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Abstract
Drawing upon the intuition that aligning different modalities to the same semantic embedding space would allow
models to understand states and actions more easily, we propose a new perspective to the offline reinforcement
learning (RL) challenge. More concretely, we transform it into a supervised learning task by integrating multimodal
and pre-trained language models. Our approach incorporates state information derived from images and
action-related data obtained from text, thereby bolstering RL training performance and promoting long-term strategic
thinking. We emphasize the contextual understanding of language and demonstrate how decision-making in RL can
benefit from aligning states’ and actions’ representation with languages’ representation. Our method significantly
outperforms current baselines as evidenced by evaluations conducted on Atari and OpenAI Gym environments. This
contributes to advancing offline RL performance and efficiency while providing a novel perspective on offline RL.

Keywords: Offline RL, Pre-trained sequence models, Language representation in RL, State and action
representation alignment

1. Introduction

RL operates as a sequential process where an
agent perceives an environmental state, executes
an action, observes the subsequent state, and re-
ceives a reward. Offline RL mitigates the limita-
tions of conventional RL, like the need for long-
term credit assignment bootstrapping and unde-
sirable short-sighted learned policies, by learning
policies from pre-existing datasets (Chen et al.,
2021), eliminating the need for environmental in-
teraction (Levine et al., 2020). This paradigm has
attracted significant attention for its practical appli-
cation potential in real-world RL training scenarios.

Unlike conventional offline RL techniques
that primarily focus on learning value func-
tions (Kostrikov et al., 2021) or policy gradients (Fu-
jimoto and Gu, 2021), recent approaches (Chen
et al., 2021; Schmied et al., 2023) view offline RL
as a sequence modeling task. In these methods,
past experiences of state-action-reward triplets are
input into a transformer model (Vaswani et al.,
2017). They create a sequence of anticipated ac-
tions through a goal-conditioned policy, casting of-
fline RL as a supervised learning problem. These
approaches break away from the MDP assumption
by using historical information to predict actions,
effectively handling extensive sequences, and en-
suring stability, which circumvents bootstrapping-
related issues (Kumar et al., 2020).

However, it remains unclear how to effectively
adapt Large-scale Pretrained Models (LPM) for
offline RL Chen et al. (2021). Reid et al. (2022);
Zhang et al. (2023) demonstrate the effectiveness
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of fine-tuning LPM for offline RL tasks requiring
high-level planning. Although further empirical ev-
idence supports these findings (Liu et al., 2022a;
Fan et al., 2022), the reasons behind these en-
hancements largely remain unexplored.

To understand the underlying factors, we sug-
gest two main considerations: first, the action rules,
such as grammatical structures or pragmatic rules
essential for constructing valid sentences; second,
the use cases, implying the context where words
and idioms are applied, especially when consider-
ing language as a complex game.

Within the RL and Natural Language Processing
(NLP) contexts, we suggest that the latent repre-
sentation of language may significantly contribute
to RL decision-making processes. This interpreta-
tion views the next token prediction procedure in
training Pre-trained Language Models (PLMs) as
agents continuously making decisions, ascribing
meaning to decisions through use. Therefore, in-
tegrating PLMs with RL may enhance an agent’s
ability to interpret and act meaningfully within its en-
vironment. Despite its theoretical appeal, empirical
evidence supporting this hypothesis is sparse. A
persistent challenge is decoupling high-level plan-
ning from low-level representations in the models
(Correia and Alexandre, 2022). While preliminary
attempts (Lee et al., 2022) show promising im-
provements based on decoupling, there is a press-
ing need for further research to unravel the mech-
anisms behind this phenomenon and to develop
more effective methods to achieve it.

This study argues that the latent state repre-
sentations derived from images during offline RL
training, coupled with the discrete symbolic action
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space that models game operations, should corre-
late with their corresponding textual descriptions.
Chen et al. (2021); Reid et al. (2022) directly utilize
the latent state representations and discrete sym-
bolic action space, without establishing alignment
with their textual descriptions.

Consider the game "Pong." In a specific frame,
the left paddle is close to the top, the ball moves
to the left, and the right paddle rises. This can
be semantically described as: "Left paddle near
top; ball moving left; right paddle rising". Tradi-
tional multimodal methods, which lack semantic
grounding, might correlate raw pixels with actions
like "move paddle up." However, the absence of a
higher-level contextual understanding may reduce
their resilience to minor game variations. Ground-
ing in a semantic space provides increased adapt-
ability and learning efficiency.

Existing online RL methods (Wang et al., 2023b)
usually seek to adapt LPM for high-level RL plan-
ning, introducing text-described states empirically
without quantifying the advantage of modality align-
ment. This alignment allows the LPM to under-
stand states and actions better. Nevertheless,
the alignment of latent state representations, ac-
tion space, and their textual descriptions facilitates
agents initialized with LPMs’ parameters to com-
prehend states and actions more effectively. As
a result, we propose a novel approach integrat-
ing multimodal and pre-trained sequence models
into sequential RL, as shown in Fig. 1. We de-
sign Multimodal Offline Reinforcement lEearning
with Shared Semantic Spaces (MORE-3S), which
demonstrates strong performance across various
benchmark environments and offers improvements
over existing offline RL methods. In summary, our
primary contributions are three-fold:

• We introduce a novel approach that aligns
multimodal models with pre-trained sequence
models for sequential RL, thereby enhancing
RL training performance.

• MORE-3S, aligning states’ and actions’ rep-
resentation with PLM’s latent space, signif-
icantly improves the performance of offline
RL algorithm. MORE-3S’s performance is an-
other convincing empirical observation proving
the advances in high-level planning observed
where NLP models are utilized in RL.

• We propose integrating the return-to-go
into the attention mechanism of decision
transformer-based RL models, enhancing
their utilization of return-to-go.

2. Related Work

Offline Reinforcement Learning Offline RL, a
rapidly expanding field, focuses on deriving opti-

mal policies from fixed datasets of trajectory roll-
outs, negating the need for further environmen-
tal interaction. These datasets, represented by
D = (st, at, rt)

T
t=0, encompass states (st), actions

(at), and rewards (rt) for each timestep (t) until
the episode time horizon (T ), and are the prod-
ucts of a behavior policy and inherent dynam-
ics. Offline RL, which utilizes value-based and
model-based strategies, boasts a collection of note-
worthy algorithms including BCQ (Fujimoto et al.,
2019), AWR (Peng et al., 2019), BRAC (Wu et al.,
2019), ICQ (Yang et al., 2021), CQL (Kumar et al.,
2020), UWAC (Wu et al., 2021), MOPO (Yu et al.,
2020), MOReL (Kidambi et al., 2020), Decision
Transformer(DT)(Chen et al., 2021), and Trajectory
Transformer (Janner et al., 2021). Our approach
innovatively integrates multimodal and pre-trained
sequence models with sequential RL, aiming to
overcome the limitations inherent in fixed-dataset
policy optimization.
Sequence Modeling in RL Research interest in
the application of sequence modeling in RL has
surged due to the use of Transformer-based de-
cision models (Hu et al., 2023). The key goal is
to forecast future actions based on recent experi-
ences. Chen et al. (2021) applied a Transformer
to a context-conditioned, model-free policy, while
Janner et al. (2021) emphasized the sequence
model’s ability to predict states, actions, and re-
wards with beam search. Later studies fine-tune
the Transformer for online environments (Zheng
et al., 2022), and StAR-representations were de-
veloped for enhanced long-term modeling (Shang
et al., 2022). Our proposed method improves de-
cision transformer-based RL models by integrat-
ing return-to-go into the attention mechanism, en-
hancing data processing efficiency and offering a
unique improvement over existing sequence mod-
eling techniques.
Multimodal Data and Planning Exploring the
intersection of language with vision and text in RL
is a recent trend, with studies increasingly incorpo-
rating NLP into the RL domain (Sun et al., 2022;
Liu et al., 2022b; Wang et al., 2023a; Jin et al.,
2024). This research area treats PLMs as offline
RL agents and aims to separate high-level planning
from modalities.

LPM for RL enables better reward descriptions,
environment exploration, and agent communica-
tion, resulting in improved RL outcomes (Huang
et al., 2022; Reed et al., 2022; ichter et al., 2023;
Liu et al., 2022a). Findings suggest a close link
between language, local sequence relationships,
and high-level planning across modalities (Reid
et al., 2022; Tsimpoukelli et al., 2021; Zhang et al.,
2022). In this context, Liu et al. (2022a) explore
a shared transformer architecture for vision and
text games, bringing in the strength of NLP to the
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Figure 1: Architecture diagram of the proposed MORE-3S approach. The Multimodal Encoder component
combines the action (text) and state (image) inputs using the LXMERT model. “Embed.” denotes the
embedding process. Autoregressive modeling of trajectories captures the system’s dynamics by modeling
trajectories as a sequence of tuples. LPMs predict subsequent actions based on the encoded sequence
Ot, which corresponds to the ’Mixed Embed.’ section in the diagram.

visual RL landscape.
Our work distinguishes itself in a crucial aspect:

the implicit modality alignment. While previous
studies have explicitly used pre-trained models like
CLIP (Radford et al., 2021; Lee et al., 2022) for
vision and language tasks in RL, our approach
leverages implicit modality alignment by coupling
latent state representations derived from images
with their corresponding textual descriptions in the
action space. This enables the model to achieve
a more nuanced understanding of states and ac-
tions, ultimately enhancing RL performance. Unlike
conventional approaches, which align modalities
explicitly and in isolation (Jiang et al., 2020; Zeng
et al., 2020), our method inherently aligns these
modalities through the training process. This novel
implicit alignment allows for a more flexible integra-
tion of vision and text, addressing the complexity
of real-world RL applications more effectively.

3. Preliminary

Trajectory Rollouts in Offline RL In Offline RL,
a trajectory is characterized as a sequence of
state-action-reward triplets, represented as D =
{(st, at, rt)}Tt=0. Here, st indicates the state, at the
action executed, and rt the reward received at time
step t. The dataset D comprises trajectories up to
the time horizon T , with each trajectory uniquely
identified by index i.
Sequence Representation in RL In sequence
modeling for RL, a sequence τ of experiences is
used to predict the next actions. This sequence
can be represented as follows:

τ = (r1, s1, a1, r2, s2, a2, . . . , rN , sN , aN ) (1)

This representation includes state-action-reward
triplets and is suitable for offline RL and imitation

learning scenarios, where the model can be trained
in a supervised manner. The goal of sequence
modeling in RL is to predict prospective actions
based on historical experiences. This can be for-
mulated (Janner et al., 2021):

Pr(ât) = p(at|s1:t, a1:t−1, r1:t−1) (2)

Transformers in RL Transformers are neural net-
work architectures that are highly successful in nat-
ural language processing tasks. Their ability to
capture long-range dependencies in data makes
them particularly suitable for sequence modeling
in RL. In this context, Transformers can be used
to model the relationships between state-action-
reward triplets in trajectories and make predictions
about future actions and rewards.
Multimodal Context in RL Incorporating multi-
modal data such as text and vision can enhance
the capabilities of RL agents. This can be partic-
ularly useful in complex environments where an
agent needs to make decisions based on multiple
sources of information. LPM can be adapted to
function as Offline RL agents in a multimodal con-
text, leveraging their capacity for high-level plan-
ning and local sequence modeling.

4. Architecture and Training

In this section, we outline the MORE-3S approach.
MORE-3S synergizes multimodal and pre-trained
sequence models to enhance offline RL. Figure 1
illustrates the overall process, including state and
action interpretation, as well as action prediction.

4.1. Model Architecture

The model structure in this proposed Multimodal-
based Offline Reinforcement Learning approach
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involves the integration of multimodal models and
pre-trained sequence models into a Reinforcement
Learning framework, where the multimodal model
employs pre-training parameters to interpret state
information from image data and action informa-
tion from text, and the output of this multimodal
model serves as the input for the LPM to predict
subsequent actions.
Multimodal Encoder In the initial segment of
MORE-3S, we delve into the two primary inputs at
time t: the action and the state. These inputs are
subsequently converted into their respective forms,
with the action being transformed into text and
the state into an image. To encode these inputs,
we utilize the LXMERT (Tan and Bansal, 2019)
model, a robust multimodal transformer model pre-
trained on a substantial corpus of image-text pairs.
However, Nota Bene that MORE-3S’s strength lies
in the general approach of using a multimodal
transformer model instead of the specific LXMERT.
Upon encoding, the actions and states are amal-
gamated into a single sequence Ot, Specifically,

Ot = Concat(E(At), E(St)) (3)

where E(At) and E(St) represent the encoded
forms of the action and the state at time t, respec-
tively.serving as the input for the subsequent com-
ponent of our model.
Autoregressive Modeling of Trajectories In the
subsequent section of our study, we adopt the
methodology delineated by Chen et al. (2021),
wherein an autoregressive approach is employed
to model trajectories. This necessitates the depic-
tion of these trajectories as a sequence of tuples,
formally represented as:

t = (R̂1, O1, R̂2, O2, ..., R̂N , ON ) (4)

Each tuple in this sequence encapsulates the
returns-to-go (R̂i) and the decoupled information
pertaining to the state and action (Oi) at a specific
timestep i, given a total of N timesteps.

This modeling strategy draws parallels with a se-
quence x, as explicated in the equation proposed
by Bengio et al. (2000):

P (x) =

N∏
i=1

p (xi | xi−1,xi−2, . . . ,x1) (5)

This equation embodies the fundamental princi-
ples of a self-regressive language model. The
returns-to-go, R̂i, is mathematically represented
as R̂i =

∑N
t=i rt. By incorporating the processed

information from the state and action (ON ) and the
return-to-go (RN ) into our model, we effectively
capture the dynamics of the system under inves-
tigation. This approach allows us to construct a
comprehensive model that is capable of accurately
representing the system’s behavior over time.

4.2. Memory Mechanism

To improve our model’s proficiency in managing
lengthy sequences, we integrated a memory mech-
anism inspired by Wu et al. (2022) into the GPT-
style attention architecture. This memory approach
enhances the model’s ability to address long-term
dependencies, as it facilitates storing and access-
ing information from prior stages of a sequence.

Incorporating the return-to-go quantity into the
original keys K and values V of the transformer
architecture has proven to be more effective than
directly inputting it during the model’s position em-
bedding stage,see Figure 2. This process lever-
ages the attention weights at each time step t to
maintain a “memory” of earlier inputs, thus improv-
ing the model’s capability to process tasks requir-
ing long-term dependency handling.

The memory mechanism is practically imple-
mented by extending the keys K̄ and values V̄ at
the current step t to include K̄(t′) and V̄ (t′) from
previous steps t′, yielding:

V̄ t =
[
sg

(
V̄ (t−M)

)
, ··, sg

(
V̄ (t−1)

)
, V̄ t

]
(6)

K̄t =
[
sg

(
K̄(t−M)

)
, ··, sg

(
K̄(t−1)

)
, K̄t

]
(7)

This formulation allows the query to attend informa-
tion not only from the current time step t, but also
from up to M preceding steps, thereby offering an
extended view(see Fiture 2). The increase in train-
ing and inference costs is primarily due to memory
caching and the extended attention layer compu-
tation, but remains more efficient than traditional
scaling methods, making our model practically suit-
able for diverse tasks.
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Value

Query

Original Value

key t-k key t-1 value t-k value t-1
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 History
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Val

Temp
key
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History
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Figure 2: Schematic Representation of the Integra-
tion of Return-to-Go (RTG) Quantity and Memory
Mechanism in GPT-style Attention Architecture.

4.3. Training Details

Object-Level State Embeddings Our approach
involves utilizing position features and region-of-
interest (RoI) features obtained from image-based
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states through a Fast R-CNN (Girshick, 2015) net-
work as input to our model. This approach differs
from the conventional usage of feature maps gen-
erated by convolutional neural networks. Instead,
we adopt the object feature-based embeddings
proposed by Anderson et al. (2018). By integrating
object and position features, our method facilitates
a more comprehensive comprehension of the im-
age states, resulting in enhanced performance.
Semantic Embedding of Actions To enhance
the semantic comprehension of actions in the multi-
modal model LXMERT, we represent actions using
both discrete and continuous textual descriptions.
These representations facilitate a clearer under-
standing of actions, benefiting the model’s compre-
hension and facilitating human interpretability.

As an exemplar, consider the actions within the
game Breakout from the Atari 2600 suite:

• Action 0: No action is taken, allowing the
game to continue unchanged.

• Action 1: Launches a ball towards the bricks,
aiming to break them.

• Action 2: Shifts the paddle to the right, inter-
cepting the ball to prevent it from falling.

• Action 3: Shifts the paddle to the left, inter-
cepting the ball to prevent it from falling.

For continuous environments based on the Mu-
joco framework, such as the HalfCheetah simula-
tion, we provide textual prompts mapping specific
dimensions of the action vector to torques or forces
applied to particular joints. For instance, in the
HalfCheetah environment, a prompt might state:
"In the current time step, the Half-Cheetah’s six
joints received the following torques or forces: First
hind leg joint: a1, Second hind leg joint: a2, etc."

Each of these textual descriptions is generated
from specific prompts, translating the numerical
values in each dimension to the corresponding
actions taken in the environment.

4.4. Procedure of Training

In the training phase, the primary objective is to
leverage the multimodal encoder in conjunction
with the sequence model to accurately predict the
subsequent timestep’s output, Oi+1. Importantly,
the multimodal encoder is not subject to training;
its parameters are fixed during this phase. The
multimodal encoder processes the state and action
data, represented as image and text respectively,
at each timestep i, yielding an encoded output,
Oi. This output, in tandem with the corresponding
returns-to-go, denoted as hatRi, serves as the
input for the GPT-style sequence model.

Incorporating R̂i into its attention mechanism,
the sequence model can adjust its predictions
contingent on the anticipated future returns. The
model’s primary task is to forecast the subsequent
timestep’s output, Oi+1, using the mean squared
error (MSE) loss function as our objective. The
MSE loss function is a natural choice for this su-
pervised learning task, as it minimizes the squared
differences between predicted and actual values.
The predicted output distribution, Opred

i+1 , is com-
pared with the actual output distribution, Oi+1, to
calculate the prediction error as follows:

L =
1

N

N∑
i=1

(Oi+1 −Opred
i+1 )2 (8)

By repeatedly minimizing the loss function L, it
becomes possible to incrementally enhance the
model’s predictions.

5. Experiments

This section outlines our experimental setup, the
benchmarks we employed, our evaluation metrics,
and the implementation details of MORE-3S.

5.1. Experimental Setup

Our experimental setup is constructed to evaluate
our model in diverse environments, with a broad
set of tasks that require different skill sets. We
employ Atari 2600 games (Bellemare et al., 2013)
and OpenAI Gym environments (Brockman et al.,
2016), which encompass a wide range of complex-
ity levels and task varieties, offering a comprehen-
sive benchmark suite for our evaluation.

MORE-3S utilizes distinct pretraining models -
LXMERT and a GPT-inspired model - for the op-
timization of RL training efficiency. For LXMERT,
the training spans an extensive range of datasets,
hence fostering a comprehensive understanding
of both visual and linguistic elements. We exclu-
sively utilize the outputs of the Object Relationship
Encoder and Language Encoder which are subse-
quently concatenated and integrated

For the GPT-inspired model, we use only the first
six layers of the 12-layer GPT-2 model, allowing
for a direct comparison with the DT and capitaliz-
ing on its strengths in sequence modeling for RL
tasks (Chen et al., 2021). Pre-training of MORE-
3S employs a model with 128 dimensions in its
latent space, a solitary attention head, and six lay-
ers. The training, conducted with a learning rate
of 3e-4 and a batch size comprising 65,536 tokens
in each training batch, incorporates a warm-up
schedule in the initial 10,000 steps. We utilize the
Byte-Pair Encoding (Sennrich et al., 2016), also
used in GPT-2 (Radford et al., 2019) and follow all
hyperparameters given in (Chen et al., 2021).
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5.2. Baselines

To augment our assessment of LPM, we conduct
a comparative analysis against a suite of widely
acclaimed offline RL algorithms. This collection
of algorithms encompasses the DT, Conserva-
tive Q-Learning (CQL), Twin Delayed Deep De-
terministic policy gradient enhanced with Behavior
Cloning (TD3+BC), Behavior Regularized Actor
Critic (BRAC), and Advantage Weighted Regres-
sion (AWR) baselines.

5.3. Atari

Our model is applied to the renowned Atari bench-
mark, a complex dataset developed by Bellemare
et al. (2013), to evaluate its performance in man-
aging high-dimensional visual inputs and intricate
credit assignments. Four games: Breakout, Pong,
Qbert, and Seaquest from the Atari suite are used
for the testing, following the evaluation design in
(Chen et al., 2021; Agarwal et al., 2020).

An offline dataset is constructed for the current
study, consisting of approximately 1% (or 500k tran-
sition steps) of the replay buffer dataset used in
(Agarwal et al., 2020). Benchmark metrics are de-
rived from various sources, including the Conserva-
tive Q-Learning (CQL), Random Ensemble Mixture
(REM), and Quantile Regression DQN (QR-DQN)
numbers from Kumar et al. (2020); Agarwal et al.
(2020). Additionally, we referenced imitation learn-
ing algorithms such as DT, StARformer, and BC.

Performance comparison of MORE-3S, with
CQL, QR-DQN, REM, BC, DT, and StAR is detailed
in Table 1. Remarkably, MORE-3S surpass all
other models in Breakout and Qbert and achieved
competitive results in Pong and Seaquest. This in-
dicates the effectiveness of MORE-3S, which com-
bines multimodal data during training and uses mul-
timodal models to process visual and textual infor-
mation. The model, initialized with pre-trained GPT-
style parameters, shows significant improvement
in Qbert and Breakout, emphasizing the value of in-
corporating multimodal information and pre-trained
architectures in sequential reinforcement learning.
This establishes the robustness of MORE-3S and
underscores the successful implementation of pre-
training and multimodal data utilization.

5.4. OpenAI Gym

Our research employs the OpenAI Gym, a rep-
utable platform that facilitates the development and
comparison of RL algorithms across diverse en-
vironments. We evaluate three standard environ-
ments (HalfCheetah, Hopper, Walker), selected
for their challenging control and decision-making
characteristics. These are assessed using three
dataset configurations, medium, medium-replay,

and medium-expert, in line with the D4RL bench-
mark proposed by Fu et al. (2021). This benchmark
standardizes scores for fair comparisons, where a
score of 100 signifies an expert policy.

We evaluate our proposed model, MORE-
3S, against several state-of-the-art algorithms to
benchmark its performance. This includes model-
free methodologies (CQL, BEAR, BRAC-v, AWR),
a model-based approach (MBOP), and imitation
learning algorithms (DT, StARformer). Perfor-
mance metrics are derived from original or D4RL
papers, and additional methods supplement our
comprehensive evaluation. The experimental pro-
tocol comprise training models for 100k timesteps
and conducting evaluations every 5k timesteps
over 10 episodes. Using the formula 100×(score−
random score)/(expert score − random score),
normalized return scores are calculated to gauge
MORE-3S’s efficiency in continuous control tasks
and its performance against leading algorithms.

Table 2 illustrates MORE-3S’s efficacy across
D4RL’s various environments. It demonstrates
MORE-3S’s superior performance on most tasks,
with comparable results to the state-of-the-art al-
gorithm on others. MORE-3S’s unique feature is
its integration of multimodal information process-
ing mechanisms, which capacitates it to manage
diverse inputs and structures. Pre-training a lan-
guage model for reinforcement learning, reminis-
cent of GPT-style models (Radford et al., 2019),
augments MORE-3S’s capability. By leveraging
the language models’ knowledge via multimodal
processing, MORE-3S effectively captures fine-
grained spatial information and adapts to different
environments. The results confirm MORE-3S’s
competitiveness and, in many cases, superiority to
other state-of-the-art algorithms.

6. Discussion

Through an exhaustive ablation study, we system-
atically dissect our computational model to under-
stand the individual contributions of its various
components. Our in-depth analysis evaluate the
effects of implementing a condition-based return-
to-go strategy, integrating pretrained GPT-style pa-
rameters, and applying LXMERT’s pretrained pa-
rameters for state and action data preprocessing.
We also examined the role of employing long-term
attention mechanisms and assessed the implica-
tions of both context length and model size on
overall performance. Additionally, we conduct ab-
lation studies across multiple games on the use
of synonyms and contextual phrasing to explore
the impact of varying action prompts. The experi-
ment results indicate that varying action prompts
can have little impact on MORE-3S’s performance,
which verifies MORE-3S’s robustness.
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Game MORE-3S CQL QR-DQN REM BC DT StAR

Breakout 300.5 ± 70.2 211.1 17.1 8.9 138.9 ± 61.7 267.5 ± 97.5 436.1 ± 63.6
Qbert 60.8 ± 10.2 104.2 0 0 17.3 ± 14.7 15.4 ± 11.4 51.2 ± 11.5
Pong 118.7 ± 9.6 111.9 18 0.5 85.2 ± 20.0 106.1 ± 8.1 110.8 ± 60.3

Seaquest 3.1 ± 0.3 1.7 0.4 0.7 2.1 ± 0.3 2.5 ± 0.4 1.7 ± 0.3

Table 1: Performance comparison of MORE-3S with models such as CQL, QR-DQN, REM, BC, DT, and
StAR in four Atari games, using three seeds. MORE-3S’s use of multimodal information and GPT-style
pre-training led to high scores, highlighting its strong potential in gaming. Best mean scores are in bold
and second-best mean scores are in gray bold.

Dataset Environment MORE-3S CQL BEAR BRAC-v AWR MBOP BC DT StAR

Medium
Expert

HalfCheetah 93.5 ± 1.0 62.4 53.4 41.9 52.7 105.9 59.9 86.8 ± 1.3 93.7 ± 0.1
Hopper 112.2 ± 0.8 111.0 96.3 0.8 27.1 55.1 79.6 107.6 ± 1.8 111.1 ± 0.2
Walker 111.3 ± 0.1 98.7 40.1 81.6 53.8 70.2 36.6 108.1 ± 0.2 109.0 ± 0.1

Medium
HalfCheetah 42.8 ± 0.1 44.4 41.7 46.3 37.4 44.6 43.1 42.6 ± 0.1 42.9 ± 0.1

Hopper 76.4 ± 2.5 58.0 52.1 31.1 35.9 48.8 63.9 67.6 ± 1.0 59.5 ± 4.2
Walker 81.5 ± 0.1 79.2 59.1 81.1 17.4 41.0 77.3 74.0 ± 1.4 73.8 ± 3.5

Medium
Replay

HalfCheetah 36.5 ± 0.4 46.2 38.6 47.7 40.3 42.3 4.3 36.6 ± 0.8 36.8 ± 3.3
Hopper 85.1 ± 2.7 48.6 33.7 0.6 28.4 12.4 27.6 82.7 ± 7.0 29.2 ± 4.3
Walker 76.9 ± 1.5 26.7 19.2 0.9 15.5 9.7 36.9 66.6 ± 3.0 39.8 ± 5.1

Average 79.6 63.9 48.2 36.9 34.3 47.8 46.4 74.7 66.2

Table 2: Results from the D4RL dataset reveal the average and variance across three seeds. Best mean
scores are highlighted in bold. The second-best scores are highlighted in gray bold.

To secure a robust evaluation, we execute a se-
ries of ablation experiments across computational
environments. Our findings suggest that extending
context length and model size beyond certain limits
does not significantly enhance performance.

Condition-Based RTG We examine two distinct
strategies for integrating the return-to-go metric
into our model: condition-based and linear layer
integration. In the condition-based methodology,
each temporal step t processes the return-to-go
through a linear layer, which is subsequently in-
tegrated into the transformer’s native keys K and
values V . The linear layer approach, conversely,
incorporates the return-to-go directly into the initial
position embedding stage of the model.

The ablation study demonstrates a modest per-
formance benefit of condition-based integration
compared to the linear layer approach, as shown
in Table 3. This modest advantage indicates that,
while the condition-based method is superior in
managing long-term dependencies, it does not pro-
duce markedly improved results. Consequently,
the selection between the two methods should be
based on the specific needs of the given RL task.

Randomizing Pretrained Parameters Our abla-
tion study examines the effect of randomizing the
pretrained parameters of GPT-style and LXMERT
models on performance, as depicted in Figure 3.
When the pretrained parameters of LXMERT are
frozen, the model demonstrates enhanced perfor-

Model Avg. Reward

MORE-3S (Condition-Based) 66.9
MORE-3S (Linear layer integration) 65.4

Table 3: Comparison of condition-based and linear-
layer integration of return-to-go.

mance in processing multimodal data. This leads
to improved interpretation of both state and action
information, resulting in better performance across
all evaluated environments compared to using ran-
domly initialized LXMERT parameters. Contrarily,
when the GPT-style’s pretrained parameters are
absent, the model’s initial performance is subpar,
reminiscent of the DT(Chen et al., 2021) model.
However, with sustained training, GPT-style’s per-
formance, although not superior, tends to converge
towards that of our fully pretrained model. This ob-
servation implies that even though pretraining GPT-
style’s parameters provides an initial performance
boost, the model possesses the capability to ef-
fectively learn from scratch over time. This finding
further supports the robustness of our proposed
method of integrating pretrained sequence models
into sequential RL in diverse training conditions.

Long-Term Attention We show the results of
ablation studies comparing the performance of
MORE-3S without long-term attention with full-
fledged MORE-3S in Table 4 to ascertain the effi-
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cacy of our proposed memory mechanism and the
long-term attention module.

Our analysis illustrates that the model without a
long-term mechanism often underperforms MORE-
3S across numerous Atari games, affirming the
memory mechanism and long-term attention’s role
in managing sequential data for RL tasks. Inter-
estingly, MORE-3S without long-term components
performs better on Seaquest, suggesting possible
instances where long-term attention may not be vi-
tal. This observation necessitates further research.

Model MORE-3S MORE-3Sw/o Long−Term

Breakout 300.5 ± 70.2 275.7 ± 66.9
Qbert 60.8 ± 10.2 55.3 ± 7.3
Pong 118.7 ± 9.6 105.2 ± 11.1

Seaquest 3.1 ± 0.3 3.3 ± 0.3

Table 4: The influence of the long-term attention
component across different RL tasks.

Varying Action Prompts in Game Environments
In our quest to discern the model’s aptitude for
linguistic comprehension, we venture into exper-
iments with varied action prompt sets for each
game, as showcased in Table 5. Each game is sub-
jected to three distinct action prompt categories:

• Original: Action prompts as originally defined.

• Synonyms: Prompts incorporating synony-
mous replacements for pivotal action terms.

• Contextual: Prompts with deeper context or
phrased as interrogative statements.

Taking the game Breakout as a reference, the
prompt sets varied as:

• Original: "Launches a ball towards the bricks,
aiming to break them."

Figure 3: Experiment on randomizing model
weights versus finetuning them on OpenAI Gym.

• Synonyms: "Fires a sphere at the blocks with
the intent to shatter them."

• Contextual: "What would happen if a ball were
propelled towards the bricks with the goal of
breaking them?"

Game Action Prompt Set Reward

Breakout
Original 310.3 ± 68.1

Synonyms 295.4 ± 72.3
Contextual 305.2 ± 69.5

Pong
Original 120.1 ± 8.5

Synonyms 117.9 ± 10.2
Contextual 119.5 ± 9.8

Qbert
Original 58.5 ± 12.3

Synonyms 63.2 ± 11.1
Contextual 59.7 ± 10.5

Seaquest
Original 3.0 ± 0.4

Synonyms 2.9 ± 0.5
Contextual 3.2 ± 0.2

Table 5: Results of Experiments with Different Ac-
tion Prompt Sets

Upon closely examining the results, it is evi-
dent that there is minimal variance in performance
across different prompt sets. Whether employing
standard terminology, synonyms, or more context-
rich queries, the model’s performance is consistent.
This uniformity underscores the model’s linguistic
proficiency and its adaptability to subtle linguistic
variations in a gamified environment. These find-
ings reinforce the reliability and robustness of our
experimental method and suggest the model’s su-
perior linguistic interpretation in diverse scenarios.

7. Conclusion

In conclusion, this research underscores the symbi-
otic relationship between RL and natural NLP, elu-
cidating the tangible advantages conferred upon
RL tasks when augmented with NLP models. Our
pioneering MORE-3S method seamlessly amal-
gamates multimodal models with pre-trained se-
quence models in an RL milieu, delivering a com-
pelling empirical corroboration for our theoretical
postulations through demonstrably superior RL
training outcomes. Instead of merely capitalizing
on historical state-action-reward sequences, our
methodology elevates these dynamics by anchor-
ing the actions in textually-described formats and
the states in visual representations, thereby bolster-
ing the model’s precision and capability in interact-
ing with its environment. A noteworthy innovation
we bring forth is the integration of the return-to-go
parameter within the attention framework of deci-
sion transformer-centric RL models, further refining
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their performance. This scholarly endeavor illumi-
nates potential avenues for an in-depth examina-
tion of the confluence between language models
and reinforcement learning and heralds exciting
prospects for the continued evolution of both offline
RL and NLP domains.
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tangling transfer in continual reinforcement learn-
ing. Advances in Neural Information Processing
Systems, 35:6304–6317.

Chao-Yuan Wu, Yanghao Li, Karttikeya Man-
galam, Haoqi Fan, Bo Xiong, Jitendra Malik,
and Christoph Feichtenhofer. 2022. Memvit:
Memory-augmented multiscale vision trans-
former for efficient long-term video recognition.
In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition,
pages 13587–13597.

Yifan Wu, George Tucker, and Ofir Nachum. 2019.
Behavior regularized offline reinforcement learn-
ing.

Yue Wu, Shuangfei Zhai, Nitish Srivastava, Joshua
Susskind, Jian Zhang, Ruslan Salakhutdinov,
and Hanlin Goh. 2021. Uncertainty weighted
actor-critic for offline reinforcement learning.

Taku Yamagata, Ahmed Khalil, and Raul Santos-
Rodriguez. 2023. Q-learning decision trans-
former: Leveraging dynamic programming for
conditional sequence modelling in offline rl. In
International Conference on Machine Learning,
pages 38989–39007. PMLR.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu
Zheng, Qiyuan Zhang, Gao Huang, Jun Yang,
and Qianchuan Zhao. 2021. Believe what you
see: Implicit constraint approach for offline multi-
agent reinforcement learning. Advances in Neu-
ral Information Processing Systems, 34:10299–
10312.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano
Ermon, James Y Zou, Sergey Levine, Chelsea
Finn, and Tengyu Ma. 2020. Mopo: Model-based
offline policy optimization. Advances in Neu-
ral Information Processing Systems, 33:14129–
14142.

Zhen Zeng, Jianzong Wang, Ning Cheng, Tian Xia,
and Jing Xiao. 2020. Aligntts: Efficient feed-
forward text-to-speech system without explicit
alignment. In ICASSP 2020-2020 IEEE inter-
national conference on acoustics, speech and
signal processing (ICASSP), pages 6714–6718.
IEEE.

Qin Zhang, Linrui Zhang, Haoran Xu, Li Shen,
Bowen Wang, Yongzhe Chang, Xueqian Wang,
Bo Yuan, and Dacheng Tao. 2023. Saformer:
A conditional sequence modeling approach to
offline safe reinforcement learning.

Ziqi Zhang, Yile Wang, Yue Zhang, and Donglin
Wang. 2022. Can offline reinforcement learning
help natural language understanding?

Qinqing Zheng, Amy Zhang, and Aditya Grover.
2022. Online decision transformer. In interna-
tional conference on machine learning, pages
27042–27059. PMLR.

https://doi.org/10.48550/arXiv.1911.11361
https://doi.org/10.48550/arXiv.1911.11361
https://doi.org/10.48550/arXiv.2105.08140
https://doi.org/10.48550/arXiv.2105.08140
https://doi.org/10.48550/arXiv.2301.12203
https://doi.org/10.48550/arXiv.2301.12203
https://doi.org/10.48550/arXiv.2301.12203
https://doi.org/10.48550/arXiv.2212.03864
https://doi.org/10.48550/arXiv.2212.03864

	Introduction
	Related Work
	Preliminary
	Architecture and Training
	Model Architecture
	Memory Mechanism
	Training Details
	Procedure of Training

	Experiments
	Experimental Setup
	Baselines
	Atari
	OpenAI Gym

	Discussion
	Conclusion

