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Abstract
Zero-shot dialogue state tracking (DST) transfers knowledge to unseen domains, reducing the cost of annotating new
datasets. Previous zero-shot DST models mainly suffer from domain transferring and partial prediction problems. To
address these challenges, we propose Mixture of Prefix Experts (MoPE) to establish connections between similar
slots in different domains, which strengthens the model transfer performance in unseen domains. Empirical re-
sults demonstrate that MoPE-DST achieves the joint goal accuracy of 57.13% on MultiWOZ2.1 and 55.40% on SGD.
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1. Introduction

Dialogue state tracking (DST) extracts and tracks
the user’s intention throughout a conversation
in task-oriented dialogue (TOD) systems (Young
et al., 2010). The DST task is challenging due to
the diversity and uncertainty of conversations, and
it needs enormous data to train on a new domain.
Ideally, zero-shot DST could transfer knowledge
to new domains, which reduces the efforts to build
more datasets. However, due to the large num-
ber of dialogue domains, there are two main chal-
lenges in zero-shot DST: (1) Domain transfer: It
is impractical to collect dialogues involving all do-
mains due to the infinite variety, so a DST model
must have the capability to transfer to unseen do-
mains. (2) Partial-prediction: DST models may
predict fewer slot values when on a new domain.
This partial-prediction problem impedes TOD sys-
tems from providing accurate and necessary re-
sponses.

In order to transfer to unseen domains, Wu et al.
(2019) and Heck et al. (2020) utilize the copy mech-
anism to generate slots. However, these methods
directly transfer to unseen domains without consid-
ering the differences with seen domains. Conse-
quently, the performance on unseen domains is
notably lower than seen domains. The primary rea-
son for the low performance is that DST models
need more relevant knowledge about unseen do-
mains, and the information in dialogues involving
these unseen domains is often neglected, leading
to partial-prediction.

To bridge the gap between seen and unseen do-
mains, we explore the potential connections be-
tween them through similar slots. As Figure 1
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I want to be in the centre of town. What
about architecture attractions?

The only multiple sports attraction is located in the east
of town. Would you like more information?

Can you check in the centre of town?

There are a total of 22 cheap restaurants located in
town. Is there a specific area you are going to be in?

Yes, I would love to stay at a hotel in
the centre of town.  I need free parking.

We have lots of great hotels.  Would you like to stay
with the centre part of town or some other area?

Train

domain: 
attraction

domain: 
restaurant

domain: 
hotel

Test

area area areaSlot Name

different domains 
similar slots

centreSlot Value

Figure 1: Illustration of dialogues in different do-
mains share similar slot names even the same slot
value.

shows, We find that different domains may share
some similar slots. Even though the model is
not trained on the hotel domain, the “hotel area”
slot is similar to the trained slots “attraction area”
and “restaurant area”, and the model could refer
to them when predicting on the unseen domain.
Based on the above considerations, we catego-
rize all slots into different clusters and train a spe-
cialized expert for each cluster, which helps the
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slots from unseen domains find the most relevant
expert. Specialized experts can enhance the per-
formance of slot prediction and reduce the occur-
rence of partial-prediction.

To address the above challenges and problems,
we propose MoPE, which consists of a mixture
of prefix experts on a pre-trained LLM. We clus-
ter similar slots with an unsupervised clustering
algorithm and train a specialized expert for each
cluster. During inference, we utilize the cluster
centroids to find the most relevant expert for the
unseen slot and generate the corresponding dia-
logue state. Considering the cost of training and
the size of the whole model, we use the parameter-
efficient fine-tuning (PEFT) method to train each
expert where each expert is a specialized prefix
prompt.

We conduct experiments on MultiWOZ2.1 and
SGD datasets. Experimental results demonstrate
that our MoPE significantly outperforms all mod-
els with less than 10B parameters, achieving a re-
markable 15% increase in joint goal accuracy on
both datasets. Compared to large language mod-
els with extensive parameters like ChatGPT and
Codex, MoPE achieves 0.20% performance gain
in joint goal accuracy on average. From the clus-
tering result, we observe that different domains
can establish connections through similar slots.
Compared with sharing the same prefix prompt for
all domains, using multiple specialized experts is
helpful to the performance.

Our contributions are summarized as follows1:

• For the domain transfer in zero-shot DST, we
establish connections between different do-
mains through slots and apply multiple spe-
cialized experts to bridge the gap between
seen domains and unseen domains.

• To reduce prediction errors and the training
cost of multiple experts, we utilize a well-
trained LLM and use prefix prompts as differ-
ent experts to improve the condition genera-
tion of LLM with low training costs.

• We conduct experiments on two widely
used dialogue state tracking benchmarks
and achieve competitive performance, beat-
ing ChatGPT and Codex.

2. Related Work

Dialogue State Tracking DST plays a crucial
role in natural language understanding within task-
oriented dialogue systems. In the early years,
DST methods (Lee et al., 2019; Zhang et al.,
2020) heavily relied on manually crafted lexicons

1Our code is available at github.com/ttw1018/MoPE-
DST.

to capture dialogue states. However, this ap-
proach faced challenges in scaling up to longer
and more intricate dialogues. This difficulty arose
from the need for more high-quality annotated
data in emerging domains and the reliance on
labor-intensive, hand-crafted lexicons. To address
these limitations, Wu et al. (2019) and Le et al.
(2020) shifted their focus to open vocabulary DST
research. This transition aimed to diminish the
reliance on manually crafted lexicons, offering a
more adaptable and scalable approach. With the
widespread adoption of large language models,
Hu et al. (2022) and Heck et al. (2023) have turned
to powerful language models like Codex-Davinci-
002 and ChatGPT to tackle the DST challenge.
However, these models have enormous parame-
ters, making both training and inference processes
difficult and costly.

Simultaneously, the approaches to solving the
DST problem have become increasingly diverse.
Gao et al. (2019) reformulated DST as a reading
comprehension task by answering the question:
“What is the state of the current dialogue?” Shin
et al. (2022) framed DST as a dialogue summariza-
tion problem. They trained a text-to-text template-
based dialogue summary language model and re-
covered the dialogue state from the summarization
using predefined rules. Hu et al. (2022) utilized
a code-based large language model, formulating
DST as a text-to-SQL problem, where the dialogue
state is generated as an SQL query.

Parameter Efficient Transfer Learning for DST
PETL for DST is designed to minimize the number
of parameters requiring fine-tuning during domain
transfer. Despite tuning fewer parameters, several
studies (Li and Liang, 2021; Liu et al., 2022) have
demonstrated that PETL can yield competitive re-
sults compared to traditional fine-tuning methods.
Zhu et al. (2022) introduced Continual Prompt Tun-
ing, which prevents forgetting and facilitates knowl-
edge transfer between tasks. This approach sig-
nificantly enhances domain transfer capabilities.
Aksu et al. (2023) employed prefix-tuning to cus-
tomize models for new domains. They achieve
this by utilizing descriptions of domain slots to gen-
erate dynamic prefix prompts. However, these
methods directly transfer the trained model to un-
seen domains, which often leads to a failure to
establish connections between different domains.
MoE4DST (Wang et al., 2023) partitions all ob-
served data into semantically independent clus-
ters and trains several adapters for each cluster.
During inference, using a combination of adapters
generates the dialogue state. However, they clus-
ter experts based on dialogue context rather than
slot names, which leads to more granular connec-
tions between slots ignored, limiting the slot pre-

https://github.com/ttw1018/MoPE-DST
https://github.com/ttw1018/MoPE-DST
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diction’s performance. Besides, the inconsistency
of separate training and fusing inference is also a
limitation of performance.

3. Preliminary

Dialogue State Tracking (DST) model aims at pre-
cisely predicting the dialogue state, where a dia-
logue state is represented as a triple in the form
of domain-slot-value, such as (restaurant - food -
Indian). This prediction is based on both the di-
alogue history and predefined domains and slots.
Here, the domain signifies the dialogue topic, the
slot is manually defined based on the domain, and
the value is extracted from the dialogue. For ease
of reference, throughout the remainder of this pa-
per, we treat the “slot” as a “domain-slot” pair.

In this study, we approach the DST task as a
question answering (QA) problem. The model uti-
lizes the dialogue history as background knowl-
edge and considers the predefined slot as the
question. It then generates the dialogue state from
the dialogue history, serving as the answer.

Formally, we define Dt = [Ut, Rt] as a pair con-
sisting of the system utterance Ut and the user re-
sponse Rt in the t-th turn of the dialogue and Bt

represents the corresponding dialogue state. Bt

is defined as a set of slot-value pairs, denoted as
Bt = {(Si, Vi) | i ∈ [1 : N ]}. Here, N represents
the total number of dialogue states in the t-th turn,
Si signifies the predefined slot pairs and Vi corre-
sponds to the slot value corresponding to Si. In
summary, our approach involves providing the di-
alogue history {D1 · · ·Dt} and the predefined slot
Si, and then predicting the corresponding value Vi.

4. Methodology

Figure 2 provides an overview of our proposed
method, which encompasses the following three
key steps:

1. First, we categorize all slots into distinct clus-
ters using a clustering method.

2. Next, we develop K prefix prompt models for
K clusters, and prepare them for subsequent
deep prefix prompt tuning.

3. Lastly, we integrate the appropriate prefix
prompt model for the slot into our backbone
model, enabling the prediction of the corre-
sponding value. Additionally, we optimize
the prefix prompt model for enhanced perfor-
mance.

4.1. Slot Clustering
By dividing all slots into distinct clusters, similar
slots are grouped together, allowing each cluster to

predict values more accurately. This approach sig-
nificantly improves precision when mixing all slots
in a single cluster. For instance, “hotel area” and
“restaurant area” should be grouped in one clus-
ter, considering their relevance to area informa-
tion. On the other hand, “hotel price range” and
“restaurant price range” should be grouped into an-
other cluster since they both relate to price range
information, which is distinct from area information.
Clustering in this manner ensures that related slots
are grouped, capturing the specific relationships
between different types of information. Slots within
the same cluster exhibit similar semantic relations
and have corresponding values in similar forms.
This shared similarity in both meaning and value
format is beneficial for the value generation pro-
cess.

Dividing slots into different clusters is a challeng-
ing task. In practical applications, manual slot clus-
tering is daunting due to the large and increasing
number of slots, coupled with the blurred and in-
distinguishable boundaries between slots. To ad-
dress this issue, we utilize k-means clustering. We
can use either the slot’s feature or a combination of
both slot and dialogue features for clustering. How-
ever, considering the uncertainty associated with
combining slot and dialogue features, we opt for
using the slot’s feature as the input for k-means in
this study. This choice allows us to group similar
slots into one cluster, ensuring each cluster is spe-
cialized and robust.

More specifically, given a slot Si, we use a fea-
ture representation function F to transform Si into
a vector vi = F (Si) within the semantic space.
In this work, we explore two methods for feature
representation: word embedding of the pre-trained
language model and the hidden representation de-
rived from the language model output. Subse-
quently, we allocate each slot Si to one of the clus-
ters Ck using the k-means algorithm based on vi:

Ck = k-means(F (Si)), k ∈ {1, · · · ,K} (1)

where Ck denotes the k-th cluster, and K repre-
sents the total number of clusters.

It is important to emphasize that all slots are pre-
defined manually. Therefore, the k-means model
should be initially fitted with the representations of
all known slots. During inference, if there are un-
known slots, their clusters Ck can be determined
by the nearest cluster centroid labels.

4.2. Deep Prefix Prompt Tuning
To maximize the utilization of the pre-trained large
language model and minimize resource consump-
tion during training, we follow Liu et al. (2022) to
adopt parameter-efficient prefix prompts instead of
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#dialogue: user: i'm looking for an indian restaurant,
preferably in the centre of town. #question: restaurant food #answer: indian

backbone model 

Prefix
Prompt
Expert

Self-attention

-th Layer

Self-attention

-th Layer

Self-attention

-th Layer

Prefix
Prompt
Expert

Backbone Model

(a) Slot Clustering (b) Deep Prefix Prompt Tuning

(c) Multiple Prefix Prompt Generation

Figure 2: Illustration of our proposed method, including (a) Slot clustering, (b) Deep Prefix Prompt Tuning,
and (c) Multiple Prefix Prompt Generation. Slot clustering is used to categorize all slots into distinct
clusters and establishes connections between slots in different domains. Deep Prefix Prompt Tuning is
our method to strengthen the LLM’s conditional generation. Multiple Prefix Prompt Generation shows
the complete pipeline of solving DST task.

fine-tuning the entire model. The primary reason
for avoiding fine-tuning is the necessity to train in-
dividual and specialized models for each cluster.
Fine-tuning the entire model for each cluster de-
mands substantial computing resources and leads
to a linear increase in the overall model parame-
ters with the number of clusters. Adopting an in-
dependent model approach mitigates these prob-
lems, leading to more efficient and manageable
training processes.

In this work, we use deep prefix prompt tuning to
train our autoregressive backbone model. In detail,
we incorporate K additional prefix prompt models
into the backbone model, each corresponding to
one of the K clusters. Each prefix prompt model
Φk comprises 2L prefix prompts Pi, where Φk rep-
resents the prefix prompt model, L is the number of
layers of the backbone model, and i ∈ {1, · · · , 2L}.
For the l-th layer of the backbone model, we con-
catenate P2l−1 to the key of l layer and P2l to the

value of the l layer:

Kl = [P2l−1,Kl]

Vl = [P2l, Vl]
(2)

Where l means the l-th layer of the backbone
model, Kl represents the key of the l-th layer, Vl

represents the value of the l-th layer, and Pk is the
k-th prefix prompt of the prefix prompt model.

Since we adopt a deep prefix prompt tuning ap-
proach, specifying a precise semantic prompt be-
comes challenging. Therefore, the prefix prompt is
initialized randomly and subsequently trained with
the data in the corresponding cluster. This method
allows the model to adapt and learn the specific nu-
ances of the cluster during the training process.

4.3. Generation & Optimization
After dividing the slot Si into cluster Ck and ob-
taining the corresponding prefix prompt model Φk,
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we concatenate the prefix prompt pk to the back-
bone model with the deep prefix prompting method.
Subsequently, we generate the value Vi in an au-
toregressive way:

wj =argmax(p(w | D,Si, w0, · · · ,
wj−1; Φk,Θ)), j ∈ [1, LVi

]
(3)

Vi = {w1, w2, · · · , wLVi
} (4)

where wj is the j-th word in Vi, D is the dialogue
history, Si is the slot, Φk is the k-th prefix prompt
model, Θ represents our backbone model, and LVi

is the length of Vi. Notably, given our QA approach
to generating the dialogue state, w0 is a prede-
termined word “answer” and indicates the answer
context.

During training, we use teacher forcing to train
the prefix prompts, and utilize cross-entropy loss
to optimize the prefix prompts:

L =

LVi∑
j=1

−ŵj log p(wj |D,Si, w0, · · · ,

wj−1; Φk,Θ)

(5)

where L represents the loss of the model and ŵj

is j-th word of the ground truth V̂i for the slot Si.
Throughout the entire training process, we keep

the parameters of the backbone model Θ fixed and
only adjust the parameters of the prefix prompts Φ
to minimize the loss L.

5. Experiments

5.1. Datasets
We conduct experiments on two widely used DST
datasets: MultiWOZ (Budzianowski et al., 2018)
and SGD (Rastogi et al., 2020). MultiWOZ is a
fully-labeled dataset consisting of human-human
written conversations covering various domains
and topics. It consists of over 8k dialogues span-
ning seven different domains and provides turn-
level annotations and descriptions of each slot la-
bel. We use MultiWOZ version 2.1, which ad-
dresses the noisy state annotations in the original
dataset (Eric et al., 2020). To keep in line with pre-
vious studies, we limit our experiments to only five
domains due to insufficient data for evaluation in
the remaining two domains. Similar to MultiWOZ,
the SGD dataset is a fully labeled collection of
machine-to-machine conversations across various
domains and topics. It comprises over 16K anno-
tated conversations spanning over 20 diverse do-
mains. Additionally, the dataset includes unseen
domains in the test data, allowing for the evalua-
tion of zero-shot performance, where models are
tested on domains they have not been explicitly

trained on. More detailed information about Mul-
tiWOZ and SGD can be found in Table 1.

5.2. Baseline Models
We compare our model with the following zero-
shot DST methods. TRADE (Wu et al., 2019)
proposes a transferable dialogue state generator
(TRADE) that uses a copy mechanism to generate
dialogue states from utterances, which mitigates
the reliance on domain ontology and strengthen
the knowledge sharing across domains. SGD-
baseline (Rastogi et al., 2020) encodes all the in-
tents, slots, and slot values for categorical slots
present in the schema into an embedded represen-
tation and uses a single model, shared among all
domains, to make predictions. TransferQA (Lin
et al., 2021) proposes a transferable generative
QA model that reformulates DST as a QA task
and uses a text-to-text model to extract dialogue
states. IC-DST (Hu et al., 2022) formulates DST
as a text-to-SQL task and proposes an in-context
learning (ICL) framework for DST, where a large
language model (LLM) takes a test instance and
a few exemplars as the input, and directly retrieve
the dialogue state. ChatGPT (Heck et al., 2023)
presents preliminary experimental results on the
ChatGPT research preview (OpenAI, 2021) and
evaluates the ability of ChatGPT as a dedicated
and dynamic dialogue state tracker. Prompter
(Aksu et al., 2023) uses descriptions of target do-
main slots to generate dynamic prefixes and then
trains adaptive prefixes with prefix-tuning for zero-
shot DST. MoE4DST (Wang et al., 2023) parti-
tions all observed data into semantically indepen-
dent clusters and trains several adapters for each
cluster. During inference, using a combination of
adapters generates the dialogue state.

5.3. Metrics
In the zero-shot experiments, we follow Wu et al.
(2019) to use slot accuracy(SA) and joint goal ac-
curacy (JGA) as evaluation metrics. SA is used
to measure the accuracy of individual slot predic-
tions. JGA evaluates the accuracy of slots for di-
alogue turns. A turn is correct only if all values
in the dialogue turn are predicted accurately. JGA
provides a comprehensive measure of the model’s
ability to capture the entire context and generate
correct predictions for all slots in a given dialogue
turn.

5.4. Settings
Our model is implemented in PyTorch with trans-
formers (Wolf et al., 2020). During the slot dividing
process, we utilize ChatGLM-6B (Du et al., 2022)
as the slot feature representation model and then
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Metric MultiWOZ SGD

Language EN EN
Speakers H2H M2M
#Domains 7 16
#Dialogues 8,438 16,142

#Turns 115,424 329,964
Avg.domains 1.80 1.84

Avg.turns 13.7 20.4
#Slots 25 214

#Values 4,510 14,139

Table 1: Information of used task-oriented dia-
logue corpora. H2H represents human-to-human
and M2M represents machine-to-machine. # rep-
resents the number and Avg represents the aver-
age number of each dialogue.

use k-means algorithm (Hartigan and Wong, 1979)
from scikit-learn (Pedregosa et al., 2011) as the
clustering method. During the whole training, we
freeze the parameters of the backbone model and
optimize the prefix prompt model using AdamW
(Loshchilov and Hutter, 2019) with a learning rate
set to 1e-2. The length of the prefix prompt is set
to 10. It is worth noting that we train each prefix
prompt model independently. For all experiments,
we use one NVIDIA A100 (40G) GPU.

5.5. Main Results
Results on MultiWOZ Table 2 shows the re-
sults of our proposed model on MultiWOZ under
the zero-shot setting. We find that our MoPE
outperforms all compared baselines on the aver-
age joint goal accuracy, achieving a 0.20% per-
formance gain over IC-DST Codex. Compared
to DST models smaller than 10B parameters, our
MoPE demonstrates an impressive improvement,
achieving over 20% increase in average joint goal
accuracy. However, we find that the performance
of our model in the hotel domain is notably lower
compared to the other four domains. This is prob-
ably because the hotel domain has many special-
ized slots, which share few similarities and correla-
tions with other domains (i.e. “hotel parking”, “ho-
tel stay”). We compute the specialized slot rate of
five domains, “hotel” and “restaurant” contain 40%
and 28% specialized slots respectively, while the
remaining three domains do not have any special-
ized slots.

Results on SGD Table 3 shows the results of our
proposed model on SGD. Our MoPE-DST signif-
icantly outperforms all compared baselines, with
an increase of more than 15% on average. We
observe that our MoPE-DST performs exception-
ally well on the “alarm” domain, achieving an im-
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Figure 3: Zero-shot results on the attraction do-
main with different representations of slot feature.

pressive joint goal accuracy of 83.41%. This ex-
ceptional performance can be attributed to the sim-
plicity of the “alarm” domain, which only comprises
two slots: “alarm name” and “alarm time”. Further-
more, there are many slots associated with “name”
and “time” in seen domains, contributing to the
model’s accuracy in predicting these slots.

5.6. Comparison with ICL
To thoroughly examine the initial capabilities of
the LLM and assess the impact of deep prefix
prompt tuning (DPPT) for LLM, we compare the
results of in-context learning (ICL) and DPPT. We
evaluate the performance of ICL and the perfor-
mance of DPPT using limited training data, com-
prising approximately 5% of the entire training data.
The experimental results presented in Table 5 in-
dicate that the LLM struggles to effectively solve
the DST problem with the initial frozen pre-trained
model, even when up to 5 exemplars are used.
Compared to the frozen LLM, integrating a well-
trained deep prefix prompt into the frozen LLM
notably enhances its performance. This demon-
strates that the pre-trained LLM might not be well
trained on DST datasets, and a well-trained deep
prefix prompt effectively enhances the LLM’s abil-
ity in DST.

5.7. Analysis on the specificity of prefix
prompt

To investigate the impact of prefix prompt speci-
ficity, we conduct experiments comparing the per-
formance of random prefix prompt and the special-
ized prefix prompt. As shown in Table 4, using
a random prefix prompt will cause a sharp drop
in performance, indicating that well-trained prefix
prompt is specialized for specific slots.

5.8. Analysis on the feature of clustering
The representation of the slot feature directly influ-
ences the clustering of slots and substantially im-
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Model Size Joint Goal Accuray
Attraction Hotel Restaurant Taxi Train Average

TRADE (Wu et al., 2019)
<1B

19.87 13.70 11.52 60.58 22.37 25.76
Prompter (Aksu et al., 2023) 35.80 19.20 26.70 66.30 39.50 37.20

MoE4DST (Wang et al., 2023) 41.35 27.72 33.76 66.90 43.81 42.71

ChatGPT (Heck et al., 2023) >100B 52.70 42.00 55.80 70.90 60.80 56.44
IC-DST Codex (Hu et al., 2022) 59.97 46.69 57.28 71.35 49.37 56.93

Ours(DPPT) <10B 56.99 31.37 52.44 70.63 63.97 55.08
Ours(MoPE) 60.39 34.14 55.89 71.27 63.97 57.13

Table 2: Zero-shot results on MultiWOZ2.1. All results are reported in joint goal accuracy (%) and the best
results on each column are bolded. DPPT represents deep prefix prompt tuning and MoPE represents
the mixture of prefix experts.

Model Joint Goal Accuray
Alarm Messaging Payment Train Average

SGD-baseline (Rastogi et al., 2020) 57.70 10.20 11.50 13.50 20.50
TransferQA (Lin et al., 2021) 58.30 13.30 24.70 17.40 25.90

MoE4DST (Wang et al., 2023) 68.80 28.70 19.40 42.30 39.80

Ours (DPPT) 81.52 59.93 30.45 46.32 54.55
Ours (MoPE) 83.41 60.56 31.33 46.32 55.40

Table 3: Zero-shot results on SGD. All results are reported in joint goal accuracy (%) and the best results
on each column are bolded.

pacts the final result. To study the effect of different
feature representations of clustering on dialogue
state tracking, we explore two ways for slot feature
representation: the word embedding of the LLM
and the hidden output of the LLM. The experimen-
tal results are shown in Figure 3. We compare the
results of different clustering features in the attrac-
tion domain under zero-shot experiments. We find
that using hidden output as the clustering feature is
significantly better than using the word embedding
feature. We find that clustering by hidden output
can group more similar slots together. Therefore,
our subsequent experiments use the hidden out-
put as the clustering feature.

5.9. Analysis on the number of clusters

To study the impact of the number of clusters, we
conduct experiments to investigate the influence
of the number of clusters. We compare the results
of different numbers of clusters in five zero-shot
domains. As shown in Table 6, as the number of
clusters increases, the results tend to first improve
and then decline. The best results are achieved
in three of five domains with 2 clusters. For the re-
maining two domains, the best results are obtained
with 1 and 3 clusters, respectively. We suspect
that the diverse distribution of training slots influ-
ences the variation in the optimal cluster number.
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Figure 4: The slot error distribution of MoPE and
DPPT.

Nevertheless, the results indicate that MoPE out-
performs DPPT in most cases.

5.10. Analysis on the similarity of slots

We utilize the cosine similarity to measure the sim-
ilarity between different slots and the average co-
sine similarity (ACS) of train and test slots is pre-
sented in Table 6. We find that a higher ACS of
train slots does not ensure better performance, but
better performance always aligns with higher ACS
of test slots.
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Prefix Prompt Type Attraction Hotel Restaurant Taxi Train
SA JGA SA JGA SA JGA SA JGA SA JGA

random prefix prompt 11.80 49.14 56.22 0.44 60.60 3.37 28.97 1.02 90.95 63.97
one prefix prompt (DPPT) 81.83 56.99 82.36 31.37 89.98 52.44 88.06 70.63 90.95 63.97

specialized prefix prompt (MoPE) 83.28 60.39 84.06 34.14 90.87 55.89 87.75 71.27 90.95 63.97

Table 4: The slot accuracy (%) and joint goal accuracy (%) results of random prefix prompt, one prefix
prompt, and specialized prefix prompt. For the random prefix prompt experiment, we assign a random
expert for each cluster label.

model num example SA (w/o none)

ICL

0 6.32
1 41.89
3 45.17
5 43.76

DPPT (5%) 0 85.95

Table 5: The results of the in-context learning (ICL)
and the deep prefix prompt tuning (DPPT) on Multi-
WOZ2.1. The results are reported in slot accuracy
(%). The result of DPPT is trained with 5% training
data and reported SA excludes the “none” value
when calculating.

5.11. Error Analysis
The slot error distribution of MoPE and DPPT
is presented in Figure 4. We categorize slot
errors into three types: partial-prediction, over-
prediction, and other errors. “partial-prediction”
and “over-prediction” indicate model predicts less
or more dialogue states, respectively. The slot er-
ror distribution shows that MoPE has fewer slot er-
rors overall, especially in the category of “partial-
prediction”. We suspect that because specialized
prompt makes LLM more sensitive to the rele-
vant contents in the dialogue, which results in less
“partial-prediction”. Therefore, the decrease in to-
tal slot errors leads to an overall improvement in
performance.

6. Conclusion

In this paper, we propose a new method named
MoPE to enhance the capability of LLM in solv-
ing the DST task. The primary motivation behind
this method is that the slots of different domains
may share some common features and establish-
ing the connections between slots from different
domains is helpful to improve the performance for
unseen domain prediction. We categorize slots
into different clusters and train a specialized ex-
pert for each cluster to improve the performance
of unseen slots. Moreover, we take a parameter-
efficient fine-tuning approach to train specialized
prefix prompts as experts, which significantly re-

domain K train ACS test ACS JGA

Attraction

1 0.6100 0.7718 56.99
2 0.6374 0.7718 60.39
3 0.6667 0.7718 56.11
4 0.6566 0.7718 50.02
5 0.6498 0.7650 54.27

Hotel

1 0.5907 0.7485 29.23
2 0.6041 0.7485 29.85
3 0.6680 0.7575 34.14
4 0.6682 0.7313 33.52
5 0.6031 0.7406 30.28

Restaurant

1 0.6020 0.7319 52.44
2 0.6209 0.7319 55.89
3 0.6579 0.7319 47.53
4 0.6358 0.7044 50.26
5 0.6950 0.7319 44.92

Taxi

1 0.6310 0.6542 70.63
2 0.6508 0.8000 71.27
3 0.6849 0.6542 64.34
4 0.6851 0.6542 64.65
5 0.6876 0.8000 70.38

Train

1 0.6285 0.6440 63.97
2 0.6679 0.6175 55.12
3 0.6731 0.6363 46.11
4 0.7043 0.6174 43.86
5 0.6741 0.5768 50.84

Table 6: The average cosine similarity of slot fea-
ture. K represents the number of clusters of MoPE.
ACS represents the average cosine similarity of
slots. train ACS is the average cosine similarity
of train slots and test ACS is the average cosine
similarity of test slots.

duces the training cost. Experimental results indi-
cate that our method achieves competitive perfor-
mances in zero-shot DST.

7. Limitations

We conclude the limitations of our method into two
aspects. Firstly, our method benefits from differ-
ent deep prefix prompts for different slots, which
deeply depends on the way of dividing slots. In
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this work, we only use k-means as the clustering
method and we believe that there are better clus-
tering methods such as Brich (Zhang et al., 1996),
Agglomerative (Gowda and Krishna, 1978), GMM
(Yang et al., 2012), and so on that can further im-
prove the performance of the model. Secondly,
our proposed method MoPE can be an indepen-
dent part outside the model which means that can
be a plug-in of LLMs to help them adapt to different
tasks better, but we only experiment on the DST
task with ChatGLM-6B.
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