrelated datasets, indicating the universality
and extensibility of this approach.

Of course, this method also has some limitations
and shortcomings. To begin with, the pre-trained
model WoBERT was directly used to obtain the fea-
ture embedding, and the effect of the model was
greatly affected by the pre-trained model. More-
over, the way of feature fusion is also relatively
simple, and the pertinence of different levels of fea-
tures is not enough. In addition, there are short-
comings in the polysemous use of the term and in
the processing of domain-specific data. Therefore,
in the following work, we will study from the above
aspects, optimize the model, and further improve
the effect.
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