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Abstract

Chinese spelling correction (CSC) aims to detect and correct spelling errors in Chinese texts. Most spelling errors
are phonetically or graphically similar to the correct ones. Thus, recent works introduce multimodal features to obtain
achievements. In this paper, we found that different spelling errors have various biases to each modality, highlighting
the importance of appropriately exploiting multimodal features. To achieve this goal, we propose the UGMSC
framework, which incorporates uncertainty into both the feature learning and correction stages. Specifically, the
UGMSC framework makes predictions with multimodal features and estimates the uncertainty of the corresponding
modalities. Then it dynamically fuses the features of all modalities for model learning, and performs spelling
correction under the uncertainty-guided strategy. Experimental results on three public datasets demonstrate that
the proposed approach provides a significant improvement compared with previous strong multimodal models. The
proposed framework is model-agnostic and can be easily applied to other multimodal models.
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1. Introduction

Chinese Spelling Correction (CSC) is an impor-
tant and fundamental task in Chinese NLP re-
search, which aims to detect and correct spelling
mistakes in Chinese texts. Unlike English, Chi-
nese has many pictographic and polysyllabic char-
acters, and there are no word separators between
Chinese characters. Chinese spelling errors are
constantly present in human writing, automatic
speech recognition (ASR), and optical character
recognition (OCR) systems (Yu et al., 2014), mak-
ing CSC a critical task for many language applica-
tions. According to Liu et al. (2010), about 83% of
spelling errors are phonologically similar to the cor-
rect ones, and 48% of errors are graphically similar
to the correct ones.

Early works have been done on the CSC task
with generative language model (Liu et al., 2013;
Yu and Li, 2014), heuristic methods (Chang et al.,
2015; Chu and Lin, 2015), sequence-to-sequence
models (Wang et al., 2019), with the rise of pre-
trained language models such as BERT (Devlin
et al., 2019), researches focus on pre-trained mod-
els (Hong et al., 2019; Zhang et al., 2020; Cheng
et al., 2020). Recently, multimodal methods have
received great attention from the academic com-
munity (Cheng et al., 2020; Zhang et al., 2021;
Xu et al., 2021; Huang et al., 2021; Liu et al.,
2021), suggesting that multimodal information is
really helpful for CSC task.

Although multimodal information is beneficial,
we found that different spelling errors have various

∗Yuzhi Zhang is the corresponding author.

Phonetically Similar Case

Input 我以前想要高 (gāo)诉你。
PSC 告 (gào) 皋 (gāo) 稿 (gǎo) 膏 (gāo)
GSC 富 (fù) 镐 (gǎo) 亮 (liàng) 嵩 (sōng)

Correct 我以前想要告 (gào)诉你。
Translate I wanted to tell you before.
Graphically Similar Case

Input 他睡很跑 (pǎo)，睡到忘了时间起床。
PSC 炮 (pào) 抛 (pāo) 袍 (páo) 好 (hǎo)
GSC 包 (bāo) 饱 (bǎo) 抱 (bào) 泡 (pào)

Correct 他睡很饱 (bǎo)，睡到忘了时间起床。

Translate He slept so well that he forgot to get up at
the right time.

Table 1: Examples of Chinese misspellings and
phonetically similar candidates (PSC), graphically
similar candidates (GSC) of the misspelled char-
acters. The misspellings and the corresponding
pinyins are highlighted in red, the correct ones are
in blue.

biases in each modality. Table 1 shows Chinese
misspellings in phonetically similar and graphically
similar cases. In the first case, we can correct
the misspelled character “高” with a phonetically
similar candidate: “告”. In the second case, we
can easily find the correct character “饱” in graph-
ically similar candidates. Except for the above
two modalities, the corresponding Hanyu Pinyin1

(pinyin) is also a crucial feature. The sequence of
the Chinese word “很跑” is “hěn, pǎo”, which is not
a valid pinyin sequence, so models can find more
position evidence of the misspelling.

1Pinyin is the official phonetic system of Chinese
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The above cases suggest that modalities
play various importance when correcting differ-
ent spelling errors. Therefore, models need
to learn how to determine which modality is
important, and how to deal with multimodal
information appropriately. Motivated by this,
we propose UGMSC2 (Uncertainty Guided Multi-
modal Spelling Correction), which is a framework
that leverages multimodal information under uncer-
tainty guidance. The guidance is integrated into
both the feature learning and correction phases.
The rationality relies on that uncertainty reflects the
importance of the modality information and the re-
liability that it can be utilized for making spelling
correction decisions.

Specifically, during the feature learning phase,
we build modality correctors, including three par-
tial correctors and a joint corrector, to make
modality-specific decisions. These decisions are
exploited for estimating uncertainties, represent-
ing the modality’s trustworthiness and importance.
They guide the learning and weighting of fea-
tures. Then, in the correction phase, we develop
an uncertainty-aware correction module to further
guide the multimodal knowledge. This module
fuses the modality-specific decisions to yield the
final correction decision.

The contributions of this paper can be summa-
rized as follows:

• To the best of our knowledge, we are the first
to investigate the importance of appropriately
using multimodal information in CSC task.

• We propose UGMSC, which is a framework to
leverage multimodal information in an appro-
priate manner under the guidance of modal-
ity uncertainty. We design modality correc-
tors and uncertain-aware correction modules
to incorporate uncertainty into feature and de-
cision steps, respectively.

• Extensive experiment results show that our
method achieves great progress compared
to strong multimodal baseline methods. Our
framework is also model-agnostic, indicating
that it can be easily applied to various ap-
proaches. The results demonstrate the effec-
tiveness and validity of our method.

2. Related Work

2.1. Chinese Spelling Correction
Manual rule based methods (Chu and Lin, 2015;
Jiang et al., 2012) are proposed in the early era
of CSC tasks. Then, traditional machine learning

2Our code are available at https://github.com/
LYL232/UGMSC

algorithms like Conditional Random Field (Wang
and Liao, 2015) and Hidden Markov Model (Zhang
et al., 2015) and statistics methods like Support
Vector Machine (Chen et al., 2013; Yu and Li,
2014; Liu et al., 2013) are used in researches of
this area, these methods focus on detecting the
errors and making decisions on the candidates of
the errors. Afterward, neural network based meth-
ods rose and became the mainstream of the CSC
task. Han et al. (2019); Wang et al. (2018) apply Bi-
LSTM to the CSC task regarding it as a sequence
labeling problem. Besides, the confusion set of
Chinese characters is widely used for handling the
similarity among the characters better (Wang et al.,
2019). Thanks to the great breakthrough of NLP
made by Transformer (Vaswani et al., 2017), pre-
trained language models such as BERT (Devlin
et al., 2019) are brought into the CSC task and be-
come the backbone of many recent works (Hong
et al., 2019; Zhang et al., 2020; Wang et al., 2021;
Zhu et al., 2022).

2.2. Multimodal Chinese Spelling
Correction

Multimodal methods are also generally favored
in the CSC task due to the regular pattern of
Chinese misspellings. SpellGCN (Cheng et al.,
2020) builds two similarity graphs for phonetic and
graphic similarities and makes use of them by
graph convolution network. PHMOSpell (Huang
et al., 2021) applies an adaptive gating module
on phonetic and graphic modal representation vec-
tors to compute prelogits vectors. ReaLiSe (Xu
et al., 2021) develops modality feature encoders
and a selective modality fusion mechanism to ob-
tain a multimodal representation vector for predic-
tion. PLOME (Liu et al., 2021) and CoSPA (Yang
and Yu, 2022) fuse multimodal representation vec-
tors and feed them into a Transformer encoder by
simply summing them and word embedding vec-
tors. Different from them, we argue that leverag-
ing multimodal features appropriately is also cru-
cial. We propose to utilize every modality under
the guidance of uncertainty.

3. Methodology

3.1. Problem Formulation and Overview
Given an original sequence consisting of N Chi-
nese characters X = (x1, x2, · · · , xN ), which con-
tains some error characters, the objective of the
CSC task is to output the correct sequence Y =
(y1, y2, · · · , yN ), where X and Y have the same
length. In most cases, mistaken characters are
only in the minority of the input X.

As shown in Figure 1, the proposed UGMSC
is a framework consisting of three main modules,

https://github.com/LYL232/UGMSC
https://github.com/LYL232/UGMSC
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Figure 1: The architecture of UGMSC. Multimodal encoders provide the representation vectors of the
modalities. Modality correctors learn the representation vectors in different ways to provide correction
predictions and estimate the uncertainty of the corresponding modalities. The joint corrector leverages all
the representation vectors through the UMF mechanism. Then an uncertainty-aware correction module
is applied to make decisions among the predictions of all these correctors.

including multimodal encoders, modality correc-
tors, and the uncertainty-aware correction mod-
ule. First, the input sequence X is encoded
by multimodal encoders to extract modality fea-
tures. Then, the encoded representation vectors
are fed to modality correctors, where each modal-
ity corrector predicts the correct token with dif-
ferent modality features and estimates the uncer-
tainty of the prediction. A special modality correc-
tor, called the joint corrector, learns the features of
all modalities fused by the UMF(Uncertainty-aware
Modality Fusion, introduced in §3.3.2) mechanism,
which introduces uncertainty for better modalities
feature learning. The uncertainty-aware correction
module then makes decisions among all the pre-
dictions based on all the uncertainties estimated
by all modality correctors.

3.2. Multimodal Encoders
Each encoder extracts a representation vector of a
single modality for each input Chinese character.
In this paper, we empirically use three encoders
to extract features from semantic, phonetic, and
graphic modalities, respectively.

Semantic Encoder. The semantic encoder ex-
tracts the representation vectors of the semantic
modality through word embeddings, it first projects
X to word embedding vectors, and does further pro-

cessing like sequence learning with Transformer
blocks over the embedding vectors to get the rep-
resentation vectors of the semantic modality: Hs =
(hs

1,hs
2, · · · ,hs

N ).

Phonetic Encoder. The phonetic encoder
learns the pinyin or acoustic features of the input
characters and outputs the representation vectors
of the phonetic modality: Hp = (hp

1,h
p
2, · · · ,h

p
N ).

One practicable approach is to consider pinyin as
another form of character embedding and apply
sequence learning over these embeddings.

Graphic Encoder. The graphic encoder en-
codes the graphic features, such as the images
of the input characters X, into the representa-
tion vectors of the graphic modality: Hg =
(hg

1,h
g
2, · · · ,h

g
N ). In general, convolutional neural

networks (CNNs) with character image input are
helpful.

3.3. Modality Correctors

As described in Table 1, error tokens have various
biases towards each modality. The naive modal-
ity features Hs, Hp, and Hg should be calibrated.
Modality correctors aim to predict the correct token
sequence Y based on the representation vectors
of particular modalities and to estimate the uncer-
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tainty of their predictions, which indicates the relia-
bility of the corresponding modalities.

Structure. All the correctors, including three par-
tial modality correctors (the phonetic, semantic,
and graphic correctors) and one joint correct, have
a similar structure: Transformer blocks and a
shared linear mapping. A corrector’s prediction
procedure can be formulated as follows:

R = Transformerl(H0)W + b,
P = Softmax(R),

(1)

where Transformerl is a l-layer Transformer, R =
(r1, r2, · · · , rN ) is the predict logits. W,b are the pa-
rameters of the shared linear mapping. H0 is the
representation vector sequence fed into the correc-
tor, where the details are introduced in §3.3.1 and
§3.3.2. P = (p1,p2, · · · ,pN ) is the predicted prob-
ability distribution of the corrector.

Uncertainty Computation. Previous works are
usually evaluated on two metrics: detection, indi-
cating whether a token is correct in a binary man-
ner; correction, aiming to put right the error tokens
(Liu et al., 2021; Yang and Yu, 2022). Therefore,
we design to compute uncertainties for both met-
rics that reflect how reliable the information is in
the detection and correction tasks. Concretely, un-
certainty is computed via the information entropy
(Shannon, 1948) of the correction and detection
distribution over the prediction. The detection dis-
tribution is a 0-1 distribution, where “1” means
that the input token is misspelled, the possibility
is pi(y = xi), i.e. the probability that the correc-
tor considers the input token xi to be correct. The
correction distribution is the probability distribution
of each token in the vocabulary, i.e. pi. Thus, the
uncertainty metrics can be formalized as follows:

Ed(pi) = −pi(y = xi)logpi(y = xi)

− pi(y ̸= xi)logpi(y ̸= xi),

Ec(pi) = −
∑
v∈V

pi(y = v)logpi(y = v),

ui = (Ec(pi), Ed(pi)) ,

(2)

where Ed is the detection level entropy, Ec is the
correction level entropy. V is the vocabulary set,
ui is the uncertainty metrics of the corrector for the
token xi.

3.3.1. Partial Modality Correctors

Partial modality correctors make predictions based
on the information of partial modalities, these cor-
rectors should cover all modalities, and then we
can infer the reliability of the modalities according

to the uncertainty metrics given by all partial modal-
ity correctors. In this paper, we build three partial
modality correctors: the semantic corrector makes
predictions based on the semantic modality repre-
sentation vectors, so the input features sequence
of the semantic corrector is Hs

0 = Hs. The phonetic
corrector and the graphic corrector make predic-
tions based on the phonetic and graphic modali-
ties, respectively. Since there are so many poly-
syllabic and graphically similar characters, it is dif-
ficult to predict the exact character only based on
the phonetic or graphic information alone. Thus,
we add the semantic information as an augmenta-
tion, by simply summing Hs to the representation
vectors of the corresponding modality, so the input
features of the phonetic corrector and the graphic
corrector can be computed as Hp

0 = Hp + Hs

and Hg
0 = Hg + Hs, respectively. We can also

use a learnable linear mapping of the concatena-
tion of Hs and the representation vectors of the
corresponding modality to be the input features if
Hs,Hp,Hg are of different sizes.

The augmented features are further fed into their
own partial modality correctors to calculate the log-
its and probability distributions. We obtain the log-
its Rs, Rp, and Rg from the semantic, phonetic, and
graphic correctors, respectively. Their probability
distributions are denoted as Ps, Pp, and Pg.

3.3.2. Joint Corrector

Uncertainty-aware Modality Fusion (UMF).
The joint corrector leverages information from all
modalities to make its predictions. For a better
fusion of features from all modalities, we develop
the uncertainty-aware modality fusion mechanism
to fuse all the modality representation vectors
under the guidance of the uncertainty metrics.
We build a simple neural network composed of
fully connected layers, i.e. multi-layer perceptron
(MLP), to learn the features of the uncertainty
metrics given by all partial correctors.

We observed that, in most cases, the prediction
probability is very close to 1 or 0, so the uncertainty
metrics are always close to 0 (see §4.7). There-
fore, to better capture the relationship between all
uncertainty metrics given by all partial correctors,
we compute the log scale of these metrics, be-
cause it is easier for a MLP to distinguish log(0.01)
and log(0.001) than 0.01 and 0.001. Formally,
we normalize all uncertainty metrics to the inter-
val (0,1) and compute their multi-scale features of
them to feed the MLP:

um(u) = MLP([ (u, 1−u, logu, log(1−u))

for u ∈ u]),
(3)

where u is a vector of normalized uncertainty met-
rics, [·] means the concatenation operation. the
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MLP maps the extended features to the values in
a specified size.

Then, the UMF mechanism fuses the represen-
tation vectors of all modalities under the guidance
of the uncertainty metrics us

i ,u
p
i ,u

g
i estimated by

partial modality correctors:

ms,mp,mg = σ (um([us
i ,u

p
i ,u

g
i ])) ,

hj
i = Fuse(ms · hs

i ,m
p · hp

i ,m
g · hg

i ),
(4)

where ms,mp,mg are positive scalars that indicate
the reliability of the semantic, phonetic, graphic
modality respectively. σ(·) is the Sigmoid func-
tion. Fuse is a simple operation that merges all
weighted modality representation vectors into the
input vector of the joint corrector, it can be a sum-
mation if all input vectors have the same size or
a linear mapping of the concatenation of all input
vectors.

Then, the joint corrector learns the fused modal-
ity representation vectors to make predictions:

Hj
0 = [hj

1,h
j
2, · · · ,h

j
N ]. (5)

The predict logits and the probability distribution of
the joint corrector are denoted as Rj and Pj .

3.4. Uncertainty-aware Correction
Although the joint corrector leverages information
from all modalities, the predictions of partial cor-
rectors remain valuable, because the UMF mech-
anism is in some cases unable to filter out the con-
fusing information from some modalities (see case
1 and case 2 in §4.7), so we make prediction deci-
sions among the predictions of all correctors under
the guidance of the uncertainty:

ωs
i, ω

p
i, ω

g
i, ω

j
i =Softmax

(
um([us

i,u
p
i,u

g
i,u

j
i ])
)
,

pu
i = Softmax

 ∑
C∈{s,p,g,j}

ωC
i rCi

 .
(6)

Then we choose the index of pu
i with the maximum

probability to be the correction result for token xi.

3.5. Direct Correctors Training
Since we make the prediction based on pu

i in
Eq.6, it is intuitive to optimize directly on pu

i , but
this leads to unbalanced training: the joint cor-
rector plays a major role, while the partial correc-
tors perform ill and make insignificant contributions
to the uncertainty-aware correction, e.g. in most
cases, pu

i ≈ pj
i , w

j
i ≈ 1, ws

i ≈ wg
i ≈ wp

i ≈
10−6. We attribute this to the fact that the joint
corrector has the strongest structure and it tackles
full information from all modalities, which induces
the uncertainty-correction correction module to in-
crease the weight of the joint corrector predictions

wj
i in most cases and decrease the weights of

the partial correctors ws
i , w

g
i , w

p
i . Then the partial

correctors receive more inaccurate gradients from
backward, they are not well trained and unable to
make accurate predictions, then ws

i , w
g
i , w

p
i are op-

timized to become smaller, forming a vicious cir-
cle. So we devise direct correctors training as Eq.
7 to ensure that the partial correctors are properly
optimized. We compute the cross entropy of all the
prediction probability distributions given by all the
correctors and pu

i , and then optimize the sum of
them:

L =
1

N

N∑
i=1

∑
p∈P

logpi(y = yi), (7)

where P = {ps,pp,pg,pj ,pu} is the set of all pre-
dict probability distributions.

4. Experiment

In this section, we apply our UGMSC framework
to multimodal models SCOPE (Li et al., 2022) and
ReaLiSe (Xu et al., 2021) for the CSC task and
introduce the evaluation results on the SIGHAN
benchmarks (Wu et al., 2013; Yu et al., 2014;
Tseng et al., 2015). We then perform a model-
agnostic experiment, ablation study, and case
study to verify the effectiveness of UGMSC.

4.1. Dataset and Metrics

Dataset. Following the training settings of
SCOPE, we use the datasets provided by Re-
aLiSe directly for training and evaluation. The
training dataset consists of SIGHAN13 (Wu et al.,
2013), SIGHAN14 (Yu et al., 2014), SIGHAN15
(Tseng et al., 2015) training data and the gen-
erated examples from (Wang et al., 2018), we
evaluate our method on the test dataset of
SIGHAN13, SIGHAN14, SIGHAN15. Following
previous works (Wang et al., 2019; Cheng et al.,
2020; Zhang et al., 2020), ReaLiSe converts the
SIGHAN datasets to the Simplified Chinese using
the OpenCC tool3.

Metrics. We use sentence-level precision, re-
call, and F1 as our evaluation metrics which are
widely used in the CSC task, including the detec-
tion and correction sub-tasks. In sentence-level
metrics, a sentence is considered to be detected
or corrected only if all the characters in the sen-
tence are successfully detected or corrected.

3https://github.com/BYVoid/OpenCC

https://github.com/BYVoid/OpenCC
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Dataset Method Detection Level Correction Level
Acc. Pre. Rec. F1 Acc. Pre. Rec. F1

SIGHAN13

FASpell (Hong et al., 2019) - 76.2 63.2 69.1 - 73.1 60.5 66.2
SpellGCN (Cheng et al., 2020) - 80.1 74.7 77.2 - 78.3 72.7 75.4
ReaLiSe† (Xu et al., 2021) 82.7 88.6 82.5 85.4 81.4 87.2 81.2 84.1
UGMSC(ReaLiSe)† 82.9 89.0 82.9 85.9 82.3 88.4 82.3 85.2
MLM-phonetics (Zhang et al., 2021) - 82.0 78.3 80.1 - 79.5 77.0 78.2
MDCSpell (Zhu et al., 2022) - 89.1 78.3 83.4 - 87.5 76.8 81.8
SCOPE† (Li et al., 2022) - 87.4 83.4 85.4 - 86.3 82.4 84.3
UGMSC(SCOPE)† 83.6 89.1 83.4 86.2 82.9 88.3 82.7 85.4

SIGHAN14

FASpell (Hong et al., 2019) - 61.0 53.5 57.0 - 59.4 52.0 55.4
SpellGCN (Cheng et al., 2020) - 65.1 69.5 67.2 - 63.1 67.2 65.3
ReaLiSe (Xu et al., 2021) 78.4 67.8 71.5 69.6 77.7 66.3 70.0 68.1
UGMSC(ReaLiSe) 78.8 67.9 72.5 70.1 78.2 66.8 71.3 69.0
MLM-phonetics (Zhang et al., 2021) - 66.2 73.8 69.8 - 64.2 73.8 68.7
MDCSpell (Zhu et al., 2022) - 70.2 68.8 69.5 - 69.0 67.7 68.3
SCOPE (Li et al., 2022) - 70.1 73.1 71.6 - 68.6 71.5 70.1
UGMSC(SCOPE) 80.5 72.5 71.2 71.8 80.0 71.6 70.2 70.9

SIGHAN15

FASpell (Hong et al., 2019) - 67.6 60.0 63.5 - 66.6 59.1 62.6
SpellGCN (Cheng et al., 2020) - 74.8 80.7 77.7 - 72.1 77.7 75.9
PLOME (Liu et al., 2021) - 77.4 81.5 79.4 - 75.3 79.3 77.2
MLM-phonetics (Zhang et al., 2021) - 77.5 83.1 80.2 - 74.9 80.2 77.5
ReaLiSe (Xu et al., 2021) 84.7 77.3 81.3 79.3 84.0 75.9 79.9 77.8
UGMSC(ReaLiSe) 85.6 78.7 82.4 80.5 84.9 77.2 81.0 79.1
MDCSpell (Zhu et al., 2022) - 80.8 80.6 80.7 - 78.4 78.2 78.3
SCOPE (Li et al., 2022) - 81.1 84.3 82.7 - 79.2 82.3 80.7
UGMSC(SCOPE) 87.8 83.9 82.8 83.3 87.1 82.4 81.3 81.9

Table 2: Detection and correction sentence-level performance (%) on the test sets of SIGHAN, where
precision (Pre.), recall (Rec.), and F1 are reported. Baseline results are directly taken from their re-
spective literature. Following (Xu et al., 2021). Results marked by “†” are calculated by applying simple
post-processing on the SIGHAN13 test set which removes all detected and corrected “的”, “地”, and “得”
from the model output before evaluation.

4.2. Baseline Methods

We compare the UGMSC(SCOPE) and
UGMSC(ReaLiSe) with the following methods:
FASpell (Hong et al., 2019) consists of a masked
language model (MLM) as a denoising autoen-
coder (DAE) and a decoder. SpellGCN (Cheng
et al., 2020) learns Chinese character similarity
knowledge from a fixed confusion set through
graph convolutional networks (GCNs). ReaLiSe
(Xu et al., 2021) leverages semantic, phonetic,
and graphic modalities and fuses them to improve
CSC task performance. MLM-phonetics (Zhang
et al., 2021) consists of a detection module and
a correction module, and then pre-trains them
with phonetic features. MDCSpell (Zhu et al.,
2022) enhances the performance of the correc-
tion network supported by a detection network.
PLOME (Liu et al., 2021) captures phonetic and
graphic features through GRU and performs
pinyin prediction as an auxiliary task. SCOPE (Li
et al., 2022) introduces a fine-grained auxiliary
character pronunciation prediction task to improve
the CSC task.

4.3. Main Results

We train our UGMSC(SCOPE) model with the
same training settings as SCOPE, and the same
procedure goes for UGMSC(ReaLiSe). The eval-
uation results on the SIGHAN test sets are shown
in Table 2. We can see that our UGMSC(SCOPE)
performs significantly better than all baseline mod-
els, our UGMSC(ReaLiSe) also performs much
better than its base model ReaLiSe, just by ap-
plying our framework to the previous multimodal
model with the same training settings, demonstrat-
ing the robustness of our framework. We achieve
performance improvements without paying much
attention to tuning the training hyper-parameters.
Following SCOPE, the metrics of SCOPE and
UGMSC(SCOPE) are reported after applying a
simple and effective post-processing trick: con-
strained iterative correction during inference. In
particular, SCOPE corrects a sentence by two in-
ferences, only the corrections that appear in the
position next to the position that is corrected in the
previous inference, and then restores the position
that is modified in each iteration.

The results of Table 2 show that the
UGMSC(SCOPE) performs better than SCOPE
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Model Pre. Rec. F1
Detection Level

PLOME∗ 75.6 79.6 77.6
UGMSC(PLOME)1 75.9 80.1 77.9
UGMSC(PLOME)2 76.2 79.9 78.0
UGMSC(PLOME)3 77.0 80.0 78.5

Correction Level
PLOME∗ 73.2 77.2 75.1
UGMSC(PLOME)1 73.4 77.4 75.4
UGMSC(PLOME)2 74.1 77.6 75.8
UGMSC(PLOME)3 75.0 77.8 76.4

Table 3: Results (%) of the reimplemented
PLOME(PLOME∗) and the PLOME model ap-
plying our framework with l Transformer lay-
ers of each corrector (UGMSC(PLOME)l) on the
SIGHAN15 test set (average of 5 experiments).

Model Pre. Rec. F1
Detection Level

ReaLiSe 77.9 78.5 78.1
UGMSC(ReaLiSe) 78.5↑ 79.3↑ 78.8↑
SCOPE 79.5 80.3 79.9
UGMSC(SCOPE) 81.8↑ 79.1 80.4↑

Correction Level
ReaLiSe 76.5 77.0 76.7
UGMSC(ReaLiSe) 77.5↑ 78.2↑ 77.8↑
SCOPE 77.7 78.7 78.4
UGMSC(SCOPE) 80.8↑ 78.1 79.4↑

Table 4: Results of UGMSC(ReaLiSe) and
UGMSC(SCOPE) on all SIGHAN test sets (aver-
age of all SIGHAN test sets). Baseline results are
directly taken from their respective literature.

in the precision and F1 score and signifi-
cantly outperforms all other baselines on all
SIGHAN test datasets in almost all metrics.
We can also observe that the improvement
of the UGMSC(SCOPE) model based on the
SCOPE model in the correction level F1 score
(+1.1/+0.8/+1.2 on SIGHAN13/14/15) is larger
than the improvement in the detection level
(+0.8/+0.2/+0.6 on SIGHAN13/14/15). This
indicates that leveraging modalities under the
guidance of uncertainty is beneficial for multi-
modal CSC models to correct character.

4.4. Effects of corrector layers

Our UGMSC framework introduces a hyper-
parameter: the layers Transformer of a corrector,
i.e. l in Eq. 1. We reimplement the PLOME (Liu
et al., 2021) model with PyTorch based on a public

Model Acc. Pre. Rec. F1

Detection Level

UGMSC(SCOPE) 84.0 81.8 79.1 80.4
-wo-DCT 81.9 78.0 78.8 78.3
-wo-UMF 82.6 80.4 76.9 78.6
-wo-UC 81.0 79.6 75.1 77.2

UGMSC(ReaLiSe) 82.4 78.5 79.3 78.8
-wo-DCT 81.9 78.0 78.1 78.0
-wo-UMF 81.9 77.5 78.4 77.9
-wo-UC 81.6 76.9 78.8 77.7

Correction Level

UGMSC(SCOPE) 83.3 80.8 78.1 79.4
-wo-DCT 81.0 76.5 77.2 76.8
-wo-UMF 82.1 78.3 76.9 77.6
-wo-UC 80.3 78.4 74.0 76.1

UGMSC(ReaLiSe) 81.8 77.5 78.2 77.8
-wo-DCT 81.2 76.9 77.1 76.9
-wo-UMF 81.1 76.2 77.0 76.5
-wo-UC 80.8 75.6 77.4 76.4

Table 5: Results of ablation study on all SIGHAN
test sets (average of all SIGHAN test sets), -wo-
DCT: without direct correctors training, -wo-UMF:
without uncertainty-aware modality fusion, -wo-
UC: without uncertainty-aware correction.

repository 4 and then apply UGMSC to the reimple-
mented PLOME model with different Transformer
layers of each corrector. We initialize these mod-
els with pre-trained parameters provided by the
official repository of the PLOME model and train
these models with the same training settings. We
then evaluate these models on the SIGHAN15 test
set and repeat the experiment 5 times. The aver-
age metrics are shown in Table 3.

The metrics of the reimplemented PLOME are
lower than those reported in their literature (the cor-
rection level F1 score drops from 77.2% to 75.1%),
which may be due to the lack of output pronunci-
ation mapping in the pre-trained parameters they
provide, or the difference between TensorFlow and
PyTorch.

Although UGMSC(PLOME) is statistically better,
the improvements are somehow limited with fewer
layers of the correctors, we attribute this to the
fact that the multimodal encoders of the PLOME
model are unaware of the positional information,
and therefore the correctors need to learn the
sentence-level features themselves. The scores
of the model applying our framework increase with
the number of layers of modality correctors, prov-
ing the validity of the modality correctors and the

4https://github.com/Zhouyuhao97/PLOME_
finetune_pytorch

https://github.com/Zhouyuhao97/PLOME_finetune_pytorch
https://github.com/Zhouyuhao97/PLOME_finetune_pytorch
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I 老 师 就 进 教 师
R 老 师 就 请 教 室
O 老 师 就 进 教 室
us 0.00 0.00 0.00 0.97 0.00 0.00
up 0.00 0.00 0.00 0.96 0.00 0.00
ug 0.00 0.00 0.00 0.95 0.00 0.00
uj 0.00 0.00 0.00 0.98 0.00 0.00
ωs 0.62 0.02 0.25 0.04 0.01 0.05
ωp 0.08 0.01 0.12 0.30 0.15 0.57
ωg 0.11 0.93 0.56 0.38 0.78 0.00
ωj 0.19 0.04 0.07 0.29 0.05 0.38

Table 6: Visualization of the key values during the
inference of ReaLiSe and UGMSC(ReaLiSe) of
case 1. “I” is the input sentence. “R” is the output
of ReaLiSe. “O” is the output of UGMSC(ReaLiSe)
(also the ground truth). s, p, g, and j represent the
semantic, phonetic, graphic, and joint corrector, re-
spectively. u is the normalized detection level en-
tropy in Eq.2. ω are the prediction weights in Eq.6.
misspelled and correct characters are marked in
red/blue.

superiority of our framework.

4.5. Model-Agnostic Experiment

As shown in Table 3 and Table 4, we success-
fully employ the UGMSC framework in 3 advanced
multimodal CSC models and outperform all the
base models in almost all metrics. Compared to
the ReaLiSe model, UGMSC(ReaLiSe) achieves
an absolute improvement of +0.9%/+1.4% detec-
tion/correction F1 on all SIGHAN test sets with the
same training settings, while UGMSC(SCOPE)
gains +0.6%/+1.3% compared to the base model
SCOPE, proving that our uncertainty guided multi-
modal framework is broadly applicable.

4.6. Ablation Study

We conduct ablation study on UGMSC(ReaLiSe)
and UGMSC(SCOPE) model with the following set-
tings: (wo-DCT) train the uncertainty-aware cor-
rection predict probability distribution pu

i in Eq.6
only; (-wo-UMF) replace the uncertainty-aware
modality fusion mechanism of the joint correc-
tor with simply summation; (-wo-UC) replace the
uncertainty-aware correction module with a simple
summation of the prediction logits provided by all
correctors. The average evaluation results of all
SIGHAN test sets are shown in Table 5. We can
see a significant drop in performance without these
components, confirming the effectiveness of these
components in our method.

I 明 天 早 上 八 点 中
R 明 天 早 上 八 点 中
O 明 天 早 上 八 点 钟
ga 0.19 0.13 0.16 0.13 0.28 0.19 0.23
mp 0.27 0.33 0.36 0.26 0.33 0.20 0.56
us 0.00 0.00 0.00 0.00 0.00 0.00 0.11
up 0.00 0.00 0.00 0.00 0.00 0.00 0.07
ug 0.00 0.00 0.00 0.00 0.00 0.00 0.16
uj 0.00 0.00 0.00 0.00 0.00 0.00 0.08
ωp 0.02 0.65 0.25 0.06 0.04 0.01 0.69
ωj 0.14 0.25 0.41 0.11 0.38 0.00 0.18

Table 7: Visualization of the key values during the
inference of ReaLiSe and UGMSC(ReaLiSe) of
case 2. mp, ga are the weights of phonetic modality
(i.e. the values indicating the importance of modal-
ities) given by UGMSC(ReaLiSe) and ReaLiSe re-
spectively, mp is mentioned in Eq.4. ga is taken
from the public code repository of the ReaLiSe
model. Other notations are the same as Table 6.

I 旁 边 的 人 头 手 册
R 旁 边 的 人 投 手 册
O 旁 边 的 人 偷 手 册
gt 1.00 1.00 1.00 1.00 1.00 1.00 1.00
ms 0.93 0.93 0.94 0.96 0.76 0.96 0.95
ga 0.19 0.26 0.15 0.21 0.41 0.22 0.26
mp 0.42 0.41 0.32 0.18 0.53 0.29 0.36
gv 0.12 0.05 0.06 0.10 0.41 0.04 0.04
mg 0.21 0.22 0.44 0.46 0.47 0.21 0.23
uj 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ωj 0.53 0.02 0.12 0.01 0.95 0.09 0.06

Table 8: Visualization of the key values during
the inference of ReaLiSe and UGMSC(ReaLiSe)
of case 3. ms, gt are the weights of the se-
mantic modality, mg, gv are the weights of the
graphic modality, ms,mg,mp is mentioned in Eq.4.
gt, ga, gv is taken from the public code repository of
the ReaLiSe model. Other notations are the same
as Table 6. and Table 7.

4.7. Case Study
Case 1 is shown in Table 6, which has a misspelled
character, the 6th character “师” is misspelled, and
the ReaLiSe model5 corrects the misspelled char-
acter but gives a wrong prediction on the 4th char-
acter “进”, which is not misspelled. Case 2 shows
a case where ReaLiSe leaves the mistaken char-
acter “中” while our model makes a correct predic-
tion.

Both case 1 and case 2 show the shortcom-
ings of fusing all modalities (semantic, phonetic,
graphic) to make predictions, which is inappropri-
ate in these situations. The ReaLiSe model, which
uses the selective modality fusion mechanism to
fuse modalities, makes incorrect predictions on the

5ReaLiSe official code repository: https:
//github.com/DaDaMrX/ReaLiSe

https://github.com/DaDaMrX/ReaLiSe
https://github.com/DaDaMrX/ReaLiSe
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character “进”, and the uncertainty metrics given
by the joint corrector of our UGMSC(ReaLiSe)
model for the characters “进” and in case 1 are
the highest among all modality correctors, but our
model makes correct predictions with the help of
the uncertainty-aware correction module. More-
over, the uncertainty metrics given by the graphic
corrector for the character “进” in case 1 and the
uncertainty metrics given by the phonetic correc-
tor for the character “中” in case 2 are the low-
est among the other uncertainty values, indicating
that there is confusing information present in other
modalities, suggesting us to use multimodal infor-
mation appropriately.

The case in Table 8 shows that the uncertainty-
aware modality fusion mechanism performs bet-
ter than the selective modality fusion mechanism
of ReaLiSe in this case, because the uncertainty
given by the joint corrector is very low, while the
prediction results come mainly from the joint cor-
rector (weight value is 0.95). Our model makes
the correct prediction while ReaLiSe fails, and our
model gives a lower gate value of the semantic
modality of the wrong character “头” among others,
while ReaLiSe remains very high on the contrary.

5. Conclusion

This paper proposes UGMSC, a framework that
aims to appropriately leverage multimodal infor-
mation under uncertainty guidance to improve the
performance of the CSC task. UGMSC first esti-
mates the uncertainty of the modalities and then in-
corporates these uncertainties into multimodal fea-
ture learning and correction decisions. Our frame-
work implementation achieves great progress on
the SIGHAN benchmarks compared to the base
models, the results of the experiments verify the
positive effects of our framework.
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Dataset Method Detection Level Correction Level
Acc. Pre. Rec. F1 Acc. Pre. Rec. F1

LEMON v2
ReaLiSe (Xu et al., 2021) 7.2 2.1 3.9 2.7 6.7 1.6 3.0 2.0
UGMSC(ReaLiSe) 33.0 15.0 18.0 16.3 31.1 11.8 14.1 12.8
SCOPE (Li et al., 2022) 29.4 13.1 18.3 15.3 27.9 10.9 15.2 12.7
UGMSC(SCOPE) 13.1 3.3 5.7 4.2 12.7 2.9 4.9 3.6

ECSpell
ReaLiSe (Xu et al., 2021) 17.1 8.4 14.0 10.5 15.3 6.3 10.6 7.9
UGMSC(ReaLiSe) 48.1 29.4 30.2 29.8 43.4 20.6 21.2 20.9
SCOPE (Li et al., 2022) 49.7 30.4 36.4 33.2 46.6 25.4 30.4 27.7
UGMSC(SCOPE) 26.6 11.8 16.9 13.9 25.6 10.5 14.9 12.3

Table 9: Detection and correction sentence-level performance (%) on the test sets of LEMON v2 and
ECSpell, where precision (Pre.), recall (Rec.), and F1 are reported.

A. Appendix

A.1. Experiments on Other Datasets

Dataset #Sent Avg. Length #Errors
SIGHAN13 1000 74.3 1224
SIGHAN14 1062 50.0 771
SIGHAN15 1100 30.6 703
LEMON v2 21734 35.2 12049
ECSpell 8172 41.8 6667

Table 10: Statistics of the SIGHAN, LEMON v2,
and ECSpell test datasets, including the number of
sentences, the average sentence length in tokens,
and the number of errors in characters.

Datasets such as LEMON (Wu et al., 2023)
and ECSpell (Lv et al., 2023) have been pub-
lished recently, we directly test the checkpoints
of UGMSC(SCOPE), SCOPE, UGMSC(ReaLiSe),
ReaLiSe6 on LEMON(v2) and ECSpell dataset7
without any fine-tuning, the results are shown in
Table 9. Since there are some exceptions (such
as unrecognized characters, different lengths of in-
put and target sequences, etc.) thrown during data
processing, we ignore these cases when testing
the models. The statistical information of the pro-
cessed LEMON and ECSpell datasets is shown in
Table 10.

Note that SCOPE performs much better than
UGMSC(SCOPE), while UGMSC(ReaLiSe) per-
forms much better than ReaLiSe, even than
SCOPE on the LEMON v2 test dataset. We
attribute this to the fact that the partial modal-
ity correctors are randomly initialized, and
UGMSC(SCOPE) has no multimodal encoders,
its partial modality correctors have to learn directly
from the embeddings, therefore the partial modal-
ity correctors are not well trained compared to the

6The checkpoint of ReaLiSe is downloaded from the
official repository

7We use the data directly from https://github.
com/gingasan/lemon

SCOPE model, which is a fully pre-trained model,
it’s reasonable that UGMSC(SCOPE) performs
poorly on new domain data.

UGMSC(ReaLiSe) learns from the hidden states
provided by pre-trained multimodal encoders, so
the partial modality correctors can be treated as
partially pre-trained, so UGMSC(ReaLiSe) outper-
forms ReaLiSe, as expected.

https://github.com/gingasan/lemon
https://github.com/gingasan/lemon
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