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Abstract
The task of Sign Language Production (SLP) in machine learning involves converting text-based spoken language
into corresponding sign language expressions. Sign language conveys meaning through the continuous movement
of multiple articulators, including manual and non-manual channels. However, most current Transformer-based SLP
models convert these multi-channel sign poses into a unified feature representation, ignoring the inherent structural
correlations between channels. This paper introduces a novel approach called MCST-Transformer for skeletal sign
language production. It employs multi-channel spatial attention to capture correlations across various channels within
each frame, and temporal attention to learn sequential dependencies for each channel over time. Additionally, the
paper explores and experiments with multiple fusion techniques to combine the spatial and temporal representations
into naturalistic sign sequences. To validate the effectiveness of the proposed MCST-Transformer model and its
constituent components, extensive experiments were conducted on two benchmark sign language datasets from
diverse cultures. The results demonstrate that this new approach outperforms state-of-the-art models on both datasets.
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1. Introduction

The World Health Organization (WHO) estimates
that approximately 5% of the global population is
afflicted with hearing loss of moderate or greater
intensity (World Health Organization, 2021). Al-
though sign language is not ubiquitously adopted
by this demographic, it serves as the predomi-
nant communication medium for deaf communi-
ties. In contrast to spoken language, sign language
achieves communication through continuous move-
ments across multiple channels, namely, the facial,
upper body, and hands (Sutton-Spence and Woll,
1999; Bragg et al., 2019). Each channel plays a piv-
otal role in the expression of sign language (Bragg
et al., 2019). Furthermore, the spatial configuration,
position, and temporal motion of these channels
collectively form the grammar and semantic struc-
ture of sign language (Stokoe, 2005).

In the domain of Sign Language Production
(SLP), models are designed to generate sign
language expressions from textual sequences,
which are commonly represented as sequences
of glosses or words. In SLP models, sign lan-
guage can be represented in various forms, such
as sign pose sequences (skeleton joint coordi-
nates) (Zelinka and Kanis, 2020; Saunders et al.,
2020a, 2021a, 2020b, 2021b; Hwang et al., 2021;
Saunders et al., 2022b; Huang et al., 2021; Ma
et al., 2024), animations (Zwitserlood et al., 2004;
Glauert et al., 2006; Elliott et al., 2008; Ebling and
Huenerfauth, 2015; McDonald et al., 2016; Cui
et al., 2022), and photo-realistic videos (Stoll et al.,
2018, 2020; Saunders et al., 2022a). This study

focuses on the generation of sign pose sequences
from sequences of words or glosses, which is more
suitable for downstream applications.

Owing to the differences in tokenization and the
phonological characteristics between spoken and
sign languages, SLP models encounter difficul-
ties in accurately mapping simple textual inputs
to continuous pose sequences that exhibit varia-
tions across multiple visual channels. A sequence
of sign poses, encompassing continuous frames
across several channels, not only the spatial re-
lationships among different channels but also the
inherent temporal dynamics specific to each chan-
nel. Recently developed Transformer-based SLP
approaches (Zelinka and Kanis, 2020; Saunders
et al., 2020b,a, 2021a,b) map individual frames
of full-channel sign poses into abstract represen-
tations, leveraging attention mechanisms to dis-
cern temporal dependencies between full-channel
frames, and subsequently generate the entire pose
sequence from text. These approaches primarily
focus on the temporal context and may miss spatial
relationships across multiple channels within each
frame’s multi-channel sign poses. Concurrently,
another avenue of research, namely, graph-based
SLP models (Huang et al., 2021; Saunders et al.,
2022b) adopt a "joint-level" approach, where joints
serve as nodes, and limbs form the edges. By con-
verting the sign pose into a graph structure, these
networks leverage spatio-temporal convolutional
or attention mechanisms to learn intra- and inter-
frame correlations.

In this study, we introduce the Multi-Channel
Spatio-Temporal Transformer (MCST-Transformer)
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for sign language production, which is designed
to operate at the channel level, aiming to discern
the spatial collaborative interactions and capture
the temporal dynamics among individual channels.
Specifically, our model incorporates a spatial atten-
tion module dedicated to decoding multi-channel
spatial inter-dependencies and temporal attention
module to discern the temporal dynamics unique
to each channel. Furthermore, to improve expres-
siveness and naturalness in the generated sign
sequences, we evaluate three distinct fusion tech-
niques aiming to effectively integrate insights from
both spatial and temporal attention features. To
confirm the adaptability and potency of MCST-
Transformer, we conduct an extensive evaluation
of the model using German and Korean sign lan-
guage production benchmarks. The results high-
light the advantages our model offers over the ex-
isting transformer-based approaches.

The key contributions of this study can be sum-
marized as follows: 1) We introduce a Multi-
Channel Spatio-Temporal Transformer (MCST-
Transformer) model, which is designed to exploit
the spatial structural relationships between chan-
nels, as well as the temporal dependencies inher-
ent in each channel in sign pose sequences. 2)
We explore three distinct fusion methods to effec-
tively combine spatial and temporal attention fea-
tures, ensuring a cohesive integration that leads to
generating highly expressive and naturalistic full-
channel sign language sequences. 3) We conduct
a comprehensive evaluation on two distinct sign
language datasets: German and Korean sign lan-
guage datasets, highlighting the robustness and
effectiveness of the proposed model.

2. Related work

Previous conventional SLP models have used arti-
ficial avatars to display sign language using param-
eterized glosses (Zwitserlood et al., 2004; Glauert
et al., 2006; Ebling and Huenerfauth, 2015; McDon-
ald et al., 2016; Bangham et al., 2000; Efthimiou
et al., 2012). These studies suffer from unnatural
movements and missing non-manual information.
In some studies, non-manual information, such as
facial expressions, has been included (Elliott et al.,
2008; Ebling and Glauert, 2013; Cox et al., 2002)
but mouth patterns are difficult for human operators
to handcraft (Kipp et al., 2011). Motion capture
data can be used to enhance the natural appear-
ance of animation (Gibet et al., 2016); however,
scalability is limited because of the costs associ-
ated with capturing and annotating the data.

Recently, deep learning models have been ap-
plied to SLP. Stoll et al. (2018, 2020) proposed the
first approach for generating continuous sign lan-
guage videos without relying on traditional graphi-

cal avatars, by integrating neural machine transla-
tion (NMT) techniques with a generative adversarial
network (GAN). It first translates text sequences
into gloss sequences utilizing NMT methods and
then converts the resulting gloss information into 2D
skeletal pose sequences via a trained lookup table.
Subsequently, these pose sequences serve to con-
dition a GAN model, producing photo-realistic sign
language videos. Zelinka and Kanis (2020) first
proposed a fully trainable end-to-end SLP model
for generating fixed-length sign pose sequences.
To extract high-quality sign pose sequences, they
designed a gradient descent-based method to es-
timate 3D skeletons from 2D skeletons extracted
using OpenPose (Cao et al., 2019). Saunders et al.
(2020b) proposed the Pro-Transformer that gen-
erates manual and body skeletons using power-
ful feed-forward and recurrent transformers. To
achieve more expressive and articulate production,
Saunders et al. (2020a) combined the conditional
GAN model with the Pro-Transformer (Saunders
et al., 2020b) to extend sign production to non-
manual features. More recently, a series of re-
search proposed Pro-Transformer-based SLP mod-
els. For example, Saunders et al. (2021a) added
constraints with mixture distribution, Saunders et al.
(2021b) introduced a mixture of motion primitives to
produce better full-channel sign pose sequences.
Ma et al. (2024) introduced a cascade dual decoder
Transformer model to enhance the hand details in
the full-channel sign language production. These
transformer-based SLP models tend to represent
full-channel sign poses in a more abstract form,
often compromising the intricate structural inter-
connections among the channels. Concurrently,
another avenue of research has ventured into rep-
resenting sign pose sequences as graphs (Huang
et al., 2021; Saunders et al., 2022b; Cui et al.,
2022), where articulation points are considered
as nodes and limb connections are considered as
edges. These graph-based methods incorporate
spatio-temporal convolutional or attention mecha-
nisms to capture both intra- and inter-frame informa-
tion correlations. However, these models disregard
the distinct contributions and synergies of the indi-
vidual channels in gesture expressions.

To learn the channel-level spatial and temporal
relationships, we first introduce a multi-channel spa-
tial attention mechanism tailored to capture the in-
tricate spatial relationships between various sign
channels and a dedicated temporal attention layer
that discovers the temporal dependencies inher-
ent to each channel. Moreover, we explore three
distinct fusion methods to effectively merge spa-
tial and temporal attention features, ensuring the
cohesive interplay vital for the generation of sign se-
quences. Furthermore, in contrast to the previously
mentioned studies focusing solely on a single sign
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Figure 1: Overview of the proposed MCST-Transformer model, which is composed of an encoder and multi-
channel spatio-temporal decoder. The former learns semantic representations from source sentences t,
while the latter captures both spatial and temporal dependencies of sign pose sequences to generate
full-articulatory sign text sequence ŝ1:U . By convention, we add positional encoding (PE) into the word
and spatial embeddings, respectively, preserving the orders of sequences.

language (Saunders et al., 2020a, 2021a, 2020b,
2021b; Hwang et al., 2021; Stoll et al., 2018, 2020),
our model has the capability to generate sign pose
sequences for both German and Korean, establish-
ing a foundation for the production of multiple sign
languages.

3. Methodology

In this section, we delve into the details of the pro-
posed MCST-Transformer model, which is designed
to capture the inherent spatial structures and tem-
poral dynamics of sign pose sequences. We begin
by clarifying the problem definition of SLP and iden-
tifying the challenges inherent to the foundational
model, Pro-Transformer. Furthermore, to gener-
ate expressive and naturalistic full-channel sign
language sequences, we exploit various distinct fu-
sion methods to integrate both spatial and temporal
attention features.

3.1. Problem Definition
Given a source sequence t = {w1, ..., wn, ..., wN}
with N words and a full-channel sign sequence
s = {s1, ..., su, ..., sU} with U frames, where each
frame su represents a single sign language pose.
Each sign language pose contains multi-channel
features, which can be divided into three parts: the
face (72 keypoints), the left upper body (including
shoulder, arm, and fingers, totaling 24 keypoints),
and the right upper body (24 keypoints). The goal of
the SLP model is to learn the conditional probability
P (s|t).

3.2. Pro-Transformer
The Pro-Transformer (Saunders et al., 2020b) uti-
lizes the transformer model (Vaswani et al., 2017)
to translate a gloss or word sequence into a sign
pose sequence, which is essentially a sequence of
3D joint coordinates of the signer’s skeleton. Specif-
ically, it consists of an encoder and decoder model,
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where the former encodes the source sequence
w1:N to a contextual representation zt, which can
be formulated as follows:

zt = EncoderPT(ŵn|ŵ1:N ) (1)
where ŵ1:N represents the embedded representa-
tion of the source sequence w1:N . The decoder
follows an autoregressive approach to generate a
sign pose frame ŝu at each time-step, along with
the corresponding counter value cu:

[ŝu, cu] = DecoderPT(ĵ1:u−1, zt) (2)
where ŝu is the u-th frame of the produced sign
pose sequence, given the text representation zt
and counter-concatenated joint embedding ĵ1:u−1

of the previous sign pose sequences s1:u−1. cu
is the counter value of the u-th produced frame,
which is obtained by the Counter Encoding in Pro-
Transformer (Saunders et al., 2020b) to provide
temporal information:

cu =
u

U
, cu ∈ [0, 1] (3)

The Pro-Transformer model roughly vectorizes
full-channel sign pose and combines these abstract
vectorizations with text representations to predict
subsequent sign pose frames using attention oper-
ations. However, note that each full-channel sign
pose contains multiple channel poses. The atten-
tion mechanism in Pro-Transformer operates on
full-channel pose frames and primarily captures
the temporal dependencies between frames, ignor-
ing the structural dependencies of channels in each
full-channel pose.

3.3. Multi-Channel Spatio-Temporal
Transformer

To capture the spatial and temporal dependen-
cies among channels for sign language produc-
tion, this paper introduces a novel approach, MCST-
Transformer, which incorporates temporal attention
to capture dependencies of individual channels in
the temporal dimension and spatial attention to cap-
ture structural interactions between different chan-
nels. In addition, we explore various fusion meth-
ods to combine the spatial and temporal represen-
tations. It should be noted that our model shows
versatility and can be easily integrated into any
backbone network, effectively assembling different
representation methods of channel-level poses in
a simple way. Figure 1 illustrates the overall archi-
tecture. Each component of the proposed model
will be discussed in subsequent subsections.

3.3.1. Encoder

The MCST-Transformer’s encoder utilizes stacked
transformer encoder blocks with multi-head self-
attention to acquire contextualized representations

capturing long-range dependencies within source
sequences. Similar to the Pro-Transformer (Saun-
ders et al., 2020b) model, the source sequence
t = w1:N is first embedded via a linear embedding
layer and then added to the corresponding position
embedding obtained using a predefined sinusoidal
function. The embedded representation t̂ = ŵ1:N

of the source sequence is then fed into a stack of
encoder blocks to construct the contextual repre-
sentation zt, which can be formulated as follows:

zt = Encoder(ŵn|ŵ1:N ) (4)

3.3.2. Multi-Channel Spatio-Temporal
Decoder

The aim of the multi-channel spatio-temporal de-
coder is to generate complete full-channel sign
pose sequences. It operates by taking the text
representation as input and auto-regressively pre-
dicting the full-channel sign sequence by leverag-
ing spatial and temporal information learned from
preceding sign poses. It comprises four modules:
the temporal attention module, the spatial attention
module, the spatio-temporal fusion module, and
the text-sign attention module.
Channel-Specific and Full-Channel Embed-
dings. The individual full-channel sign pose, de-
noted as su, comprises a total of 120 keypoints,
which are further categorized into three channels:
the face sfu (encompassing the face and neck re-
gions, totaling 72 keypoints), the left body slu, and
the right body sru (comprising the shoulder, arm,
and hand, with 24 keypoints on each side). To facil-
itate representation, we employ separate linear em-
bedding layers and positional encoding techniques
for these three channels and the full-channel sign
pose. This entire embedding process can be for-
mally expressed as follows:

Ei
u = PEi = PositionEncoding(W (i,E) · siu) (5)

Es
u = PEs = PositionEncoding(W (s,E) · su) (6)

where siu can represent either sfu, slu, or sru, whereas
su refers to the full-channel pose. We utilize a
predefined sinusoidal function to encode positional
information for each of these poses.
Multi-Channel Spatial Attention Module. In Pro-
Transformer, the attention modules operate on the
entire full-channel embeddings Es

u, implicitly cap-
turing the relationships between the channels. To
explicitly model the inter-channel dependencies of
each single sign pose, we introduce a multi-channel
spatial attention module, as illustrated in Figure 2.
We apply two distinct linear transformations to the
full-channel pose embedding Es

u to derive the key
and value components for the attention layer. Simul-
taneously, we compute the query by applying sep-
arate linear transformations to three distinct spatial
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Figure 2: The architecture of multi-channel spatial
attention module.

embeddings Ef
u , El

u, and Er
u, corresponding to the

face, left body, and right body parts, respectively.
We then concatenate the transformed queries from
each channel to form the final query representation.
Subsequently, the key, query, and value are passed
through a multi-head self-attention layer to calcu-
late the spatial relationships between each channel
and the full-channel pose. The entire process can
be formulated as follows:

QSA =Concat(W (f,Q) · Ef
u ,

W (l,Q) · El
u,W

(r,Q) · Er
u)

(7)

KSA = W (s,K) · Es
u (8)

VSA = W (s,V ) · Es
u (9)

hSA = softmax(
QSA ·KT

SA√
dk

)VSA (10)

where dk is the dimensionality of the full-channel
sign embedding. Note that we adjust the masking
method in the spatial attention to ensure it concen-
trates only on relevant past inter-channel informa-
tion.
Multi-Channel Temporal Attention Module. The
multi-channel temporal attention module is de-
signed to capture the temporal dynamics of each
channel, which includes the face sf , left body sl,
and right body sr. The structure of the temporal
attention module is visualized in Figure 3. First, we
perform linear transformations on individual chan-
nel embeddings Ei to derive the respective keys
Ki, queries Qi, and values V i as follows:

Ki = W (i,K) · Ei (11)

Qi = W (i,Q) · Ei (12)

V i = W (i,V ) · Ei (13)

Figure 3: The architecture of multi-channel tempo-
ral attention module.

where W (i,K), W (i,Q), and W (i,V ) are the learnable
weight matrices for channel i and Ei refers to the
embedding of the three channels Ef , El, and Er.

Next, the self-attention mechanism is applied
to each channel, capturing their unique temporal
dependencies. In order to prevent information leak-
age from subsequent frames, a dedicated mask is
applied to each self-attention operation. Finally, the
resulting individual temporal attention features are
connected, thus producing fine-grained temporal
patterns.

hi
TA = softmax(

Qi · (Ki)T√
dik

)V i (14)

hTA = Concat
(
hi
TA

)
(15)

where dik is the feature dimensionality of channel i.
Spatio-Temporal Fusion Module. In order to bet-
ter integrate spatial and temporal features, we ex-
plore three fusion methods: 1) Parallel addition:
Two attention modules operate concurrently, and
then their resulting features are merged via addition.
This approach ensures that both spatial and tem-
poral features are given equal importance. 2) Se-
quential operation: The temporal attention module
precedes the spatial module, with the output of the
former serving as the input to the latter. This ar-
rangement encourages that spatial decisions are
guided by preceding temporal information, mak-
ing it particularly suited for scenarios where the
sequence of feature processing holds significant
importance. 3) Gating fusion: We adopt a gat-
ing mechanism (Cui et al., 2022) to dynamically
integrate the spatial and temporal features. This
mechanism can be formally represented by:

gate = σ(W1 · hTA +W2 · hSA + b) (16)

where W1 and W2 denote weight matrices, and b is
the bias vector of the linear layer. The gate is sub-
sequently used to weigh the spatial and temporal
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attention features:

hFusion = (1− gate)⊙ hSA + gate⊙ hTA (17)

Finally, the fusion representation is fed into the
text-sign attention layer to align the resource and
sign pose sequences. After the stacked decoder
blocks, we project the output using a linear layer to
generate the predicted sign pose sequence.

Our decoder is trained using the mean squared
error (MSE) loss calculated between the predicted
and ground-truth sign pose sequences.

L =
1

U

U∑
i=1

(si − ŝi)
2 (18)

where ŝi and si refer to the frames of the produced
and ground-truth sign pose sequences, respec-
tively.

4. Experimental Setup

4.1. Datasets
To verify the robustness and scalability of the pro-
posed approach, we conduct evaluations of our
model using two sign language datasets, which
include sequences of sign language and their cor-
responding translations into spoken language or
sequences of glosses.

The first dataset, RWTH-PHOENIX-Weather
2014T (PHOENIX14T) (Camgoz et al., 2018), com-
prises German sign language interpretations of
weather forecasts broadcasted by the German
television station PHOENIX. This dataset encom-
passes 8,257 video segments performed by 9 sign-
ers, distributed into 7,096 for training, 519 for valida-
tion, and 642 for testing. It has a spoken language
vocabulary of 2,887 words and a sign language vo-
cabulary of 1,066. Annotations for each sign video
include both glosses and German translations.

Furthermore, we evaluate our model on a large-
scale Korean sign language dataset, the Korean
Sign Language Guide Dataset (KSL-Guide) (Ham
et al., 2021), which offers a rich collection of sign
language sentences, individual words, and finger-
spelled words and numbers tailored to transporta-
tion and navigation dialogues. The KSL-Guide en-
compasses 2,000 unique sentences, with each of
the 20 signers recording videos for each sentence
using a multi-view camera system with five cam-
eras, and only the front view is used in this study.
To ensure the diversity of the sign language skele-
ton, we choose three signer’s sign language video
segments, totaling 6,000 sentence pairs. These
are allocated into 5,400 for the training set, 300 for
validation, and 300 for the test set.

The sign language data used for training our
model are the sequences of 3D skeleton poses,

which are concatenated vectors of the 3D joint
coordinates of the upper body skeleton. The
PHOENIX14T dataset contains only sign video
frames. Therefore, we utilize OpenPose (Cao
et al., 2019) to extract 2D joint coordinates from
the frames and then convert them to 3D joint co-
ordinates (x, y, and z coordinates of 120 joints)
using a 3D-model-based skeletal model correction
method (Zelinka and Kanis, 2020). The KSL-Guide
dataset provides 3D joint coordinates for each sen-
tence, which are utilized to extract 2D coordinates
from two viewpoints and correct them by human an-
notators for more accurate values. It then uses tri-
angulation (Hartley and Zisserman, 2003) to obtain
3D joint coordinates. Therefore, the KSL-Guide has
a much higher quality of data than PHOENIX14T,
especially in subtle areas such as the fingers. We
standardize and normalize the 3D joint coordinates
to align all skeletons at the neck joints (Stoll et al.,
2018) for both datasets.

4.2. Model Configuration

Our model builds on Pro-Transformer (Saunders
et al., 2020b) and JoeyNMT (Kreutzer et al., 2019)
using the PyTorch (Paszke et al., 2017) framework.
The encoder and multi-channel spatio-temporal de-
coder are each configured with 2 layers, and the
multi-head attention mechanism is equipped with 4
heads. The text/gloss embedding dimensionality is
set to 512 in the experiments. In the multi-channel
spatio-temporal decoder, we allocate embedding
dimensions as follows: 256 for the face, 128 for
both the right and left body poses, and 512 for the
full-channel sign pose. Additionally, each atten-
tion layer incorporates a feed-forward dimension
of 2048. To initialize our model, we employ the
Xavier method (Glorot and Bengio, 2010). For pa-
rameter optimization, we leverage the Adam opti-
mizer (Kingma and Ba, 2015) with a learning rate
of 10−3. All models are trained with batch sizes of
64 and validated every 5000 steps.

4.3. Evaluation Metric

To evaluate the performance of the proposed
model, we utilize a back-translation evaluation met-
ric (Saunders et al., 2020b) that translates the pro-
duced sign pose sequences back to source se-
quences i.e. texts or glosses. For comparison with
existing models, we utilize the commonly used SLT
model (Camgoz et al., 2020). For further details
on the model’s construction and training regimen,
see (Saunders et al., 2021a). To quantify the perfor-
mance on the PHOENIX14T dataset, we calculate
the BLEU (n-grams ranging from 1 to 4) (Papineni
et al., 2002) and ROUGE scores (Lin, 2004) for
the back-translated text sequences. Higher BLEU
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Model Dev set Test Set
BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Ground Truth 11.64 14.55 19.13 27.39 28.51 10.93 13.74 18.47 27.29 28.13

G2P

PT 10.12 12.60 16.64 24.74 26.16 9.41 12.09 16.64 25.20 25.77
CasDual 11.20 14.02 18.50 26.93 28.58 11.16 13.89 18.50 26.70 28.02
MCST-PA 11.28 14.13 18.82 27.75 29.51 10.60 13.53 18.34 27.18 27.93
MCST-SO 10.79 13.65 18.32 27.05 28.91 10.90 13.77 18.53 27.27 28.16
MCST-GF 11.73 14.49 18.97 28.08 29.39 11.82 14.78 19.57 28.26 28.89

T2P

PT 8.78 11.09 15.11 23.20 24.62 8.83 11.19 15.36 23.23 23.97
CasDual 9.44 11.76 15.66 23.58 25.09 9.04 11.46 15.62 23.77 24.72
MCST-PA 9.46 11.83 15.60 23.21 24.87 9.03 11.40 15.27 22.81 24.14
MCST-SO 9.15 11.33 15.07 22.65 23.95 8.94 11.22 14.96 22.38 23.53
MCST-GF 9.65 12.07 15.97 23.45 25.05 9.21 11.53 15.38 22.81 23.45

Table 1: Comparison of back-translation scores of Pro-Transformer (PT), CasDual-Transformer (CasDual),
and MCST-Transformer on the PHOENIX14T Dataset. The table presents results for ground truth (our
preprocessed) data, G2P and T2P tasks. MCST-Transformer models use abbreviations ’MCST-PA’ for
parallel addition fusion, ’MCST-SO’ for serial operation, and ’MCST-GF’ for gating fusion.

and ROUGE scores reflect improved model per-
formance. Because the KSL-Guide dataset con-
tains only glosses, we included word error rate
(WER) (Ali and Renals, 2018) to indicate the model
performance. For WER, lower scores indicate a
better model performance.

4.4. Tasks
We perform two different SLP tasks, namely, gloss
to pose (G2P) and text to pose (T2P). G2P is the
task of producing sign pose sequences from gloss
sequences. T2P refers to the task of generating
sign pose sequences from spoken word sequences.

5. Quantitative Results

In this section, we present the quantitative results
for PHOENIX14T and KSL-Guide datasets. First,
we compare the performance of our proposed
model against existing approaches, achieving state-
of-the-art results in both G2P and T2P tasks. Then,
we conduct an ablation study on the PHOENIX14T
dataset to assess the effectiveness of our intro-
duced modules.

5.1. Baseline Comparison
We compare our model with Pro-Transformer and
CasDual-Transformer. When training the Pro- and
CasDual-Transformer, we maintain the original im-
plementation reported in (Saunders et al., 2020b)
and enhance them with gaussian noise and future
predictions. We also implement these enhance-
ment techniques in our MCST-Transformer. For a
fair comparison, we use the same data (our prepro-
cessed data) and model configurations to train all
the models. Therefore, instead of using the results
reported in (Saunders et al., 2020b), we reevaluate
the back-translation scores of the baseline.

PHOENIX14T Dataset. As shown in Table 1,
in all cases, our models employing three differ-
ent fusion techniques, namely ’MCST-PA’, ’MCST-
SO’, and ’MCST-GF’, consistently outperform Pro-
Transformer. The results support our claim that
jointly learning channel-level features in both spa-
tial and temporal dimensions can encourage SLP
models to generate more expressive sign language
poses. More specifically, our MCST-PA improves
by 1.19 on the G2P task and 0.20 on the T2P task
regarding the BLEU-4 score on the test set. MCST-
SO showcases a more pronounced increase of
1.49 in the BLEU-4 score on the G2P task. How-
ever, when applied to the T2P task, the observed
enhancement is comparatively limited, with a mere
0.11 increase in the BLEU-4 score. This result
suggests that the sequential processing of tempo-
ral information before spatial information may not
be the most effective approach for the T2P task.
The top-performing MCST-GF model exhibits re-
markable improvements, achieving a substantial
increase of 25.6% (2.41 BLEU-4 score) on the G2P
task and 4.3% (0.38 BLEU-4 score) on the T2P
task on the test set compared to Pro-Transformer.
Compared with CasDual-Transformer, MCST-GF
improves 0.66 and 0.17 BLEU-4 scores on the G2P
and T2P tasks, respectively. The results under-
score the efficiency of implementing the gating fu-
sion, which facilitates a dynamic balance between
the spatial and temporal attention components.
KSL-Guide Dataset. Note that the BLEU and
ROUGE scores obtained for this dataset were
significantly higher than those obtained for the
PHOENIX14T dataset. We hypothesize that this
disparity arises because of the superior video res-
olution and abundance of training data in the KSL-
Guide dataset, especially when considering its rel-
atively smaller vocabulary size.

Specifically, MCST-PA outperforms the bench-
marks, achieving an improvement of 1.52 in the
BLEU-4 score and a reduction of 1.59 in the WER
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Models Dev set Test Set
BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE WER BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE WER

Ground Truth 96.52 96.93 97.24 97.81 97.00 2.92 94.96 95.43 95.97 96.56 96.38 4.16
PT 96.17 96.69 97.29 97.91 97.17 2.60 95.11 95.28 95.82 96.36 95.68 3.95

CasDual 97.51 97.54 97.74 98.12 97.52 2.29 96.70 96.89 96.98 97.29 97.05 2.91
MCST-PA 97.58 97.96 98.26 98.64 98.55 1.66 96.63 97.02 97.36 98.02 97.59 2.39
MCST-SO 96.07 96.46 96.84 97.50 96.90 3.02 96.40 96.56 96.72 97.29 96.81 3.23
MCST-GF 96.48 96.73 96.93 97.49 97.00 2.91 94.93 95.37 95.98 96.77 96.23 3.85

Table 2: Comparison of back-translation scores of Pro-Transformer (PT), CasDual-Transformer (CasDual),
and MCST-Transformer on the KSL-Guide dataset.

Decoder Configuration Dev set Test Set
BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE BLEU-4 BLEU-3 BLEU-2 BLEU-1 ROUGE

Ground Truth 11.64 14.55 19.13 27.39 28.51 10.93 13.74 18.47 27.29 28.13

G2P

PT 10.12 12.60 16.64 24.74 26.16 9.41 12.09 16.64 25.20 25.77
MCTA 11.66 14.57 19.22 27.76 29.64 10.90 13.79 18.39 26.72 28.20
MCSA 11.55 14.38 18.92 27.47 29.04 11.27 14.03 18.67 27.24 28.11

MCST-GF 11.73 14.49 18.97 28.08 29.39 11.82 14.78 19.57 28.26 28.89

T2P

PT 8.78 11.09 15.11 23.20 24.62 8.83 11.19 15.36 23.23 23.97
MCTA 8.95 11.15 14.94 22.67 24.34 8.37 10.72 14.68 22.10 22.96
MCSA 9.47 11.83 15.74 23.56 25.75 8.80 11.05 14.89 22.40 23.62

MCST-GF 9.65 12.07 15.97 23.45 25.05 9.21 11.53 15.38 22.81 23.45

Table 3: The back-translation scores of MCST-Transformer with different decoder configurations obtained
on the PHOENIX14T dataset.

score compared to Pro-Transformer; a reduction
of 0.52 of the WER score compared to CasDual-
Transformer. Similarly, MCST-SO achieves an im-
provement of 1.29 in the BLEU-4 score and a de-
crease of 0.72 in the WER score compared with Pro-
Transformer. It is observed that the parallel addition
strategy outperforms the gate fusion approach on
the KSL-Guide dataset, which, conversely, excels
on the PHOENIX14T dataset. This discrepancy
can be attributed to the relatively straightforward
nature of the KSL-Guide dataset and the controlled
environments in which it was gathered, which do
not fully exploit the potential of the gate fusion mech-
anism. In contrast, the PHOENIX14T dataset, char-
acterized by its rapid motion shifts and complex ges-
tural expressions, effectively showcases the gating
fusion’s capacity to mitigate noise and manage in-
tricacies. Considering that sign language videos in
real-life situations usually have poorer visual quality
and more intricate gestural movements compared
to those created in a studio setting, it is advisable to
employ the gating fusion in real-world applications.

5.2. Ablation Study

To clarify the impact of each suggested compo-
nent, we conduct ablation studies on both G2P and
T2P tasks using the PHOENIX14T dataset. Ta-
ble 3 presents the performance comparison of the
proposed MCST decoder with various configura-
tions. MCTA refers to the utilization of the multi-
channel temporal attention module, whereas MCSA
denotes the exclusive use of the multi-channel spa-
tial attention module, with both models being im-
mediately followed by a text-sign attention layer.

MCST-GF is our main contribution model, with the
gating fusion.

From the results presented in Table 3, it is evi-
dent that for the G2P task, MCTA and MCSA yield
comparable results. This underscores the efficacy
of our spatial and temporal attention mechanisms
even when deployed in isolation, indicating their
potential to boost performance. The gating fusion
offers a more flexible equilibrium between spatial
and temporal attention attributes, leading to the cre-
ation of more articulate sign language sequences.
For the T2P task, both MCTA and MCSA surpass
Pro-Transformer (PT) in terms of performance on
the validation set; however, they underperform on
the test set. In contrast, the gating fusion recti-
fies this disparity and outperforms PT on the test
set. One possible explanation for observing a vary-
ing performance regarding the T2P task could be
the inherent differences between text and gloss.
Unlike glosses, in which the sequence closely mir-
rors sign language, texts often differ significantly in
word order from sign language expressions. This
distinction may diminish the relevance of leveraging
simultaneous spatial interactions, resulting in only
marginal improvements in such scenarios.

6. Qualitative Analysis

This section provides a qualitative analysis of the
produced sign poses on the PHOENIX14T dataset,
as presented in Table 4. Specifically, we visual-
ize the generated sign pose sequences of Pro-
Transformer, CasDual-Transformer, and MCST-GF
for the G2P task. It can be seen from the given ex-
ample that Pro-Transformer leads to the generation
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Input FREITAG SONNE WOLKE SUED ANFANG REGEN
English Translation: Friday, sunshine and clouds mixed, showers early in the south.

PT(Saunders et al., 2020b)

CasDual(Ma et al., 2024)

MCST-GF

Ground Truth

Original

Frame # 1 2 3 4 5 6 7

Table 4: The qualitative results of G2P on the test set of PHOENIX14T dataset. The top row shows the
input gloss and corresponding English translation. The second and third rows are the frames generated
by Pro-Transformer and CasDual-Transformer, respectively. The fourth row is the produced frames by our
best-performing MCST-GF model. The final two rows depict the ground truth sign language poses and
their corresponding real-life frames.

of stagnant and repetitive sign poses, which are
particularly noticeable in the 4th and 5th frames,
as well as in the 6th and 7th frames. Compared to
Pro-Transformer, CasDual-Transformer generates
hand poses with richer details but less accurate
hand positions. Our MCST-GF mitigates the is-
sue of insufficient pose accuracy, especially with
the improved synergy of multiple channels in these
frames, but it still encounters challenges regarding
gestures executed with a lesser range of motion
and inadequately visible fine-grained actions. Two
potential approaches can be considered to mitigate
these issues: 1) integrating unsupervised training
methods to expand the dataset, allowing the model
to generate salient poses more effectively through
extensive data training; 2) manually guiding the
model to focus on salient poses by employing algo-
rithmic approaches that learn salient poses from a
few samples or by adding manual labels to salient
frames.

7. Conclusions

We propose a Multi-Channel Spatio-Temporal
Transformer (MCST-Transformer) model for sign
language production, which aims to integrate both
the spatial and temporal dimensions of sign lan-
guage, leveraging their complex interplay. To
achieve this, we incorporate spatial attention to
perceive inter-channel correlations in the spatial
dimension, and temporal attention captures the
temporal dynamics and continuity of each chan-
nel. Furthermore, we explore three spatio-temporal
fusion strategies: parallel addition, sequential op-
erations, and gating fusion to enhance the capa-
bilities of our model. Through extensive experi-
ments conducted on both the PHOENIX14T and
KSL-Guide datasets, we demonstrate the superior-
ity of MCST-Transformer over existing approaches
while also highlighting the specific contributions of
each proposed module in improving sign language
generation metrics.
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Appendices

Appendix A. KSL-Guide qualitative results
We also conduct a thorough analysis of the

generated sign poses on the KSL-Guide dataset,
identifying the areas in which our approach per-
forms well and those that require further improve-
ment. In Table 5, we can observe that, for the
KSL-Guide dataset, both our MCST-Transformer
and PT model produce considerably more accu-
rate sign poses compared to their performance on
the PHOENIX14T dataset. This observation is con-
sistent with the elevated back-translation scores of
the KSL-Guide dataset discussed in Subsection 5.1.
Pro-Transformer seems ensnared by its tendency
to regress to the mean, which occasionally results
in less distinct or under-expressed poses, espe-
cially in Frames 2–6. Specifically, the misaligned
hand orientations and aberrant hand shapes are
apparent in these frames. CasDual-Transformer
generates more accurate hand orientations but fails
in the hand’s occlusion case in Frames 4 and 5. In
contrast, our MCST-Transformer models generate
vivid and articulated poses during these frames.
Appendix B. Frame-level visualization of gate
values

The visualization of the gate values in the gating

fusion is a critical component in understanding the
weight distribution for the integration of spatial and
temporal features during inference, as depicted in
Figure 4. These gate values are bounded within
the range of 0 to 1, where a value surpassing the
midpoint of 0.5 signifies a predominant contribu-
tion from spatial features, whereas a value below
this threshold indicates a more pronounced impact
from temporal features, thus serving as a dynamic
modulating factor for the balance of spatial and
temporal attributes in the generated output.

We observe in the first gate layer an initial incli-
nation towards spatial features in the early frames,
suggesting an initial phase of learning focused on
structural information. This spatial preference grad-
ually transitions to a more balanced spatio-temporal
contribution as the frames progress, reflecting the
nuanced requirements of sign language sequence
learning that necessitate an interplay of both spatial
and temporal data. Conversely, the second gate
layer exhibits a consistent preference for spatial fea-
tures throughout. This dynamic interplay highlights
the model’s ability to adaptively prioritize feature
types according to the context provided by the sign
language data.

(a) For the PHOENIX14T dataset

(b) For the KSL-Guide dataset

Figure 4: Visualization of frame-level gate values in sample sign language sequences.



11712

Input 서울역가다목적지하철번호

English Translation: The subway line number for the destination Seoul Station.

PT(Saunders et al., 2020b)

CasDual(Ma et al., 2024)

MCST-GF

Ground Truth

Original Image

Frame # 1 2 3 4 5 6 7

Table 5: The qualitative results of G2P on the test set of KSL-Guide dataset. The top row shows the input
gloss and corresponding English translation. The second and third rows are the frames generated by
Pro-Transformer and CasDual-Transformer, respectively. The fourth row is the produced frames by our
best-performing MCST-PA model. The final two rows depict the ground truth sign language poses and
their corresponding real-life frames.
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