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Preface

Based on the success of past low-resource machine translation (MT) workshops at AMTA 2018, MT
Summit 2019, AACL-IJCNLP 2020, AMTA 2021, COLING-2022 & EACL-2023, we introduce seventh
LoResMT workshop at ACL 2024 (https://2024.aclweb.org/). In the past few years, machine translation
(MT) performance has improved significantly. With the development of new techniques such as mul-
tilingual translation and transfer learning, the use of MT is no longer a privilege for users of popular
languages. However, the goal of expanding MT coverage to more diverse languages is hindered by the
fact that MT methods require large amounts of data to train quality systems. This has made developing
MT systems for low-resource languages challenging. Therefore, the need for developing comparable
MT systems with relatively small datasets remains highly desirable.

Despite the advancements in MT technologies, creating an MT system for a new language or enhancing
an existing one still requires a significant amount of effort to gather the necessary resources. The data-
intensive nature of neural machine translation (NMT) approaches necessitates parallel and monolingual
corpora in various domains, which are always in high demand. Developing MT systems also require
dependable evaluation benchmarks and test sets. Furthermore, MT systems rely on numerous natural
language processing (NLP) tools to pre-process human-generated texts into the required input format
and post-process MT output into the appropriate textual forms in the target language. These tools in-
clude word tokenizers/de-tokenizers, word segmenters, and morphological analyzers, among others. The
quality of these tools significantly impacts the translation output, yet there is a limited discourse on their
methods, their role in training different MT systems, and their support coverage in different languages.

LoResMT is a platform that aims to facilitate discussions among researchers who are working on ma-
chine translation (MT) systems and methods for low-resource, under-represented, ethnic, and endangered
languages. The goal of the platform is to address the challenges associated with the development of MT
systems for languages that have limited resources or are at risk of being lost.

This year, LoResMT received research papers covering many languages spoken worldwide. The work-
shop received many papers on large language model (LLM) methods for MT. The acceptance rate of
LoResMT this year is 51.28%. Aside from the research papers, LoResMT also featured two invited
talks. These talks allowed participants to hear from experts in the field of MT and learn about the latest
developments and challenges in MT for low-resource languages.

The program committee members play a crucial role in ensuring the success of the workshop. They
review the submissions and provide constructive feedback to help the authors refine their papers and
ensure they meet the set standards. Without their dedication, expertise, and hard work, the workshop
would not be possible. The authors who submitted their work to LoResMT are also an integral part of
the workshop’s success. Their research and contributions offer new insights into the field of machine
translation for low-resource languages, and their participation enriches the discussions and fosters col-
laboration. We are sincerely grateful to both the program committee members and the authors for their
invaluable contributions and for making LoResMT a success.

Kat, Valentin, Nathaniel, Atul, Chao
(On behalf of the LoResMT chairs)
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Keynote Talk: Hyperparameter Optimization for
Low-Resource Machine Translation

Kevin Duh
Johns Hopkins University, USA

Abstract: Neural Machine Translation models are full of hyperparameters. To obtain a good model,
one must carefully experiment with hyperparameters such as the number of layers, the number of hid-
den nodes, the type of non-linearity, the learning rate, and the drop-out parameter, just to name a few.
I will discuss general hyperparameter optimization algorithms—including those based on evolutionary
strategies, Bayesian techniques, and bandit learning–that can automate this laborious process. Further,
I will argue that hyperparameter optimization is especially valuable for low-resource settings, where
commonly-used hyperparameters are often suboptimal and small data sizes afford larger search spaces.
Finally, I will discuss benchmarks and datasets for evaluating hyperparameter optimization algorithms
in practice.

Bio: Kevin Duh is a senior research scientist at the Johns Hopkins University Human Language Technol-
ogy Center of Excellence (JHU HLTCOE). He is also an assistant research professor in the Department
of Computer Science and a member of the Center for Language and Speech Processing (CLSP). His
research interests lie at the intersection of Natural Language Processing and Machine Learning, in par-
ticular on areas relating to machine translation, semantics, and deep learning. Previously, he was assistant
professor at the Nara Institute of Science and Technology (2012-2015) and research associate at NTT
CS Labs (2009-2012). He received his B.S. in 2003 from Rice University, and PhD in 2009 from the
University of Washington, both in Electrical Engineering.
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Keynote Talk: TBD
Loïc Barrault

Meta AI

Abstract: TBD

Bio: Loïc Barrault (M) is a Research Scientist at Meta AI. Previously, he was an Associate Professor at
LIUM, University of Le Mans. He obtained his PhD at the University of Avignon in 2008 in the field of
automatic speech recognition. Then he did 2 years as researcher and 9 years as Associate Professor at
LIUM, Le Mans Université followed by 2 years as Senior Lecturer in the NLP group of the University
of Sheffield. Loïc Barrault participated in many international projects, namely EuroMatrix+, MateCAT,
DARPA BOLT, and national projects, namely ANR Cosmat, “Projet d’Investissement d’Avenir” PACTE
and a large industrial project PEA TRAD. He coordinated the EU ChistERA M2CR project and is cur-
rently actively involved in the ChistERA ALLIES project and the French ANR ON-TRAC project. His
research work focuses on statistical and neural machine translation, by including linguistics aspects (fac-
tored neural machine translation), by considering multiple modalities (multimodal neural machine trans-
lation) and by designing lifelong learning methods for MT. He is one of the organisers of the Multimodal
Machine Translation shared task at WMT.
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Tuning LLMs with Contrastive Alignment Instructions for Machine
Translation in Unseen, Low-resource Languages

Zhuoyuan Mao∗ and Yen Yu
Apple

kevinmzy@gmail.com, yen_yu@apple.com

Abstract

This article introduces contrastive alignment in-
structions (AlignInstruct) to address two chal-
lenges in machine translation (MT) on large lan-
guage models (LLMs). One is the expansion of
supported languages to previously unseen ones.
The second relates to the lack of data in low-
resource languages. Model fine-tuning through
MT instructions (MTInstruct) is a straightfor-
ward approach to the first challenge. However,
MTInstruct is limited by weak cross-lingual sig-
nals inherent in the second challenge. AlignIn-
struct emphasizes cross-lingual supervision via
a cross-lingual discriminator built using statis-
tical word alignments. Our results based on
fine-tuning the BLOOMZ models (1b1, 3b, and
7b1) in up to 24 unseen languages showed that:
(1) LLMs can effectively translate unseen lan-
guages using MTInstruct; (2) AlignInstruct led
to consistent improvements in translation qual-
ity across 48 translation directions involving
English; (3) Discriminator-based instructions
outperformed their generative counterparts as
cross-lingual instructions; (4) AlignInstruct im-
proved performance in 30 zero-shot directions.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Chowdhery et al., 2022; Scao et al., 2022;
Touvron et al., 2023a; Muennighoff et al., 2023;
OpenAI, 2023; Anil et al., 2023; Touvron et al.,
2023b) achieved good performance for a wide
range of NLP tasks for prevalent languages. How-
ever, insufficient coverage for low-resource lan-
guages remains to be one significant limitation.
Low-resource languages are either not present, or
orders of magnitude smaller in size than domi-
nant languages in the pre-training dataset. This
limitation is in part due to the prohibitive cost in-
curred by curating good quality and adequately

∗Currently at Sony Group Corporation. Work done during
Apple internship.
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Figure 1: Average chrF++ scores of BLOOMZ mod-
els across 24 unseen languages, comparing settings of
without fine-tuning, fine-tuning with MTInstruct, and
fine-tuning that combines MTInstruct and AlignInstruct.

sized datasets for pre-training. Incrementally adapt-
ing existing multilingual LLMs to incorporate an
unseen, low-resource language thus becomes a cost-
effective priority to address this limitation. Previ-
ous study (de la Rosa and Fernández, 2022; Müller
and Laurent, 2022; Yong et al., 2023) explored ex-
tending language support using either continual
pre-training (Neubig and Hu, 2018; Artetxe et al.,
2020; Muller et al., 2021; Ebrahimi and Kann,
2021), or parameter efficient fine-tuning (PEFT)
methods (Pfeiffer et al., 2020; Hu et al., 2022; Liu
et al., 2022) on monolingual tasks. Extending lan-
guage support for cross-lingual tasks remains un-
derexplored due to the challenge of incrementally
inducing cross-lingual understanding and genera-
tion abilities in LLMs (Yong et al., 2023).

This study focused on machine translation (MT)
to highlight the cross-lingual LLM adaptation chal-
lenge. The challenge lies in enabling translation
for low-resource languages that often lack robust
cross-lingual signals. We first explored the effi-
cacy of fine-tuning LLMs with MT instructions
(MTInstruct) in unseen, low-resource languages.
MTInstruct is a method previously shown to bol-
ster the translation proficiency of LLMs for sup-
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ported languages (Li et al., 2023). Subsequently,
given that cross-lingual alignments are subopti-
mal in LLMs as a result of data scarcity of low-
resource languages, we proposed contrastive align-
ment instructions (AlignInstruct) to explicitly pro-
vide cross-lingual supervision during MT fine-
tuning. AlignInstruct is a cross-lingual discrim-
inator formulated using statistical word alignments.
Our approach was inspired by prior studies (Lam-
bert et al., 2012; Ren et al., 2019; Lin et al., 2020;
Mao et al., 2022), which indicated the utility of
word alignments in enhancing MT. In addition to
AlignInstruct, we discussed two word-level cross-
lingual instruction alternatives cast as generative
tasks for comparison with AlignInstruct.

Our experiments fine-tuned the BLOOMZ mod-
els (Muennighoff et al., 2023) of varying sizes
(1b1, 3b, and 7b1) for 24 unseen, low-resource
languages, and evaluated translation on OPUS-
100 (Zhang et al., 2020) and Flores-200 (Costa-
jussà et al., 2022). We first showed that MTIn-
struct effectively induced the translation capabili-
ties of LLMs for these languages. Building on the
MTInstruct baseline, the multi-task learning com-
bining AlignInstruct and MTInstruct resulted in
stronger translation performance without the need
for additional training corpora. The performance
improved with larger BLOOMZ models, as illus-
trated in Fig. 1, indicating that AlignInstruct is
particularly beneficial for larger LLMs during MT
fine-tuning. When compared with the generative
variants of AlignInstruct, our results indicated that
discriminative instructions better complemented
MTInstruct. Furthermore, merging AlignInstruct
with its generative counterparts did not further im-
prove translation quality, underscoring the efficacy
and sufficiency of AlignInstruct in leveraging word
alignments for MT.

In zero-shot translation evaluation on the OPUS
benchmark, AlignInstruct exhibited improvements
over the MTInstruct baseline in 30 zero-shot di-
rections between non-English languages, when ex-
clusively fine-tuned with three unseen languages
(German, Dutch, and Russian). However, when in-
corporating supported languages (Arabic, French,
and Chinese) the benefits of AlignInstruct were
only evident in zero-shot translations where the
target language was a supported language. In addi-
tion, to interpret the inherent modifications within
the BLOOMZ models after applying MTInstruct
or AlignInstruct, we conducted a visualization of
the layer-wise cross-lingual alignment capabilities

of the model representations.

2 Methodology

This section presents MTInstruct as the baseline,
and AlignInstruct. The MTInstruct baseline in-
volved fine-tuning LLMs using MT instructions.
AlignInstruct dealt with the lack of cross-lingual
signals stemming from the limited parallel training
data in low-resource languages. The expectation
was enhanced cross-lingual supervision cast as a
discriminative task without extra training corpora.
Following this, we introduced two generative vari-
ants of AlignInstruct for comparison.1

2.1 Baseline: MTInstruct
Instruction tuning (Wang et al., 2022; Mishra et al.,
2022; Chung et al., 2022; Ouyang et al., 2022; Sanh
et al., 2022; Wei et al., 2022) has been shown to
generalize LLMs’ ability to perform various down-
stream tasks, including MT (Li et al., 2023).

Given a pair of the parallel sentences,(
(xi)

N
1 , (yj)

M
1

)
, where (xi)

N
1 := x1x2 . . . xN ,

(yj)
M
1 := y1y2 . . . yM . xi, yj ∈ V are members

of the vocabulary V containing unique tokens that
accommodate languages X and Y . Li et al. (2023)
showed that the following MT instructions (MTIn-
struct) can improve the translation ability in an
LLM with a limited number of parallel sentences:

• Input: “Translate from Y to X .
Y : y1y2 . . . yM .
X: ”

• Output: “x1x2 . . . xN .”

Note that Li et al. (2023) demonstrated the util-
ity of MTInstruct solely within the context of fine-
tuning for languages acquired at pre-training phase.
This study called for an assessment of MTInstruct
on its efficacy for adapting to previously unsup-
ported languages, denoted as X , accompanied by
the parallel data in a supported language Y .

2.2 AlignInstruct
Word alignments have been demonstrated to en-
hance MT performance (Lambert et al., 2012; Ren
et al., 2019; Lin et al., 2020; Mao et al., 2022),
both in the fields of statistical machine translation
(SMT) (Brown et al., 1993) and neural machine
translation (NMT) (Sutskever et al., 2014; Bah-
danau et al., 2015). Ren et al. (2019) and Mao

1We also discussed monolingual instructions for MT fine-
tuning in App. F.
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--- Input ---
Translate from English to Japanese.
English: What’s the future of generative AI?
Japanese:
--- Output ---
生成 AI の未来はどうなるでしょうか?

--- Input ---
Given the following parallel sentence between English and Japanese, 
judge whether the assertion is True or False.
English: What’s the future of generative AI?
Japanese: 生成 AI の未来はどうなるでしょうか?
Assertion: “generative” can be aligned with “生成” statistically.
--- Output ---
True (or False)

ABC ---いろは

Multilingual Parallel Corpora

English-Japanese 
Parallel Corpora

A Sentence Pair Example 
between English and Japanese

MTInstruct AlignInstruct

Alignment Extractor:
IBM Model 2 (FastAlign)

Multilingual Training

A Sentence Pair Example 
between English and Japanese
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Figure 2: Proposed instruction tuning methods combining MTInstruct (Sec. 2.1) and AlignInstruct (Sec. 2.2)
for LLMs in MT tasks. ⊕ denotes combining multiple instruction patters with a specific fine-tuning curriculum
(Sec. 3.2). IBM Model 2 indicates word alignment model of statistical machine translation (Brown et al., 1993).

et al. (2022) reported the utility of SMT-derived
contrastive word alignments in guiding encoder-
decoder NMT model training. Built upon their
findings, we introduced AlignInstruct for bolstering
cross-lingual alignments in LLMs. We expected
AlignInstruct to enhancing translation performance
particularly for languages with no pre-training data
and limited fine-tuning data.

As shown in Fig. 2, we employed FastAl-
ign (Dyer et al., 2013) to extract statistical word
alignments from parallel corpora. Our approach de-
pended on a trained FastAlign model (IBM Model
2, Brown et al., 1993) to ensure the quality of the ex-
tracted word pairs. These high-quality word align-
ment pairs were regarded as “gold” word pairs for
constructing AlignInstruct instructions.2 Assuming
one gold word pair (xkxk+1, ylyl+1yl+2) was pro-
vided for the sentence pair

(
(xi)

N
1 , (yj)

M
1

)
, the

AlignInstruct instruction reads:

• Input: “Given the following parallel sentence
between Y and X , judge whether the assertion
is True or False.
Y : y1y2 . . . yM .
X: x1x2 . . . xN .
Assertion: “ylyl+1yl+2” can be aligned with
“xkxk+1” statistically.”

• Output: “True” (or “False”)

Instructions with the “False” output were con-
structed by uniformly swapping out part of the

2Note that these word pairs may not necessarily represent
direct translations of each other; instead, they are word pairs
identified based on their co-occurrence probability within the
similar context. Refer to IBM model 2 in SMT.

word pair to create misalignment. We anticipated
that this treatment forced the model to learn to infer
the output by recognizing true alignment-enriched
instructions. This would require the model to en-
code word-level cross-lingual representation, a cru-
cial characteristic for MT tasks.

2.3 Generative Counterparts of AlignInstruct
Previous studies (Liang et al., 2022; Yu et al., 2023)
have suggested the importance of both discrimi-
native and generative tasks in fine-tuning LLMs.
We accordingly considered two generative variants
of AlignInstruct. We then compared them with
AlignInstruct to determine the most effective train-
ing task. As detailed in Sec. 4, our results indicated
that these variants underperformed AlignInstruct
when applied to unseen, low-resource languages.

2.3.1 HintInstruct
HintInstruct as a generative variant of AlignIn-
struct was instructions containing word alignment
hints. It was inspired by Ghazvininejad et al.
(2023), where dictionary hints were shown
to improve few-shot in-context leaning. In-
stead of relying on additional dictionaries,
we used the same word alignments described
in Sec. 2.2, which were motivated by the
common unavailability of high-quality dictio-
naries for unseen, low-resource languages. Let
{(xksxks+1 . . . xks+ns , ylsyls+1 . . . yls+ms)}Ss=1

be S word pairs extracted from the sentence
pair

(
(xi)

N
1 , (yj)

M
1

)
. HintInstruct follows the

instruction pattern:

• Input: “Use the following alignment hints
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and translate from Y to X .
Alignments between X and Y :
– (xk1xk1+1 . . . xk1+n1 , yl1yl1+1 . . . yl1+m1),
– (xk2xk2+1 . . . xk1+n1 , yl2yl2+1 . . . yl2+m2),
. . .,
– (xkSxkS+1 . . . xkS+nS

, ylSylS+1 . . . ylS+mS
),

Y : y1y2 . . . yM .
X: ”

• Output: “x1x2 . . . xN .”

where S denotes the number of the word alignment
pairs used to compose the instructions. Different
from AlignInstruct, HintInstruct expects the trans-
lation targets to be generated.

2.3.2 ReviseInstruct
ReviseInstruct was inspired by Ren et al. (2019)
and Liu et al. (2020) for the notion of generating
parallel words or phrases, thereby encouraging a
model to encode cross-lingual alignments. A Re-
viseInstruct instruction contained a partially cor-
rupted translation target, as well as a directive to
identify and revise these erroneous tokens. To-
kens are intentionally corrupted at the granularity
of individual words, aligning with the word-level
granularity in AlignInstruct and HintInstruct. Revi-
seInstruct follows the instruction pattern:3

• Input: “Given the following translation of X
from Y , output the incorrectly translated word
and correct it.
Y : y1y2 . . . yM .
X: x1x2 . . . xkxk+1 . . . xk+n . . . xN .”

• Output: “The incorrectly translated
word is "xkxk+1 . . . xk+n". It should be
"xjxj+1 . . . xj+m".”

3 Experimental Settings

3.1 Backbone Models and Unseen Languages
Our experiments fine-tuned the BLOOMZ mod-
els (Muennighoff et al., 2023) for MT in un-
seen, low-resource languages. BLOOMZ is an
instruction fine-tuned multilingual LLM from
BLOOM (Scao et al., 2022) that supports transla-
tion across 46 languages. Two lines of experiments
evaluated the effectiveness of the MTInstruct base-
line and AlignInstruct:
BLOOMZ+24 Tuning BLOOMZ-7b1, BLOOMZ-
3b, and BLOOMZ-1b14 for 24 unseen, low-
resource languages. These experiments aimed to:

3We illustrated examples of HintInstruct and ReviseIn-
struct in App. E for reference.

4https://huggingface.co/bigscience/bloomz

(1) assess the effectiveness of AlignInstruct in mul-
tilingual, low-resource scenarios; (2) offer compari-
son across various model sizes. We used the OPUS-
100 (Zhang et al., 2020)5 datasets as training data.
OPUS-100 is an English-centric parallel corpora,
with around 4.5M parallel sentences in total for 24
selected languages, averaging 187k sentence pairs
for each language and English. Refer to App. A
for training data statistics. We used OPUS-100
and Flores-200 (Costa-jussà et al., 2022)6 for eval-
uating translation between English and 24 unseen
languages (48 directions in total) on in-domain and
out-of-domain test sets, respectively. The identical
prompt as introduced in Sec. 2.1 was employed for
inference. Inferences using alternative MT prompts
are discussed in App. G.
BLOOMZ+3 Tuning BLOOMZ-7b1 with three
unseen languages, German, Dutch, and Russian,
or a combination of these three unseen languages
and another three seen (Arabic, French, and Chi-
nese). We denote the respective setting as de-nl-
ru and ar-de-fr-nl-ru-zh. These experiments as-
sessed the efficacy of AlignInstruct in zero-shot
translation scenarios, where translation directions
were not presented during fine-tuning, as well as
the translation performance when incorporating
supported languages as either source or target lan-
guages. To simulate the low-resource fine-tuning
scenario, we randomly sampled 200k parallel sen-
tences for each language. For evaluation, we used
the OPUS-100 supervised and zero-shot test sets,
comprising 12 supervised directions involving En-
glish and 30 zero-shot directions without English
among six languages.

Notably, BLOOMZ’s pre-training data includes
the English portion of the Flores-200 dataset, po-
tentially leading to data leakage during evalua-
tion (Muennighoff et al., 2023; Zhu et al., 2023a).
To mitigate this, our evaluation also compared
translation quality before and after fine-tuning,
thereby distinguishing the genuine improvements
in translation capability attributable to the fine-
tuning process (refer to the results in Sec. 4).

3.2 Training Details and Curricula
The PEFT method, LoRA (Hu et al., 2022), was
chosen to satisfy the parameter efficiency require-
ment for low-resource languages, as full-parameter
fine-tuning would likely under-specify the mod-

5https://opus.nlpl.eu/opus-100.php
6https://github.com/facebookresearch/flores/

blob/main/flores200/README.md
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BLOOMZ
Objective

OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en
model BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

BLOOMZ-7b1

w/o fine-tuning 3.61 8.82 47.81 6.70 18.49 51.68 2.00 9.35 36.54 9.95 24.47 52.05
Individual objectives
MTInstruct 11.54 25.33 64.54 18.59 33.25 69.84 3.30 17.10 40.58 11.37 27.14 56.33
AlignInstruct 4.73 9.23 49.85 5.32 12.90 53.26 1.97 8.90 42.35 3.47 11.93 39.58
Multiple objectives with different curricula
MT+Align 12.28 26.17 65.54 18.72 34.02 70.69 3.26 17.20 41.07 11.60 27.38 56.98
Align→MT 11.73 25.48 64.54 17.54 32.62 69.76 3.35 17.21 40.85 11.32 27.21 56.50
MT+Align→MT 12.10 26.16 65.43 18.23 33.54 70.60 3.28 17.26 41.13 11.48 27.34 56.78

BLOOMZ-3b

w/o fine-tuning 4.63 9.93 48.53 5.90 16.38 48.05 2.00 9.09 39.52 5.86 18.56 47.03
Individual objectives
MTInstruct 10.40 23.08 62.28 16.10 31.15 68.36 2.85 16.23 39.21 8.92 24.57 53.33
AlignInstruct 1.70 4.05 43.89 0.87 3.20 41.93 0.16 3.09 31.10 0.10 1.80 29.46
Multiple objectives with different curricula
MT+Align 10.61 23.64 62.84 16.73 31.51 68.52 2.95 16.62 39.83 9.50 25.16 54.35
Align→MT 10.22 22.53 61.99 15.90 30.31 67.79 3.02 16.43 39.46 9.07 24.70 53.71
MT+Align→MT 10.60 23.35 62.69 16.58 31.64 68.98 2.93 16.57 39.78 9.41 25.08 54.13

BLOOMZ-1b1

w/o fine-tuning 3.76 7.57 46.98 4.78 14.11 49.34 1.24 6.93 38.13 3.49 14.56 43.26
Individual objectives
MTInstruct 7.42 17.85 57.53 11.99 25.59 63.93 2.11 14.40 36.35 5.33 20.65 48.83
AlignInstruct 2.51 5.29 45.17 3.13 8.92 48.48 0.35 3.79 31.70 1.35 6.43 33.63
Multiple objectives with different curricula
MT+Align 7.80 18.48 57.77 12.57 25.92 64.03 2.16 14.54 37.05 5.46 20.90 49.31
Align→MT 7.49 18.09 57.67 11.80 24.70 63.29 2.08 14.28 36.61 5.24 20.53 48.76
MT+Align→MT 7.98 18.61 57.94 12.43 25.78 63.93 2.16 14.46 37.02 5.37 20.67 49.01

Table 1: Results of BLOOMZ+24 fine-tuned with MTInstruct and AlignInstruct on different curricula as
described in 3.2. Scores that surpass the MTInstruct baseline are marked in bold.

els.See App. B for implementation details. How
AlignInstruct and MTInstruct are integrated into
training remained undetermined. To that end, we
investigated three training curricula:
Multi-task Fine-tuning combined multiple tasks
in a single training session (Caruana, 1997). This
was realized by joining MTInstruct and AlignIn-
struct training data, denoted as MT+Align.7

Pre-fine-tuning & Fine-tuning arranges fine-
tuning in a two-stage curriculum (Bengio
et al., 2009), first with AlignInstruct, then
with MTInstruct.8 This configuration, denoted
as Align→MT, validates whether AlignInstruct
should precede MTInstruct.
Mixed Fine-tuning (Chu et al., 2017) arranged the
above curricula to start with MT+Align, followed
by MTInstruct, denoted as MT+Align→MT.

4 Evaluation and Analysis

This section reports BLEU (Papineni et al.,
2002; Post, 2018), chrF++ (Popović, 2015), and
COMET (Rei et al., 2020)9 scores for respective
experimental configurations. We further character-

7Note that AlignInstruct and MTInstruct were derived from
the same parallel corpora.

8An effective curriculum often starts with a simple and
general task, followed by a task-specific task.

9COMET scores do not currently support Limburgish (li),
Occitan (oc), Tajik (tg), Turkmen (tk), and Tatar (tt) among
the 24 languages in the BLOOMZ+24 setting. Thus, we report
the average COMET scores for the remaining 19 languages.

ized of the degree to which intermediate embed-
dings were language-agnostic after fine-tuning.

4.1 BLOOMZ+24 Results

Tab. 1 shows the scores for the unmodified
BLOOMZ models, as well as BLOOMZ+24 under
MTInstruct, AlignInstruct, and the three distinct
curricula. Non-trivial improvements in all metrics
were evident for BLOOMZ+24 under MTInstruct.
This suggests that MTInstruct can induce transla-
tion capabilities in unseen languages. Applying
AlignInstruct and MTInstruct via the curricula fur-
ther showed better scores than the baselines, sug-
gesting the role of AlignInstruct as complementing
MTInstruct. Align→MT was an exception, per-
forming similarly to MTInstruct. This may indicate
the effect of AlignInstruct depends on its cadence
relative to MTInstruct in a curriculum.

Superior OPUS and Flores scores under the
xx→en direction were evident, compared to the
reverse direction, en→xx. This suggests that our
treatments induced understanding capabilities more
than generative ones. This may be attributed to
the fact that BLOOMZ had significant exposure
to English, and that we used English-centric cor-
pora. Finally, we noted the inferior performance
of Flores than OPUS. This speaks to the challenge
of instilling out-of-domain translation abilities in
unseen languages. Our future work will focus on
enhancing the domain generalization capabilities
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Objective en-af af-en en-am am-en en-be be-en en-cy cy-en en-ga ga-en en-gd gd-en
MTInstruct 25.0 38.5 3.0 3.4 8.9 14.0 20.2 33.2 15.6 29.2 13.1 66.0
MT+Align 25.0 36.9 3.4 4.9 8.3 13.9 20.6 33.8 17.6 32.6 15.6 48.1

Objective en-gl gl-en en-ha ha-en en-ka ka-en en-kk kk-en en-km km-en en-ky ky-en
MTInstruct 16.9 24.7 12.3 10.0 4.6 10.0 12.6 14.6 19.7 13.9 16.0 21.1
MT+Align 17.1 24.4 14.6 11.4 4.9 10.5 12.3 15.6 20.4 14.4 15.8 23.3
Objective en-li li-en en-my my-en en-nb nb-en en-nn nn-en en-oc oc-en en-si si-en
MTInstruct 13.5 21.3 6.2 5.2 12.7 22.2 18.3 27.1 10.0 13.4 5.2 11.5
MT+Align 13.2 22.3 7.6 6.3 13.5 24.2 19.0 28.5 9.1 13.5 5.1 13.9
Objective en-tg tg-en en-tk tk-en en-tt tt-en en-ug ug-en en-uz uz-en en-yi yi-en
MTInstruct 5.5 8.0 24.4 30.4 1.9 3.6 1.2 4.2 3.1 5.7 7.1 14.9
MT+Align 6.6 8.8 27.2 31.2 2.1 5.0 1.1 5.5 3.5 7.4 11.1 12.8

Table 2: Language-wise BLEU results on BLOOMZ-7b1 for BLOOMZ+24 fine-tuned using MTInstruct or
MT+Align. Scores significantly (Koehn, 2004) outperforming the MTInstruct baseline are emphasized in bold
while those decreased significantly (Koehn, 2004) are marked in italics.

BLOOMZ
Objective

OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en
model BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

BLOOMZ-7b1

MTInstruct 11.54 25.33 64.54 18.59 33.25 69.84 3.30 17.10 40.58 11.37 27.14 56.33
MT+Align 12.28 26.17 65.54 18.72 34.02 70.69 3.26 17.20 41.07 11.60 27.38 56.98
MT+Hint 12.12 25.92 64.60 18.25 33.18 70.31 3.34 17.13 41.10 11.45 27.37 56.86
MT+Revise 11.96 25.73 64.73 18.69 33.74 70.32 3.34 17.10 41.07 11.44 27.37 56.73

BLOOMZ-3b

MTInstruct 10.40 23.08 62.28 16.10 31.15 68.36 2.85 16.23 39.21 8.92 24.57 53.33
MT+Align 10.61 23.64 62.84 16.73 31.51 68.52 2.95 16.62 39.83 9.50 25.16 54.35
MT+Hint 10.49 23.34 62.65 16.29 31.43 68.83 3.11 16.95 39.91 9.52 25.25 54.28
MT+Revise 10.52 23.03 62.04 16.22 30.98 68.28 2.99 16.83 39.52 9.47 25.21 53.91

BLOOMZ-1b1

MTInstruct 7.42 17.85 57.53 11.99 25.59 63.93 2.11 14.40 36.35 5.33 20.65 48.83
MT+Align 7.80 18.48 57.77 12.57 25.92 64.03 2.16 14.54 37.05 5.46 20.90 49.31
MT+Hint 7.71 18.15 57.76 11.52 24.88 63.63 2.21 14.61 37.24 5.47 20.78 48.97
MT+Revise 7.31 17.99 57.45 12.00 25.33 63.81 2.07 14.32 36.68 5.41 20.91 49.09

Table 3: Results of BLOOMZ+24 fine-tuned combining MTInstruct with AlignInstruct (or its generative
variants). Scores that surpass the MTInstruct baseline are marked in bold.

of LLM fine-tuning in MT tasks.
Moreover, we reported the language-wise scores

in Tab. 2. Specifically, in the “en-xx” direction, 11
languages showed statistically significant (Koehn,
2004) improvements, and only 2 decreased signifi-
cantly. In the “xx-en” direction, the improvements
were more pronounced, with 18 languages improv-
ing significantly (most by over 1 BLEU point) and
3 decreasing significantly. The average improve-
ment for “en-xx” was 0.74, which was substantial,
especially given the limited volume of parallel data
available for each language. The smaller average
increase in “xx-en” can be attributed to a large de-
crease in one language (gd), likely due to limited
training data (which can be potentially addressed
with oversampling). The significantly enhanced
performance in most individual languages under-
scores the effectiveness of our proposed methods.

4.2 Assessing AlignInstruct Variants

From Tab. 3, we observed the objectives with
AlignInstruct consistently outperformed those with
HintInstruct or ReviseInstruct across metrics and

model sizes. Namely, easy, discriminative instruc-
tions, rather than hard, generative ones, may be
preferred for experiments under similar data con-
straints. The low-resource constraint likely made
MTInstruct more sensitive to the difficulty of its
accompanying tasks.

Further, combining more than two instruction
tuning tasks simultaneously did not guarantee
consistent improvements, see Tab. 4. Notably,
MT+Align either outperformed or matched the per-
formance of other objective configurations. While
merging multiple instruction tuning tasks occa-
sionally resulted in superior BLEU and chrF++
scores for OPUS xx→en, it fell short in COMET
scores compared to MT+Align. This indicated
that while such configurations might enhance word-
level translation quality, as reflected by BLEU and
chrF++ scores, due to increased exposure to cross-
lingual word alignments, MT+Align better cap-
tured the context of the source sentence as reflected
by COMET scores. Overall, these instruction tun-
ing tasks did not demonstrate significant synergistic
effects for fine-tuning for unseen languages.
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Objective
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

MTInstruct 11.54 25.33 64.54 18.59 33.25 69.84 3.30 17.10 40.58 11.37 27.14 56.33
MT+Align 12.28 26.17 65.54 18.72 34.02 70.69 3.26 17.20 41.07 11.60 27.38 56.98
MT+Align+Revise 12.08 25.73 64.55 19.23 34.32 70.60 3.33 17.25 41.17 11.60 27.61 57.22
MT+Align+Hint 12.02 25.51 64.58 19.40 34.44 70.65 3.25 16.87 41.13 11.58 27.48 56.93
MT+Hint+Revise 12.10 25.69 64.68 19.58 34.49 70.55 3.34 17.24 41.13 11.70 27.62 57.19
MT+Align+Hint+Revise 12.00 25.39 64.55 19.68 34.48 70.64 3.40 17.17 41.21 11.67 27.54 57.16

Table 4: Results of BLOOMZ+24 combining MTInstruct with multiple objectives among AlignInstruct,
HintInstruct, and ReviseInstruct on BLOOMZ-7b1. Scores that surpass MTInstruct are marked in bold.

Fine-tuned
Objective

Zero-shot Directions Supervised Directions
Languages Directions BLEU chrF++ COMET Directions BLEU chrF++ COMET

- w/o fine-tuning

overall 6.89 19.14 57.95
en→xx 13.38 26.65 64.28
xx→en 21.70 42.05 72.72

seen→seen 16.95 30.78 74.58 en→seen 20.13 32.87 76.99
seen→unseen 2.30 13.31 49.98 en→unseen 6.63 20.43 51.56
unseen→seen 7.78 20.07 62.74 seen→en 26.30 48.70 78.22
unseen→unseen 2.37 14.83 46.06 unseen→en 17.10 35.40 67.23

de-nl-ru

MTInstruct

overall 8.38 22.75 59.93
en→xx 17.05 32.02 69.26
xx→en 25.13 45.02 76.29

seen→seen 14.52 27.25 70.48 en→seen 17.60 29.87 73.81
seen→unseen 6.14 22.82 54.75 en→unseen 16.50 34.17 64.70
unseen→seen 7.56 19.22 61.99 seen→en 25.73 47.07 77.52
unseen→unseen 6.85 23.45 54.07 unseen→en 24.53 42.97 75.06

MT+Align

overall 8.86 23.30 60.70 en→xx 16.63 31.73 68.79
xx→en 25.62 45.37 76.45

seen→seen 14.77 27.80 71.07 en→seen 15.80 28.47 72.35
seen→unseen 6.31 23.08 54.81 en→unseen 17.47 35.00 65.24
unseen→seen 8.61 20.24 63.81 seen→en 25.90 47.13 77.47
unseen→unseen 7.15 23.70 54.51 unseen→en 25.33 43.60 75.43

ar-de-fr-nl-ru-zh

MTInstruct

overall 11.79 26.36 63.22
en→xx 21.18 35.52 70.86
xx→en 28.35 48.00 77.30

seen→seen 22.68 35.32 76.39 en→seen 26.20 37.77 78.22
seen→unseen 7.10 24.50 55.18 en→unseen 16.17 33.27 63.50
unseen→seen 12.56 24.74 68.83 seen→en 31.97 52.93 79.72
unseen→unseen 6.78 22.62 53.69 unseen→en 24.73 43.07 74.88

MT+Align

overall 12.13 26.65 63.23 en→xx 21.33 35.65 70.99
xx→en 28.60 48.27 77.49

seen→seen 23.67 36.53 76.89 en→seen 26.30 37.63 78.25
seen→unseen 7.27 24.32 54.96 en→unseen 16.37 33.67 63.73
unseen→seen 12.92 25.29 69.10 seen→en 32.03 53.07 79.93
unseen→unseen 6.68 22.30 53.19 unseen→en 25.17 43.47 75.05

Table 5: Results of BLOOMZ+3 without fine-tuning or fine-tuned with MTInstruct, or MT+Align. Scores
that surpass the MTInstruct baseline are marked in bold. “Seen” and “unseen” refer to whether the language was
included in the pre-training of the BLOOMZ model. xx includes seen and unseen languages.

4.3 BLOOMZ+3 Zero-shot Evaluation

Tab. 5 reports the results of the two set-
tings, de-nl-ru and ar-de-fr-nl-ru-zh. Results of
MT+Align+Hint+Revise and pivot-based transla-
tion are reported in App. C and H. In the de-nl-
ru setting, where BLOOMZ was fine-tuned with
the three unseen languages, we noticed MT+Align
consistently outperformed the MTInstruct baseline
across all evaluated zero-shot directions. Notably,
MT+Align enhanced the translation quality for
unseen→seen and seen→unseen directions com-
pared to w/o fine-tuning and MTInstruct, given that
the model was solely fine-tuned on de, nl, and ru
data. This suggested AlignInstruct not only ben-
efits the languages supplied in the data but also
has a positive impact on other languages through

cross-lingual alignment supervision. In terms of su-
pervised directions involving English, we noticed
performance improvements associated with unseen
languages, and regression in seen ones. The regres-
sion may be attributed to forgetting for the absence
of seen languages in fine-tuning data. Indeed, con-
tinuous exposure to English maintained the trans-
lation quality for seen→en. As LoRA is modular,
the regression can be mitigated by detaching the
LoRA parameters for seen languages.

The ar-de-fr-nl-ru-zh setting yielded a consis-
tently higher translation quality across all direc-
tions when compared with the de-nl-ru setting.
This improvement was expected, as all the six
languages were included. Translation quality im-
proved for when generating seen languages under
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Figure 3: Differences in cosine similarity of layer-
wise embeddings for BLOOMZ+24. ∆1 represents
the changes from the unmodified BLOOMZ to the one
on MTInstruct, and ∆2 from MTInstruct to MT+Align.

the zero-shot scenario. However, the same ob-
servation cannot be made for unseen languages.
This phenomenon underscored the effectiveness of
AlignInstruct in enhancing translation quality for
BLOOMZ’s supported languages, but suggested
limitations for unseen languages when mixed with
supported languages in zero-shot scenarios. In the
supervised directions, we found all translation di-
rections surpassed the performance of the MTIn-
struct baseline. This highlighted the overall effec-
tiveness of AlignInstruct in enhancing translation
quality across a range of supervised directions.

4.4 How did MTInstruct and AlignInstruct
Impact BLOOMZ’s Representations?

This section analyzed the layer-wise cosine sim-
ilarities between the embeddings of parallel sen-
tences to understand the changes in internal repre-
sentations after fine-tuning. The parallel sentences
were prepared from the English-centric validation
datasets. We then mean-pool the outputs at each
layer as sentence embeddings and compute the co-
sine similarities, as illustrated in Fig. 3. Results for
BLOOMZ+3 are discussed in App. D.

We observed that, after MTInstruct fine-tuning,
the cosine similarities rose in nearly all layers (∆1,
Fig. 3). This may be interpreted as enhanced cross-
lingual alignment, and as indicating the acquisition
of translation capabilities. Upon further combina-
tion with AlignInstruct (∆2, Fig. 3), the degree of
cross-lingual alignment rose in the early layers (lay-
ers 4 - 7) then diminished in the final layers (layers
29 & 30). This pattern aligned with the characteris-
tics of encoder-decoder multilingual NMT models,
where language-agnostic encoder representations
with language-specific decoder representations im-

prove multilingual NMT performance (Liu et al.,
2021; Wu et al., 2021; Mao et al., 2023). This
highlights the beneficial impact of AlignInstruct.

5 Related Work

Prompting LLMs for MT LLMs have shown
good performance for multilingual MT through
few-shot in-context learning (ICL) (Jiao et al.,
2023). Agrawal et al. (2023) and Zhang et al.
(2023a) explored strategies to compose better exam-
ples for ICL for XGLM-7.5B (Lin et al., 2022) and
GLM-130B (Zeng et al., 2023). Ghazvininejad et al.
(2023), Peng et al. (2023), and Moslem et al. (2023)
claimed that dictionary-based hints and domain-
specific style information can improve prompting
OPT (Zhang et al., 2022), GPT-3.5 (Brown et al.,
2020), and BLOOM (Scao et al., 2022) for MT. He
et al. (2023) used LLMs to mine useful knowledge
for prompting GPT-3.5 for MT.
Fine-tuning LLMs for MT ICL-based methods do
not support languages unseen during pre-training.
Current approaches address this issue via fine-
tuning. Zhang et al. (2023b) explored adding
new languages to LLaMA (Touvron et al., 2023a)
with interactive translation task for unseen high-
resource languages. However, similar task datasets
are usually not available for most unseen, low-
resource languages. Li et al. (2023) and Xu et al.
(2023a) showed multilingual fine-tuning with trans-
lation instructions can improve the translation abil-
ity in supported languages. Our study extended
their finding to apply in the context of unseen, low-
resource languages. In parallel research, Yang et al.
(2023) undertook MT instruction fine-tuning in
a massively multilingual context for unseen lan-
guages. However, their emphasis was on fine-
tuning curriculum based on resource availability of
languages, whereas we exclusively centered on low-
resource languages and instruction tuning tasks.

6 Conclusion

In this study, we introduced AlignInstruct for en-
hancing the fine-tuning of LLMs for MT in un-
seen, low-resource languages while limiting the
use of additional training corpora. Our multilingual
and zero-shot findings demonstrated the strength
of AlignInstruct over the MTInstruct baseline and
other instruction variants. Our future work pertains
to exploring using large monolingual corpora of
unseen languages for MT and refining the model
capability to generalize across diverse MT prompts.
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Limitations

Multilingual LLMs In this study, our investiga-
tions were confined to the fine-tuning of BLOOMZ
models with sizes of 1.1B, 3B, and 7.1B. We did
not experiment with the 175B BLOOMZ model
due to computational resource constraints. How-
ever, examining this model could provide valuable
insights into the efficacy of our proposed tech-
niques. Additionally, it would be instructive to
experiment with other recent open-source multilin-
gual LLMs, such as mGPT (Shliazhko et al., 2022)
and LLaMa2 (Touvron et al., 2023b).
PEFT Methods and Adapters As discussed in the
BLOOM+1 paper (Yong et al., 2023), alternative
PEFT techniques, such as (IA)3 (Liu et al., 2022),
have the potential to enhance the adaptation perfor-
mance of LLM pre-training for previously unseen
languages. These approaches are worth exploring
for MT fine-tuning in such languages, in addition to
the LoRA methods employed in this study. Further-
more, our exploration was limited to fine-tuning
multiple languages using shared additional param-
eters. Investigating efficient adaptation through the
use of the mixture of experts (MoE) approach for
MT tasks (Fan et al., 2021; Costa-jussà et al., 2022;
Mohammadshahi et al., 2022; Koishekenov et al.,
2023; Xu et al., 2023b) presents another intriguing
avenue for LLM fine-tuning.
Instruction Fine-tuning Data Another limitation
of our study is that we exclusively explored MT
instruction fine-tuning using fixed templates to cre-
ate MT and alignment instructions. Investigat-
ing varied templates (either manually (Yang et al.,
2023) or automatically constructed (Zhou et al.,
2023)) might enhance the fine-tuned MT model’s
ability to generalize across different MT task de-
scriptions. Additionally, leveraging large monolin-
gual corpora in unseen languages could potentially
enhance the effectiveness of monolingual instruc-
tions for MT downstream tasks, offering further
insights beyond the resource-constrained scenar-
ios examined in this work. Furthermore, the cre-
ation and utilization of instruction tuning datasets,
akin to xP3 (Muennighoff et al., 2023), for unseen,
low-resource languages could potentially amplify
LLMs’ proficiency in following instructions in such
languages. Zhu et al. (2023b) has investigated mul-
tilingual instruction tuning datasets. However, the
scalability of such high-quality datasets to thou-
sands of low-resource languages still remains to be
addressed.

Comparison with the State-of-the-art Multilin-
gual NMT Models In this study, we refrained
from contrasting translations in low-resource lan-
guages with best-performing multilingual NMT
models like NLLB-200 (Costa-jussà et al., 2022),
as our primary objective centered on enhancing
the MTInstruct baseline through improved cross-
lingual alignment within LLMs, rather than delv-
ing into the best combination of techniques for MT
fine-tuning in LLMs. In future exploration, our
methods can potentially be integrated with the MT
fine-tuning paradigm proposed by the concurrent
work of Xu et al. (2023a), paving the way for ele-
vating the state-of-the-art translation quality using
LLMs.
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A Training Data Statistics

Training data statistics of BLOOMZ+24 are shown
in Tab. 6. Several selected languages involved
previously unseen scripts by BLOOMZ, but such
fine-tuning is practical as BLOOMZ is a byte-level
model with the potential to adapt to any language.
Note that our proposed methods can be applied to
any byte-level generative LLMs.

B Implementation Details

We employed 128 V100 GPUs for the
BLOOMZ+24 and 32 V100 GPUs for the
BLOOMZ+3 experiments. The batch sizes were
configured at 4 sentences for BLOOMZ-7b1
and 8 sentences for both BLOOMZ-3b and
BLOOMZ-1b1, per GPU device. We configured
LoRA with a rank of 8, an alpha of 32, and a
dropout of 0.1. Consequently, the BLOOMZ-7b1,
BLOOMZ-3b, and BLOOMZ-1b1 models had
3.9M, 2.5M, and 1.2M trainable parameters,
respectively, constituting approximately 0.05 -
0.10% of the parameters in the original models.
We conducted training for 5 epochs, ensuring a
stable convergence is achieved. To facilitate this
stability, we introduced a warm-up ratio of 0.03
into our training process. Maximum input and
output length were set as 384. S for HintInstruct
was set as 5 at most. Additionally, we used mixed
precision training (Micikevicius et al., 2018) to
expedite computation using DeepSpeed (Rasley
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Language ISO 639-1 Language Family Subgrouping Script Seen Script #sent.

Afrikaans af Indo-European Germanic Latin ! 275,512
Amharic am Afro-Asiatic Semitic Ge’ez % 89,027
Belarusian be Indo-European Balto-Slavic Cyrillic % 67,312
Welsh cy Indo-European Celtic Latin ! 289,521
Irish ga Indo-European Celtic Latin ! 289,524
Scottish Gaelic gd Indo-European Celtic Latin ! 16,316
Galician gl Indo-European Italic Latin ! 515,344
Hausa ha Afro-Asiatic Chadic Latin ! 97,983
Georgian ka Kartvelian Georgian-Zan Georgian % 377,306
Kazakh kk Turkic Common Turkic Cyrillic % 79,927
Khmer km Austroasiatic Khmeric Khmer % 111,483
Kyrgyz ky Turkic Common Turkic Cyrillic % 27,215
Limburgish li Indo-European Germanic Latin ! 25,535
Burmese my Sino-Tibetan Burmo-Qiangic Myanmar % 24,594
Norwegian Bokmål nb Indo-European Germanic Latin ! 142,906
Norwegian Nynorsk nn Indo-European Germanic Latin ! 486,055
Occitan oc Indo-European Italic Latin ! 35,791
Sinhala si Indo-European Indo-Aryan Sinhala % 979,109
Tajik tg Indo-European Iranian Cyrillic % 193,882
Turkmen tk Turkic Common Turkic Latin ! 13,110
Tatar tt Turkic Common Turkic Cyrillic % 100,843
Uyghur ug Turkic Common Turkic Arabic ! 72,170
Northern Uzbek uz Turkic Common Turkic Latin ! 173,157
Eastern Yiddish yi Indo-European Germanic Hebrew % 15,010

Total 4,498,632

Table 6: Statistics of training data for BLOOMZ+24: 24 unseen, low-resource languages for BLOOMZ.!and
%indicate whether script is seen or unseen.

et al., 2020). We tuned the optimal learning rate for
each individual experiment according to validation
loss. We conducted all experiments once due to
computational resource constraints and reported
the average scores across all languages.

C Results of MT+Align+Hint+Revise for
BLOOMZ+3

We present the results in Tab. 7. Co-
referencing the results in Tab. 5, compared
with MT+Align, we observed a clear advantage
for the MT+Align+Hint+Revise setting in super-
vised directions involving English (en→seen and
seen→en) in the ar-fr-de-nl-ru-zh setting. This re-
sult suggested that AlignInstruct’s variants played
a crucial role in preserving the BLOOMZ’s capabil-
ities for supported languages. However, in all other
scenarios, AlignInstruct alone proved sufficient to
enhance the performance beyond the MTInstruct
baseline, but hard to achieve further improvements
with additional instructions.

0 8 16 24 30
-0.02
-0.01

0.0
0.01
0.02

0.05

0.1

1 of de-nl-ru in de-nl-ru
2 of de-nl-ru in de-nl-ru
1 of de-nl-ru in ar-de-fr-nl-ru-zh
2 of de-nl-ru in ar-de-fr-nl-ru-zh
1 of ar-fr-zh in ar-de-fr-nl-ru-zh
2 of ar-fr-zh in ar-de-fr-nl-ru-zh

Figure 4: Differences in cosine similarity of layer-
wise embeddings for BLOOMZ+3. ∆1 represents the
changes from the unmodified BLOOMZ to the one on
MTInstruct, and ∆2 from MTInstruct to MT+Align.

D Representation Change of BLOOMZ+3

The representation change observed in de-nl-ru was
consistent with the findings presented in Sec. 4.4,
which highlighted an initial increase in cross-
lingual alignment in the early layers, followed by
a decrease in the final layers. When mixing fine-
tuning data with supported languages, the changes
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Languages
Zero-shot Directions Supervised Directions

Directions BLEU chrF++ COMET Directions BLEU chrF++ COMET

de-nl-ru

overall 8.94 23.53 60.67 en→xx 16.70 31.83 68.98
xx→en 25.18 45.00 76.45

seen→seen 14.00 27.58 70.59 en→seen 15.97 28.53 72.69
seen→unseen 6.49 23.01 54.92 en→unseen 17.43 35.13 65.27
unseen→seen 9.50 21.90 64.69 seen→en 25.33 46.70 77.51
unseen→unseen 6.73 22.70 53.34 unseen→en 25.03 43.30 75.39

ar-de-fr-nl-ru-zh

overall 12.07 26.67 63.13
en→xx 21.62 36.12 70.94
xx→en 28.92 48.60 77.50

seen→seen 23.52 36.13 76.62 en→seen 26.87 38.40 78.40
seen→unseen 7.16 24.48 55.02 en→unseen 16.37 33.83 63.49
unseen→seen 12.91 25.23 68.91 seen→en 32.57 53.70 80.06
unseen→unseen 6.73 22.65 53.12 unseen→en 25.27 43.50 74.93

Table 7: Results of BLOOMZ+3 with MT+Align+Hint+Revise. Co-referencing Tab. 5, scores that surpass the
MTInstruct baseline are marked in bold.

exhibited more intricate patterns. As illustrated
by ar-fr-zh in ar-de-fr-nl-ru-zh in Fig. 4, sentence
alignment declined after MTInstruct fine-tuning
but elevated after further combining with AlignIn-
struct. We leave the interpretation of this nuanced
behavior in future work.

E Examples of HintInstruct and
ReviseInstruct

We illustrated examples of HintInstruct and Revi-
seInstruct in Fig. 5.

F Assessing Monolingual Instructions

New language capabilities may be induced through
continual pre-training on monolingual next-word
prediction tasks (Yong et al., 2023). The coherence
of the generated sentences is crucial in MT (Wang
et al., 2020; Liu et al., 2020), especially when the
target languages are unseen and low-resource. We
examined the significance of this approach in fos-
tering the translation quality. We reused the same
parallel corpora to avoid introducing additional
monolingual datasets.

Given a monolingual sentence, (xi)
N
1 , with

length N in an unseen language X . The LLM
is incrementally trained on the following task:

• Input: “Given the context, complete the fol-
lowing sentence: x1x2 . . . xl<N ,”

• Output: “xl+1xl+2 . . . xN .”

We conducted experiments with two MonoIn-
struct settings: MonoInstruct-full, an objective to

--- Input ---
Use the following alignment hints and translate 
from English to Japanese.
Alignments between English and Japanese:
- (future, 未来),
- (generative, 生成),
- (of, の),
English: What’s the future of generative AI?
Japanese:
--- Output --- 
生成 AI の未来はどうなるでしょうか?

HintInstruct

--- Input ---
Given the following translation of Japanese 
from English, output the incorrectly translated 
word and correct it.
English: What’s the future of generative AI?
Japanese: 生成 AI の過去はどうなるでしょう
か?
--- Output --- 
The incorrectly translated word is “過去”. It 
should be “未来”.

ReviseInstruct

Figure 5: Examples of HintInstruct and ReviseInstruct.

generate the entire sentence, and MonoInstruct-
half for generating the latter half of the sentence
given the first half, inspired by GPT (Radford
et al., 2018) and MASS (Song et al., 2019), re-
spectively. We reported the MonoInstruct results in
Tab. 8. Firstly, we observed that fine-tuning MTIn-
struct in conjunction with either MonoInstruct-full
or MonoInstruct-half harms the MT performance,
which could be attributed to the inherent difficulty
of monolingual instruction tasks and the limited
amount of monolingual data. We found that the
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Objective
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

MTInstruct 11.54 25.33 64.54 18.59 33.25 69.84 3.30 17.10 40.58 11.37 27.14 56.33
MT+Mono-full 9.89 22.42 62.52 15.43 29.04 66.64 3.00 16.68 40.49 10.26 25.15 54.17
MT+Mono-half 10.23 22.45 62.22 15.51 29.65 67.29 3.18 16.91 40.57 10.66 26.15 54.80
MT+Mono-full+Align 10.15 22.35 62.22 15.72 29.86 67.70 3.07 16.59 40.78 10.61 25.58 55.17
MT+Mono-half+Align 10.09 22.61 62.98 16.00 30.34 67.96 3.10 16.75 40.70 10.79 26.27 55.40
MT+Mono-full+Align+Hint+Revise 10.33 23.04 63.19 17.16 31.61 68.26 3.23 16.70 40.90 10.98 26.18 55.50
MT+Mono-half+Align+Hint+Revise 10.62 23.10 62.92 17.32 31.80 68.56 3.20 16.93 41.00 11.09 26.77 55.99

Table 8: Results of BLOOMZ+24 fine-tuned incorporating monolingual instructions on BLOOMZ-7b1.
Scores that surpass the MTInstruct baseline are marked in bold.

simpler MT+Mono-half yielded better results than
MT+Mono-full as richer contexts were provided.
However, MonoInstruct still did not improve the
MTInstruct baseline. Secondly, further combining
MonoInstrcut with AlignInstruct variants yielded
improvements compared with MT+Mono-full (or
half), but underperformed the MTInstruct baseline.
This suggested that improving MT performance
with monolingual instructions is challenging with-
out access to additional monolingual data.

G Inference using Different MT Prompts

We investigated the performance of fine-tuned mod-
els when using various MT prompts during infer-
ence, aiming to understand models’ generalization
capabilities with different test prompts. We exam-
ined five MT prompts for the fine-tuned models
of BLOOMZ-7b1, following Zhang et al. (2023a),
which are presented in Tab. 9. The results, show-
cased in Tab. 10, revealed that in comparison to the
default prompt used during fine-tuning, the trans-
lation performance tended to decline when using
other MT prompts. We observed that MT+Align
consistently surpasses MTInstruct for xx→en trans-
lations, though the results were mixed for en→xx
directions. Certain prompts, such as PROMPT-3
and PROMPT-4, exhibited a minor performance
drop, while others significantly impacted transla-
tion quality. These findings underscored the need
for enhancing the models’ ability to generalize
across diverse MT prompts, potentially by incor-
porating a range of MT prompt templates during
the fine-tuning process, as stated in the Limitations
section.

H Zero-shot Translation using English as
Pivot

Pivot translation serves as a robust technique for
zero-shot translation, especially given that we used
English-centric data during fine-tuning. In Tab. 11,
we present results that utilize English as an inter-

Prompt Definition

PROMPT-default
Translate from Y to X .
Y : y1y2 . . . yM .
X:

PROMPT-1
Y : y1y2 . . . yM .
X:

PROMPT-2
y1y2 . . . yM .
X:

PROMPT-3
Translate to X .
Y : y1y2 . . . yM .
X:

PROMPT-4
Translate from Y to X .
y1y2 . . . yM .
X:

PROMPT-5
Translate to X .
y1y2 . . . yM .
X:

Table 9: MT prompt variants investigated for fine-
tuned models. These MT prompts are following the
design in Zhang et al. (2023a).

mediary pivot for translations between non-English
language pairs. Our findings indicated that employ-
ing the English pivot typically yielded an enhance-
ment of approximately 1.1 - 1.2 BLEU points com-
pared to direct translations in zero-shot directions
when fine-tuning BLOOMZ. When contrasting the
MTInstruct baseline with our proposed MT+Align,
we observed that combining AlignInstruct consis-
tently boosted performance in pivot translation sce-
narios.

I Per Language Result Details of
BLOOMZ+24 and BLOOMZ+3

We present per language detailed results of origi-
nal BLOOMZ-7b1 and fine-tuned BLOOMZ-7b1
models in Tab. 12, 13, 14, 15, 16, 17, 18, 19, re-
spectively for the BLOOMZ+24 and BLOOMZ+3
settings.
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Prompt Objective
en→xx xx→en

BLEU chrF++ COMET BLEU chrF++ COMET

PROMPT-default
MTInstruct 11.54 25.33 64.54 18.59 33.25 69.84
MT+Align 12.28 26.17 65.54 18.72 34.02 70.69

PROMPT-1
MTInstruct 5.29 11.31 50.20 7.87 20.08 57.46
MT+Align 5.30 11.38 50.95 8.93 20.77 58.38

PROMPT-2
MTInstruct 2.20 6.68 45.56 7.15 19.08 57.22
MT+Align 1.91 5.35 43.84 7.61 18.80 56.76

PROMPT-3
MTInstruct 10.59 22.69 62.65 15.85 29.93 67.59
MT+Align 9.20 20.80 60.96 16.17 30.58 68.70

PROMPT-4
MTInstruct 8.67 20.73 61.50 15.20 28.95 66.61
MT+Align 8.91 20.53 61.64 16.25 30.67 67.94

PROMPT-5
MTInstruct 6.61 14.55 55.99 10.88 22.41 61.40
MT+Align 6.02 12.28 52.42 11.83 23.85 62.09

Table 10: Results of using different MT prompts for BLOOMZ-7b1 fine-tuned models during inference. Refer
to Tab. 9 for details about definitions of different MT prompts. We report the average results for the BLOOMZ+24
setting. Results better than the MTInstruct baseline are marked in bold.

MTInstruct BLEU chrF++ COMET MT+Align BLEU chrF++ COMET

overall 11.79 26.36 63.22 overall 12.13 26.65 63.23
seen→seen 22.68 35.32 76.39 seen→seen 23.67 36.53 76.89
seen→unseen 7.10 24.50 55.18 seen→unseen 7.27 24.32 54.96
unseen→seen 12.56 24.74 68.83 unseen→seen 12.92 25.29 69.10
unseen→unseen 6.78 22.62 53.69 unseen→unseen 6.68 22.30 53.19

MTInstruct with English pivot BLEU chrF++ COMET MT+Align with English pivot BLEU chrF++ COMET

overall 12.99 28.01 65.38 overall 13.25 28.30 65.57
seen→seen 23.10 35.30 76.30 seen→seen 23.48 35.57 76.43
seen→unseen 9.00 27.67 59.54 seen→unseen 9.28 28.03 59.73
unseen→seen 13.18 24.98 68.77 unseen→seen 13.36 25.22 68.94
unseen→unseen 8.57 25.77 58.17 unseen→unseen 8.83 26.07 58.42

Table 11: Results of BLOOMZ+3 using English as a pivot language for zero-shot translation evaluation.
Results of MT+Align surpassing corresponding those of MTInstruct are marked in bold.
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Language
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

af 3.8 13.2 56.38 7.6 22.0 59.14 2.6 14.9 33.60 20.1 38.0 65.61
am 0.1 0.3 33.17 0.5 8.3 43.57 0.3 0.6 30.65 1.9 12.6 46.24
be 4.2 5.1 47.26 7.3 17.5 48.57 0.4 3.3 31.58 4.2 22.3 49.27
cy 2.7 10.5 53.21 6.2 16.0 53.25 1.2 11.2 34.17 6.0 20.3 53.45
ga 1.2 10.6 42.85 4.0 16.4 46.05 1.2 11.6 33.94 5.5 19.6 46.97
gd 9.3 16.0 51.40 47.6 55.9 59.30 1.2 11.2 36.28 4.2 18.8 43.73
gl 4.5 25.6 64.93 17.2 36.7 66.07 13.4 38.5 74.77 51.0 67.8 85.77
ha 0.1 5.4 38.42 0.3 11.2 42.58 1.5 10.2 35.77 6.9 18.9 47.37
ka 0.3 1.9 31.97 0.6 9.2 44.48 0.4 1.4 28.81 2.4 17.0 47.57
kk 4.3 4.9 50.51 5.1 14.2 51.51 0.5 1.6 33.66 5.1 19.8 51.40
km 2.8 4.5 51.68 3.9 11.1 50.40 0.8 2.9 39.56 5.6 16.2 50.42
ky 10.0 10.6 54.23 10.3 24.0 55.99 0.6 1.6 30.19 3.8 17.9 48.05
li 6.6 16.2 - 5.9 24.8 - 2.0 14.9 - 9.8 29.8 -
my 1.8 2.4 45.44 3.0 5.0 48.33 0.4 0.8 29.58 1.0 3.7 44.15
nb 5.8 18.2 57.01 13.9 33.0 56.37 3.9 19.3 46.74 19.8 40.3 63.56
nn 6.3 18.6 62.33 8.9 25.3 56.28 3.7 19.7 41.75 16.9 37.5 62.37
oc 6.0 13.6 - 5.1 18.6 - 9.6 33.6 - 53.0 68.5 -
si 0.6 2.0 41.84 1.6 9.4 48.58 0.5 1.4 28.08 1.6 9.1 42.67
tg 0.4 1.4 - 1.1 11.8 - 0.4 1.5 - 3.3 18.0 -
tk 7.9 10.6 - 5.3 13.0 - 0.7 8.7 - 4.2 20.1 -
tt 0.0 1.0 - 0.2 13.3 - 0.3 1.4 - 4.2 20.2 -
ug 0.0 0.4 32.44 0.3 11.2 45.69 0.3 0.9 31.34 3.0 16.5 48.99
uz 0.7 2.1 35.94 1.0 12.8 41.86 1.5 11.5 40.65 3.1 18.7 49.43
yi 7.3 16.5 57.47 4.0 23.0 63.91 0.7 1.7 33.22 2.1 15.6 41.87
avg. 3.61 8.82 47.81 6.70 18.49 51.68 2.00 9.35 36.54 9.95 24.47 52.05

Table 12: Detailed results of BLOOMZ-7b1 without fine-tuning.

Language
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

af 25.0 41.4 71.05 38.5 52.3 78.94 10.1 31.0 45.42 33.9 51.1 72.66
am 3.0 12.8 59.55 3.4 19.8 59.71 0.2 5.2 42.97 1.4 16.0 49.47
be 8.9 14.9 55.16 14.0 24.9 62.37 0.7 12.3 30.90 3.7 21.0 49.99
cy 20.2 38.0 71.55 33.2 49.3 77.72 5.0 20.3 38.38 13.1 30.2 57.47
ga 15.6 37.1 63.87 29.2 49.1 75.94 3.7 21.2 39.17 12.5 30.3 57.53
gd 13.1 24.7 62.14 66.0 69.6 77.70 2.2 19.6 40.75 7.1 22.3 50.05
gl 16.9 37.6 70.62 24.7 43.6 75.62 21.9 45.2 77.26 46.6 64.5 86.86
ha 12.3 32.7 71.75 10.0 29.8 64.51 1.9 17.1 49.24 6.8 22.1 48.81
ka 4.6 18.1 67.39 10.0 24.3 60.50 0.3 6.8 27.46 1.5 14.9 46.10
kk 12.6 19.5 66.07 14.6 28.2 71.80 0.8 13.0 35.76 3.9 19.7 52.24
km 19.7 25.2 63.24 13.9 32.1 75.02 0.5 12.3 35.60 6.2 22.4 56.45
ky 16.0 20.5 66.27 21.1 33.8 73.06 0.9 12.7 36.10 3.0 17.5 50.40
li 13.5 32.8 - 21.3 35.7 - 3.3 19.9 - 14.6 31.4 -
my 6.2 14.3 58.04 5.2 15.6 63.65 0.2 12.9 40.37 1.3 12.7 48.38
nb 12.7 30.4 63.27 22.2 42.1 76.74 7.9 28.4 44.15 25.6 44.3 72.56
nn 18.3 38.0 77.18 27.1 47.7 81.80 7.3 25.7 45.35 24.3 42.9 70.06
oc 10.0 20.0 - 13.4 27.1 - 8.0 27.5 - 46.9 63.5 -
si 5.2 21.4 68.16 11.5 26.4 70.79 0.9 12.9 41.73 3.7 19.2 57.41
tg 5.5 22.0 - 8.0 25.9 - 1.1 15.8 - 3.1 19.6 -
tk 24.4 26.7 - 30.4 37.8 - 0.7 10.8 - 3.9 18.8 -
tt 1.9 17.6 - 3.6 19.6 - 0.4 13.7 - 1.6 14.3 -
ug 1.2 19.7 49.76 4.2 21.2 61.34 0.4 12.9 35.88 1.7 16.7 50.29
uz 3.1 18.2 62.12 5.7 22.0 61.12 0.5 3.6 34.67 3.9 18.8 50.32
yi 7.1 24.3 59.13 14.9 20.2 58.66 0.3 9.5 29.77 2.5 17.2 43.27
avg. 11.54 25.33 64.54 18.6 33.25 68.84 3.30 17.10 40.58 11.37 27.14 56.33

Table 13: Detailed results of BLOOMZ-7b1 fine-tuned with MTInstruct for BLOOMZ+24.
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Language
OPUS en→xx OPUS xx→en Flores en→xx Flores xx→en

BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET BLEU chrF++ COMET

af 25.0 41.9 70.72 36.9 52.2 78.68 10.6 31.9 45.84 33.5 51.1 72.84
am 3.4 13.2 60.62 4.9 22.8 62.43 0.3 5.4 44.20 1.4 16.4 51.05
be 8.3 14.5 55.23 13.9 25.1 62.72 0.8 12.5 30.93 3.6 20.6 49.14
cy 20.6 39.0 71.73 33.8 49.4 77.55 4.7 20.3 38.70 14.6 31.5 58.34
ga 17.6 39.3 65.76 32.6 52.7 77.49 3.4 21.4 39.99 13.6 31.6 58.73
gd 15.6 27.2 62.09 48.1 55.4 75.90 2.3 20.3 40.81 7.4 22.0 49.99
gl 17.1 37.2 70.85 24.4 43.3 75.90 21.7 44.9 77.09 45.6 63.5 86.60
ha 14.6 35.0 73.34 11.4 31.3 65.69 1.9 17.3 50.88 7.4 22.5 49.57
ka 4.9 18.9 67.54 10.5 25.3 61.27 0.3 6.9 27.61 2.1 16.0 47.04
kk 12.3 19.3 65.73 15.6 28.0 71.01 0.9 13.0 35.86 4.1 19.8 52.43
km 20.4 26.5 63.38 14.4 35.2 75.62 0.6 12.5 35.44 7.1 22.9 57.81
ky 15.8 19.6 64.74 23.3 35.8 74.70 0.9 13.3 36.71 2.9 17.4 50.06
li 13.2 29.4 - 22.3 38.2 - 3.1 19.7 - 12.5 28.7 -
my 7.6 15.4 58.84 6.3 18.0 66.45 0.3 13.3 40.97 1.2 14.4 50.79
nb 13.5 31.4 64.08 24.2 44.2 77.58 7.9 28.7 44.12 25.5 44.9 72.72
nn 19.0 38.0 77.61 28.5 47.7 81.68 7.0 26.7 46.14 25.8 44.1 70.55
oc 9.1 19.3 - 13.5 27.5 - 7.5 25.9 - 47.3 63.8 -
si 5.1 22.1 69.60 13.9 29.1 72.51 1.1 13.1 43.01 5.6 22.7 61.89
tg 6.6 23.7 - 8.8 27.2 - 0.9 15.6 - 3.4 19.9 -
tk 27.2 26.2 - 31.2 38.7 - 0.7 11.4 - 3.8 18.2 -
tt 2.1 18.6 - 5.0 21.5 - 0.4 13.3 - 1.5 13.7 -
ug 1.1 20.7 51.12 5.5 23.4 63.42 0.4 13.8 37.51 2.1 16.3 50.45
uz 3.5 18.6 62.09 7.4 23.3 62.01 0.2 1.9 34.50 3.7 18.2 50.09
yi 11.1 33.1 70.13 12.8 21.2 60.47 0.4 9.8 30.08 2.6 17.0 42.57
avg. 12.28 26.17 65.54 18.72 34.02 70.69 3.26 17.20 41.07 11.60 27.38 56.98

Table 14: Detailed results of BLOOMZ-7b1 fine-tuned with MT+Align for BLOOMZ+24.
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Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 1.4 14.8 56.19 en-ar 11.1 32.4 75.66
ar-fr 21.9 46.1 74.19 en-de 12.2 29.2 59.16
ar-nl 0.6 11.2 56.59 en-fr 26.8 49.2 77.42
ar-ru 3.1 6.2 48.41 en-nl 2.0 16.0 46.52
ar-zh 18.4 14.4 73.65 en-ru 5.7 16.1 49.00
de-ar 2.0 17.8 64.91 en-zh 22.5 17.0 77.90
de-fr 12.0 33.4 63.45 avg. 13.38 26.65 64.28
de-nl 3.7 17.9 47.30
de-ru 1.3 11.8 45.53
de-zh 8.9 7.6 61.52
fr-ar 11.2 33.4 74.20 BLEU chrF++ COMET
fr-de 4.6 23.4 48.83 ar-en 26.7 48.4 78.12
fr-nl 2.8 17.2 52.14 de-en 21.1 38.5 71.99
fr-ru 3.1 10.4 45.12 fr-en 27.7 49.8 79.46
fr-zh 20.9 17.0 76.20 nl-en 12.3 31.1 61.29
nl-ar 1.3 13.2 59.46 ru-en 17.9 36.6 68.40
nl-de 5.9 22.8 46.49 zh-en 24.5 47.9 77.08
nl-fr 9.6 29.6 58.30 avg. 21.70 42.05 72.72
nl-ru 0.8 9.0 42.83
nl-zh 3.3 3.7 53.96
ru-ar 6.5 25.3 68.38
ru-de 2.0 17.0 48.06
ru-fr 15.7 38.7 67.54
ru-nl 0.5 10.5 46.14
ru-zh 10.7 11.3 67.18
zh-ar 8.6 29.7 73.47
zh-de 1.6 17.6 49.90
zh-fr 20.7 44.1 75.79
zh-nl 0.6 10.4 48.53
zh-ru 2.9 8.6 44.13
avg. 6.89 19.14 57.95
seen→seen 16.95 30.78 74.58 en→seen 20.13 32.87 76.99
seen→unseen 2.30 13.31 49.98 en→unseen 6.63 20.43 51.56
unseen→seen 7.78 20.07 62.74 seen→en 26.30 48.70 78.22
unseen→unseen 2.37 14.83 46.06 unseen→en 17.10 35.40 67.23

Table 15: Detailed results of BLOOMZ-7b1 without fine-tuning.
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Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 4.7 20.9 56.43 en-ar 9.1 27.2 71.47
ar-fr 20.8 42.5 71.47 en-de 19.8 36.1 66.53
ar-nl 7.2 22.9 58.29 en-fr 23.0 44.5 74.98
ar-ru 5.0 21.0 54.73 en-nl 15.5 36.1 64.76
ar-zh 14.0 12.4 67.94 en-ru 14.2 30.3 62.82
de-ar 2.4 16.2 64.53 en-zh 20.7 17.9 74.97
de-fr 11.9 31.2 64.44 avg. 17.05 32.02 69.26
de-nl 9.4 28.1 54.22
de-ru 5.1 19.6 55.41
de-zh 4.2 5.8 55.26
fr-ar 10.1 29.1 70.72 BLEU chrF++ COMET
fr-de 8.6 27.7 53.77 ar-en 26.5 46.9 76.92
fr-nl 10.3 30.1 57.55 de-en 27.0 44.0 76.97
fr-ru 7.9 26.0 56.82 fr-en 27.5 49.0 78.80
fr-zh 18.1 18.5 72.24 nl-en 21.8 41.3 73.99
nl-ar 2.0 15.1 63.73 ru-en 24.8 43.6 74.23
nl-de 9.7 28.1 52.58 zh-en 23.2 45.3 76.83
nl-fr 13.2 32.3 65.17 avg. 25.13 45.02 76.29
nl-ru 5.1 18.6 55.13
nl-zh 3.0 5.4 54.34
ru-ar 5.9 15.0 60.36
ru-de 5.6 23.8 52.66
ru-fr 17.9 38.4 68.66
ru-nl 6.2 22.5 54.41
ru-zh 7.5 13.6 61.40
zh-ar 6.7 22.1 67.48
zh-de 3.3 19.6 51.75
zh-fr 17.4 38.9 73.00
zh-nl 4.8 19.3 54.41
zh-ru 3.5 17.9 49.02
avg. 8.38 22.75 59.93
seen→seen 14.52 27.25 70.48 en→seen 17.60 29.87 73.81
seen→unseen 6.14 22.82 54.75 en→unseen 16.50 34.17 64.70
unseen→seen 7.56 19.22 61.99 seen→en 25.73 47.07 77.52
unseen→unseen 6.85 23.45 54.07 unseen→en 24.53 42.97 75.06

Table 16: Detailed results of BLOOMZ-7b1 fine-tuned with MTInstruct for BLOOMZ+3 de-nl-ru.
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Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 5.1 20.8 55.25 en-ar 8.4 26.0 70.45
ar-fr 20.3 42.5 71.78 en-de 21.1 36.7 67.15
ar-nl 6.4 21.6 57.48 en-fr 22.9 44.4 74.67
ar-ru 5.2 21.5 55.51 en-nl 16.1 36.8 65.26
ar-zh 16.0 14.1 69.55 en-ru 15.2 31.5 63.30
de-ar 2.4 16.3 64.01 en-zh 16.1 15.0 71.93
de-fr 13.5 34.3 66.25 avg. 16.63 31.73 68.79
de-nl 9.7 28.0 55.00
de-ru 5.3 19.6 55.61
de-zh 7.2 7.3 60.64
fr-ar 10.0 28.2 69.86 BLEU chrF++ COMET
fr-de 9.2 27.8 54.03 ar-en 27.1 47.0 76.54
fr-nl 10.8 31.0 58.50 de-en 27.8 44.4 77.57
fr-ru 8.6 26.7 57.07 fr-en 27.1 48.7 78.82
fr-zh 15.9 15.8 70.78 nl-en 22.6 42.2 74.25
nl-ar 2.2 15.4 63.47 ru-en 25.6 44.2 74.46
nl-de 10.2 28.5 53.65 zh-en 23.5 45.7 77.04
nl-fr 14.4 34.4 66.55 avg. 25.62 45.37 76.45
nl-ru 5.3 19.3 55.53
nl-zh 5.5 6.2 58.77
ru-ar 6.5 16.0 62.69
ru-de 6.1 24.3 52.89
ru-fr 18.2 39.0 69.95
ru-nl 6.3 22.5 54.36
ru-zh 7.6 13.3 61.94
zh-ar 8.7 26.5 70.88
zh-de 3.0 19.5 50.82
zh-fr 17.7 39.7 73.56
zh-nl 4.4 19.3 54.20
zh-ru 4.1 19.5 50.47
avg. 8.86 23.30 60.70
seen→seen 14.77 27.80 71.07 en→seen 15.80 28.47 72.35
seen→unseen 6.31 23.08 54.81 en→unseen 17.47 35.00 65.24
unseen→seen 8.61 20.24 63.81 seen→en 25.90 47.13 77.47
unseen→unseen 7.15 23.70 54.51 unseen→en 25.33 43.60 75.43

Table 17: Detailed results of BLOOMZ-7b1 fine-tuned with MT+Align for BLOOMZ+3 de-nl-ru.
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Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 6.9 24.7 58.10 en-ar 14.6 35.6 76.70
ar-fr 26.2 48.2 74.96 en-de 20.4 36.0 65.96
ar-nl 8.8 24.7 59.53 en-fr 27.9 50.0 77.65
ar-ru 6.5 22.7 55.33 en-nl 14.8 34.8 63.11
ar-zh 28.6 22.3 77.64 en-ru 13.3 29.0 61.43
de-ar 3.3 19.8 68.27 en-zh 36.1 27.7 80.31
de-fr 15.2 35.8 67.05 avg. 21.18 35.52 70.86
de-nl 8.2 26.0 53.35
de-ru 4.4 17.9 54.79
de-zh 12.0 9.9 65.20
fr-ar 14.2 35.2 74.84 BLEU chrF++ COMET
fr-de 8.9 28.4 53.81 ar-en 33.7 53.5 79.81
fr-nl 10.1 29.9 56.92 de-en 27.1 43.9 77.04
fr-ru 8.1 26.0 55.96 fr-en 29.6 51.0 79.60
fr-zh 30.2 25.6 79.43 nl-en 22.0 41.4 73.54
nl-ar 3.1 18.2 67.72 ru-en 25.1 43.9 74.05
nl-de 10.4 27.7 52.67 zh-en 32.6 54.3 79.75
nl-fr 16.9 37.3 68.46 avg. 28.35 48.00 77.30
nl-ru 4.8 17.8 54.71
nl-zh 8.1 7.0 63.96
ru-ar 11.9 31.5 72.45
ru-de 6.1 23.7 52.74
ru-fr 21.2 42.5 71.71
ru-nl 6.8 22.6 53.91
ru-zh 21.3 20.7 74.63
zh-ar 13.1 34.1 74.92
zh-de 4.1 22.3 52.13
zh-fr 23.8 46.5 76.54
zh-nl 4.8 19.9 54.26
zh-ru 5.7 21.9 50.60
avg. 11.79 26.36 63.22
seen→seen 22.68 35.32 76.39 en→seen 26.20 37.77 78.22
seen→unseen 7.10 24.50 55.18 en→unseen 16.17 33.27 63.50
unseen→seen 12.56 24.74 68.83 seen→en 31.97 52.93 79.72
unseen→unseen 6.78 22.62 53.69 unseen→en 24.73 43.07 74.88

Table 18: Detailed results of BLOOMZ-7b1 fine-tuned with MTInstruct for BLOOMZ+3 ar-de-fr-nl-ru-zh.
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Zero-shot BLEU chrF++ COMET Supervised BLEU chrF++ COMET

ar-de 6.7 24.2 57.45 en-ar 15.1 35.8 76.76
ar-fr 27.5 49.2 75.21 en-de 20.6 35.9 65.88
ar-nl 8.7 24.8 59.14 en-fr 27.5 49.4 77.46
ar-ru 6.7 21.6 55.04 en-nl 15.0 35.6 63.70
ar-zh 30.1 24.4 78.54 en-ru 13.5 29.5 61.62
de-ar 3.5 19.7 68.39 en-zh 36.3 27.7 80.52
de-fr 15.4 35.8 67.81 avg. 21.33 35.65 70.99
de-nl 9.6 27.3 53.74
de-ru 4.7 17.9 54.23
de-zh 12.0 9.9 65.40
fr-ar 14.9 36.3 74.98 BLEU chrF++ COMET
fr-de 9.2 28.3 52.96 ar-en 33.9 53.7 79.74
fr-nl 11.3 31.1 57.62 de-en 27.1 43.6 77.13
fr-ru 8.8 26.2 56.31 fr-en 29.7 51.0 80.03
fr-zh 31.1 26.9 79.93 nl-en 22.6 42.3 73.94
nl-ar 3.3 18.5 68.02 ru-en 25.8 44.5 74.07
nl-de 9.4 26.5 52.33 zh-en 32.5 54.5 80.01
nl-fr 17.2 37.3 68.38 avg. 28.60 48.27 77.49
nl-ru 4.4 17.1 53.63
nl-zh 8.3 7.0 64.08
ru-ar 12.4 32.1 72.40
ru-de 5.7 22.9 51.90
ru-fr 21.5 42.7 72.08
ru-nl 6.3 22.1 53.32
ru-zh 22.7 24.6 75.36
zh-ar 13.9 35.4 75.68
zh-de 3.6 21.3 51.32
zh-fr 24.5 47.0 76.98
zh-nl 4.9 20.3 54.30
zh-ru 5.5 21.1 50.49
avg. 12.13 26.65 63.23
seen→seen 23.67 36.53 76.89 en→seen 26.30 37.63 78.25
seen→unseen 7.27 24.32 54.96 en→unseen 16.37 33.67 63.73
unseen→seen 12.92 25.29 69.10 seen→en 32.03 53.07 79.93
unseen→unseen 6.68 22.30 53.19 unseen→en 25.17 43.47 75.05

Table 19: Detailed results of BLOOMZ-7b1 fine-tuned with MT+Align for BLOOMZ+3 ar-de-fr-nl-ru-zh.
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Abstract

While large language models (LLMs) excel in
various natural language tasks in English, their
performance in lower-resourced languages like
Hebrew, especially for generative tasks such
as abstractive summarization, remains unclear.
The high morphological richness in Hebrew
adds further challenges due to the ambiguity
in sentence comprehension and the complex-
ities in meaning construction. In this paper,
we address this resource and evaluation gap
by introducing HeSum, a novel benchmark
specifically designed for abstractive text sum-
marization in Modern Hebrew. HeSum con-
sists of 10,000 article-summary pairs sourced
from Hebrew news websites written by profes-
sionals. Linguistic analysis confirms HeSum’s
high abstractness and unique morphological
challenges. We show that HeSum presents dis-
tinct difficulties for contemporary state-of-the-
art LLMs, establishing it as a valuable testbed
for generative language technology in Hebrew,
and MRLs generative challenges in general.1

1 Introduction

Recent advances with large language models
(LLMs, Brown et al., 2020; Chowdhery et al., 2023)
demonstrate impressive capabilities, encompass-
ing diverse tasks such as natural language (NL)
understanding and reasoning, including classifica-
tion tasks such as commonsense reasoning (Bisk
et al., 2020) and sentiment analysis (Liang et al.,
2022), as well as generative tasks like summariza-
tion and dialogue systems (Cohen et al., 2022).
However, these impressive achievements are pri-
marily demonstrated for the English language. Our
understanding of how these models perform on
low-resource languages is limited, as current eval-
uations are primarily focused on languages with
abundant data (Ahuja et al., 2023; Lai et al., 2023).

∗Equal contribution.
1The dataset, code, and fine-tuned models are publicly

available at https://github.com/OnlpLab/HeSum

This concern is particularly relevant for morpho-
logically rich languages (MRLs) such as Hebrew,
which is known for their word complexity and am-
biguity, leading to processing difficulty (Tsarfaty
et al., 2019, 2020). Despite advances in natural lan-
guage processing for Hebrew, which so far covered
tasks as reading comprehension (Keren and Levy,
2021; Cohen et al., 2023), named entity recognition
(Bareket and Tsarfaty, 2021), sentiment analysis
(Chriqui and Yahav, 2022), and text-based geolo-
cation (Paz-Argaman et al., 2023); a crucial gap
persists in the ability to evaluate novel, human-like
generated text, as in abstractive text generation.

Abstractive text-generation requires both natural
language understanding and reasoning over the in-
put, and the ability to generate grammatically, and
in particular morpho-syntactically, correct text, as
well as semantically and morpho-semantically co-
herent, fluent text that conveys consistent meanings.
Notably, text-generation models are also prone to
‘hallucinations’ — generating factually incorrect
content. These challenges are further amplified in
Hebrew due to its morphological richness which
leads to a complex realization of sentence structure
and meaning.

In order to enable empirically quantified assess-
ment of these aspects of text generation in MRLs,
we present a novel benchmark dataset for Hebrew
abstractive text Summarization (HeSum). HeSum
consists of 10,000 articles paired with their cor-
responding summaries, all of which have been
sourced from three different Hebrew news web-
sites, all written by professional journalists. This
curated collection offers several key advantages:
(i) High Abstractness – extensive linguistic anal-
ysis validates HeSum’s summaries as demonstra-
bly more abstractive even when compared to En-
glish benchmarks. (ii) Unique Hebrew Challenges
– meticulous linguistic analysis pinpoints the inher-
ent complexities specific to Hebrew summariza-
tion, offering valuable insights into the nuanced
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Set
Size

Vocabulary size
(over Articles)

Avg. Document
Length

Avg. Word
Ambiguity

Avg. Morph
Anaphors

Avg.
Construct-State

BertScore
Semantic Similarity

Lemmas Tokens Article Summary Article Article Summary Article-Summary
Train 8,000 47,903 269,168 1,427.4 33.2 58 98.8 2.4 76
Validation 1,000 23,134 104,383 1,410.0 33.8 90 87.9 2.5 76
Test 1,000 22,543 102,387 1,507.6 34.7 89 95.7 2.6 74

Table 1: Linguistic Analysis of the HeSum dataset.

characteristics that differentiate it from its English
counterpart. And (iii) Thorough LLM Evaluation
– we conducted a comprehensive empirical analy-
sis using state-of-the-art LLMs, demonstrating that
HeSum presents unique challenges even for these
contemporary models. By combining high abstract-
ness, nuanced morphological complexities, and a
rigorous LLM evaluation, HeSum establishes itself
as a valuable resource for advancing the frontiers
of abstractive text summarization in MRL settings.

2 The Challenge

Linguistic Challenges in Hebrew Morpholog-
ically rich languages (MRLs) pose distinct chal-
lenges for generative tasks, above and beyond mor-
phologically impoverished ones such as English.

In MRLs, each input token can be composed of
multiple lexical and functional elements, each con-
tributing to the overall structure and semantic mean-
ings of the generated text. For instance, the Hebrew
word ‘ ’וכשמביתנו! is composed of seven morphemes:
’ו‘ (‘and’), ‘ ’כש! (‘when’), ’|מ‘ (‘from’), ‘ ’ה! (‘the’),
‘ ’בית! (‘house’), ‘ ’של! (‘of’), and ‘ ’אנחנו! (‘us’). This
has ramifications for both the understanding of
MRL texts, a process that necessitates morpholog-
ical segmentation, and for generating MRL texts,
requiring morphological fusion. At comprehen-
sion, Hebrew poses an additional challenge due to
its inherent ambiguity, with many tokens admitting
multiple valid segmentations, e.g., ’הקפה‘ could be
interpreted as ’קפה!‘+’ה‘ (‘the’+‘coffee’); as ’הקפה‘
(‘orbit’); or as ‘!Pהק’ + ’של!‘ + ‘ ’היא! (‘perime-
ter’+‘of’+‘her’). During generation, the emergence
of unseen morphological compositions, where unfa-
miliar morphemes combine in familiar ways, poses
an additional challenge (Hofmann et al., 2021;
Gueta et al., 2023). These challenges, coupled
with inherent linguistic features like morphological
inflections, construct-state nouns (smixut), and flex-
ible word order, create a multifaceted challenge for
LLMs in processing and generating Hebrew texts.

The HeSum Task We aim to unlock the
comprehension-and-generation challenge in MRL

settings by first tackling the abstractive text sum-
marization task (Moratanch and Chitrakala, 2016),
here focusing on Modern Hebrew.

Given an input document in Hebrew, specifically
a news article, our goal is to generate a short, clear,
Hebrew summary of the key information in the
article. In contrast to extractive summarization,
here novel morphosyntactic structures need to be
generated to communicate the summary.

3 Dataset, Statistics and Analysis

3.1 Data Collection

The HeSum dataset consists of article-and-
summary pairs. The articles were collected
from three Hebrew news websites: “Shakuf”,2

“HaMakom”,3 and “The Seventh Eye”.4 These
websites focus on independent journalism, provid-
ing articles on topics such as government account-
ability, corporate influence, and environmental is-
sues. Each article on these websites is accompa-
nied by an extended subheading written by a pro-
fessional editor, that serves as a summary of the
content. To ensure data quality, articles that were
not in Hebrew, or ones that had particularly short
summaries (i.e., the extended subheading was less
than 10 tokens) were excluded from the dataset.

3.2 Linguistic Analysis

We examined the linguistic, morpho-syntactic and
semantic, properties of the HeSum dataset. For
the extraction of syntactic and semantic features,
we used DictaBert (Shmidman et al., 2023). Addi-
tionally, AlephBert (Seker et al., 2022), a Hebrew
monolingual BERT-based encoder model (Devlin
et al., 2018), was employed to compute semantic
similarity between articles and their correspond-
ing summaries, leveraging the BertScore method
(Zhang* et al., 2020). Notably, semantic similar-
ity was performed only on article-summary pairs
within the model’s 512-token limit.

2https://shakuf.co.il
3https://www.ha-makom.co.il
4https://www.the7eye.org.il
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Dataset novel n-grams CMP RED (n=1) RED (n=2)

n = 1 n = 2 n = 3 n = 4

CNN/Daily Mail 13.20 52.77 72.20 81.40 90.90 13.73 1.10
XSum 35.76 83.45 95.50 98.49 90.40 5.83 0.16
HeSum 42.00 73.20 82.00 85.36 95.48 4.83 0.10

Table 2: HeSum’s Intrinsic Evaluation compared to English Benchmarks (CNN/Daily Mail and XSum).

Table 1 highlights the Hebrew language’s multi-
faceted complexities as reflected in this task. The
notable disparity in the vocabulary size between
token and lemma counts underscores extensive mor-
phological richness, necessitating models adept at
handling linguistic diversity. The abundance of
morphological anaphoric expressions and numer-
ous Hebrew construct-state constructions necessi-
tate advanced models attuned to entity relations
that are expressed via Hebrew’s unique morpholog-
ical traits. Lattice analysis reveals a high degree of
word ambiguity (numerous lattice paths), highlight-
ing natural language understanding challenges and
the consequent difficulty of accurate tokenization
for downstream processing tasks. The substantial
document length, necessitate the use of models
adept at long-form text processing. Finally, the
relatively high semantic similarity score indicates
effective information distillation in the summaries.

3.3 Summarization Intrinsic Analysis

To assess the challenges of the HeSum summaries
we used three established metrics: (i) Abstractness:
the percentage of summary novel n-grams, unseen
in the article (Narayan et al., 2018). (ii) Com-
pression Ratio (CMP): the word count in sum-
mary S divided by the word count in article A:
CMPw(S,A) = 1− |S|

|A| . Higher compression ra-
tios indicate greater word-level reduction and, sub-
sequently, potentially a more challenging summa-
rization task (Bommasani and Cardie, 2020). (iii)
Redundancy (RED): measures repetitive n-grams
within a summary (S) using the form: RED(S) =∑m

i=1(fi−1)∑m
i=1 fi

where m is the number of unique n-
grams in the summary and fi ≥ 1 is the frequency
count of a specific n-gram (Hasan et al., 2021).

Table 2 presents a quantitative analysis of
HeSum’s summarization characteristics, underscor-
ing its challenges. HeSum demonstrates a high
degree of abstractness, with approximately half of
its unique vocabulary and over 73% of bigrams un-
seen in the original articles. Furthermore, HeSum

presents a significant compression challenge, as
summaries average less than 5% of the input article
length. Additionally, the analysis reveals minimal
redundancy within the summaries, with less than
5% repeated n-grams. These findings underscore
HeSum’s efficacy in conveying the central ideas of
the articles’ information in a novel, distillate, and
non-redundant manner. Comparative analysis with
established abstractive summarization benchmarks,
CNN/Daily Mail (Nallapati et al., 2016) and XSum
(Narayan et al., 2018), confirms HeSum’s high ab-
stractness, compression ratio, and low redundancy,
even when compared to these datasets.

4 Experiments

4.1 Experimental setup

Models To demonstrate the complexity of this
task, we conducted an evaluation of two LLMs in
a zero-shot setting: the GPT-4 model with 32K
context window (version 0613), and GPT-3.5-turbo
with 16K context (version 0613). To find the most
effective prompt format, we tested on the HeSum
validation set various prompting strategies, includ-
ing translating parts of the prompt to English. Ulti-
mately, we adopted the English-translated approach
(Brown et al., 2020), where both the instruction and
input were translated. The output summaries are
strictly in Hebrew. Additionally, to address the lim-
itations of available generative models for Hebrew,
we fine-tuned the multilingual mLongT5 model
(Uthus et al., 2023) on the HeSum training set with
two versions, base (2.37 GB) and large (4.56 GB).
mLongT5 is a sequence-to-sequence model based
on mT5 (Xue et al., 2020) specifically designed
for handling long sequences. Appendix B includes
the GPT models’ prompting strategies experiments,
and the mLongT5 training details.

Automatic Evaluation Metrics To evaluate the
generated summaries with respect to the original
texts, we used two standardly-used automatic met-
rics: ROUGE and BertScore.
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Model ROUGE BertScore Human Evaluation

ROUGE-1 ROUGE-2 ROUGE-L Coherence Completeness

GPT-4 13.59 3.70 10.39 77.3 4.48 4.14
GPT-3.5 13.69 3.84 10.55 77.0 4.38 3.98
mLongT5 (fine-tuned) 17.47 7.56 14.68 57.6 3.46 2.10

Table 3: Models’ performance on the HeSum test-set.

Phenomenon GPT-4 GPT-3.5 mLongT5 Example error
in Hebrew

Example error
translated into English Explanation

Repetition 0 0 1
?Mאלי להיות יכול הוא Mהא
...?Mאלי להיות יכול הוא Mא

Can he be violent? If he
can be violent?

Duplication with subtle alterations.

Copy from
Article 0 0 4

! להציע יכול עיתונאי Mהא
... על! פומבית ביקורת

Can a journalist make
public criticism of...

The model-generated summary replicates a section of the original article.

Non-alphabetic
omission 1 0 14 !Mצחצחי Chachachim Missing diacritic – it should be ‘!Mחי' 'ח|!צ|! ’צ|! instead of ‘!Mצחצחי’.

Incorrect
disambiguation 1 1 2 טופז! הדוד של ...נאומו Uncle Topaz’s speech...

‘ ’דודו! is incorrectly interpreted as ’דוד!‘ + ’של!‘ (‘Uncle’ + ’of’),
instead of as a man’s name – ,’דודו!‘ which is why the model
added a definite ’ה!‘ to .’דוד!‘

Hallucination 3 3 2 נח!... את ...עירב ...involved Noah... Noah is not a person mentioned in the article.

Culture transfer 1 1 0
הנבחרת, Nהקמפיי ...למנהיגת

ברנדס... ננסי!

...to the campaign
leader-elect, Nancy
Brands...

The article refers to Nancy as a ‘he’, but the summary uses feminine
inflection (leader), probably due to Nancy being a common female
name in English.

Incorect gender 6 11 1 ...!Mבחקירת ...חושפות
...reveal in their
investigation...

Gender inflection mismatch: ‘reveal’ (fem.) clashes with ‘their’
(masc.).

Incorrect definite
(e.g., construct state) 3 2 3 ...!Mפירס Mהמשפטי ...המשרד

The Ministry of the
Justice published...

Definite articles on both words in ‘The Ministry of the Justice’
violate Hebrew construct state rules.

Table 4: Error analysis comparing generated summaries from GPT-4, GPT-3.5, and mLongT5 based on 30 inputs.

ROUGE (Lin, 2004) is a widely-used met-
ric in summarization that measures n-gram over-
lap between generated summaries and human-
written references. We calculated ROUGE-1 (un-
igrams), ROUGE-2 (bigrams), and ROUGE-L
scores (longest common subsequence) to capture
different levels of granularity. However, n-gram
metrics such as ROUGE can struggle with captur-
ing semantic similarity if paraphrases are used. To
address this, we also employed BertScore (Zhang*
et al., 2020) with AlephBert (Seker et al., 2022) as
its backbone. BertScore leverages the pre-trained
language model to provide a more semantically
meaningful evaluation of the summary.

Human Evaluation To validate the quality of
model-generated summaries for the HeSum task,
seven independent expert annotators evaluated a
total of 186 summaries (62 per model) based on
the same set of 62 reference articles. Annotators
evaluated each summary using a 1-5 Likert scale
(Likert, 1932) based on two key criteria: coherence,
which assessed the summaries’ grammaticality and
readability, and completeness, which measured the
degree to which they capture the main ideas of
the articles. To measure the consistency of the
annotators’ scores, we calculated Krippendorff’s
α (Krippendorff, 2018) for an interval scale, and
received an α score of 0.78 which indicates a good
inter-annotator agreement rate.

4.2 Results

Quantitative Analysis Table 3 summarizes the
quantitative evaluation results. While mLongT5
consistently achieved higher ROUGE scores, a
metric focused on surface-level similarity, GPT-
based models exhibited superior performance in
BertScore, a semantic similarity metric, and in hu-
man evaluation scores that assess coherence and
completeness. The consistently higher ROUGE
scores of mLongT5 might be partially attributed to
limitations in the ROUGE metric itself. ROUGE
scores favor summaries that closely mimic the
source text, even if they lack originality or fluency.
Additionally, n-gram-based metrics like ROUGE
may discount grammatically correct sentences that
convey the required meaning even with morpholog-
ical or lexical word variations, or changes in word
order, compared to the source text.

Furthermore, when comparing ROUGE to hu-
man evaluation we found a negative correlation
of human evaluation with ROUGE scores. We
computed Pearson correlation coefficients (PCC)
and found the coefficients to be around -0.16 with
highly statistically significant p-values (less than
2.39×10−5), indicating that higher ROUGE scores
do not in actuality correspond to human evaluations
of good summaries. Similarly, using Kendall’s τ
correlations resulted in negative values. Further re-
search is needed for developing automatic summa-
rization metrics that correlate with human scores.
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Qualitative Analysis Following the identifica-
tion of key error categories, we conducted a com-
parative analysis by randomly selecting 30 sum-
maries generated by each of the three models for
the same set of 30 articles. For each model, we
then quantified the occurrences of each identified
phenomenon within the sampled summaries. The
results in Table 4 reveal disparities between the
errors of GPT-based models and those of the fine-
tuned mLongT5 on various linguistic phenomena.

The finetuned mLongT5 exhibits pronounced
disruptions like repetition (3.33%) and exact copy
of sections from the articles (13.33%), which
weren’t observed in the GPT-based results. How-
ever, the GPT-based models demonstrate errors in
morphological phenomena specific to Hebrew, such
as incorrect gender and wrong definiteness marking
on smixut, indicating that the morphological rich-
ness of the language remains a challenge for these
LLMs. Additionally, known phenomena of GPT-
based models such as “hallucinations” (Cui et al.,
2023; Guerreiro et al., 2023) are also observed in
our analysis, as is familiar from other languages.

5 Conclusion

This research seeks to fill a critical gap in the field
of LLMs assessment for generative creative tasks in
MRLs, by presenting HeSum, a new dataset for He-
brew abstractive summarization, that includes 10K
article-summary pairs sourced from professional
journalists on Hebrew news websites. HeSum of-
fers three key advantages: high level of abstract-
ness in summarization, distinct challenges specific
to the Hebrew language, and a thorough empirical
assessment of LLMs using this dataset. By inte-
grating these aspects, HeSum establishes itself as a
valuable resource for researchers striving to push
the boundaries of generative tasks, and specifically
abstractive text summarization in Hebrew.

Limitations

Evaluation Metrics based on n-gram matching,
such as BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and Meteor (Denkowski and Lavie,
2014), are commonly used for evaluating summa-
rization quality in English. However, these metrics
can be problematic when applied to Hebrew text.
Hebrew allows for more flexible word order com-
pared to English. Additionally, its morphological
richness entails that the same concept can be ex-
pressed in multiple ways due to variations in pre-

fixes, suffixes, and root conjugations. Furthermore,
Hebrew has variations in spelling words due to
missing vowels (Ktiv haser vs. Ktiv male). These
factors can lead to n-gram-based metrics overlook-
ing grammatically correct sentences in the gener-
ated summary that convey the full meaning even
though they show slight differences. Our findings
in Section 4.2, which demonstrate a negative cor-
relation between ROUGE scores and human evalu-
ation scores, highlight the limitations of ROUGE
evaluation in the context of Hebrew summarization.

Subset of LLMs Although we aspired to eval-
uate HeSum on a broad range of large language
models (LLMs), our current analysis is limited
to only two generative models. This might over-
look newer models offering potentially superior
performance. Additionally, resource constraints
prevented us from investigating the behavior of
these models in few-shot settings. Having acknowl-
edged that, the timeliness of this resource is un-
compromized, as it can be used with contemporary
and future models alike, to track advances on this
challenge.

Open Access vs. Domain Focus HeSum pre-
dominantly comprises articles from news websites,
which may bias models’ success in this task to-
wards news-style writing, and may not fully cap-
ture the linguistic diversity across different genres
and domains. The reason for selecting these do-
mains specifically stems from our ability to obtain
a permissive license for the resource, allowing open
and free access by the community. However, the
websites we have chosen – “Shakuf”, “HaMakom”,
and “The Seventh Eye” – deviate from typical news
platforms, offering a diverse range of topics that
go beyond the typical content found on many pop-
ular news websites in Hebrew. This variety ensures
that our dataset reflects a broader spectrum of real-
world topics.

Dataset Scale vs. Quality In the realm of abstrac-
tive summarization, datasets like CNN/Daily Mail
(Nallapati et al., 2016) and XSum (Narayan et al.,
2018) are commonly employed. These datasets uti-
lize news articles from websites, treating the article
content as the document and a corresponding field
(often not explicitly intended as a summary) as the
summary. However, this approach has faced criti-
cism due to uncertainty about whether the chosen
field truly represents a summary (Tejaswin et al.,
2021). An alternative approach involves human
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summarization, but this tends to result in smaller
datasets (e.g., PriMock57, Papadopoulos Korfiatis
et al., 2022). To advance Hebrew NLP (and the
study of generation in MRLs in general) beyond
traditional classification tasks, there is a need for
extensive generative datasets. Given the current
lack of viable alternatives within the NLP com-
munity, we have adopted a similar approach to
XSUM, albeit with longer summaries. Addition-
ally, collecting human-generated summaries in low-
resource languages presents challenges, including
the scarcity of crowdsourcing platforms that sup-
port Hebrew. To ensure quality, we meticulously
reviewed 100 articles, their subheadings, and brief
introductory sentences. Ultimately, we chose sub-
headings as our summary source because they pro-
vided more informative content, capturing addi-
tional details from the articles. Furthermore, we
filtered out articles with subheadings containing
very few tokens (10 or fewer) to ensure our sum-
maries adequately represent the article content.
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Dataset novel n-grams CMP RED (n=1) RED (n=2)

n = 1 n = 2 n = 3 n = 4

CNN/Daily Mail 13.20 52.77 72.20 81.40 90.90 13.73 1.10
XSum 35.76 83.45 95.50 98.49 90.90 5.83 0.16
HeSum 42.00 73.20 82.00 85.36 95.48 4.83 0.10
HeSum (morpheme-based) 17.41 48.02 67.51 76,86 95.57 25.90 2.72

Table 5: HeSum’s Intrinsic Evaluation compared to English Benchmarks (CNN/Daily Mail and XSum).

Coherence

1. Very Incoherent: The summary is ex-
tremely confusing and lacks any clear con-
nection between sentences.

2. Incoherent: The summary is somewhat un-
derstandable.

3. Somewhat Coherent

4. Coherent

5. Very Coherent

Completeness

1. Very Incomplete: The summary lacks es-
sential information and does not convey the
main points effectively.

2. Incomplete: The summary provides some
information but misses key details.

3. Somewhat Complete

4. Complete

5. Very Complete

Figure 1: Evaluation Criteria

Human Evaluation Details We collected anno-
tations from seven volunteered participants aged
25 and above, all with at least one academic de-
gree. The participants were instructed to rate two
parameters – coherence and completeness, based
on known criteria, as depicted in Figure 1. While
completeness measures the extent to which the sum-
mary captures all the essential information from the
source text, coherence is a more complex metric.
According to Reinhart (1980), coherence encom-
passes three core aspects: (i) cohesion, (ii) con-
sistency, and (iii) relevance. While metrics like
BertScore can also assess completeness, automatic
evaluation of coherence remains a challenge (Mai-

Model Rouge1 Rouge2 RougeL Epochs Loss

mLongT5-Base 18.62 8.68 15.92 18 2.15
mLongT5-Large 20.22 9.66 18.12 12 1.92

Table 6: mLongT5 performance on validation set and
training details.

mon and Tsarfaty, 2023). Therefore, the measure-
ment of coherence is evaluated in this work solely
by humans.

Data Analysis Table 5 provides a quantitative
analysis of HeSum’s summarization characteristics,
highlighting its challenges. The analysis utilizes
two tokenization approaches: word-based (above
the dashed line) and morpheme-based (below the
dashed line). This distinction allows for a deeper
examination of the dataset’s abstractness and the
influence of morphological features. As the table
demonstrates, the number of unique vocabulary
items (novel n-grams) decreases when using mor-
pheme tokenization. However, HeSum still exhibits
a higher uni-gram count compared to CNN/Daily
Mail. This suggests that the task itself inherently
involves a high degree of abstractness, and the mor-
phological nature of the data presents an additional
challenge.

B Models

Fine-tunning mLongT5 The HeSum corpus ex-
hibits characteristics of long-form text, with an
average document length of 2,747 tokens and a
90th percentile reaching 5,276 tokens. This exten-
sive content poses challenges for the vanilla mT5
model, whose capacity for processing such lengths
may be limited. Consequently, we have fine-tuned
the mLongT5 model (Uthus et al., 2023), which
is suitable for handling long inputs. The paper
presents results obtained with the base version of
mLongT5, which is 2.37 GB. We are also releasing
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Dataset novel n-grams CMP RED (n=1) RED (n=2)

n = 1 n = 2 n = 3 n = 4

HeSum 42.00 73.20 82.00 85.36 95.48 4.83 0.10
GPT-4 47.24 80.35 91.37 95.92 91.89 8.14 0.68
GPT-3.5 45.69 80.18 91.73 96.35 93.46 7.53 0.83
mLongT5-large 8.26 30.10 43.50 50.21 95.39 11.89 5.98
mLongT5-base 7.21 28.77 42.06 49.46 92.25 15.74 10.25

Table 7: Intrinsic Evaluation of Summarization. A Comparative Analysis of GPT-4, GPT-3.5, mT5 Models and the
Hesum Dataset.

Model prefix input output ROUGE-1 ROUGE-2 ROUGE-L
GPT-3.5 E E E 16.10 4.06 11.43
GPT-3.5 H H H 16.34 4.26 11.69
GPT-3.5 E E H 12.80 2.30 11.00
mLongT5 —– H H 17.47 7.56 14.68
GPT-3.5 E H H 17.08 4.95 12.46
GPT-3.5 H H E 14.35 3.13 9.89
GPT-3.5 E H E 14.31 3.11 10.40
GPT-3.5 H E H 15.90 4.23 10.80

Table 8: Testing different configurations of language
prompting to find the best configuration to evaluate GPT-
3.5. ’H’ denotes Hebrew and ’E’ denotes English. ’pre-
fix’ is the instruction to the model, ’input’ is the article
itself, and the output is the desired summarization lan-
guage.

a larger model (4.56 GB).5 The training regimen
employed an 8-GPU A100 cluster for 36 hours
for the large model, while the base model lever-
aged a single A100 GPU with 40 GB of memory.
Early stopping, utilizing ROUGE-1 as the metric,
was implemented to optimize the training process.
Further details regarding model performance and
implementation specifics are provided in Table 6.

Prompting GPT-based models Here, we lever-
age the translate-English approach, suggested by
(Shi et al., 2022) and (Ahuja et al., 2023), which
translates instances from target languages into En-
glish before prompting. We decompose the prompt
task into three parts: (i) the input article (ii) the
instruction (prefix), and (iii) the output. All three
parts could be done in either Hebrew or English for
the HeSum task. In our experiment, Google Trans-
late API (2023, API, 2023) handled the translation
of prompts (input and/or prefix) from Hebrew to
English and the translated outputs back to Hebrew
for analysis. Testing GPT-3.5 on different configu-
rations of language prompting in the HeSum vali-
dation set, we found that the best prompt-language

5https://huggingface.co/biunlp/
mT5LongHeSum-large

configuration is English-English-English (Table 8).
We then applied this prompting strategy to both
GPT-3.5 and GPT-4 on the test set. The prompt we
used depicted in Figure 2.

You are a genius summarizer. Your task is to
summarize the main points of the following
text. Please follow these instructions step by
step:

1. The summary should be concise, consist-
ing of up to 3 sentences.

2. If there are several main topics, create a
separate sentence for each topic.

3. The output should be in English.

Figure 2: The prompt we used for the GPT-based models

C Implementation Details

For the intrinsic evaluation of the dataset, we cre-
ated a Jupyter notebook which computes the dif-
ferent metrics. For computing the n-grams, we
used the NLTK package,6 and for loading and pro-
cessing the data, we used NumPy7 and Pandas.8

For evaluation of the different models, we used the
most common ROUGE package for non-English
papers,9 and the HuggingFace implementation of
Transformers for BertScore.10

6https://pypi.org/project/nltk/
7https://pypi.org/project/numpy/
8https://pypi.org/project/pandas/
9https://github.com/csebuetnlp/xl-sum/tree/

master/multilingual_rouge_scoring
10https://pypi.org/project/transformers/
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D Additional Models Performance
Analysis

Table 7 presents the intrinsic evaluation results
for the models, corresponding to the metrics in-
troduced in Section 3.3. Notably, GPT-based mod-
els generate text with greater abstractness, as evi-
denced by their higher count of novel n-grams com-
pared to the fine-tuned mT5. This finding aligns
with mT5’s tendency towards repetitive generation,
which is further supported by its high RED score
and by the qualitative analysis presented in Table
4.
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Abstract

While machines learn from existing corpora,
humans have the unique capability to establish
and accept new language systems. This makes
human form unique language systems within
social groups. Aligning with this, we focus on
a gap remaining in addressing translation chal-
lenges within social groups, where in-group
members utilize unique terminologies. We pro-
pose KpopMT dataset, which aims to fill this
gap by enabling precise terminology transla-
tion, choosing Kpop fandom as an initiative for
social groups given its global popularity. Ex-
pert translators provide 1k English translations
for Korean posts and comments, each anno-
tated with specific terminology within social
groups’ language systems. We evaluate exist-
ing translation systems including GPT models
on KpopMT to identify their failure cases. Re-
sults show overall low scores, underscoring the
challenges of reflecting group-specific termi-
nologies and styles in translation. We make
KpopMT publicly available.1

1 Introduction

One of the most profound distinctions between hu-
mans and machines lies in their ability to form a
new language system. While machines learn from
and rely on existing corpora, humans have the
unique capability to establish new social conven-
tions, such as agreeing to call an apple “apple”.
This inventive ability is deeply intertwined with the
social nature of language, wherein words gain influ-
ence and become integrated into the vernacular of
social groups – termed as social dialect – through
social interactions and contexts.

In light of this, our research places a particular
emphasis on specific phenomena: Social groups of-
ten develop their unique linguistic systems, replete
with specific terminologies and jargon, as in Ta-
ble 1 (Wolfram, 2004; Peterson, 2014). The global

1https://github.com/skswldndi/KpopMT

Kpop Fandom Group’s Language System

Korean 원래 덕질 할때 갠팬 수준으로 최애 위주

로만파는타입이었음

English
Originally, when I stan , I tended to focus on
only my bias almost it seems like solo stan .

Table 1: Example of how specialized terminologies (col-
orboxes) are used in a global social group.

surge in social media usage has brought individu-
als from diverse countries and continents together,
forming cohesive communities (Sawyer and Chen,
2012). An example is the Kpop fandom across var-
ious regions (Choi et al., 2014); these fans seek to
connect and establish interpersonal relationships
that transcend language barriers (Malik and Haidar,
2021).

However, the unique linguistic systems of social
groups are currently not adequately represented in
machine translation (MT) systems. Despite propos-
als from researchers to consider language diversity
in MT (Kumar et al., 2021; Lakew et al., 2018), in-
cluding cross-domain standard languages (Hu et al.,
2019; Currey et al., 2017), local dialects (Abe et al.,
2018; Hassan et al., 2017), and related languages
(Pourdamghani and Knight, 2017), the specialized
language systems of social groups remain under-
explored in MT research. For example, Google
Translator translates the example sentence in Table
1 as Originally, when I was a fan, I focused on my
favorites. It was the type that only sells., which
differs from the specialized language system of the
group.

In order to promote research in this direction,
we argue for the necessity of a benchmark dataset
that encompasses the language systems of social
groups. This dataset is also crucial for demonstrat-
ing the capabilities of the current translation sys-
tems specifically tailored to handle the nuances of
social group languages.
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In our study, we reference the field of
terminology-based MT (Xie and Way, 2020;
Knowles et al., 2023), which focuses on accurately
translating specialized terminology in machine-
generated output. Notably, the medical domain has
seen significant advancements in this area (Alam
et al., 2021; Anastasopoulos et al., 2020), high-
lighted by the release of datasets that aid the NLP
community, particularly those interested in termi-
nology translation and constrained neural MT tasks
(Zhang et al., 2023; Wang et al., 2022).

We propose a terminology-tagged MT dataset
tailored for social groups, named KpopMT.
Through human survey, we demonstrate partici-
pants in a social group show a strong preference
for reference translations in KpopMT compared to
translations without terminology. We choose the
Kpop fandom as the social group for this initiative,
given its global popularity and the widespread shar-
ing of content on social media platforms among
fans from diverse countries (Ringland et al., 2022).

KpopMT is collected from Korean posts and
comments found on fan-related websites, includ-
ing X (Twitter). Expert translators fluent in the
terminologies used within this social group pro-
vide English translations, resulting in 1k sentence
pairs, each annotated with specific terminologies.
We evaluate existing translation systems, including
state-of-the-art models such as GPTs, on KpopMT
to identify areas of improvement and establish base-
line performance for future research.

2 KpopMT

KpopMT consists of three parts: 1) the parallel
sentence tagged with terminologies, 2) termbase
which contains parallel glossary, and 3) fandom
monolingual dataset. In this section, we illustrate
how the parallel sentence and termbase are con-
structed. We address fandom monolingual dataset
in Section 3.1.

In Table 2, we show an example of KpopMT.
Capturing the most distinctive part of social groups’
language system is terminology, we also provide
terminology information. The parallel sentence has
fandom-related terms included in both the source
and target side, which are annotated as tags.

To ensure translation reliability, we get confirma-
tion from five native English Kpop fans who know
both Korean fandom terms and English fandom
terms.

2.1 Construction

KpopMT is constructed in two phases. First, we
construct parallel sentences. Second, we annotate
parallel terminology information in the sentences.

Sentence Phase To obtain sentences that include
fandom-related terminology, we make a query list
derived from crowd-sourced dictionaries.2 Using
the query list, we manually collect Korean mono-
lingual data from the fan community sites34 and
Twitter. Then we hire ten human translators who
pass the qualification test, by asking for English
translations of ten Korean fandom terms and their
meanings. We only hire translators who answer cor-
rectly for at least eight terms. Then we ask them to
translate Korean sentences into English sentences,
resulting in 1,000 sentence pairs.

Please note that we ask them to translate with the
inclusion of English fandom terms, such as ‘stan.’
If there are no specific English fandom terms, we
ask the translators to include internet slang in the
sentence as a variation of standard language. We
also forbid the usage of translation services such as
Google Translate.

Terminology Phase In this phase, we mark terms
included in the parallel sentences first. After ex-
tracting all marked terms, we create a parallel glos-
sary by matching Korean terms with their English
counterparts. If there are other possible or mor-
phological variations in English terms, we include
them on the target of the glossary, separating them
with ‘|’. Subsequently, experts on the terminology
used within fandom and internet slang confirm the
consistency of parallel glossary.

Since we separate the sentence phase and the
terminology phase, KpopMT is not structured ac-
cording to the terminologies in this glossary. This
complicates the creation of a one-to-one dictionary.
For instance, ‘머글’ is not a direct equivalent of
only ‘local’. Therefore, we opt to begin with the
Korean side as it aligns with the actual translation
direction in which the data was generated, follow-
ing Alam et al. (2021).

We categorize the glossary terms into three:
Group-Lexicon, Group-NE, and Slang. Group-
Lexicon refers to the lexicon unique to the fandom,
which may not be understood by those outside the
fandom. Group-NE represents elements related to

2Naver Open-Dict http://naver.me/xeUyZv8N
3Theqoo http://theqoo.net
4Instiz http://instiz.net
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1. Sentence Phase

Source 트친 이랑푸드코트에서밥먹다가 용수 만났어요 포카 보여주고팬이라고싸인도받았어요덕계못

인줄알았는데

Reference I met Yongsoo at food court while eating with my moot . We showed him pc and got an autograph saying
that we’re fans of him. I thought stan can’t get luck to see faves

2. Terminology Phase

Tag 1 <term id="202" type="slang" source=" 트친 " target=" twitter moots|moots|moot "> moot </term>

Tag 2 <term id="146" type="group-NE" source=" 용수 " target=" Yongsoo "> Yongsoo </term>

Tag 3 <term id="8" type="group-lexicon" source=" 포카 " target=" pocas|poca|pcs|pc "> pc </term>

Table 2: Example of KpopMT.

the fandom’s named entities, such as idol group
names or nicknames. Slang encompasses internet
slang, which is a variation of standard language.
We only apply truecasing to Group-Lexicon and
not to Group-NE and Slang, as capitalization is
crucial for names and we believe there may be dif-
ferent meanings in truecased slang (e.g., ‘ig’ and
‘IG’).

In the end, we tag the sentence pairs on both
source and target side with possible terminology
translations from the glossary. We tag the sentence
pairs with terminology translations only if both
source terminology and a corresponding target ter-
minology exist in the reference translation, follow-
ing Alam et al. (2021). So, we do not tag ‘stan’ and
‘faves’ terms in Table 2.

2.2 Key Characteristics

The parallel corpus of KpopMT contains 6k Korean
tokens and 12k English tokens, excluding the tags.
It has a substantial number of tagged sentences,
totaling 1,035, among which the tags categorized as
Group-Lexicon are the most prevalent, accounting
for 858 (82.8%), followed by Group-NE with 92
(8.8%), and Slang with 85 (8.4%). This indicates
that KpopMT contains substantial information on
a specific social group, which is Kpop fandom.

In addition, to assess its suitability for evalu-
ating terminology-based translation, we compare
KpopMT with TICO-19, widely recognized as
the most common terminology machine transla-
tion dataset (Table 3) (Anastasopoulos et al., 2020;
Odermatt et al., 2023). It is important to note that
significant portions of TICO-19 lack any termino-
logical content. KpopMT encompasses more ex-
tensive meaningful portions of terms compared to
TICO-19.

Number of Terms
Dataset 0 1 2 >=3 max

Ours 27.5% 47.7% 19.8% 5.0% 5
TICO-19 40.2% 22.6% 6.6% 3.9% 9

Table 3: Comparision with TICO-19 regarding number
of terminologies in each line.

Moreover, to demonstrate the necessity of
KpopMT, we conduct a human survey involving
five native English-speaking Kpop fans. None of
them are involved in data construction process.
They are given with 80 English sentences, each
of which has two versions: samples from KpopMT
with fandom-specific terms and expressed in stan-
dard language. Fans strongly prefer translations
with fandom terms (89.75%) when asked which
ones make them feel more connected to fan-
dom members. This highlights the importance
of considering cultural factors in communication
(Gudykunst, 2003), making KpopMT valuable for
both translation accuracy and social connected-
ness.

3 Experiments

We evaluate existing machine translation systems
on KpopMT to assess its difficulty.

3.1 Experimental Setting

Data In our experiments, we utilize two types of
data: general standard language data and fandom
language data. To acquire the general standard lan-
guage data, we download a Korean-English dataset
(800k) from AI Hub, which is a platform releasing
AI data by the Korean government.5 To obtain the
fandom language data, we scrape 40k monolingual

5https://www.aihub.or.kr
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Systems
Fandom General Finetuned

Data Data from

M2M ✓
mBART w/o Fandom ✓ mBART

mBART w/ Fandom ✓ ✓ mBART

SL-MT ✓
Domain Adaptation ✓ ✓ SL-MT

Table 4: Features of open-source baselines.

data samples for each language from fan-related
websites, employing the query list specified in 2.1.
Korean monolingual data has 287k tokens with an
average sentence length of 29.79, while English
monolingual data has 376k tokens with an average
length of 49.61. For evaluation purposes, we em-
ploy a test split comprising 500 sentences from our
parallel KpopMT.

Baselines We implement two kinds of baselines:
open-source machine translation models and pro-
prietary machine translation systems. Our baseline
choice considers three factors: general standard lan-
guage data trained with, fandom monolingual data
trained with (Table 4), and state-of-the-art systems.

Regarding general standard language data, we
set baselines of M2M, mBART w/o Fandom and
Standard Language MT (SL-MT). M2M is a mul-
tilingual translation model that can translate be-
tween any pair from 100 languages (Fan et al.,
2021). mBART w/o Fandom is a finetuned transla-
tion model from multilingual Bart (mBART) using
general data (Liu et al., 2020). mBART is the state-
of-the-art model on IWSLT-17 (Cettolo et al., 2017;
Park et al., 2021). SL-MT is a Korean-English state-
of-the-art translation model on general standard
language data (Park et al., 2020).

Regarding fandom monolingual data, we set
baselines of mBART w/ Fandom and Domain
Adaptation. mBART w/ Fandom is a finetuned
translation model from mBART with an injection
of both general parallel data and fandom monolin-
gual data. We use the back-translation technique
to make pseudo-parallel data for fandom monolin-
gual data (Sennrich et al., 2016). Domain Adap-
tation is a finetuned translation model from Stan-
dard Language MT, with the technique of iterative
back-translation of fandom monolingual data (Hu
et al., 2019; Dou et al., 2019). The differences from
mBART w/ Fandom are the pretrained model and
iteration of back-translation. In a preliminary study,

we find that mBART w/ Fandom’s performance
drops with iterative back-translation.

For proprietary machine translation systems, we
experiment with OpenAI’s GPT models (GPT-
3.5 and GPT-4) and Google Translator. For Ope-
nAI’s GPT models (OpenAI, 2023; Eloundou et al.,
2023), we assign the role of a Kpop fan to the
model. This fan is familiar with terminologies used
within the Kpop fandom and internet slang, which
has shown empirically the best performance. We
provide the prompt in Korean.

Evaluation We evaluate systems on both transla-
tion accuracy and terminological accuracy. Transla-
tion accuracy is evaluated with standard reference-
based MT metrics: SacreBLEU (Post, 2018; Pa-
pineni et al., 2002), COMET (Rei et al., 2020),
chrF++ (Popović, 2017). Terminology accuracy is
evaluated with exact-match term accuracy (EMA)
and 1-TERm score (Anastasopoulos et al., 2021).
EMA is an accuracy score that searches for exact
term translation matches (of the terminology re-
quired output) over the original hypothesis. The
1-TERm score is a modification of the TER metric,
biased to assign higher edit cost weights for words
belonging to a term (and then simply reversed so
that a higher score is better). When computing
terminology targeted evaluation, we consider syn-
onyms which are split by ‘|’ in the tags. We rank
systems according to EMA.

3.2 Results
Table 5 shows overall low scores, underscoring
the considerable challenges posed by KpopMT
in terms of both terminology-focused content and
translation quality.

GPTs Overall, the GPT models demonstrate
higher scores than other systems. When examining
the words they succeed in generating, they excel in
producing certain words compared to other mod-
els. ‘bias,’ ‘ult,’ and ‘stan’ are frequently generated,
contributing to GPTs’ higher EMA scores.

However, Group-Lexicon type faces challenges,
especially when excluding those basic words. We
conduct an analysis to determine which types of
terms GPT-4 could generate or not. We calculate
each type’s EMA score, resulting in Group-Lexicon
16.3%, Group-NE 21.54%, and Slang 20%. As
seen in overall low scores in success translation
rate for all types, GPT-4 struggles with generating
terminologies, particularly those related to Group-
Lexicon. Given the importance of ’Group-Lexicon’
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Terminology-focused Translation Quality
Systems EMA 1-TERm BLEU COMET chrF++

Open Source

M2M 2.4 10.5 4.1 51.2 19.9
mBART w/o Fandom 6.7 13.7 10.4 60.5 32.3
mBART w/ Fandom 6.4 12.3 9.1 56.6 29.0
SL-MT 3.8 6.5 8.7 56.4 30.3
Domain Adaptation 13.9 13.3 9.7 57.7 31.2

Proprietary
GPT-3.5-turbo-0613 19.3 1.1 8.7 65.8 32.9
GPT-4-0613 26.4 10.3 9.9 65.8 35.0
Google Translator 10.4 16.3 13.9 65.4 35.9

Table 5: Result on test split set using existing machine translation systems.

in Kpop social groups, this deficiency shows a clear
need for better translation in specific social con-
texts.

General Data We ascertain whether a translation
model trained on general standard language data
could grasp specific language systems within social
groups. Although mBART w/o Fandom displays
better performance in translation quality evalua-
tions, its EMA score remains low, indicating a lack
of specific knowledge pertaining to social groups.

Fandom Data Our findings suggest that incorpo-
rating fandom data into the training process does
not consistently yield improved results. The pos-
sible explanation is fandom monolingual data dur-
ing the back-translation process is noisy, resulting
in pseudo-parallel data that significantly deviated
from general data, which seems to have hindered
proper comprehension. Following Michel and Neu-
big (2018) and calculating the perplexity score of
fandom monolingual data using a language model
trained with general data, we get 1395.4 for Korean
and 713.8 for English. This limitation might pre-
vent effective inference of the meaning and context
of relevant terminology.

Translation Quality As highlighted by previous
research (Pascual et al., 2020), there exists a tension
between fluency of the translation and terminology
accuracy in our results. Based on this, we intend
to explore in future work whether it is possible to
enhance the overall translation quality while pre-
serving social groups’ distinctive terminology.

4 Conclusions

Our approach acknowledges the dynamic and
evolving nature of language, especially in digi-
tally mediated communities, which are often un-
derrepresented in traditional linguistic resources.
We propose a benchmark dataset for social groups’

language systems, named KpopMT. 1k parallel
dataset contains not only Korean-English paral-
lel sentences but also terminology information of
Kpop fandom group. We also make termbase and
monolingual data publicly available. We evalu-
ate existing translation approaches on KpopMT
to identify their failure cases. Our future plan in-
cludes expanding KpopMT to encompass other so-
cial groups, such as sports and global movie com-
munities.

Limitations

In the study, we view Kpop fandom as a broad spec-
trum and do not focus on a specific fandom of any
one idol group. There are numerous Kpop Idols,
such as BTS, Twice, Seventeen, etc. and each ter-
minology of their fans is distinct from one another.
For instance, BTS fans use Borahae to mean I love
you, while Seventeen fans use horanghae to mean
the same thing.

Ethical Considerations

The created dataset will be released under the terms
of the Twitter API. Aside from Tweets, which are
sourced from publicly accessible websites, we en-
sure that there is no violation of copyright or in-
vasion of privacy. To prevent user tracking, we re-
move any information related to users. All of our
dataset is made publicly available through a Cre-
ative Commons CC BY-SA 4.0 license.

We compensate volunteer translators with more
than the minimum wage in Korea. They are fully
aware of their tasks, and we provide them with de-
tailed annotation instructions. After compensation,
we anonymize and remove their personal informa-
tion. Additionally, we carefully filter out data con-
taining hate speech about celebrities to ensure that
human translators do not face any risks or harm
associated with their participation.
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Abstract

Recent advancements in Neural Machine
Translation (NMT) systems have significantly
improved model performance on various
translation benchmarks. However, these
systems still face numerous challenges when
translating low-resource languages such as
Urdu. In this work, we highlight the
specific issues faced by machine translation
systems when translating Urdu language. We
first conduct a comprehensive evaluation of
English to Urdu Machine Translation with
four diverse models: GPT-3.5 (a large
language model), opus-mt-en-ur (a bilingual
translation model), NLLB (a model trained for
translating 200 languages) and IndicTrans2
(a specialized model for translating low-
resource Indic languages). The results
demonstrate that IndicTrans2 significantly
outperforms other models in Urdu Machine
Translation. To understand the differences
in the performance of these models, we
analyze the Urdu word distribution in different
training datasets and compare the training
methodologies. Finally, we uncover the specific
translation issues and provide suggestions for
improvements in Urdu machine translation
systems.

1 Introduction

Neural Machine Translation (NMT) has shown
remarkable performance on benchmark datasets,
particularly following the introduction of
transformer architectures (Vaswani et al., 2017).
Among these advancements, large language models
like GPT-3.5 and 4 have demonstrated promising
potential for machine translation, particularly
for resource-rich languages including English,
French, and German. However, these models face
numerous challenges in translating low-resource
languages (e.g., Urdu) due to limited training
compared to their high-resource counterparts
(Hendy et al., 2023).

Urdu is spoken by over 100 million people
worldwide (Haider, 2018). It is predominantly
spoken in Pakistan, serving as the national language
(Metcalf, 2003) and holds significant cultural
importance. Urdu is also spoken in various regions
of India, particularly in states like Uttar Pradesh,
Bihar, and Telangana, with a sizable population of
speakers. However, due to the scarcity of available
linguistic resources for Urdu, it is considered a low-
resource language (Daud et al., 2017).

In this work, we empirically evaluate four
language models for Urdu machine translation:
GPT-3.5 – a large language model, opus-mt-
en-ur — a bilingual model specifically trained
for Urdu translation, NLLB — a multilingual
translation model designed to cover 200 languages,
incorporating a mix of both high-resource and
largely low-resource languages and IndicTrans2
— a multilingual translation model designed for
low-resource Indian languages. IndicTrans2
demonstrates the highest SacreBLEU and Chrf on
five diverse machine translation datasets, followed
by NLLB , GPT-3.5 and opus-mt-en-ur. To
identify the challenges in Urdu machine translation,
we examine the translation capability of the four
different models qualitatively and highlight the key
areas where the bilingual, multilingual, and large
language models struggle to perform.

2 Background

Machine translation is a crucial aspect of NLP,
automating text translation between languages. It
has evolved from rule-based to data-driven and
neural approaches. Traditional rule-based systems
faced challenges with language complexities,
while statistical methods improved but still
struggled with syntax and semantics (Okpor,
2014). Neural machine translation (NMT) has
significantly improved the performance, employing
deep learning models like sequence-to-sequence
architectures (Sutskever et al., 2014) for more fluent
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and context-aware translations.
The transformer architecture has improved the

overall quality of machine translation. Therefore,
large language models, such as GPT-3.5, have
emerged as potent candidates for machine
translation tasks. Numerous studies have been
conducted to assess the effectiveness of these
modals for neural machine translation. Hendy et al.
(2023) demonstrate that GPT-3.5 can generate
remarkably fluent and competitive translation
outputs, particularly in the zero-shot setting,
especially for high-resource language translations.
Prior research has demonstrated the remarkable
performance of Large Language Models (LLMs)
in high-resource bilingual translation tasks, such
as English-German translation (Vilar et al.,
2022; Zhang et al., 2022). Jiao et al. (2023)
observed that GPT-4 performs competitively with
commercial translation products for high-resource
European languages but demonstrates a notable
drop in performance for low-resource and distant
languages. Stap and Araabi (2023) show that
GPT-4 is unsuitable for extremely low-resource
languages. However, there is currently a lack of
cross-evaluation of different types of language
models for Urdu machine translation.

3 Methodology and Experiments

We conduct empirical evaluation for Urdu machine
translation on four types of language models: Large
Language Model (LLM), bilingual model, and two
multilingual models using five diverse datasets.
Through this investigation, we aim to gain insights
into the translation capabilities of these language
models for the Urdu language.

3.1 Models
GPT-3.5. Large Language Models (LLMs),
like GPT-3.5, have demonstrated strong and
consistent performance across a range of NLP
tasks. We investigate the performance of GPT-
3.5 in translating the English source language into
Urdu. Leveraging the API for the model GPT-
3.5-turbo-0125, we use a specific translation
prompt: “Please translate the sentence into Urdu.”
Additionally, we add the contextual information,
“You are a machine translation system”, to facilitate
the translation process.
Bilingual. For the bilingual experiments, we utilize
the opus-mt-en-ur model (Tiedemann, 2020),
which has been specifically trained for En → Ur

machine translation. To facilitate this model’s
deployment, we use the HuggingFace platform1.
This enables us to conduct our experiments
efficiently and standardize the evaluation process.
Multilingual. We use two multilingual translation
models, NLLB and IndicTrans2.

NLLB (Costa-jussà et al., 2022) is a multilingual
translation model that supports 200 languages,
incorporating a combination of high-resource and
low-resource languages. Within the inference
process, we specify the source language as English
and the target language as Urdu, each identified
by their respective language codes eng-Latn and
urd-Arab.

IndicTrans2 (Gala et al., 2023) is a specialized
model designed to cater to 22 Indic languages,
including Urdu. During the inference process, we
explicitly specify the source language as English
and the target language as Urdu, denoted by
the language codes eng-Latn and urd-Arab,
respectively.

3.2 Datasets
We evaluate the performance of the selected
models on five publicly available test data
sets. We utilize the tatoteba-test.eng-urd
(Tiedemann, 2020) test set, which is a component of
the Tatoeba Translation Challenge. This challenge
encompasses numerous test sets created for over
500 languages. Our study exclusively focuses on
the publicly available Urdu test set. Secondly,
we utilize the Flores 101 dataset (Goyal et al.,
2022), which provides a valuable resource for
evaluating models on low-resource languages,
encompassing 101 such languages. For our study,
we concentrate on the Urdu subset of Flores 101
to gauge our model’s effectiveness in handling
low-resource scenarios. Additionally, we evaluate
our models using the Mann Ki Baat (Siripragada
et al., 2020) test dataset, which exclusively contains
Urdu language content extracted from speeches
delivered by the Indian Prime Minister in various
Indian languages. Our focus centers on the
Urdu subset of Mann Ki Baat. Moreover, we
incorporate the UMC005 dataset (Jawaid and Zeman,
2011), a parallel corpus comprising English-Urdu
alignments sourced from multiple texts, including
the Quran, Bible, Penn Treebank, and EMille
corpus. Given the publicly available test sets for
the Quran and Bible, we merge these subsets to

1https://huggingface.co/Helsinki-NLP/opus-mt-en-ur
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tatoteba-test.eng-urd Flores101 MKB UMC 005 Ted Talk
opus-mt-en-ur 12.06 7.09 6.62 14.51 11.84
GPT-3.5 21.68 16.67 12.79 11.87 12.29
NLLB 25.04 21.37 18.52 20.68 19.55
IndicTrans2 30.76 27.41 21.73 20.41 16.50

Table 1: The SacreBLEU scores of four models on five datasets for Urdu machine translation

tatoteba-test.eng-urd Flores101 MKB UMC 005 Ted Talk
opus-mt-en-ur 0.39 0.28 0.28 0.35 0.34
GPT-3.5 0.48 0.44 0.40 0.37 0.40
NLLB 0.50 0.48 0.45 0.48 0.43
IndicTrans2 0.53 0.53 0.49 0.45 0.44

Table 2: The CHRF++ scores of four models on five datasets for Urdu machine translation

Model Train
Sentence
Pairs

Test
Sentence
Pairs

Languages Params

opus-mt-en-ur 1M 1663 1 76.42M
GPT-3.5 NA NA NA NA
NLLB-1.3B 18B 1012 200 1.3B
IndicTrans2 230.5M 2036 22 1B

Table 3: A comparison of the training & test splits,
number of languages, and the number of parameters of
different models.

conduct comprehensive evaluations. Lastly, our
models undergo assessment using the TED Talk
test dataset (Zweigenbaum et al., 2018). Before
evaluation, we preprocess the test data by removing
pairs containing symbols in their translations,
ensuring a standardized and reliable evaluation
process.

3.3 Metrics
We use SacreBLEU (Post, 2018) metric to
evaluate the translation performance, which
has built-in support for scoring detokenized
output using standardized tokenization methods,
ensuring a fair and unbiased evaluation of models’
translation performance. Additionally, we use
CHRF++ (Popović, 2017) scores for assessing
translation quality, which is particularly useful
when dealing with languages featuring complex
sentence structures.

3.4 Results
We present SacreBLEU scores in Table 1 to
assess the translation efficacy of the designated
models. We observe that GPT-3.5 model exhibits
notably superior performance compared to the
bilingual model but lags behind the multilingual
translation models. NLLB emerges as the runner-up,
surpassing both GPT-3.5 and bilingual translation

proficiency. IndicTrans2 outperforms all other
models on four out of five datasets. However,
when scrutinizing more challenging evaluations, as
exemplified by the TED Talk test set (Zweigenbaum
et al., 2018), the performance of IndicTrans2
surpasses that of the bilingual model and the
large language model with scores of 16.50,
12.29, and 11.84. Nevertheless, the NLLB model
slightly performs better with a score of 19.55.
Additionally, we present Chrf++ scores in the table
2, and our observations indicate that IndicTrans2
outperforms all other models.

Figure 1: Comparison of Zipf distribution of the training
data used in NLLB, IndicTrans2, and OPUS.

To understand why IndicTrans2 performs
better than other models, we compare the Zipf
distribution of Urdu words present in the training
data of NLLB, OPUS and IndicTrans2. Figure
1 shows a significant difference in the Zipf
distribution of OPUS compared to other datasets,
with significantly fewer types. In contrast, the
Zipf distribution of IndicTrans2 and NLLB is
more similar, especially for higher-frequency words.
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Issue Source Actual Translation Correct Translation Issue Detail

NER A piano is expensive. ےہیتمیقتیاہنکیا

۔ےہاگنہمیفاکونایپ

ونایپ (piano) is missing in the
translated text.

Mistranslation That will be funny. سہی

ُ

اگےئاجہرناریحرکن

۔اگوہہیحازمتہبہو

ہیحازم (funny) is replaced by
ناریح (surprised) in the translated

text.

Word-Repetition Is this your first time in Japan? یلہپیکپآرابیلہپںیمناپاجہیایک

؟ےہراب

؟وہیئآناپاجہعفدیلہپمتایک

رابیلہپ (first time) is mentioned
twice in the translated text.

Literal translation Cold weather is perhaps the only
real danger the unprepared will
face.

ےنوہںیہنرایتدیاشمسومدرس

اگوہہرطخیعقاوےئلےکںولاو

یقیقحدحاوہودیاشمسوماڈنھٹ

یتریغانماساکسجےہہرطخ

ّ

وکدرفرا

اگےڑپانرک

Incorrect phrase in the translated
text: ںیہنرایتدیاشمسوم (cold
weather is unprepared).

Word-Omission The protest started around
11:00 local time (UTC+1) on
Whitehall opposite the police-
guarded entrance to Downing
Street, the Prime Minister’s
official residence

قباطمےکتقویماقمزاغآاکجاجتحا

یکمظعاریزورپلاہٹئاویسیٹوی

ٹیرٹساگننؤاڈہاگشئاہریراکرس

ےکےزاوردیتظافحےکسیلوپےک

اوہےنماس

ہاگشئاہریراکرسیکمظعاریزو

سیلوپےنماسےکےتساریلخادےک

ےکٹیرٹساگننواڈےلاوتظافحیک

قباطمےکتقویماقمرپلاہٹئاو

عورشجاجتحاہیےجب00:11ابیرقت

اوہ

11:00 missing in the translated
text.

Transliteration

These scarps were, found all
over the moon and appear to be
minimally weathered, indicating
the geologic events that created
them were fairly recent

ےئگےئاپرپدناچےروپسپراکسہی

یئاھکدےکاوہوبآمکےسمکرواےھت

ہکےہاتوہرہاظہیےسسج،ںیہےتید

تاعقاویتایضراےلاوےنرکادیپوکنا

ےھتہیلاحیفاک

ےناجیئاپاجباجرپحطسیکدناچ

ہوہکےہاتوہمولعمےسںویئاھکیلاو

اتوہرہاظےسنا۔ںیہہدیدمسوممک

ناےستاثداحکجولویجنجہکےہ

ہنامزہیلاحتہبہویئوہقیلختیک

ےک

سپراکس instead of ںویئاھک in the
translated text.

Table 4: Different Urdu translation issues present in Neural Machine Translation models.

In the tail of the distribution, we notice a higher
frequency for words present in the IndicTrans2
dataset compared to NLLB, which corresponds to
a higher BLEU score as well for IndicTrans2
model. This suggests that for training Urdu
NMT models, datasets with optimal Urdu word
distribution should be prioritized, as observed in
the superior performance of IndicTrans2 that
shows a Zipf distribution with a better long tail
compared to other datasets.

We now outline the training process of
IndicTrans2 to understand the reasons behind its
superior performance. The training comprises two
phases: auxiliary training and downstream training.
The auxiliary phase involves back translation to
augment large amounts of monolingual corpora
(Sennrich et al., 2015a). Subsequent fine-tuning
is done on high-quality, human-generated seed
data, including BPCC-H-Wiki and the NLLB seed
(Costa-jussà et al., 2022). In the second phase,
they train on the augmented parallel corpora which
combines original data with the back-translated
data. Tagged back translation is used (Caswell et al.,
2019) for providing additional supervision to the
model such that it distinguishes between different
data sources during training. This training process
combined with high-quality data sources allows
IndicTrans2 to perform better than other models
on En→ Ur machine translation.

3.5 Challenges
Our research has unveiled various challenges
associated with Urdu machine translation. Some
of these challenges are universal across all models,
while certain issues are present only in specific
models. We enumerate these challenges below.

1. The opus-mt-en-ur model encounters a
challenge in the domain of Named Entity
Recognition (NER), specifically, its ability
to produce accurate translations for certain
entities. This issue is observable in the first
row of Table 4. This issue was not widely
present in the translations done through GPT-
3.5 or IndicTrans2 models.

2. When the translation diverges from an
accurate representation of the source, it is
termed ’Mistranslation’ (Freitag et al., 2021).
The opus-mt-en-ur model consistently
grappled with this issue across all datasets,
as demonstrated in the second row of Table
4. In contrast, GPT-3.5 and IndicTrans2
exhibited notably superior proficiency in
addressing this challenge.

3. The issue of repetition, which has been
noted in almost all text generation models,
significantly undermines their overall
generation performance (Fu et al., 2021). The
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word repetition problem was observed in
all three models, namely opus-mt-en-ur,
GPT-3.5, and IndicTrans2 (third row of
Table 4).

4. Machine translation systems have long been
noted for their tendency to produce overly
literal translations (Dankers et al., 2022). We
observe a few instances of literal translations
for all selected models in our experiments. An
example of literal translation with GPT-3.5
can be seen in the fourth row of Table 4.

5. NMT systems exhibit a tendency to exclude
vital words from the source text, thereby
significantly diminishing the overall adequacy
of machine translation (Yang et al., 2019). The
results indicate that the models still face this
challenge for Urdu translation. An example
from the text translated by IndicTrans2 is
given in the fifth row of Table 4.

6. Transliteration errors can arise from
ambiguous transliterations or inconsistent
segmentations between the source and target
text (Sennrich et al., 2015b). We observe this
issue in different models and an example is
given in the last row of Table 4.

4 Limitations and Conclusion

In this work, we investigate the Urdu translation
capabilities of four diverse models and uncover the
specific challenges. We find that IndicTrans2
outperforms other models for English to Urdu
translation, demonstrating superior performance
on SacreBLEU and CHRF++ scores, primarily due
to its specialized training process and superior Urdu
word distribution in its dataset. We uncover specific
Urdu translation issues including named entity
recognition, mistranslation, word repetition, literal
translations, word omissions, and transliteration
errors. Addressing these challenges requires
focused efforts on constructing high-quality Urdu
training datasets, refining model training methods,
and incorporating more robust evaluation metrics.
For future work, our evaluation of Urdu machine
translation can be extended to additional domain-
specific datasets and other low-resource Indic
languages to uncover additional issues.
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5 Hyperparameters

The hyperparameters used in our experiments are
listed below.

Hyperparameters for GPT-3.5
Batch Size 500
Tokens 1024
Temperature 0
Language Pair eng-urd

Hyperparameters for IndicTrans2
Batch size 100
Pad token id 1
Scale embedding True
Model type IndicTrans
Language pair eng-urd

Hyperparameters for NLLB
Batch size 100
Pad token id 1
Scale embedding True
Model type m2m_100
Language pair eng-urd

Hyperparameters for opus-mt-en-ur
Batch size 100
pad token id 1
Scale embedding True
Number of beams 4
Model type Marian
Language pair eng-urd

6 Resources

We conduct all our experiments on a privately
hosted server on the cloud and use a Tesla K80
GPU to run the inference.
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Abstract

In this paper we propose a framework for au-
tomatic translation of English text to Ameri-
can Sign Language (ASL) which leverages a
linguistically informed transformer model to
translate English sentences into ASL gloss se-
quences. These glosses are then associated with
respective ASL videos, effectively represent-
ing English text in ASL. To facilitate experi-
mentation, we create an English-ASL parallel
dataset on banking domain. Our preliminary
results demonstrated that the linguistically in-
formed transformer model achieves a 97.83%
ROUGE-L score for text-to-gloss translation
on the ASLG-PC12 dataset. Furthermore, fine-
tuning the transformer model on the banking
domain dataset yields an 89.47% ROUGE-L
score when fine-tuned on ASLG-PC12 + bank-
ing domain dataset. These results demonstrate
the effectiveness of the linguistically informed
model for both general and domain-specific
translations. To facilitate parallel dataset gen-
eration in banking-domain, we choose ASL
despite having limited benchmarks and data
corpus compared to some of the other sign lan-
guages.

1 Introduction

Sign Languages (SL) are the primary means of
communications for the deaf community. It is a
non-verbal form of communication where deaf in-
dividuals use their hands, arms, and facial expres-
sions to share thoughts and ideas. Unlike spoken
languages that rely on sound, ASL employs ges-
tures. Recent linguistic studies have confirmed that
SLs, like other spoken languages, is a complete
natural language with its own syntactical structures
and intricate morphological and phonological prop-
erties. This complexity includes both sequential
and simultaneous affixation of manual and non-
manual elements in its structure.

A challenging aspect of sign language transla-
tion (SLT) is that Sign Languages (SLs) are multi-

Figure 1: Illustration of text to American Sign Language
(ASL) translation using glosses as intermediate step.

channeled and do not have a written form, as noted
by (Langer et al., 2014). Consequently, advance-
ments in text-based machine translation (MT) can-
not be directly applied to SLs. Historically, re-
searchers have used written representations of SLs
to facilitate translation. One common method in-
volves using glosses, which are labels in the spoken
language that correspond to sign language compo-
nents, often including affixes and markers. These
glosses act as an intermediary step in developing
MT systems that translate between SLs and spoken
languages (noted by (Cihan Camgoz et al., 2017;
Camgoz et al., 2018); (Chen et al., 2022)), and vice
versa ((Stoll et al., 2020); (Saunders et al., 2020)).
Other notable works include (Stoll et al., 2020)
that proposed an approach using Neural Machine
Translation (NMT) and motion graphs to generate
sign language videos for a given text. (Moryossef
et al., 2023) have proposed a method of convert-
ing the text to sign language glosses, extracting
the poses for each gloss and translating the poses
to a video. In an earlier attempt, (Dasgupta and
Basu, 2008) have proposed a method translating
text to Indian Sign Language (ISL) using Lexical
Functional Grammar while (Sugandhi et al., 2020)
talks about generating animated avatar using Ham-
NoSys for text to SL translation. For translations
from spoken languages to SLs, glosses are used
to build the system in two phases: translating text
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to glosses, and then converting these glosses into
video (see Figure 1). These glosses are then in-
put into systems that generate SL content, such as
avatar animations or auto-encoder based video gen-
erators. Our present research specifically targets
the text-to-gloss translation phase, which is crucial
for producing accurate sign language animations.
However, despite improvements in this area, signif-
icant breakthroughs remain elusive, as indicated by
Rastgoo et al. (2021).

In this paper we propose a framework for au-
tomatic translation of English text to ASL. The
key contributions and results of this work are as
follows:

1. We leverage a novel method called linguisti-
cally informed transformer architecture that
takes into account both the word level and dif-
ferent linguistic feature embeddings using a
Graph Convolution Network (GCN) for the
MT task. The primary focus is to translate
English sentences into ASL gloss sequences.
These glosses are then associated with respec-
tive ASL videos, effectively representing En-
glish content in ASL.

2. To facilitate experimentation, we have manu-
ally created an English-ASL parallel dataset
on banking domain. Banks play a pivotal role
in the daily lives of individuals impacting per-
sonal finance and economic stability. Hence,
facilitating communication for the deaf com-
munity in the banking domain is essential.
The dataset will be released with this paper.

3. Our preliminary results demonstrated that
the linguistically informed transformer model
achieves a 97.83% ROUGE-L score for
text-to-gloss translation on the ASLG-PC12
dataset. Furthermore, fine-tuning the trans-
former model on the banking domain dataset
yields an 89.47% ROUGE-L score when fine-
tuned on ASLG-PC12 + banking domain
dataset.

The above results show a significant improvement
from the baseline GRU-B model. ASLG-PC12
(Othman and Jemni, 2012), the largest text-to-ASL
gloss dataset, offers 87,710 samples but pales in
comparison to mainstream language pairs like En-
glish to French. Its focus on news and politics lim-
its its applicability across domains, necessitating
domain-specific models, increasing data scarcity
challenges.

Figure 2: Classification of signing space into horizontal,
vertical, and lateral regions.

Figure 3: Illustration of Topic-Comment Structure

2 Sign Language (SL) Linguistic Issues

Sign Languages (SL) are visual-spatial natural lan-
guages, utilizing manual and non-manual com-
ponents for linguistic communication (Zeshan,
2003). Manual components include hand shape,
orientation, position, and movement, while non-
manual components consist of facial expressions,
eye gaze, and body posture. Signers utilize a
three-dimensional signing space segmented into
27 cubical regions (Sinha, 2003, 2009). Each sign
formation adheres to complex constraints akin to
spoken languages, with SL morphology primarily
derivational. The closed lexical class in SL encom-
passes classifier hand shapes, discourse markers,
and non-manual signs (Zeshan, 2003). Classifier
hand shapes offer specific hand configurations rep-
resenting referent characteristics, as shown in Fig-
ure 2.

American Sign Language (ASL) is known to
follow a topic-comment structure. This structure
positions the main subject or theme (the topic) at
the sentence’s outset, followed by more specific in-
formation (the comment) (Struxness, 2010). By es-
tablishing context early in the sentence, ASL users
efficiently convey complex ideas (Figure 3). One
important aspect of ASL’s topic-comment structure
is the flexibility in word ordering. While the default
order is topic-comment, ASL allows for variations
based on emphasis and context. For instance, a
speaker might choose to emphasize a particular as-
pect of the comment by placing it before the topic.
This flexibility adds nuance and richness to ASL
communication, enabling speakers to convey sub-
tle meanings and emotions effectively (Struxness,
2010). The flexibility in the structure is the reason
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why a simple rule-based approach is not possible
for text to ASL gloss translation.

3 The Linguistically Informed
Transformer for Text to ASL Gloss

The existing NMT models excel at capturing intri-
cate data patterns without requiring manual feature
engineering, offering end-to-end solutions. How-
ever, they often overlook latent linguistic traits cru-
cial for extracting pertinent information. To address
this, we propose a transformer-based architecture
that integrates word embeddings from the encoder
part with diverse linguistic features inherent in text,
enhancing automatic text-to-ASL gloss translation.

3.1 Transformer Model

The input to the model is a sentence consisting
of a word sequence x = (x1, x2, ..., xT ) represen-
tations. We then tokenize the sentence x using a
wordpiece vocabulary, and then generate the in-
put sequence x̄ by concatenating a [CLS] token,
the tokenized sentence, and a [SEP] token. Then
for each token x̄i ∈ x̄, we convert it into vector
space by summing the token, segment, and position
embeddings, thus yielding the input embeddings
h0 ∈ R(n+2)×h, where h is the hidden size. Next,
we use a series of L stacked Transformer blocks
to project the input embeddings into a sequence of
contextual vectors hi ∈ R(n+2)×h. Here, we omit
an exhaustive description of the block architecture
and refer readers to Vaswani et al. (2017) for more
details.

3.2 Syntactic Dependency Graph

Encoding the structural information directly into
neural network architecture is not trivial. Marcheg-
giani and Titov (Marcheggiani and Titov, 2017)
proposed a way to incorporate structural infor-
mation into sequential neural networks through
Graph Convolution Networks (GCN) (Webster
et al., 2019; Kipf and Welling, 2016). GCNs take
graphs as inputs and conduct convolution on each
node over their local graph neighborhoods. The
syntax structure of a sentence is transferred into a
syntactic dependency graph, and GCN is used to
encode this graph information. This kind of archi-
tecture is already utilized to incorporate syntactic
structure with BERT (Devlin et al., 2018) embed-
dings for several NLP based tasks (Duvenaud et al.,
2015).

3.3 Linguistically informed transfomer

We have incorporated the similar method for the
present text-gloss translation task in this work.
Here, each sentence is parsed into its syntactic de-
pendencies graph and use GCN to consume this
structural information. We use pre-trained GLOVE
embeddings as our initial hidden states of vertices
in GCN. The output hidden states of the GCN is
combined with the context embeddings generated
by the transformer model’s (T5 and BART) encoder
and then passed to the decoder unit.

4 Experiments

Dataset: The ASLG-PC12 corpus (Othman and
Jemni, 2012): consists of 87,710 bilingual sen-
tences. It contains 1,027,100 English words and
906,477 gloss words, along with 4,662 English
word singletons and 6,561 gloss word singletons.
The vocabulary for both sign gloss annotation and
spoken language comprises 16,788 and 12,344
terms, respectively.

ASL-Bank Dataset: Considering the specificity
of the terminology used in banking contexts, we
have also built a set of 3597 text- ASL gloss pairs
through domain experts. The collected phrases are
sourced from banking-related texts and provided to
American Sign Language (ASL) experts for manual
translation into ASL gloss. Refer Appendix D for
data statistics and Appendix E for sample data.

Fine-tuning: We divided the ASLG-PC12 cor-
pus into 52,626 sentences for training, 17,542 sen-
tences for validation, and 17,542 sentences for test-
ing (Amin et al., 2021) and use it to fine-tune a
T5-small, T5-base and BART-base model on A100
GPU for 50 epochs (experiment A). For the ASL-
Bank dataset, we used 3,166 sentences for training,
395 sentences for validation and 396 sentences for
testing. We fine-tuned the three transformer models
from experiment A on A100 GPU for 50 epochs.
Refer Appendix A and B for more details.

Evaluation: Apart from using the standard
MT evaluation parameters like, ROUGE-L (Lin,
2004) and BLUE (Papineni et al., 2002) scores we
also advocate using a modified BERTScore (Zhang
et al., 2019) as performance metrics. As the BERT
models are trained on natural English text, we can-
not rely on the sentence embeddings it gives for
the ASL gloss sequences for the reasons explained
above. Hence, we proposed to get the word em-
beddings of each gloss present in the ASL gloss
sequence and aggregate them to get the sentence
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embedding of the ASL gloss sequence which can
be further used to calculate the cosine similarity
score.

5 Results

The results are reported by first comparing the
model performance upon fine-tuning on ASLG-
PC12 (Othman and Jemni, 2012) dataset between
our models of choice T5-small, T5-base (Raffel
et al., 2020) and BART-base (Lewis et al., 2019)
and a GRU based model from Amin et al. (2021)
(Table 1).

Model GRU-B T5-small* T5-base* BART-base*
(Amin et al., 2021)

ROUGE-L 74.37 77.82 77.83 77.36
BLEU-1 73.26 77.68 77.73 77.21
BLEU-2 69.64 67.16 67.22 66.51
BLEU-3 66.68 66.36 66.43 65.53
BLEU-4 63.98 64.65 64.76 64.66
Modified — 77.59 77.58 77.55

BERTScore

Table 1: Comparing scores on ASLG-PC12 test dataset
for text to gloss with other work

From table 1, it is clear that the transformer mod-
els BART-base, T5-small and T5-base are better
performing compared to a GRU model. Further, we
check how well these fine-tuned transformer mod-
els are performing on our ASL-banking dataset
Since ASLG-PC12 dataset has no samples related

Model T5-small* T5-base* BART-base*
ROUGE-L 59.06 59.13 57.71
BLEU-1 60.66 60.98 59.93
BLEU-2 37.44 37.74 36.64
BLEU-3 26.18 26.42 25.48
BLEU-4 19.66 19.85 19.01

Modified BERTScore 80.45 80.64 80.37

Table 2: Test scores when tested on our ASL-banking
dataset using the T5-small*, T5-base* and BART-base*
models

to banking domain, the scores drop when tested
on our banking dataset (Table 2). Hence, we have
further fine-tuned the BART-base model, T5-base
model and T5-small model on our ASL-banking
dataset (Table 3). We also checked if including
an equal number of samples from ASLG datatset
(i.e., 3597 samples) along with our ASL-banking
dataset improves the test scores and we observed
that there is a significant improvement in the test
scores (Table 4).

T5-base model is the best performing trans-
former model for text-to-ASL translation task on

Model T5-small T5-base BART-base
ROUGE-L 68.25 69.96 67.92
BLEU-1 71.11 73.08 69.80
BLEU-2 64.45 67.89 64.19
BLEU-3 53.86 58.14 54.14
BLEU-4 46.69 51.47 47.27

Modified BERTScore 78.06 78.16 78.13

Table 3: Comparing scores on our ASL-Banking test
dataset for text to gloss using transformer models after
further fine-tuning

Model T5-small T5-base BART-base
ROUGE-L 69.17 69.47 65.50
BLEU-1 70.67 70.83 66.83
BLEU-2 62.48 63.05 57.41
BLEU-3 56.87 57.74 50.67
BLEU-4 52.47 53.58 45.50

Modified BERTScore 79.38 79.37 79.09

Table 4: Comparing scores on our ASL-Banking test
dataset using the transformer models fine-tuned on
ASLG + ASL-Banking dataset

both ASLG-PC12 dataset and our ASL-banking
dataset. A few challenges in the text to gloss trans-
lation task are: In some cases, word ordering is
different within the topic part and the comment part
of the predicted texts compared to the gold texts.
In case of wh-questions, the wh word is sometimes
placed at the beginning of the sentences and some-
times at the end. In a few sentences, helping verbs
and articles are not removed. So, they should be ex-
clusively removed using SpaCy’s parts-of-speech
tagging. Few words are being replaced by their syn-
onymous words in the gloss translations. It’s not a
problem while signing the text, but it is reducing
the scores of metrics like ROUGE-L and BLEU.

6 Conclusion

In this paper, we present a linguistically informed
transformer architecture towards automatic trans-
lation of English text to American Sign Language.
The proposed model not only aims at addressing the
poor generalization capability of traditional struc-
tured prediction models but also exploit the linguis-
tic characteristics present within a text to improve
the performance of the translation. We evaluate the
performance of the proposed model with respect
to a popular baseline model. We observed that the
proposed transformer based model along with an
additional linguistic information performs much
better than existing baseline system.
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Limitations

1. This work specifically focuses on text to ASL
gloss translation. Hence, the fine-tuned mod-
els cannot be used for generating glosses in
other sign languages like Indian sign language
or British sign language due to differences in
structure.

2. As shown in Figure.1, the glosses generated
using the proposed framework can be mapped
to videos (refer Appendix C) and can be
streamed together. But the output has inconsis-
tencies due variation in resolution and people
signing from video-to-video. This can be tack-
led with video generation which is not in the
scope of this work.

3. Since the syntactical structure of sign lan-
guage is very much different from that of natu-
ral language, open-source LLMs like LLaMA
family can be leveraged by combining exter-
nal sign language rules. It also helps in tack-
ling the limitation of using a single model
for different sign language translations. This
can be achieved with techniques like Retrieval
Augmented Generation (RAG) but this is not
in the scope of this work.
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A Hyperparameters used for fine-tuning
on ASLG-PC12 dataset

1. Training epochs: 50

2. Learning rate: 1e-5

3. Weight Decay: 1e-6

4. Warm-up Epochs: 10

5. Batch size: 10

6. Gradient accumulation steps: 4

7. Optimizer: Adam

B Hyperparameters used for fine-tuning
on our ASL-Banking dataset

1. Training epochs: 50

2. Learning rate: 1e-5

3. Weight Decay: 1e-5

4. Warm-up Epochs: 10

5. Batch size: 2

6. Gradient accumulation steps: 4

7. Attention Dropout: 0.1

8. Optimizer: Adam

The linguistic embeddings which are GCN’s output
hidden states are combined with the last hidden
state of the encoder part as described in section 3.3
during both the fine-tuning processes.

C Video Retriever

The generated ASL gloss sequence is tokenized
into individual glosses using SpaCy tokenizer and
each gloss is mapped to its corresponding ASL
video which is stored in a folder/database. If there
is no video match for a particular gloss, we check if
it is a common noun or an adjective. If yes, then we
try to find a video for its synonym. We use NLTK
word-net to find the synonyms. The synonyms are
sorted in lexicological order. We iterate through
this list and check if there exists a video each of
synonym. As soon as we find a synonym which has
a video, we break the loop and use this video for
signing the original word. If it is neither a common
noun nor an adjective or there is no video even
for any of its synonyms, we will simply sign it
letter-by-letter (as shown in Figure 4).

ASL gloss Text
Tokenizer

Search the gloss
in the dictionary

Sign Representation

Get Synonym

Search synonym
in the dictionary

Finger Spelling

WordNet

ASL
Dictionary

For each token

Gloss found

Gloss not

found

Gloss not found
Gloss

found

Figure 4: Video Retrieval Process flow
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D Data Statistics

Conversational Vocabulary Type Count
Type Size

Banker point-of-view 772 Declarative 446
Interrogative 168

Customer point-of-view 1595 Declarative 502
Interrogative 2488

Total: 3597

E Sample Data

English Text ASL Gloss Sequence
A basic savings account it is. I’ll need you to fill out
this form with your personal details.

SAVINGS ACCOUNT BASIC, IT IX. FORM THIS
FILL-OUT NEED YOU, YOUR PERSONAL DE-
TAILS IX-loc.

A basic savings account it is. I’ll need you to fill out
this form with your personal details.

SAVINGS ACCOUNT BASIC, IT IX. FORM THIS
FILL-OUT NEED YOU, YOUR PERSONAL DE-
TAILS IX-loc.

Can I deposit a check via mobile banking? DEPOSIT CHECK MOBILE BANKING CAN I?
How can I assist you in updating your contact infor-
mation for your account?

HOW CAN I ASSIST YOU IN UPDATING YOUR
CONTACT INFORMATION FOR YOUR AC-
COUNT ?

Your credit check came back clear, so we can proceed
with finalizing your account.

CREDIT CHECK YOUR FINISH, CLEAR. AC-
COUNT YOUR FINALIZE CAN PROCEED WE.
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Abstract

Cross-lingual summarization (XLS) aims to
generate a summary in a target language differ-
ent from the source language document. While
large language models (LLMs) have shown
promising zero-shot XLS performance, their
few-shot capabilities on this task remain unex-
plored, especially for low-resource languages
with limited parallel data. In this paper, we
investigate the few-shot XLS performance of
various models, including Mistral-7B-Instruct-
v0.2, GPT-3.5, and GPT-4. Our experiments
demonstrate that few-shot learning significantly
improves the XLS performance of LLMs, par-
ticularly GPT-3.5 and GPT-4, in low-resource
settings. However, the open-source model
Mistral-7B-Instruct-v0.2 struggles to adapt ef-
fectively to the XLS task with limited exam-
ples. Our findings highlight the potential of
few-shot learning for improving XLS perfor-
mance and the need for further research in de-
signing LLM architectures and pre-training ob-
jectives tailored for this task. We provide a
future work direction to explore more effective
few-shot learning strategies and to investigate
the transfer learning capabilities of LLMs for
cross-lingual summarization.

1 Introduction

Cross-Lingual Summarization (XLS) is a task that
involves generating a summary in a target lan-
guage different from the source document’s lan-
guage. It is a complex natural language process-
ing task that requires performing both summa-
rization and machine translation simultaneously.
This task is much more challenging than single-
language summarization, as it involves overcom-
ing the differences between languages while ef-
fectively extracting and compressing key informa-
tion. Generally, there are two types of pipelines for
XLS systems (Leuski et al., 2003; Orǎsan and
Chiorean, 2008): summarize-then-translate and

†Corresponding author.

Figure 1: An example of cross-lingual summarization.

translate-then-summarize. The former summarizes
the source text first and then translates it, while
the latter translates the source text first and then
summarizes it.

However, these pipelines have the disadvantage
that errors occurring at each stage can propagate
and accumulate, potentially degrading the final per-
formance. To resolve the issues of these pipelines,
there has been a lot of research on the end-to-end
approach (Zhu et al., 2019; Bai et al., 2021), known
as the direct method, which generates the target lan-
guage summary directly from the source document
in a single step. The direct method can mitigate the
error propagation problem compared to traditional
pipelines and enable more efficient learning.

In parallel with the development of end-to-end
approaches, Large Language Models (LLMs) such
as GPT-3.5 and GPT-4 (OpenAI, 2023) have
demonstrated strong performance in various nat-
ural language processing tasks. It is known that
these models can significantly improve perfor-
mance through few-shot learning with only a small
number of examples. (Brown et al., 2020) However,
directly applying these models to the XLS task is
still challenging. Particularly for low-resource lan-
guages, where it is difficult to build large-scale

57



parallel corpora, the lack of data makes it difficult
to fully utilize the performance of pre-trained lan-
guage models, acting as a major obstacle in XLS
research. (Ladhak et al., 2020) Hence, this study
aims to explore the XLS performance of various
LLMs using a few-shot learning approach through
in-context learning, focusing on the direct method.

Our findings demonstrate that few-shot learning
enables LLMs, particularly GPT-3.5 and GPT-4, to
achieve competitive performance in cross-lingual
summarization tasks for low-resource language set-
tings. The results also highlight open-source mod-
els’ challenges in adapting to the XLS task with
limited parallel data. These findings emphasize the
potential of few-shot learning in enhancing cross-
lingual summarization capabilities and the need for
further research in developing effective few-shot
strategies and architectures for low-resource lan-
guages.

2 Related Work

Cross-lingual summarization (XLS) has undergone
significant evolution, shifting from early pipeline
approaches like summarize-then-translate (Orǎsan
and Chiorean, 2008; Wan et al., 2010) and
translate-then-summarize (Leuski et al., 2003;
Boudin et al., 2011) to more sophisticated methods
utilizing multilingual pre-trained models. These
pipelines were initially dominant due to their
simplicity but were plagued by error propaga-
tion and the limitations inherent to sequential
processing tasks. (Parnell et al., 2024) The ad-
vent of multilingual pre-trained models such as
mBART (Lewis et al., 2020) and mT5 (Xue et al.,
2021) marked a transformative shift towards end-
to-end approaches, directly generating summaries
in the target language and substantially mitigating
error propagation issues.

In recent years, the emergence of large language
models (LLMs) has revolutionized the field of natu-
ral language processing, including XLS. Especially,
widely used LLMs like GPT-3.5 and GPT-4 have
demonstrated remarkable zero-shot learning capa-
bilities across various tasks. (Brown et al., 2020;
Qin et al., 2023; Bubeck et al., 2023) However,
the exploration of LLMs in the context of XLS is
still in its early stages, with limited research on
their zero-shot learning capabilities and even fewer
studies focusing on their few-shot learning poten-
tial.(Wang et al., 2023) Recent studies have shown
promising results in using LLMs for various NLP

tasks.(Bang et al., 2023; Yang et al., 2023; Patil
and Gudivada, 2024)

However, the specific exploration of these mod-
els in XLS scenarios, particularly in the few-shot
setting, remains largely unexplored. While some
studies have investigated the zero-shot XLS per-
formance of LLMs (Wang et al., 2023), there is a
notable lack of research on the few-shot learning
capabilities of models such as GPT-3.5, GPT-4, and
multilingual LLMs in the XLS domain. Moreover,
the disparity in performance between proprietary
models like GPT-4 and open-source alternatives
in zero-shot settings underscores the necessity for
further investigation into the few-shot capabilities
of LLMs. This is particularly critical to ensure that
advancements in XLS are equitable and accessible
across various linguistic and resource settings.

In this paper, we aim to bridge this gap by ex-
ploring the few-shot learning capabilities of LLMs
in the context of XLS. We focus on the direct
method, leveraging the nuanced capabilities of
LLMs like GPT-3.5, GPT-4, and open-source mod-
els such as Mistral-7B-Instruct-v0.2. The Mistral-
7B-Instruct-v0.2 is a 7.3B parameter model that
outperforms Llama-2 13B (Touvron et al., 2023b)
across all benchmarks and even surpasses Llama-
1 34B (Touvron et al., 2023a) on many tasks and
particularly noted for its ability to process up to
32k tokens, significantly enhancing its capability
for few-shot learning by providing richer context
management. (La Plateforme; Jiang et al., 2024)
This open-source model has demonstrated strong
performance in various natural language process-
ing tasks and offers robust multilingual support.
Our aim is to provide comprehensive insights into
the practical applications and limitations of these
models in low-resource languages, setting the stage
for future advancements in the field.

3 Methods

The main objective of our research is to compare
and analyze the performance of pre-trained mT5
and few-shot prompt-based GPT-3.5 and GPT-4.
Then, we aim to experimentally confirm the impact
of their few-shot learning on low-resource language
XLS tasks. Additionally, we conduct comprehen-
sive comparison with one of the open-source multi-
lingual LLMs, such as the Mistral-7B-Instruct-v0.2
(La Plateforme; Jiang et al., 2024), to provide a
broader perspective on the performance of differ-
ent LLMs in the XLS task to provide a broader
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Input Prompt

Please summarize the following text in English

Example 1
Text: "แผนที่ของนาซายังชี้อีกว่า ระดับของไนโตรเจนไดออกไซด์ มลพิษที่เกิดจากโรงงานอุตสาหกรรม มีปริมาณลดลงด้วยเช่นกันในปีนี้ สอดคล้องกับจำนวนตัวเลขของโรงงานในจีนที่ถูกสั่งปิดโรงงานยุติการ
ผลิตเพื่อกักกันไม่ให้ไวรัสแพร่ระบาด ตัวเลขผู้ติดเชื้อไวรัสโคโรนาสายพันธุ์ใหม่ในจีนขณะนี้อยู่ที่เกือบ 80,000 ราย นับแต่เกิดการระบาดเมื่อปลายปีที่แล้ว ขณะที่พบผู้ติดเชื้อไวรัสชนิดนี้ในอีกกว่า..."
(Nasa's map also shows that the level of nitrogen dioxide pollution caused by industrial plants has also decreased this year, in line with the number of plants in China that have been ...)

Translated summary:  "Satellite images have shown a dramatic decline in pollution levels over China, which is ""at least partly"" due to an economic slowdown 
prompted by the coronavirus, US space agency Nasa says."

Example 2
Text:  "นิตยสารเพลย์บอยลงโฆษณาฉบับเดือนมีนาคม-เมษายนของตนทางทวิตเตอร์ 2017 นิตยสารเพลย์บอยซึ่งยุติการตีพิมพ์รูปเปลือยของสาวเพื่อนเล่น ""เพลย์เมท"" ซึ่งเป็นเอกลักษณ์ประจำตัวที่โด่งดังไป
เมื่อเดือนมีนาคมปี 2016 ประกาศเปลี่ยนนโยบายแบบกลับหลังหันอีกครั้ง โดยเพลย์บอยฉบับเดือนมีนาคม-เมษายน 2017 จะลงรูปเปลือยของสาวเพลย์เมทบนหน้าปก โดยมีการโฆษณ..."
(Playboy magazine advertised its March-April issue on Twitter 2017. Playboy magazine, which stopped publishing nude photos of playmate girlfriend" Playmate", a well-known identity in ...)

Translated summary: "Playboy magazine has announced it is bringing back nudity, reversing a decision made last year."

Test Text
Text: "สื่อรัสเซีนรายงานว่า ศ.โอเลก โซโคลอฟ วัย 63 ปี อยู่ในสภาพมึนเมาและพลัดตกลงไปในแม่น้ำพร้อมด้วยกระเป๋าเป้ซึ่งภายในมีชิ้นส่วนแขนทั้ง 2 ข้างของ น.ส.อนาสตาเซีย เยชเชนโก วัย 24 ปี ในเวลา
ต่อมา เจ้าหน้าที่ตำรวจได้เข้าตรวจสอบบ้านพักของ ศ.โซโคลอฟ ในนครเซ็นต์ปีเตอร์สเบิร์ก และพบร่างที่ถูกหั่นแยกชิ้นส่วนของ น.ส.เยชเชนโก เจ้าหน้าที่ตรวจสอบแม่น้ำมอยกา..."
(Russian media reported that Prof.Oleg Sokolov, 63, was intoxicated and fell into the river with a backpack containing parts of Ms.Anastasia Yeshchenko, 24, later a police officer examined ...)

Translated summary:

Figure 2: Two-shot prompt construction for cross-lingual summarization from Thai to English.

perspective on the performance of different LLMs
in the XLS task and assess the effectiveness of few-
shot learning in mitigating the challenges posed by
low-resource settings.

3.1 Direct Cross-Lingual Summarization

We focus on the direct cross-lingual summariza-
tion method, which generates target language sum-
maries directly from source language documents in
an end-to-end manner. Unlike traditional pipelines
that involve separate summarization and translation
steps, the direct approach combines these tasks
into a single, unified process. This allows for a
more seamless transfer of information between lan-
guages and reduces the potential for error propaga-
tion.

3.2 Models

We compare the performance of fine-tuned mT5,
GPT-3.5, GPT-4, and Mistral-7B-Instruct-v0.2
on cross-lingual summarization tasks. For GPT-
3.5 and GPT-4, specifically GPT-3.5-turbo-0125
and GPT-4-0125-preview models, and Mistral-7B-
Instruct-v0.2, we evaluate their performance in
zero-shot, one-shot, and two-shot settings. The
Mistral-7B-Instruct-v0.2 is particularly noted for
its ability to process up to 32k tokens, significantly
enhancing its capability for few-shot learning by
providing richer context management. This model
has been shown to outperform other models like
Llama-2-13B across all benchmarks, with robust
multilingual support enhancing its utility for di-
verse linguistic datasets.

3.3 Few-Shot Prompt Construction

For the few-shot learning approach, we construct
prompts that include several examples from the
validation set. These examples are carefully se-
lected based on their token count, ensuring that the
shortest examples are used as the first and second
examples in the prompt. This structured approach
facilitates effective few-shot learning, even when
computational resources are limited.

The direct prompts for few-shot learning, as de-
picted in Figure 2, are structured to provide the
model with two examples of increasing complex-
ity. Each prompt consists of two example texts and
their corresponding summaries in the target lan-
guage. The test text is then appended to the prompt,
and the model is expected to generate a summary
in English. By including these meticulously cho-
sen examples in the prompt, we aim to provide
the model with sufficient context to perform few-
shot cross-lingual summarization effectively. This
method allows us to explore the capabilities of large
language models in low-resource settings where the
availability of parallel data is limited.

4 Experiments

4.1 Datasets

We utilize the CrossSum (Bhattacharjee et al.,
2023) dataset, a multilingual corpus of summaries
in 45 languages. Following the definitions in (Li
et al., 2023), we focus on low-resource language
pairs with fewer than 1,000 parallel data points.
Additionally, we include experiments with Pashto,
a medium-resource language with 1,212 parallel
data points, to more broadly assess the effective-
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Language Pair
Models Th-En Gu-En Mr-En Pa-En Bu-En Si-En

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

mT5-Base (fine-tuning) 29.16 9.79 22.63 24.28 6.40 19.12 25.87 7.28 20.14 30.86 10.27 24.78 28.44 7.50 22.07 28.94 8.17 22.53
Zero-shot 14.69 3.84 10.32 12.69 2.80 9.20 13.83 3.04 9.96 14.98 3.78 10.94 13.2 2.21 10.19 13.08 2.11 9.91

GPT-3.5 One 15.18 3.95 10.99 13.0 3.12 9.25 14.91 3.73 10.79 14.62 3.93 10.80 15.80 2.43 11.91 13.39 2.34 10.11
Two 16.56 4.59 11.6 15.33 3.57 10.57 16.52 4.06 11.96 15.52 3.96 11.06 16.48 2.83 12.39 14.03 2.47 9.81
Zero-shot 12.22 3.39 8.59 10.96 2.71 7.63 10.97 2.84 7.90 12.10 3.58 8.55 14.73 3.77 9.84 13.92 3.86 9.45

GPT-4 One 14.86 4.12 10.51 13.88 3.50 9.27 14.11 3.52 10.09 13.33 4.04 9.43 16.88 4.48 11.41 15.03 4.35 10.27
Two 17.67 5.19 12.67 13.63 3.49 9.27 14.97 3.73 10.38 13.65 4.15 9.49 17.38 4.32 11.73 15.10 4.15 10.39

Mistral-7B-
instruct-v0.2

Zero-shot 8.91 2.12 6.42 6.15 0.68 4.76 7.63 1.55 5.76 7.65 1.62 5.99 7.59 1.06 5.68 7.23 0.99 5.40
One 10.28 2.51 7.58 7.27 0.79 5.46 8.08 1.42 6.06 7.41 1.21 5.82 8.35 0.91 6.37 8.43 1.06 6.08
Two 10.10 2.37 7.30 6.31 0.71 4.81 6.66 0.57 5.35 8.96 1.71 6.77 9.55 1.07 7.44 8.21 0.49 6.58

Table 1: Performance comparison of model performance metrics across various language pairs, including R1, R2,
and Rouge-L scores. The language pairs are abbreviated as follows: Th-En (Thai to English), Gu-En (Gujarati to
English), Mr-En (Marathi to English), Pa-En (Pashto to English), Bu-En (Burmese to English), Si-En (Sinhala to
English).

Language Pair
Models En-Th En-Gu En-Mr En-Pa En-Bu En-Si

R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

mT5-Base (fine-tuning) 4.59 0.94 4.40 10.14 1.19 9.37 9.38 1.22 8.94 20.12 4.62 17.55 4.85 0.55 4.72 5.62 0.39 5.13
Zero-shot 4.78 1.48 4.53 1.40 0.0 1.40 2.05 0.0 2.05 0.0 0.0 0.0 1.70 0.26 1.70 1.22 0.0 1.22

GPT-3.5 One 4.5 0.82 4.45 1.60 0.0 1.60 1.02 0.13 1.02 0.0 0.0 0.0 0.58 0.0 1.55 1.72 1.72 1.72
Two 5.29 1.46 5.20 0.55 0.0 0.55 0.88 0.09 0.88 0.0 0.0 0.0 1.55 0.0 1.55 1.63 1.07 1.63
Zero-shot 6.09 1.42 5.84 1.50 0.0 1.50 1.35 0.0 1.35 0.0 0.0 0.0 2.61 0.90 2.61 3.34 1.72 3.34

GPT-4 One 9.38 2.25 9.38 1.22 0.0 1.22 1.48 0.1 1.48 0.0 0.0 0.0 4.62 0.17 4.62 4.36 1.15 4.36
Two 8.64 2.16 8.39 2.05 0.0 2.05 1.31 0.0 1.31 0.0 0.0 0.0 2.02 0.22 2.02 2.53 1.15 2.53

Mistral-7B-
instruct-v0.2

Zero-shot 4.33 1.18 4.33 0.23 0.0 0.23 2.37 0.20 2.37 0.0 0.0 0.0 2.64 1.21 2.64 0.06 0.0 0.06
One 4.39 1.33 4.30 0.51 0.0 0.51 1.64 0.08 1.64 0.0 0.0 0.0 7.78 1.55 7.78 0.74 0.0 0.74
Two 3.15 0.38 2.94 0.51 0.0 0.51 0.55 0.0 0.55 0.0 0.0 0.0 2.43 0.01 2.10 0.42 0.0 0.42

Table 2: Performance comparison of model performance metrics across various language pairs, including R1, R2,
and Rouge-L scores. The language pairs are abbreviated as follows: En-Th (English to Thai), En-Gu (English to
Gujarati), En-Mr (English to Marathi), En-Pa (English to Pashto), En-Bu (English to Burmese), and En-Si (English
to Sinhala).

ness of our proposed method in diverse linguistic
settings. Figure 3 illustrates the distribution of the
dataset across different languages for both many-
to-one and one-to-many scenarios. The number of
parallel data points for each language pair remains
consistent in both settings. This symmetry allows
us to represent the dataset distribution in a single
figure, simplifying the visual representation of the
data.

Figure 3: Distribution of English-centric many-to-one
and one-to-many datasets in Train data

4.2 Performance Metrics

To evaluate the quality of the generated sum-
maries, we used the ROUGE (Lin, 2004), reporting
ROUGE-1/2/L (R-1,2,L). These metrics measure
the overlap of unigrams, bigrams, and the longest
common subsequences between the generated and
reference summaries, respectively.

4.3 Experimental Results

Overall Performance: Fine-tuned mT5 models
outperformed most language pairs and experimen-
tal settings. Notably, the GPT-3.5 and GPT-4 mod-
els demonstrated significant improvements in few-
shot scenarios, particularly highlighting their ef-
fective adaptation in many-to-one settings, where
they summarize from various source languages into
English. However, in the one-to-many setting, GPT-
3.5, GPT-4, and Mistral-7B-Instruct-v0.2 showed
limited performance gains in the one-shot sce-
nario, and their performance either deteriorated
or remained unimproved in the two-shot setting.
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Moreover, there was no significant performance
difference among GPT-3.5, GPT-4, and Mistral-
7B-Instruct-v0.2 in the one-to-many setting, indi-
cating the challenges associated with summariz-
ing from English to low-resource languages. The
Mistral-7B-Instruct-v0.2 model consistently under-
performed compared to the fine-tuned mT5 and
the GPT-3.5 and GPT-4 models across most lan-
guage pairs and few-shot settings, suggesting that
it struggles to effectively adapt to the cross-lingual
summarization task with limited examples.

Few-Shot Learning Impact: The performance
of GPT-3.5 and GPT-4 models competitively im-
proved as the number of shots increased, show-
casing their few-shot learning capabilities in cross-
lingual summarization. The Mistral-7B-Instruct-
v0.2 model exhibited performance gains up to the
one-shot setting, with generally increasing ROUGE
scores. However, in the two-shot setting, the
model’s performance showed a decreasing trend, in-
dicating that the benefits of few-shot learning may
not consistently extend to higher numbers of shots
for this open-source model. This highlights the
challenges in applying open-source models to few-
shot cross-lingual summarization tasks and sug-
gests that further research is needed to optimize
their performance in these settings.

Analysis by Language Pair: The many-to-one
approach generally resulted in higher ROUGE
scores than the one-to-many approach. This sug-
gests that summarizing in English is relatively
more straightforward than summarizing in other
languages. However, the performance gap between
the two approaches was more pronounced for the
Mistral-7B-Instruct-v0.2, indicating its limited abil-
ity to generate summaries in non-English target
languages compared to the other models. Notably,
all models achieved ROUGE scores of 0 for the
English to-Pashto language pair across all few-shot
settings (see Table 2). This result indicates that
few-shot learning did not improve the models’ per-
formance for this specific language pair. The En-
glish to Pashto results, where all models failed to
generate meaningful summaries even with few-shot
learning, underscore the limitations of current ap-
proaches in handling extremely low-resource lan-
guage pairs. This finding emphasizes the need for
further research in developing more effective few-
shot learning strategies and investigating the trans-
fer learning capabilities of LLMs for cross-lingual
summarization in such challenging scenarios.

5 Conclusion

This study empirically analyzed the few-shot per-
formance of LLMs in cross-lingual summarization
tasks, focusing on low-resource languages using
a direct prompting approach. We observed that
LLMs demonstrated competitive performance im-
provements through few-shot learning compared
to zero-shot setups particularly in the many-to-one
XLS. But, we also demonstrated that there was
no significant gain to LLMs in the one-to-many
XLS. These findings underscore the need for fur-
ther research in developing more effective few-shot
learning strategies and architectures tailored to low-
resource languages.

Limitation

Our study conducts experiments on a limited
number of low-resource languages and uses only
ROUGE metrics to validate the systems’ per-
formance. Future research should explore ad-
vanced few-shot learning techniques, such as meta-
learning or prompt-tuning, and investigate the im-
pact of pre-training objectives and architectures
designed specifically for cross-lingual tasks. This
could lead to developing more effective open-
source models for low-resource cross-lingual sum-
marization.

Despite these limitations, this research demon-
strates the potential of large language models’ few-
shot learning capabilities in low-resource cross-
lingual summarization tasks and provides experi-
mental validation for the proposed research direc-
tions. Further work is necessary to extend these
findings to additional low-resource languages and
advance the few-shot learning capabilities of open-
source models like Mistral-7B-Instruct-v0.2.
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Abstract

Neural Machine Translation (NMT) remains
a formidable challenge, especially when deal-
ing with low-resource languages. Pre-trained
sequence-to-sequence (seq2seq) multi-lingual
models, such as mBART-50, have demon-
strated impressive performance in various low-
resource NMT tasks. However, their pre-
training has been confined to 50 languages,
leaving out support for numerous low-resource
languages, particularly those spoken in the
Indian subcontinent. Expanding mBART-
50’s language support requires complex pre-
training, risking performance decline due to
catastrophic forgetting. Considering these ex-
panding challenges, this paper explores a frame-
work that leverages the benefits of a pre-trained
language model along with knowledge distilla-
tion in a seq2seq architecture to facilitate trans-
lation for low-resource languages, including
those not covered by mBART-50. The proposed
framework employs a multilingual encoder-
based seq2seq model as the foundational ar-
chitecture and subsequently uses complemen-
tary knowledge distillation techniques to mit-
igate the impact of imbalanced training. Our
framework is evaluated on three low-resource
Indic languages in four Indic-to-Indic direc-
tions, yielding significant BLEU-4 and chrF
improvements over baselines1. Further, we con-
duct human evaluation to confirm effectiveness
of our approach.

1 Introduction

Neural Machine Translation (NMT) models (Bah-
danau et al., 2016; Vaswani et al., 2017; Liu et al.,
2020a; Khandelwal et al.) have shown impressive
results on benchmark datasets, mainly containing
large amounts of parallel data. However, these mod-
els face challenges when applied to low-resource
languages or languages with rich and diverse mor-

1Our code is publicly available at https://github.com/
raypretam/Two-step-low-res-NMT

phology. Previous approaches have leveraged pre-
trained models trained on extensive corpora (Weng
et al., 2019; Wang et al., 2022; Liu et al., 2020b,
2021; Haddow et al., 2022; Roy et al., 2023, 2022)
to address these limitations.

Pre-trained multilingual seq2seq-based models
based on an encoder-decoder framework such as
mBART-50 (Liu et al., 2020b) have been success-
fully used for various low-resource NMT tasks.
Despite being pre-trained with 50 languages, it
needs more support for numerous low-resource lan-
guages. Expanding the capabilities of mBART-
50 to encompass new languages entails a cumber-
some process involving the collection of substantial
amounts of monolingual data and the execution of
pre-training with denoising objectives after initial-
izing mBART-50. This process is time-consuming
and may decrease performance on the initial 50
languages when incorporating new ones, a phe-
nomenon known as catastrophic forgetting (French,
1999).

In contrast, encoder-based pretrained model
XLM-R (Conneau et al., 2020) is designed to ac-
commodate 100 languages, making it suitable for a
wide range of low-resource cross-lingual Natural
Language Understanding (NLU) tasks. Both cross-
lingual and Machine Translation (MT) function-
alities share certain similarities. In cross-lingual
scenarios, training and evaluation occur across dif-
ferent languages, while MT systems process in-
put in one language and produce output in another.
This distinction prompts several experimental re-
search questions, including: 1) How does an XLM-
R based NMT model perform on low-resource mor-
phologically rich languages, particularly those not
covered by mBART-50? 2) Given that low-resource
NMT may be affected by training imbalances lead-
ing to performance degradation, can the applica-
tion of knowledge distillation further enhance the
results?

To address the two aforementioned experimen-
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tal research questions, we utilize our base model,
which follows a seq2seq framework. Here, we ini-
tialize the encoder with the multilingual pretrained
model XLM-R large, while decoder layers are ini-
tialized from scratch, we call this base approach as
XLM-MT. Similar frameworks have been explored
in previous studies (Zhu et al., 2020; Li et al., 2023),
with our approach sharing similarities with (Chen
et al., 2022), who employed it for zero-shot cross-
lingual NMT tasks and froze the embedding layers.
However, our base approach differs in considering
only decoder training. Thereafter, we apply com-
plementary knowledge distillation (CKD) (Shao
and Feng, 2022) to the base XLM-MT model to
address training imbalances. The objective of this
complementary knowledge distillation is to train
the student model with knowledge which comple-
ments the teacher model and avoid knowledge for-
getting, and we refer to this as XLM-MT+CKD.
We empirically evaluate our model across three In-
dic languages and observe significant improvement
in BLEU and chrF scores. Finally, we use human
evaluation to assess the fluency, relatedness, and
correctness of our output. Our contributions are as
follows:
1. We repurpose the XLM-based seq2seq frame-
work in conjunction with a complementary knowl-
edge distillation approach to effectively design an
NMT model for low-resource MT tasks. To the
best of our knowledge, we are the first to integrate
these two approaches effectively for NMT tasks.

2. We conduct comprehensive experiments on three
Indian languages in four directions that are not in-
cluded in mBART-50 and demonstrate the signif-
icance of our approach in enhancing translation
results.

3. We also perform a detailed analysis of the results,
including human evaluation and error analysis, for
our proposed model.

2 Methodology

Given a source language sentence X =
(x1, x2, . . . , xS), and its corresponding target lan-
guage translation Y = (y1, y2, . . . , yT ), an NMT
model is trained to predict the translated sequence
Y ′ using the maximum log-likelihood estimation
(MLE) objective. The probability of predicting the
target sequence Y ′ is computed as p(Y ′|X; θ) =∏T

t=1 p(yt|y0:t−1, x1:S , θ), where θ represents the
model parameters.

2.1 Base Model (XLM-MT)
We initialize encoder layers and encoder embed-
dings with an unsupervised pre-trained multilin-
gual model, XLM-R large (Conneau et al., 2020)
which is trained using masked language model ob-
jective. Then, we train the decoder from scratch
while freezing the encoder parameters. During
training, decoder parameters are learned with an
MLE objective. The underlying assumption is that
the pre-trained encoder parameters have already
learnt a multilingual representation of the source
language. As a result, only the decoder is trained
using MLE objective while leveraging the en-
coder embeddings learned by the pre-trained model.
Lθdec =

∑
(X,Y )∈D logP (Y |X; θdec) where X

and Y represents the source target sentence re-
spectively from the dataset D. The parameter θdec
refers to the parameters of the decoder layers and
embedding.

Algorithm 1 Complementary Knowledge Distilla-
tion

1: Input: Training data D, the number of teach-
ers n.

2: Output: Student model S.
3: Initialize S and teacher models (T1:n) with the

base model, XLM-MT.
4: while not converge do
5: randomly divides the training data D in mu-

tually exclusive n+1 subsets D1, D2, ...Dn+1

6: for t = 1 to n+ 1 do
7: for i = 1 to n do
8: Train Ti on DO(i,t)

9: end for
10: Train S on Dt using Eq 3
11: end for
12: for i = 1 to n do
13: Ti ← S (At the end of each epoch,

reinitialize teacher models with the student
model:)

14: end for
15: end while
16: return student model S

2.2 Complementary Knowledge Distillation
Imbalances in training data lead to performance
degradation in low-resource NMT due to catas-
trophic knowledge forgetting (LeCun et al., 2002;
Shao and Feng, 2022). We leverage complemen-
tary knowledge distillation (CKD) technique (Shao
and Feng, 2022) to overcome this problem in low-
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resource MT. In CKD, n teacher models and a stu-
dent model S are trained in a complementary man-
ner such that S learns from new training samples
while teacher models dynamically provide com-
plementary early samples knowledge to the S. In
our case, both teacher and student models are ini-
tialized with the parameters of our base model,
XLM-MT.

We divide the training set D into n + 1 mutu-
ally exclusive subsets for each epoch. The stu-
dent model S sequentially learns from D1 to Dn+1

while the teacher models learn from all data splits
except Dt. To determine the training data for the
teacher models at timestep t, we utilize an ordering
function, as shown in Eq 1 (Shao and Feng, 2022).
This ordering function covers all data splits except
Dt, ensuring that the teacher models complement
the student model.

O(i, t) =

{
i+ t, i+ t ≤ n+ 1

i+ t− n− 1, i+ t > n+ 1

}

(1)

where, i ∈ {1, 2, . . . , n} and t ∈
{1, 2, . . . , n+ 1}

In the process of word-level knowledge distil-
lation, the student model S benefits from an addi-
tional supervision signal, aligning its outputs with
the probability outputs of the teacher model T .

LKD(θ) = −
T∑

t=1

|V |∑

k=1

n∑

i=1

qi(yt = k|y<t, X)

n

× log p(yt = k|y<t, X, θ) (2)

where |V | denotes the number of classes, p de-
notes the prediction of student and qi is the predic-
tion of teacher model Ti. To balance the distillation
loss and the cross-entropy loss, we introduce a
hyperparameter α for interpolation. Finally, the
overall objective function is

L(θ) = α · LKD(θ) + (1− α) · LNLL(θ) (3)

We employ a reinitialization technique (Zhang
et al., 2018; Zhu et al., 2018) to facilitate two-way
knowledge transfer. After each epoch, we reset the
parameters of the teacher models using those of the
student model. This reinitialization ensures that the
student and teachers begin each epoch with identi-
cal settings. We present the training procedure for
CKD in Algorithm 1. We apply CKD to our base
model in the following 2-step process.
Step 1 - Initialization: In this step, we initialize

both the student and teacher models with the model
obtained after the first step training (c.f., Section
2.1). This initialization ensures that the student
model benefits from the knowledge acquired dur-
ing the initial decoder training.
Step 2 - CKD: In this step, we apply the comple-
mentary KD technique (c.f., Section 2.2) which
enables the model to benefit from the transfer of
complementary knowledge.

3 Experimental Setup

Dataset: For our experiments, we specifically se-
lect three Indic languages, namely Kannada, and
Punjabi that are not included in mBART-50, to as-
sess the effectiveness of our approach. We use
the Samanantar dataset (Ramesh et al., 2022) for
training all our NMT models which contains par-
allel sentences for 11 Indic language pairs. We
consider three languages in 4 directions, namely
Hindi-Kannada, Kannada-Hindi, Kannada-Punjabi,
and Punjabi-Kannada, containing 2.1 million and
1.1 million parallel sentences respectively. We use
the FLORES-200 (Team, 2022) containing 997 and
1012 sentences as our validation and test set respec-
tively.
Implementation Details: We implement our ap-
proach using the Fairseq Toolkit (Ott et al., 2019).
We use Adam optimizer (Kingma and Ba, 2017)
with β1 = 0.9 and β = 0.98. Following the work
by Chen et al. (2021), we use learning rates 5e− 3
and 1e − 3 for the base model and CKD, respec-
tively. We set maximum updates of 200K for the
base model training and 40K for the CKD. We use
12 layers with 16 attention heads in the decoder.
We use the ‘Large’ variant of XLM-R that has 550
million parameters for our experiments. We set
the number of teachers to 1 and α = 0.95. We
set batch size = 32k, and used beam size = 5
throughout our experiments, and following Shao
and Feng (2022) we averaged the last five check-
points. We use BLEU-4 (Papineni et al., 2002)
and chrF (Popović, 2015) score to evaluate our ap-
proach. All the models have been trained on single
A100 GPUs. None of the training methods con-
sumed more than 96 hours.
Baselines We employ various baseline models for
comparison with our approach. To ensure a fair
assessment, we train all baseline models using iden-
tical training data and assess their performance on
the Flores dataset.
Transformer (Vaswani et al., 2017): We uti-
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Model hi-kn kn-hi kn-pa pa-kn hi-kn kn-hi kn-pa pa-kn
BLEU chrF

Transformer 3.60 7.61 1.39 1.04 37.40 34.09 24.19 25.75
Sequence-KD (Kim and Rush, 2016) 4.23 7.88 1.71 1.08 37.43 34.23 24.31 25.89
mBERT-KD (Chen et al., 2020) 4.73 8.67 2.01 1.31 37.47 34.67 24.43 26.22
Selective KD (Wang et al., 2021) 5.35 8.08 2.24 1.19 39.23 35.02 24.57 26.78
Transformer+CKD 4.51 8.89 3.23 1.98 38.54 35.13 24.54 27.01
mBERT-MT (Zhu et al., 2020) 4.98 10.23 3.78 4.17 38.98 35.56 25.01 29.68
SixTp (Chen et al., 2022) 7.01 10.80 6.14 5.45 40.98 35.74 27.62 32.47
XLM-MT (base) 6.08 8.75 6.01 2.98 40.38 35.38 27.12 28.11
XLM-MT + CKD (ours) 9.15 11.46 7.23 6.43 41.11 35.88 29.12 33.98

Table 1: Performance (BLEU-4 and chrF scores) of our model along with seven baseline models on the FLORES-200
dataset on 3 languages in 4 directions between Indic languages: Hindi (‘hi’), Kannada (‘kn’), Punjabi (‘pa’). We
provide additional human evaluation results in Table 4.

lize a standard transformer-based encoder-decoder
model, employing six layers for both the encoder
and decoder.
Word-level Knowledge Distillation (Kim and
Rush, 2016) is a conventional method applied to
enhance NMT results by distilling knowledge at
the word level.
Sequence-level Knowledge Distillation (Kim and
Rush, 2016) is a conventional knowledge distilla-
tion technique applied to enhance NMT results by
distilling knowledge at the sequence level.
BERT-KD (Chen et al., 2020) is a knowledge ex-
tracted from a fine-tuned BERT model is trans-
ferred to NMT models.
Selective KD (Wang et al., 2021) refers to the pro-
cess of distilling and transferring specific, relevant
knowledge from a teacher model to a student model.
Instead of transferring all the knowledge indiscrim-
inately, this approach involves selecting and distill-
ing the most valuable and informative aspects of
the teacher model’s knowledge.
mBERT-MT(Zhu et al., 2020), integrates BERT
into the NMT process. Initially, BERT is employed
to extract representations for an input sequence.
Subsequently, these representations are fused with
each layer of the NMT model’s encoder and de-
coder using attention mechanisms.
sixTp (Chen et al., 2022) is a sequence-to-sequence
(seq-to-seq) model. In its initialization, the en-
coders are initialized with the XLM-R large model,
while the decoder is initialized randomly. The
model undergoes a two-stage fine-tuning process.
In the initial stage, the encoder layers are frozen,
and fine-tuning is performed on the decoders. Sub-
sequently, in the second stage, the model is trained
in an end-to-end fashion.

4 Results

Table 1 presents the BLEU-4 and chrF results for
Hindi to Kannada, Kannada to Punjabi in both di-
rections. It is noteworthy that Hindi, and Punjabi
belong to the Indo-Aryan language family, while
Kannada belongs to the Dravidian family. We com-
pare our results against seven competitive baselines,
namely, vanilla transformer, knowledge distillation
techniques, transformer with CKD, two step train-
ing techniques using mBERT and SixTp, which is
XLM-R based model. We observe that XLM-MT
+ CKD achieves BLEU scores within the range of
(6.43 to 11.46) consistently surpassing the base-
lines. We observe an average improvements of
1.22-5.15 BLEU scores across all language pairs.
We also present chrF scores in Table 1. Notably,
XLM-MT+CKD consistently demonstrates its su-
periority, outperforming all the baselines with aver-
ages of 0.82-4.66 chrF score, across all language
pairs. Further, we conduct human evaluation to
assess the fluency, relatedness and correctness of
the generated text. We present human evaluation
results of sixTp and our model, XLM-MT+CKD
in Table 4.

We also investigate various variants of our model
to validate the effectiveness of our architecture and
present results in Table 2. Additionally, we conduct
comprehensive error analysis in Section 7.

5 Analysis

How would the method perform with the lan-
guages that mBART-50 supported? In addi-
tion to the language pairs outlined in Section 3,
we extend our exploration to include language
pairs supported by mBART-50, facilitating effec-
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Model hi-kn kn-hi kn-pa pa-kn
Transformer 3.60 7.61 2.39 1.04
EncXLM-R

train + Dec 4.72 8.32 5.75 2.11
EncXLM-R

no-train + Dec 6.08 8.75 6.01 2.98
SixTp 7.01 10.80 6.14 5.45
XLM-MT + CKD 9.15 11.46 7.23 6.43

Table 2: Performances (BLEU-4 scores) of our model along with its variants. The score in bold shows the best
scores for the corresponding language pair. Enc + Dec refers to the transformer model without XLM initialization.
EncXLM-R

train + Dec refers to joint training of XLM-R based encoder and decoder. EncXLM-R
no-train+ + Dec refers to only

decoder training.

Model hi-bn mr-hi hi-te
mBART-50 9.25 17.06 9.35
XLM-MT 8.13 15.78 11.56
XLM-MT + CKD 8.67 15.81 12.01

Table 3: Performances BLEU-4 of our model along
with mBART-50 model on the FLORES-200 dataset for
the translation between Indic languages: Hindi (‘hi’),
Telugu (‘te’), and Bengali (‘bn’).

tive comparisons with the mBART-50 model. We
extracted three language pairs from the Saman-
tar dataset—namely, Hindi-Bengali, Telugu-Hindi,
and Marathi-Hindi—and compared our approach
with mBART-50. We present the results in Table 3.
mBART-50 achieves BLEU-4 scores of 9.35 and
17.06 for the language pairs of Hindi-Bengali and
Marathi-Hindi respectively, surpassing the perfor-
mance of XLM-MT+CKD model. For the Hindi-
Telugu pair, our model XLM-MT+CKD achieves
better performance than mBART-50.

5.1 Analysis of different model variants

The aim of this analysis is to assess the effective-
ness of our model with different approaches in
addressing the challenges of machine translation,
particularly for low-resource and morphologically
rich languages. The obtained BLEU scores are
presented in Table 2.
Enc + Dec: To assess the importance of pre-
training initialization in the encoder, we compare
the performance of XLM-MT, which is initialized
with XLM-R large, against a randomly initialized
model. We observe that the encoder initialized with
XLM-R large produces better performance than the
randomly initialized encoder.
EncXLM-R

train + Dec, EncXLM-R
no-train + Dec: To analyze

the effectiveness of the two-stage training process
employed in XLM-MT, we experiment with two

different settings: (a) training encoder and decoder
jointly (the second stage), denoted as EncXLM-R

train +
Dec, and (b) only training the decoder (the first
stage), denoted as EncXLM-R

no-train + Dec. From Table
2, we clearly see the effectiveness of two-stage
training compared to only one of these stages
across all language pairs.

6 Human Evaluation

We follow a procedure similar to previous studies
(Chi et al., 2019; Maurya et al., 2021) to assess the
quality of translated sentences in three Indic lan-
guages in four Indic-to-Indic language pairs. We
randomly selected 50 test data-points for each lan-
guage pair for evaluation. Three key metrics are
used to evaluate the translated sentences: fluency,
relatedness, and correctness. Fluency refers to the
smoothness and coherence of the generated text,
evaluating how well the sentences flow and adhere
to grammatical rules. Relatedness measures how
well the translated sentences are connected to the
given ground truth sentences and capture its key
information. Correctness assesses the accuracy and
appropriateness of the translated sentences in terms
of their meaning and semantics. We present the
translated sentences (randomly shuffled) from two
models XLM-MT and XLM-MT+CKD to three
language experts for each language pair. The se-
lected 12 experts are well versed in the correspond-
ing target language including English. The experts
attained a minimum of graduate degree in English
and have native proficiency in the target language.
The experts are informed about the task and were
renumerated as per industry standard norms. The
experts rated the sentences on a 5-point scale, with
1 indicating very bad and 5 indicating very good,
for each of the three metrics. The final numbers are
in Table 4. These are calculated by averaging all
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Metric hi-kn kn-hi kn-pa pa-kn
SixTp

Fluency 3.13 3.71 2.47 1.97
Correctness 3.04 3.68 2.40 1.87
Relatedness 3.18 3.75 2.33 1.92

XLM-MT + CKD
Fluency 3.23 3.75 2.53 2.01
Correctness 3.71 3.92 2.47 1.85
Relatedness 3.43 3.78 2.51 1.97

Table 4: Human evaluation results of our approach sixTp and XLM-MT+ CKD for three languages in four directions.
The three metrics are Fluency, Relatedness, and Correctness, respectively.

the experts’ responses for each parameter. The an-
notation experts received compensation according
to industry standards for their work. We briefed
them on the objectives and explicit usage of their
annotations

7 Case Study

Table 5 presents several example sentences and
their translations by our proposed approach. No-
tably, there are specific issues with reference 1 in
the XLM-MT translations. In reference 1, XLM-
MT incorrectly translates the sentence using a
wrong gender concept, whereas XLM-MT+CKD
translates correctly. Regarding the Kannada sen-
tence in reference 2, the XLM-MT and XLM-
MT+CKD approaches provide a correct and mean-
ingful translation, albeit with some paraphrasing.

8 Related Work

Neural Machine Translation (NMT) aims to trans-
late a given source sentence into a target sentence.
Typically, an NMT model comprises an encoder,
a decoder, and an attention mechanism. The en-
coder transforms the input sequence into hidden
representations while the decoder maps these rep-
resentations to the target sequence. The attention
mechanism, pioneered by (Bahdanau et al., 2016),
enhances alignment between words in the source
and target languages. Different architectures can be
employed for the encoder and decoder, including
LSTM (Long Short-Term Memory), CNN (Convo-
lutional Neural Network), and Transformer. The
Transformer architecture, introduced by (Vaswani
et al., 2017), consists of three sublayers. Trans-
former has demonstrated state-of-the-art perfor-
mance in NMT tasks (Barrault et al., 2019).

Prior studies (Imamura and Sumita, 2019; Con-

neau and Lample, 2019; Yang et al., 2022; Weng
et al., 2019; Ma et al., 2020; Zhu et al., 2020)
have investigated the integration of pre-trained lan-
guage encoders into NMT models to bolster super-
vised translation performance. (Zhu et al., 2020)
introduce a BERT-fused model that extracts rep-
resentations from input sentences and integrates
them into the encoder and decoder using atten-
tion mechanisms. Recent research (Song et al.,
2019) focuses on developing and refining encoder-
decoder-based multilingual trained language mod-
els for NMT. (Liu et al., 2020c) present mBART,
a Transformer-based encoder-decoder model ex-
plicitly tailored for NMT applications. Wei et al.
finetune the multilingual encoder-based model for
low-resource NMT, and they focus on improving
the MPE for a more universal representation across
languages. (Chen et al., 2021, 2022) have examined
a two-stage framework utilizing an encoder-based
multilingual language model for zero-shot neural
machine translation.

Numerous studies in NMT have incorporated
the Knowledge Distillation (KD) framework. (Kim
and Rush, 2016) introduced word-level KD for
NMT and later proposed sequence-level KD to
enhance overall performance. Investigating the
efficacy of various token types in KD, (Wang et al.,
2021) suggested strategies for selective KD. (Wu
et al., 2020) successfully transferred internal hid-
den states from teacher models to students, achiev-
ing positive results. Various KD approaches have
also been employed in non-auto-regressive Ma-
chine Translation tasks to enhance outcomes. (Gu
et al., 2018) improved non-autoregressive model
performance by distilling information from an au-
toregressive model. (Zhou et al., 2021) conducted
systematic experiments highlighting the impor-
tance of knowledge distillation in training non-auto-

69



1. Source (Kannada): Udaharanage, obbaru, motaru karugale rastegala abhivrd’dhige mula karana
endu helabahudu.
Translation: For example, one could say that motor cars were the root cause of
the development of roads.

Reference (Punjabi): Udaharana vajon, koi kahi sakada hai ki motara kara sarakan nu zaruri taura’te
vikas vala lai jandi hai.
Translation: For example, one could say that the motor car essentially leads to
development of roads.

XLM-MT+CKD: Udaharana vajon, koi kahi sakada hai ki motara kara sarakan nu zaruri taura’te
vikas vala lai jandi hai.
Translation: For example, one could say that the motor car essentially leads to
development of roads.

2. Source (Hindi) : kuchh any visheshagyon kee tarah, unhen is baat par sandeh hai ki kya mad-
humeh ko theek kiya ja sakata hai, yah dekhate hue ki in nishkarshon kee un
logon ke lie koee praasangikata nahin hai jinhen pahale se hee taip 1 madhumeh
hai.
Translation: Like some other experts, he is skeptical about whether diabetes
can be cured, noting that these findings have no relevance to people who already
have type 1 diabetes.

Reference (Kannada): Madhumehavannu gunapadisalu sadhyave emba bagge itare itara kelavu
tajñarante avaru kuda sansaya vyaktapadisuttare, ı̄ sansodhanegal.u ı̄gagale
t.aip 1 madhumeha hondiruva janarige yavude prayojanagal.annu nı̄dilla.
Translation: Like some other experts, he doubts whether diabetes can be cured,
because these conclusions are not practical for people who have previously had
type 1 diabetes.

XLM-MT+CKD: Itara kelavu tajñarante, avaru madhumehavannu gunapadisabahude endu
sansayapaduttare, ekendare ı̄ tı̄rmanagal.u ı̄ hinde t.aip 1 madhumeha hondiruva
vyaktigal.ige prayogikavagiruvudilla.
Translation: Like some other experts, he doubts whether diabetes can be cured,
because these conclusions are not practical for people who have previously had
type 1 diabetes.

Table 5: Sample outputs generated from our proposed approach, where the target languages’ source language and
translations are specified for each reference.

regressive models, showing its ability to reduce
dataset complexity and help model variations in
output data. In the realm of multilingual NMT,
(Baziotis et al., 2020) used language models as in-
structors for low-resource NMT models. (Chen
et al., 2020) extracted knowledge from fine-tuned
BERT and transferred it to NMT models. Further-
more, (Feng et al., 2021) and (Zhou et al., 2021)
employed KD to introduce forward-looking infor-
mation into the teacher-forcing training of NMT
models.

9 Conclusion

In this paper, we empirically explored the methods
for improving low-resource NMT, particularly for
Indic languages. We investigated several strategies

for initialization of encoder and decoder, along
with the knowledge distillation techniques. We
conducted experiment on three low-resource Indic
languages in four Indic-to-Indic directions belong-
ing to two language families, specifically focusing
on those not covered by mBART-50. Further, we
perform additional analysis on languages supported
by mBART-50 and high-resource language pairs.

Limitations

A limitation of this study is the increased training
time required for the XLM-MT+CKD model due
to its addition of complementary knowledge dis-
tillation. Furthermore, our validation is limited to
low-resource machine translation tasks, although
seq2seq models have the potential to be utilized
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for a wide range of generation tasks, including
Question Generation and Summarization in both
monolingual and cross-lingual contexts.
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Miceli Barone, Jindřich Helcl, and Alexandra Birch.
2022. Survey of low-resource machine translation.
Computational Linguistics, 48(3):673–732.

Kenji Imamura and Eiichiro Sumita. 2019. Recycling a
pre-trained BERT encoder for neural machine trans-
lation. In Proceedings of the 3rd Workshop on Neu-
ral Generation and Translation, pages 23–31, Hong
Kong. Association for Computational Linguistics.

Urvashi Khandelwal, Angela Fan, Dan Jurafsky, Luke
Zettlemoyer, and Mike Lewis. Nearest neighbor ma-
chine translation. In International Conference on
Learning Representations.

Yoon Kim and Alexander M. Rush. 2016. Sequence-
level knowledge distillation.

Diederik P. Kingma and Jimmy Ba. 2017. Adam: A
method for stochastic optimization.

Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-
Robert Müller. 2002. Efficient backprop. In Neural
networks: Tricks of the trade, pages 9–50. Springer.

Bryan Li, Mohammad Sadegh Rasooli, Ajay Patel, and
Chris Callison-Burch. 2023. Multilingual bidirec-
tional unsupervised translation through multilingual
finetuning and back-translation. In Proceedings of
the Sixth Workshop on Technologies for Machine
Translation of Low-Resource Languages (LoResMT
2023), pages 16–31.

Xuebo Liu, Houtim Lai, Derek F. Wong, and Lidia S.
Chao. 2020a. Norm-based curriculum learning for
neural machine translation. In Proceedings of the

71

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/W19-5301
https://doi.org/10.18653/v1/2020.emnlp-main.615
https://doi.org/10.18653/v1/2020.emnlp-main.615
https://doi.org/10.18653/v1/2021.emnlp-main.2
https://doi.org/10.18653/v1/2021.emnlp-main.2
https://doi.org/10.18653/v1/2021.emnlp-main.2
https://doi.org/10.18653/v1/2022.acl-long.12
https://doi.org/10.18653/v1/2022.acl-long.12
https://doi.org/10.18653/v1/2020.acl-main.705
https://doi.org/10.18653/v1/2020.acl-main.705
http://arxiv.org/abs/1909.10481
http://arxiv.org/abs/1909.10481
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
https://doi.org/10.18653/v1/2021.acl-long.223
https://doi.org/10.18653/v1/2021.acl-long.223
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1016/S1364-6613(99)01294-2
https://doi.org/10.1162/coli_a_00446
https://doi.org/10.18653/v1/D19-5603
https://doi.org/10.18653/v1/D19-5603
https://doi.org/10.18653/v1/D19-5603
http://arxiv.org/abs/1606.07947
http://arxiv.org/abs/1606.07947
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/2020.acl-main.41
https://doi.org/10.18653/v1/2020.acl-main.41


58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 427–436, Online. Associ-
ation for Computational Linguistics.

Xuebo Liu, Longyue Wang, Derek F. Wong, Liang Ding,
Lidia S. Chao, Shuming Shi, and Zhaopeng Tu. 2021.
On the copying behaviors of pre-training for neural
machine translation. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 4265–4275, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020b. Multilingual denoising
pre-training for neural machine translation.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020c. Multilingual denoising
pre-training for neural machine translation.

Shuming Ma, Jian Yang, Haoyang Huang, Zewen Chi,
Li Dong, Dongdong Zhang, Hany Hassan Awadalla,
Alexandre Muzio, Akiko Eriguchi, Saksham Singhal,
Xia Song, Arul Menezes, and Furu Wei. 2020. Xlm-
t: Scaling up multilingual machine translation with
pretrained cross-lingual transformer encoders.

Kaushal Kumar Maurya, Maunendra Sankar Desarkar,
Yoshinobu Kano, and Kumari Deepshikha. 2021. Zm-
bart: An unsupervised cross-lingual transfer frame-
work for language generation.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of NAACL-HLT
2019: Demonstrations.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.
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Abstract

Cantonese, the second most prevalent Chi-
nese dialect after Mandarin, has been relatively
overlooked in machine translation (MT) due
to a scarcity of bilingual resources. In this
paper, we propose to leverage Mandarin, a
high-resource language, as a pivot language
for translating between Cantonese and English.
Our method utilizes transfer learning from
pre-trained Bidirectional and Auto-Regressive
Transformer (BART) models to initialize aux-
iliary source-pivot and pivot-target MT mod-
els. The parameters of the trained auxiliary
models are then used to initialize the source-
target model. Based on our experiments, our
proposed method outperforms several baseline
initialization strategies, naive pivot translation,
and two commercial translation systems in both
translation directions.

1 Introduction

Cantonese is estimated to have 86.6 million native
speakers (Eberhard et al., 2024), primarily spo-
ken in Hong Kong, Macau, Guangdong, Guangxi,
and various overseas Chinese communities (Wong
et al., 2017). Originating from the same language
family as Mandarin, Cantonese shares numerous
vocabulary and grammatical similarities with its
high-resource counterpart. However, despite these
resemblances, the linguistic disparities between
Cantonese and Mandarin are substantial enough to
render them mutually unintelligible (Snow, 2004;
Matthews and Yip, 2013). Consequently, the fea-
sibility of leveraging Mandarin resources to pro-
cess Cantonese text is widely questioned (Sio and
Da Costa, 2019).

Despite the popularity of Cantonese, there has
been limited effort for developing a quality transla-
tion system for Cantonese. As of the time of writ-
ing, Google Translate has yet to support Cantonese.
In contrast to Mandarin, parallel corpora for Can-
tonese are extremely scarce, presenting significant

challenges in training neural machine translation
(NMT) models for Cantonese.

Researchers have proposed various strategies to
address low-resource NMT. A technique that has
been shown to be effective is to involve a pivot lan-
guage. In pivot-based translation, the source sen-
tence is first translated into a pivot language, which
is then translated to the target language (De Gispert
and Marino, 2006; Wu and Wang, 2007). Despite
the simplicity, this method has a few disadvantages.
Namely, it requires two translation models for de-
coding, equivalently doubling the number of pa-
rameters as well as the latency; errors from the
source-pivot translation may also propagate into
the final prediction. As such, studies have been
investigating how to directly train a source-target
model with the help of the pivot language, such as
using the encoder from the source-pivot model and
the decoder from the pivot-target model to initialize
the source-target model (Kim et al., 2019; Zhang
et al., 2022).

The choice of the pivot language is vital to the
translation quality (Paul et al., 2009, 2013). Prior
research typically selected the pivot language based
on the relatedness between source and pivot lan-
guages, and the availability of bilingual language
resources (Paul et al., 2009, 2013). For Cantonese-
English translation, Mandarin is an obvious choice,
as it is closely related to Cantonese and there is an
abundance of Mandarin-English parallel corpora.
However, to the best of our knowledge, no prior
studies have examined using Mandarin as a pivot
language for translating between Cantonese and
English.

In this paper, we aim to bridge the research gap
by providing empirical evidence that the usage
of Mandarin can improve the translation perfor-
mance between Cantonese and English. In particu-
lar, we use pre-trained Cantonese, Mandarin, and
English Bidirectional and Auto-Regressive Trans-
former (BART; Lewis et al., 2020) models to initial-
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ize source-pivot and pivot-target translation models.
The trained source-pivot and pivot-target transla-
tion models are then used to initialize the desired
source-target translation model.

2 Background

In this section, we highlight some of the linguistic
differences between Cantonese and Mandarin.

2.1 Vocabulary
While there is a considerable lexical overlap be-
tween Cantonese and Mandarin, it is estimated that
approximately one-third of the vocabularies used in
regular Cantonese speeches are absent in Mandarin
(Snow, 2004). For example, “umbrella” is “遮”
(ze1) in Cantonese but “雨傘” (yǔ sǎn) in Mandarin
(Sio and Da Costa, 2019). In the cases where Can-
tonese and Mandarin share the same lexical items,
it is almost always written with the same character
(Snow, 2004). However, even the same Cantonese
and Mandarin characters can be used differently
(Snow, 2004). For example, “話” (waa6) in Can-
tonese is often used as a verb, meaning “to say”. In
Mandarin, the same character functions as a noun,
meaning “speech”. Moreover, there are characters
that are unique to Cantonese, such as “冇” (mou5;
to not have) and “咁” (gam3; so). Finally, a num-
ber of Cantonese words do not have a standardized
written form (Matthews and Yip, 2013). For ex-
ample, “to give” can be written as “比”, “俾”, “畀”
or “被” in Cantonese (Bauer, 2018), which are all
pronounced as “bei2”.

2.2 Grammar
The differences in grammar between Cantonese
and Mandarin are often very subtle. For exam-
ple, in Cantonese, the noun representing the agent
of the action must be present in indirect passive
construction (Matthews and Yip, 2013), so “I was
scolded” in Cantonese would be “我俾人鬧” (ngo5
bei2 jan4 naau6; I + by + person + scolded). In
contrast, the agent can be omitted in Mandarin, so
the sentence can either be “我被罵” (wǒ bèi mà; I
+ by + scolded) or “我被人罵” (wǒ bèi rén mà; I +
by + person + scolded). Readers can refer to Snow
(2004, p. 47) for more examples of grammatical
differences.

2.3 Pronunciation
The pronunciation of the same character often
varies between Cantonese and Mandarin. In numer-
ous instances, the characters in Cantonese sound

completely different from their Mandarin equiv-
alents. For example, “學習” (to study) is pro-
nounced as “hok6 zaap6” in Cantonese but “xué
xí” in Mandarin, which are substantially different
phonetically (Snow, 2004). Although these pronun-
ciation differences are a primary reason why the
two languages are not mutually intelligible when
spoken, they typically do not impact the written
form of the languages, making this issue irrelevant
for translation.

2.4 Writing System
There are two written forms of Chinese: traditional
and simplified Simplified Chinese, as it name sug-
gests, is a simplified version of traditional Chinese.
Simplified characters requires fewer strokes than
their traditional counterparts. Cantonese and Man-
darin do not inherently dictate which character set
is used. Both spoken forms of Chinese can be
written in traditional and simplified Chinese char-
acters, although regional preferences exist. Tradi-
tional characters are predominantly used in Hong
Kong, Macau and Taiwan, while Mainland China,
Malaysia and Singapore favor simplified charac-
ters.

In our experiments, all simplified characters are
converted to traditional characters using OpenCC1

for smoother transfer learning.

3 Related Work

3.1 Machine Translation for Cantonese
In this section, we review the existing literature on
Cantonese MT.

For Cantonese-Mandarin MT, Mak and Lee
(2021) examined the feasibility of mining seman-
tically similar sentences from articles on the same
subject in Mandarin Wikipedia and Cantonese
Wikipedia. Liu (2022) conducted a comparative
analysis on the translation performance of Long
Short-Term Memory (LSTM) and Transformer
model architectures, alongside word-based and
byte-pair encoding tokenization methods. Kwok
et al. (2023) fine-tuned a pre-trained Mandarin
BART using a parallel corpus of 130k sentence
pairs from various online resources.

The earliest attempt on Cantonese-English MT
was done by Wu and Liu (1999). They developed
a statistical MT system that employed a combi-
nation of example-based and rule-based methods
grounded on a bilingual knowledge base. A more

1https://github.com/yichen0831/opencc-python
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recent effort by Hong et al. (2024) employed back-
translation to synthesize a parallel corpus contain-
ing 200k sentence pairs. No prior research has
studied the use of Mandarin as a pivot language for
translating Cantonese to another language.

3.2 Pivot-based Machine Translation

In this section, we review existing approaches to
leverage a pivot language in low-resource MT.

The naive approach is to independently train
two auxiliary MT models, one for source-pivot
and one for pivot-target, decoding twice via the
pivot language (De Gispert and Marino, 2006; Wu
and Wang, 2007). To reduce prediction errors, one
can translate the top-n pivot-language sentences
into target language, and then select the highest
scoring sentence among the n target-language sen-
tences (Utiyama and Isahara, 2007; R. Costa-jussà
et al., 2011). A drawback of this strategy is that the
translation speed is n times slower than the naive
approach.

Another possibility is to use the pivot language
to generate synthetic parallel data. This can be
achieved by translating pivot-language sentences
in pivot-target parallel corpora into source language
(Bertoldi et al., 2008), translating pivot-language
sentences in source-pivot parallel corpora into tar-
get language (De Gispert and Marino, 2006), or
translating pivot monolingual data into source and
target languages (Currey and Heafield, 2019).

Finally, one can combine pivoting with transfer
learning (Kim et al., 2019). The high-resource
source-pivot and pivot-target auxiliary models are
first trained independently. Subsequently, a source-
target model is initialized with the encoder from
the source-pivot model, and the decoder from the
pivot-target model. The source-target model is then
fine-tuned with source-target data.

4 Proposed Method

Our proposed method is largely based on the trans-
fer learning approach by Kim et al. (2019). A
limitation of their approach is the requirement for
a large amount of source-pivot and pivot-target par-
allel data to train the auxiliary models. However,
given the scarcity of Cantonese parallel data, it is
challenging to train a robust source-pivot model
entirely from scratch. To address this issue, we
also transfer parameters from pre-trained BART
models to the source-pivot and pivot-target mod-
els, leveraging the data efficiency of pre-trained

language models. We will illustrate our method in
terms of Cantonese to English translation, but as
our experiments will demonstrate, the method is
equally effective in the reverse direction. The core
steps of our method are as follows (Figure 1):

1. Pre-train the Cantonese (Yue), Mandarin (Zh)
and English (En) BART models with mono-
lingual corpora.

2. (a) Initialize the Yue-Zh model with the en-
coder from Yue BART and the decoder
from Zh BART. Similarly, initialize the
Mandarin-English model with the en-
coder from Zh BART and the decoder
from En BART.

(b) Continue training the Yue-Zh model with
Yue-Zh parallel corpora, and the Zh-En
model with Zh-En parallel corpora.

3. (a) Initialize the Yue-En model with the en-
coder from the trained Yue-Zh model
and the decoder from the trained Zh-En
model.

(b) Continue training the Yue-En model with
Yue-En parallel corpora.

Instead of training our own BART models from
scratch, we use the base version of Zh BART model
released by Shao et al. (2021) and the base ver-
sion of En BART model released by Lewis et al.
(2020). Both models have the same Transformer
architecture (6 encoder and 6 decoder layers, with
12 attention heads and a hidden size of 768). Since
there is no publicly available Yue BART model,
we continue the pre-training of Zh BART with
additional Yue monolingual data, leveraging the
shared Chinese character system between Yue and
Zh. The vocabularies of Zh BART already contain
Cantonese characters, but the original pre-training
materials are predominately in Mandarin. Consid-
ering the linguistic differences described in Section
2, we believe that this additional pre-training is
warranted. Following Lewis et al. (2020), we pre-
train Yue BART with the text infilling task: for
each sentence, a random number of text spans are
sampled, with span lengths drawn from a Poisson
distribution (λ = 3). Each span is replaced with
a single [MASK] token. The model is trained to
reconstruct the original text without knowing how
many tokens are missing for each span.
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Figure 1: Our proposed pivot-based transfer learning method. Step 1 is the pre-training of BART models. Step 2 is
the training of source-pivot and pivot-target models. Step 3 is the training of the source-target model. Solid lines
represent translation directions. Dashed lines represent parameter initialization.

Corpus Type Language Size

Monolingual Yue 10.0M
Parallel Zh-En 17.1M
Parallel Yue-Zh 31.0K
Parallel Yue-En 61.7K

Table 1: Number of sentences in monolingual and paral-
lel datasets.

5 Data

In this section, we describe the data used for pre-
training and fine-tuning. Table 1 provides a sum-
mary of the sizes of the datasets.

5.1 Monolingual Datasets

Our continued pre-training data for Yue BART are
composed of web-scraped data from online forums
in Hong Kong. To cover a variety of domains, we
scraped data from three forums: LIHKG2, Baby
Kingdom3, and HKEPC4. LIHKG, often referred
to as the “Reddit of Hong Kong” (Au, 2022), is a
multi-category forum with topics including current
affairs, gossips, sports, finance and entertainment.
Baby Kingdom mainly targets local parents looking
for parenting advice. HKEPC contains discussions
on the latest technology and reviews on computer
products. The text is split into sentences based on
punctuation marks. Sentences that contains URL
or have fewer than five Chinese characters are re-
moved. This amounts to 10M sentences after pre-
processing.

2https://lihkg.com
3https://baby-kingdom.com
4https://hkepc.com

5.2 Parallel Datasets

5.2.1 Mandarin-English
For Mandarin-English data, we use publicly avail-
able corpora: News Commentary v18.1 from
WMT24 competition5, UN Parallel Corpus v1.0
(Ziemski et al., 2016) and, WikiMatrix (Schwenk
et al., 2019). For WikiMatrix, we filter sentence
pairs with alignment quality below the score of
1.04, the same threshold used in Schwenk et al.
(2019).

5.2.2 Cantonese-Mandarin
The sources of our Cantonese-Mandarin parallel
data include story books6, language learning web-
sites7,8, TED talks9, a previous linguistic study
(Wong et al., 2017)10,11 and a dictionary12.

5.2.3 Cantonese-English
The sources of our Cantonese-English parallel data
include a language learning website13 and two dic-
tionaries14,15.

5https://www.statmt.org/wmt24/
translation-task.html

6https://global-asp.github.io/
storybooks-hongkong

7https://tatoeba.org/
8https://www.ilc.cuhk.edu.hk/workshop/

Chinese/Cantonese/OnlineTutorial/intro.aspx
9https://opus.nlpl.eu/TED2020/zh&zh-tw/v1/

TED2020
10https://github.com/UniversalDependencies/UD_

Cantonese-HK
11https://github.com/UniversalDependencies/UD_

Chinese-HK
12https://kaifangcidian.com/han/yue/
13https://opus.nlpl.eu/Tatoeba/yue&en/

v2023-04-12/Tatoeba
14https://wenlin.com/
15https://words.hk/
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6 Experiment

In this section, we outline the baselines chosen
for comparison. These baselines are selected to
address the following research questions:

1. Can continued pre-training on Cantonese
monolingual data improve translation perfor-
mance?

2. Does transfer learning from source-pivot and
pivot-target auxiliary models yield better
translation performance than transfer learning
from BART models?

3. Can direct training of a source-target model
mitigate the issue of error propagation associ-
ated with naive pivot translation?

Our baselines include different initialization
strategies for the Yue-En model. In particular, we
choose to initialize the Yue-En encoder using the
encoder from one of the followings: Zh BART,
Yue BART or Yue-Zh model, and the Yue-En de-
coder using the decoder from one of the followings:
En BART or Zh-En model. These encoder and
decoder initialization strategies are fully crossed,
resulting in six conditions. Additionally, we in-
clude a baseline where all parameters in the Yue-En
model are initialized randomly from N(0, 0.02),
following the configuration used by Lewis et al.
(2020). Moreover, we include pivot translation as
a baseline, where source sentences are decoded
twice: first through the Yue-Zh model, and then
through the Zh-En model. The encoders and de-
coders are Yue-Zh and Zh-En models are initialized
from pre-trained BART models, and are trained on
Yue-Zh and Zh-En parallel data respectively. Fi-
nally, we compared our proposed method to two
existing translation platforms that support transla-
tion between Cantonese and English: Azure AI
Translator16 and Baidu Fanyi17.

To examine whether the same approach would
work for translation from English into Cantonese,
we also repeat the experiments for English to Can-
tonese, using Mandarin as a pivot. The translation
directions in the auxiliary models are adjusted ac-
cordingly.

For all training and inference, we use one
NVIDIA GeForce RTX 3090 GPU with a batch of
64. We use the AdamW optimizer (Loshchilov and

16https://azure.microsoft.com/en-us/products/
ai-services/ai-translator

17https://fanyi.baidu.com/

Encoder Decoder BLEU

Random Random 6.03
Zh BART En BART 15.10
Zh BART Zh-En 16.94
Yue BART En BART 17.25
Yue BART Zh-En 19.33
Yue-Zh En BART 17.12
Yue-Zh Zh-En 19.64

Pivot Translation 10.12

Azure AI Translator 17.50
Baidu Fanyi 17.21

Table 2: Experiment results for Yue-En translation.

Hutter, 2019) with a constant learning rate of 3e-5.
To speed up training, the models are trained in half
(16-bit) precision. We use a maximum of 500K
training steps for pre-training Yue BART, and 10
training epochs for fine-tuning source-pivot, pivot-
target and source-target models. We randomly se-
lect 5% of the parallel corpora as validation sets.
The final models are selected based on validation
loss. For the source-target model, we additionally
select 10% of the parallel corpora to use as the test
set. For decoding, we use beam-search with a beam
size of 4. The translation performance is measured
by the BLEU score (Papineni et al., 2002).

7 Results

In this section, we present the BLEU score of our
experiments. Examples of translation results are
analyzed in Appendix A. For each example, our
model’s translation is compared to that from Azure
AI Translator and Baidu Fanyi.

7.1 Cantonese to English
Table 2 presents the results of our experiment for
Yue-En translation. Random initialization yielded
the poorest translation performance, with a BLEU
score of just 6.03. This outcome is expected, given
that the model is trained on a low-resource paral-
lel corpus. Pivot translation resulted in the second
lowest BLEU score of 10.12, likely due to trans-
lation error propagation from the Yue-Zh phase to
the Zh-En phase.

Initializing the Yue-En model with BART mod-
els significantly enhanced translation performance.
Specifically, the Zh BART encoder + En BART
decoder combination achieved a BLEU score of
15.10. Replacing the Zh BART encoder with the

78

https://azure.microsoft.com/en-us/products/ai-services/ai-translator
https://azure.microsoft.com/en-us/products/ai-services/ai-translator
https://fanyi.baidu.com/


Encoder Decoder BLEU

Random Random 13.43
En BART Zh BART 24.56
En-Zh Zh BART 27.22
En BART Yue BART 24.68
En-Zh Yue BART 27.82
En BART Zh-Yue 25.01
En-Zh Zh-Yue 28.22

Pivot Translation 15.63

Azure AI Translator 15.70
Baidu Fanyi 17.91

Table 3: Experiment results for En-Yue translation.

Yue BART encoder further improved the BLEU
score to 17.25, likely because the Yue BART en-
coder can more accurately encode Cantonese sen-
tences compared to the Zh BART encoder. This
result supports our hypothesis that reusing Man-
darin resources without additional pre-training is
suboptimal for Cantonese processing.

A similar pattern can be observed when compar-
ing Zh BART encoder + Zh-En decoder (16.94) and
Yue BART encoder + Zh-En decoder (19.33). Us-
ing an encoder that can interpret Cantonese greatly
improve the translation performance. The replace-
ment of En BART decoder with Zh-En decoder
also results in higher BLEU scores. This is be-
cause the Zh-En decoder, unlike En BART decoder,
is trained to interpret the outputs from a Chinese
encoder, allowing a smoother transfer learning.

The BLEU score for the Yue-Zh encoder + En
BART decoder (17.12) is higher than that of the
two baselines that use Zh BART encoder. How-
ever, it is lower than other methods except random
initialization and pivot translation.

The highest BLEU score of 19.64 was obtained
when both auxiliary models were used for initial-
ization (Yue-Zh encoder + Zh-En decoder). The
score is very close to that of Yue BART encoder +
Zh-En decoder (19.33), likely because the encoders
from Yue BART and Yue-Zh share a similar latent
space, but the Yue BART encoder is not as finely
tuned as the Yue-Zh encoder to generate latent rep-
resentations interpretable by the Zh-En decoder.

7.2 English to Cantonese

Table 3 presents the results of our experiment
for En-Yue translation. Random initialization
and pivot translation resulted in the lowest BLEU

scores, at 13.43 and 15.63, respectively. Sur-
prisingly, the two commercial translation systems,
Azure AI Translator and Baidu Fanyi, performed
only marginally better, achieving BLEU scores of
15.70 and 17.91 respectively. All other baselines
exhibited significantly higher BLEU scores.

Moreover, models with En-Zh encoder have
higher BLEU scores than their counterparts with
En BART. Among the models utilizing the En-Zh
encoder, the one employing the Zh-Yue decoder
achieved the highest BLEU score of 28.22. This
once again shows that pivot-based transfer learning
can a provide improvement in performance.

8 Conclusion

In this paper, we experiment pivot-based transfer
learning as a way to improve the quality of low-
resource Cantonese-English translation. Our ap-
proach involves transferring the parameters of pre-
trained Yue, Zh, and En BART models to auxiliary
source-pivot and pivot-target NMT models. These
auxiliary models are then fine-tuned with parallel
data. Finally, the parameters of the source-pivot
encoder and pivot-target decoder are transferred to
the desired source-target model. Our results demon-
strate significant improvements over randomly ini-
tialized models, demonstrating the benefit of trans-
fer learning. Moreover, transferring from models
that are trained for related tasks (MT in auxiliary
models versus text infilling in BARTs) and lan-
guages (Cantonese versus Mandarin) can further
enhance the translation performance. Addition-
ally, by training a single source-target model, we
reduce the problem of error propagation in naive
pivot translation. Finally, our model also outper-
forms two existing commercial translation systems,
Baidu Fanyi and Azure AI Translator. Examples
of translation results reveal that our model is better
than both understanding and generating Cantonese
idioms.

Future work can explore the potential of using
Mandarin to generate synthetic Yue-En parallel
data by, for example, translating Mandarin sen-
tences in Zh-En parallel data into Cantonese.

Limitations

A limitation of our method is that in order to allow a
smooth transfer learning, there should be sufficient
monolingual data for the low-resource language to
train the initial BART model. Besides, the pivot
language should be similar to the low-resource lan-
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guage, so that the auxiliary translation model be-
tween the low-resource language and the pivot lan-
guage can be trained even with limited data. Fi-
nally, the pivot language must be a high-resource
language that has a large amount of parallel data
with the target language. This is necessary to train
the auxiliary translation model between the pivot
language and the target language. Our method may
not generalize well to other low-resource languages
if they do not meet these conditions.
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A Appendix

A.1 Cantonese to English Examples
Table 4 shows a few examples of Yue-En transla-
tion. These examples demonstrate that our model
is better at understanding Cantonese idioms than
existing commercial translation systems, but may
potentially contain gender bias.

Example 1 The literal translation of “大佬”
(daai6 lou2) is the eldest or elder brother, but it
can also be used for addressing a person when one
is annoyed. In this context, the latter translation is
more appropriate. Only our model made the correct
translation.

Example 2 The literal translation of “入廠”
(jap6 cong2) is to enter a factory, but in Cantonese,
it is often used to imply “to be hospitalized (for a
surgery)”. Once again, only our model was able to
make the appropriate lexical transformation.

Example 3 “嫌三嫌四” (jim4 saam1 jim4 sei3)
is an idiomatic expression, which means “to ex-
press discontent about something”. Azure and
Baidu completely failed to translate it.

Example 4 This example shows a common
source of errors in the test set: mis-translation of
third-person pronouns. In Cantonese, the third-
person singular pronoun “佢” (keoi5) is gender-
neutral, so it may refer to people of any gender.
However, our model seems to have a masculine de-
fault. This is possibly because masculine pronouns
are over-represented in the training corpus.

A.2 English to Cantonese Examples
Table 5 shows a few examples of En-Yue transla-
tion. These examples demonstrate that our model
is better at generating Cantonese phrases as well.

Example 1 “Shopping mall” is “商場” (“soeng1
coeng4”) in Cantonese and “購物中心” (“kau3
mat6 zung1 sam1”) in Mandarin. Our model used
the Cantonese phrase in its translation, while Azure
and Baidu used the Mandarin counterpart, indicat-
ing that our model has a stronger understanding
of Cantonese. Moreover, our model arguably pro-
duced a better translation than the reference sen-
tence, as the counter word “個” (go3) in the refer-
ence sentence is unnecessary in this context.

Example 2 In this example, our model correctly
used the Cantonese particle “丫” (aa1) to soften
the force of requests, where Azure and Baidu failed
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to do so. It also correctly translated “please” into
“唔該” (m4 goi1) to make the request more polite.
Even though the word ordering is different from
the reference, the translation is perfectly acceptable.
In contrast, Azure AI Translator rendered “please”
as “請” (ceng2), which, while not incorrect, is gen-
erally reserved for more formal contexts in Can-
tonese. However, our model missed the possessive
pronoun, “你” (nei5; your), in its translation.

Example 3 The translation by our model was
exactly the same as the reference sentence. Both
Azure and Baidu missed the demonstrative deter-
miner, “個” (go3). Azure used a Mandarin vocabu-
lary, “寬” (kuān), to represent the word “wide”,
while the correct Cantonese translation is “闊”
(fut3). Baidu even mis-translated “basketball court”
into a nonsensical word.
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Example 1

Source 大佬 ！咁貴喎，梗係冇人買啦！
daai6 lou2 gam3 gwai3 waa1 gang2 hai6 mou5 jan4 maai5 laa1

Reference Hey ! It costs too much! People surely won’t buy it!

Our approach Hey , it’s so expensive! Of course nobody buys it!

Azure AI Translator Big brother , it’s so expensive, of course no one buys it!

Baidu Fanyi Eldest brother ! It’s so expensive, of course no one bought it!

Example 2

Source 佢岩岩出院，又試要 入廠 。
keoi5 ngaam4 ngaam4 ceot1 jyun2 jau6 si3 jiu3 jap6 cong2

Reference He had just left the hospital but then went back in again.

Our approach He had just left the hospital, and went back to the hospital again.

Azure AI Translator He had just been discharged from the hospital, and he tried to enter the factory again.

Baidu Fanyi He has just been discharged and is going to the factory again.

Example 3

Source 咪再 嫌三嫌四 啦，廉價酒店係咁架啦。
mi1 zoi3 jim4 saam1 jim4 sei3 laa1 lim4 gaa3 zau2 dim3 hai6 gam3 gaa3 laa1

Reference Please stop bitching . This is what cheap hotels are like.

Our approach Stop complaining about cheap hotels like that.

Azure AI Translator Don’t be suspicious , that’s the case with budget hotels.

Baidu Fanyi Don’t be too picky about three or four anymore, cheap hotels are like this.

Example 4

Source 佢 本來做老師，最近轉行去炒股票。
keoi5 bun2 loi4 zou6 lou5 si1 zeoi3 gan6 zyun2 hang4 heoi3 caau2 gu2 piu3

Reference She was a teacher originally, but she quitted and is now playing with the stock market.

Our approach He used to be a teacher, but recently he switched to invest in stocks.

Azure AI Translator He used to be a teacher, but recently he turned to stock speculation.

Baidu Fanyi He was originally a teacher, but recently he switched to trading stocks.

Table 4: Yue-En translation results of sentences selected from the test set. The light gray color is used to highlight
the translations of a specific phrase in the source sentence.
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Example 1

Source There are many shopping malls in Wong Tai Sin.

Reference 黃大仙有好多個商場。
wong4 daai6 sin1 jau5 hou2 do1 go3 soeng1 coeng4

Our approach 黃大仙有好多商場。
wong4 daai6 sin1 jau5 hou2 do1 soeng1 coeng4
There are many shopping malls in Wong Tai Sin.

Azure AI Translator 黃大仙有許多購物中心。
wong4 daai6 sin1 jau5 heoi2 do1 kau3 mat6 zung1 sam1
There are many shopping malls in Wong Tai Sin.

Baidu Fanyi 黃大仙有好多購物中心。
wong4 daai6 sin1 jau5 hou2 do1 kau3 mat6 zung1 sam1
There are many shopping malls in Wong Tai Sin.

Example 2

Source Lend me your book, please.

Reference 唔該借你本書俾我丫。
m4 goi1 ze3 nei5 bun2 syu1 bei2 ngo5 aa1

Our approach 借本書俾我丫唔該。
ze3 bun2 syu1 bei2 ngo5 aa1 m4 goi1
Lend me a book please.

Azure AI Translator 請將你既書借畀我。
cing2 zoeng3 nei5 gei3 syu1 ze3 bei2 ngo5
Please lend me your book.

Baidu Fanyi 唔該將你書畀我。
m4 goi1 zoeng3 nei5 di1 syu1 bei2 ngo5
Please give your book to me.

Example 3

Source The basketball court is ten or so meters wide.

Reference 個籃球場有十幾米闊。
go3 laam4 kau4 coeng4 jau5 sap6 gei2 mai5 fut3

Our approach 個籃球場有十幾米闊。
go3 laam4 kau4 coeng4 jau5 sap6 gei2 mai5 fut3
The basketball court is ten or so meters wide.

Azure AI Translator 籃球場大約有十米寬。
laam4 kau4 coeng4 daai6 joek3 jau5 sap6 mai5 fun1
Basketball court is about ten meters wide.

Baidu Fanyi 扣場約莫有十米闊。
kau3 coeng4 joek3 mok6 jau5 sap6 mai5 fut3
Buckle court is about ten meters wide.

Table 5: En-Yue translation results of sentences selected from the test set.
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Abstract

This study addresses a challenge in morpho-
logical segmentation: accurately segmenting
words in languages with rich morphology. Cur-
rent probabilistic methods, such as Morfessor,
often produce results that lack consistency with
human-segmented words. Our study adds some
steps to the Morfessor segmentation process
to consider invalid morphemes and borrowed
words from other languages to improve mor-
phological segmentation significantly. Compar-
ing our idea to the results obtained from Mor-
fessor demonstrates its efficiency, leading to
more accurate morphology segmentation. This
is particularly evident in the case of Turkish,
highlighting the potential for further advance-
ments in morpheme segmentation for morpho-
logically rich languages.

1 Introduction

Morphological analysis refers to the examination
of word structure. It involves breaking down words
into smaller units called morphemes and studying
the different morphological rules that can apply
to these units (Manning, 1998; Goldsmith, 2010).
These rules include inflectional morphology rules,
which generate different forms of a word without
altering its core meaning, and derivational mor-
phology rules, which create new words based on
existing ones by modifying their meanings (Stump,
2001). While both types of rules are important,
recent studies have emphasized inflectional mor-
phological analysis more.

Several methods for performing morphological
segmentation include supervised, semi-supervised,
and unsupervised approaches. Supervised tech-
niques involve using labeled data, such as a col-
lection of previously segmented words, to train a
model to recognize similar patterns in new data.
However, obtaining large enough datasets to cover
all living languages can be prohibitively resource-
intensive, requiring significant manual labor and

expertise. As a result, many researchers instead opt
for unsupervised techniques, which rely solely on
raw text data gathered from diverse sources like
news articles, movie subtitles, or online content
(Virpioja et al., 2011).

Another common technique for morphological
segmentation is rule-based approaches, which uti-
lize manually crafted rules to identify morpheme
boundaries within words (Narasimhan, 2014). Al-
though effective when implemented correctly, cre-
ating and maintaining these rules can be costly and
time-consuming, especially for less commonly spo-
ken languages. Consequently, only some practical
applications employ this method.

When applying morphological segmentation, it
is crucial to consider how morphemes are posi-
tioned within language units, as this can vary
widely across different languages. For instance,
specific languages may place prefixes before roots,
while others might use suffixes after roots. More-
over, the complexity of morphological segmenta-
tion can pose additional challenges, particularly
when creating annotated data, which tends to be
expensive and time-consuming. To address this
issue, our proposed solution involves developing a
comprehensive model capable of handling multi-
ple languages simultaneously. Specifically, we will
focus on improving morphological segmentation
performance for agglutinative languages such as
Finnish and Turkish (Durrant, 2013), which exhibit
high levels of morphological complexity.

To accomplish this goal, our project will lever-
age freely available word lists and perform ex-
tensive preprocessing steps to ensure consistency
and accuracy. Preprocessing will entail converting
each dataset into individual lines containing single
words, ensuring uniformity in letter casing and font
styles, and eliminating extraneous elements such
as punctuation marks, numerals, and duplicated en-
tries. Once completed, we will apply two distinct
algorithms to segment the processed data. Our pri-
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mary algorithm will be Morfessor, a probabilistic
model explicitly designed for morphological seg-
mentation tasks. We anticipate that evaluating and
refining the resulting segmentations through tar-
geted modifications will yield significant improve-
ments in overall performance.

2 Review of Literature

The supervised approach of morphological segmen-
tation uses word information such as part-of-speech
(POS) tags, morphological rules, morpheme dic-
tionaries, etc. The unsupervised approach exploits
morphemes from a raw corpus (Arabsorkhi and
Shamsfard, 2006). This approach has been studied
in different languages. There are some mathemati-
cal frameworks for modeling methodologies:

• Maximum Likelihood (ML)

• Probabilistic Maximum a Posteriori (MAP)

• Finite state automata (FSA)

MAP modeling is based on the Minimum Descrip-
tion Length (MDL) principle, which considers ac-
curacy and model complexity. An FSA can specify
the various word forms (Creutz and Lagus, 2007).

The first Turkish morphology analyzer is
Oflazer’s model. It is implemented using a PC-
KIMMO environment (Oflazer, 1994), which is
a computational approach for two-level analyzers
(Antworth and McConnell, 1998) and addressing:

• Various forms of words as stated by inflections
and derivations

• The dictionary’s inability to store up all in-
flected or derived forms of a word

Külekcỳ and Özkan (2001) proposed a model
for dealing with word segmentation. Despite being
suggested for Turkish, this model can be used for
other languages. In contrast to Oflazer’s model, the
united stream of characters is used in this model.
As a result, to detect segmented morphemes, this
model should consider the root and achievable
boundaries (Külekcỳ and Özkan, 2001).

Zemberek is an open-source framework for Tur-
kic languages using Latin script that includes lan-
guage structure information and NLP operations.
The standard morphological parser identifies the
root and potential suffixes (Akın and Akın, 2007).

Another morphological analyzer is TRmorph,
a two-level and rule-based analyzer proposed by

Cöltekin (2010). It uses the Stuttgart Finite State
Transducer (SFST) tools and consists of 3 major
components: a finite state machine (FSA), a set
of two-level rules, and a lexicon that keeps the
class of root and some lexical irregularities (Cöl-
tekin, 2010). This lexicon is hand-made to be an
error-free lexicon created during implementation.
Based on morpho-phonological considerations, TR-
morph considers morpheme alternations. Morpho-
phonological alternation is dependent on phono-
logical alternation. Therefore, Turkish vowels and
consonants can be dismissed, reproduced, or re-
vised to the closest harmonic letter. For example:

• ben (I)→ ben + ((y)) a→ bana (for me)

• hak (right)→ hak + ((n)) ı→ hakkı (his right)

Spoken Turkish follows a two-level rule system
for phonetics, while morphotactics is encoded as
finite state machines for word categories like verbs
and nouns (Oflazer, 1994). Furthermore, Turkish
words have two classes in the Morphotactics part:
nominal and verbal. All categories except verbs
are in nominal class. Nominal morphotactic is sim-
ple. Instead, verbal morphotactics is complicated
and has many exceptions. So, both morphotactics
should be used simultaneously. This analyzer has
been updated and uses the Foma FST compiler, a
C compiler, and converts the input to the FST, and
the lexicon of TRmorp is a raw text file precisely
the prior version (Cöltekin, 2010).

In Turkish, adding morphemes to a word’s root
or stem can change it from a noun to a verb or vice
versa. These morphemes can also create adverbial
constructs. This language has exceptions, and Per-
sian, Arabic, and other foreign entered words are
considered one of them. The morphological ana-
lyzer, used by Şahin et al. (2013), is a two-level
analyzer with over 49321 entries, arranged under
14 parts of speech. Their model uses flag diacrit-
ics. Flag diacritics’ main usage goal is adding a
small quantity of memory to the finite state ma-
chine during the generation and analysis steps at
run-time. If we do not have this, state transitions
depend only on the current state and input sym-
bols (Şahin et al., 2013). This model is used in ITU
Turkish NLP Web Service1 consists of different ele-
ments such as Tokenizer, Normalizer, Morphology
analyzer, Morphology disambiguation, et cetera.
In ITU, Components are categorized under four

1http://tools.nlp.itu.edu.tr
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groups: preprocessing, morphological processing,
multiword expression handling, and syntactic pro-
cessing (Eryiğit, 2014). In ITU, the morphological
layer uses a rule-based analyzer that is proposed
by Şahin et al. (2013) as well as HFST-Helsinki
FST proposed by Lindén et al. (2009) and a hybrid
morphological disambiguator (Eryiğit, 2014).

Besides Turkish-specified morphological analyz-
ers, some unsupervised methods can be used for
languages without exception. Morfessor is used in
our project in this way.

Creutz and Lagus (2002) proposed the main idea
of Morfessor in 2002, and they improved their
model and named it Morfessor. Morfessor is an
unsupervised generative probabilistic model for
predicting morphological segmentation. The first
version of it is named Morfessor Baseline (Creutz
and Lagus, 2007). Then, the idea expanded and
introduced other versions, such as Morfessor 1.0,
Morfessor FlatCat, Allomorfessor, and Morfessor
2.0 (Creutz and Lagus, 2002; Creutz, 2003; Creutz
and Lagus, 2004, 2005). However, the Baseline
version is still popular as a morphological analyzer
even though other versions have improved the re-
sults. Morfessor is well suited for rich morphology
languages such as Finnish, Estonian, and German.
It uses a corpus of unannotated text as input and
produces a segmentation of words observed in the
text as its output. Unlike most morphological mod-
els, Morfessor is not restricted to the count of mor-
phemes. Morphological analyzers must be built for
each language, but Morfessor is a general model
for unsupervised and semi-supervised morphologi-
cal segmentation (Creutz and Lagus, 2007, 2002;
Creutz, 2003; Creutz and Lagus, 2004, 2005).

It has been proved that the weighted function
leads to better results. Creutz and Lagus (2005)
introduced a semi-supervised model based on the
Morfessor Baseline. The semi-supervised approach
is an excellent way for humans to prepare annotated
data manually since data is expensive and compli-
cated to obtain. An important question, however, is
how many annotated words are required. Kohonen
et al. have proved that 100 manually segmented
words is enough and can improve output quality
(Creutz and Lagus, 2005).

The algorithm processes all combinations of
training data in one cycle. For each combination, it
checks every possible two-part division and picks
the one with the lowest cost. The cost can decrease
or stay the same at each step, which means the
algorithm will eventually stop working when the

cost drops below a certain level. There is also
a way to use this algorithm to decode messages,
which involves finding the best division for a new
message without changing the program’s settings
(Creutz and Lagus, 2005). A newer version, Mor-
fessor 2.0, has additional features that allow it to
divide messages even when it does not have all the
information it needs (Kohonen et al., 2010).

The impact of the smaller size of the annotated
data on the cost function is insignificant compared
to the likelihood of the unannotated data. There-
fore, additional weighting parameters should be
included in the annotated data to avoid the adverse
effects of annotations on the cost function (Creutz
and Lagus, 2007).

The second feature of Morfessor 2.0 is an on-
line and batch training mode. So, the model needs
to know how much the final size of training data
is, and it has access to only one word of training
data at a time. Morfessor 2.0 can skip analyzed
compounds and constructions randomly since the
variant compounds can be found in the current text.
Morfessor 2.0 produces the n-best segmentation of
multiple generated segmentations for every com-
pound via the Viterbi algorithm. This feature lets
the algorithm extract the most conceivable segmen-
tation for a compound (Smit et al., 2014).

In other studies, Vania and Lopez (2017), and
Haghdoost et al. (2019) investigated the effects
of different approaches to breaking down words
into smaller units for language modeling purposes
(Haghdoost et al., 2019, 2020).

Vania and Lopez (2017) examined ten languages
with diverse structural properties and trained word-
level language models while adding granular in-
formation about the constituent parts of each word
throughout the training process. After comparing
several segmentation techniques, they concluded
that character-based models produced superior out-
comes overall. Moreover, rule-based approaches
tailored to each language’s distinct characteristics
significantly outperformed alternative partitioning
strategies (Vania and Lopez, 2017).

Meanwhile, Haghdoost et al. explored the utility
of Morfessor—both supervised and unsupervised
variants—for generating morphological networks
in Persian and Turkish. Specifically, they deter-
mined that the supervised approach was preferable
for their objectives, enabling them to incorporate
newly segmented words into their lexicon (Hagh-
doost et al., 2019). Furthermore, they employed
both Morfessor versions to establish a Turkish mor-
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phological network, thereby revealing relationships
among segmented words through a tree-like frame-
work similar to manual segmentation (Haghdoost
et al., 2020).

Additionally, research on 50 distinct languages
revealed disparities in the difficulty levels associ-
ated with crafting language models due to fluctu-
ations in grammatical architectures (Gerz et al.,
2018). Prior work demonstrated that Morfessor
mitigates morphological impacts for numerous lan-
guages, and morphologically driven partitions en-
hance cross-lingual language modeling (Creutz and
Lagus, 2007; Park et al., 2021).

3 Our Experiment

Our project aims to accurately segment morphemes
using Morfessor, as natural language word lists are
time-consuming and labor-intensive to create man-
ually. We address the challenge of creating raw
and segmented datasets by using the MorphoChal-
lenge 2010 Turkish dataset2 as input to Morfessor.
Our contributions include gold-segmented words,
invalid morphemes (i.e., morphemes not included
in the language), and a list of entered foreign words
(borrowing words from other languages). Prepar-
ing Datasets is not the only part of our work. We
use them in different types of Morfessor: super-
vised, semi-supervised, and unsupervised. Then,
we observe the behavior of Morfessor in the seg-
mentation process and according to this, we add
some steps to the segmentation process to enhance
the performance of Morfessor that will be discussed
completely. To put it in a nutshell, our modified
process of Morfessor does not let the entered for-
eign words become separated. It also uses an in-
valid morpheme dataset to prevent their breaking
down from the words. Also, we produce the second
and best probable segmentation by Morfessor. All
of these experiments are done with the same in-
put dataset- are evaluated and compared with each
other. Let’s dive into the details in the following
subsections.

3.1 Datasets
We use four datasets for our research:

1. word list file: This file contains 617,298
unique Turkish words with their frequency
of occurrence. However, as we were inter-
ested in finding roots and morphemes, and all

2http://morpho.aalto.fi/events/
morphochallenge2010/datasets.shtml

Collecting
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Supervised
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2010 gold set

Preparing gold
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segmentation
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Output

Preparing foreign
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Modifed Approach:

Preparing illegal
morpheme’s list

Semi-supervised
Morfessor

2-best probable
segmentation

Morfessor

The best of 5-best
segmentation

Morfessor

Manual observe the
segmentations

Figure 1: Our approach for Turkish morphological seg-
mentation

types of morphemes are essential, all words
were equally treated. Doing so allows us to
gain insights into the language’s internal work-
ings and better understand how meanings are
constructed. Therefore, we removed the fre-
quency of the words and numbers, punctua-
tion marks, and other unnecessary items in the
pre-processing phase.

2. Gold standard file: We used the MorphoChal-
lenge 2010 gold standard file consisting of
1000 words, but with some changes. We re-
viewed this gold standard set and noticed that
some words can be more re-segmented ac-
cording to the language rules to create de-
rived words for improving the accuracy of
our evaluation. We also randomly selected
1000 unique words from the word list file,
segmented them manually, and merged these
new segmentations with the corrected gold
standard file. This resulted in a dataset of
2000 segmented words without overlap be-
tween these samples, of which 20% was used
for testing, and the remainder was used for
training or addition to the word list file, fol-
lowing our semi-supervised approach.

3. Borrowed words: This dataset contains for-
eign words that have entered Turkish through-
out history and culture. We manually gathered
this dataset from websites and online Turkish
texts. The foreign word dataset contains 5553
French, 1,523 Persian, 1,188 English, and 626
Arabic words that entered Turkish.

4. Invalid morphemes: This dataset contains a
small number of letter combinations recog-
nized as morphemes by Morfessor but not
actual morphemes.
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3.2 Data Processing

We used the word list file as input to Morfessor in
three ways: supervised, unsupervised, and semi-
supervised. The output of all approaches was the
first probable segmentation of data. We also pro-
duced the two most probable segmentations for
each word to observe the segmentation process in
the next probable segmentations.

3.3 Applying Morfessor

Experimentation with Morfessor progressed in
three primary manners: supervised, semi-
supervised, and unsupervised Morfessor. Each
experimental setup featured varying degrees of hu-
man intervention.

• Supervised Morfessor: We leveraged 1,600
segmented words as a training set and re-
served 400 words for testing purposes, sourc-
ing both sets randomly from the pool of gold
standard segmented words. This configura-
tion remained consistent throughout all the
approaches tested.

• Semi-supervised Morfessor: Under this set-
ting, we combined 1,600 segmented words
along with 8,400 unsegmented words to for-
mulate the baseline input dataset. Employing
a hybrid mix of segmented and unsegmented
words enabled the algorithm to learn from a
broader array of examples, thereby enhancing
its adaptability towards segmentation tasks.

• Unsupervised Morfessor: Lastly, we pre-
sented the algorithm with a random assort-
ment comprising 10,000 unsegmented words
extracted from the word lists. Completely de-
void of any prior guidance, the unsupervised
version of Morfessor embarked upon discover-
ing meaningful segmentations autonomously.
It should be mentioned that the words are the
same in the datasets we use in each experi-
ment in order to have fair results.

These divergent strategies allowed us to gauge
the efficacy of Morfessor across a spectrum of
scenarios, ranging from heavily guided environ-
ments to entirely self-reliant conditions. Ultimately,
understanding the nuances of Morfessor’s perfor-
mance under various circumstances shall aid us in
optimizing its application for real-world problems.

3.4 Invalid Morpheme Handling
We developed a process to handle invalid mor-
phemes in the output of Morfessor. This process
aimed to prepare a list of invalid morphemes that
cannot be used in Turkish and then to use this list
to select the most probable segmentation for each
word. The process worked as follows:

• We produced the first two most probable seg-
mentations for each word.

• We selected the second segmentation if there
were invalid morphemes in the first segmenta-
tion.

• If there were also invalid morphemes in the
second segmentation, we selected the most
probable candidate that did not contain any
invalid morphemes.

• If no valid segmentation existed, we returned
the first one.

3.5 Evaluation
During the evaluation process, we consider the seg-
mented portions, the word boundaries, and mor-
phemes. Ensuring precise delineation of morpheme
boundaries plays a pivotal role in determining the
quality of the segmentation results, alongside tak-
ing into consideration the typical morphemes en-
countered in both the output and gold segmentation
files. We used Precision and Recall as the metrics
of evaluation to compare our results. For Mor-
pheme segmentation, segmented parts of the word
must be evaluated. Additionally to segmented char-
acters, the start and end of a word are crucial to
determining a boundary and evaluating the bound-
ary Precision and Recall. The final component of
segmentation evaluation is the correct segmenta-
tion.

Precision =
TruePositive

TruePositive+ FalsePositive

Recall =
TruePositive

TruePositive+ FalseNegative

For instance, in the output word “danesh gah”
and the gold set “dan esh gah” (daneshgah is a Per-
sian word for university), we have two segmented
morphemes in “danesh gah” but the gold segmen-
tation has three segmented morphemes that one
of them occurs in the output, i.e. “dan esh gah”.
Therefore, morpheme precision for this word is 1

3 .
We should consider the first and end of the word
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for boundary precision. So in the gold set for this
word, we have two spaces between three segmenta-
tions: first and end (i.e., 2 + 1 + 1), and in output,
we have one space between segmented morphemes
plus the first and end of the word (i.e., 1 + 1 + 1).
Therefore, the boundary precision will be 3

4 . Seg-
mentation precision is correct or not, so it will be
0
1 , i.e., 0.

As discussed in 3.3, we used Morfessor to seg-
ment our data. This is essential for later evaluation
and comparison with Morfessor itself. The Mor-
fessor with semi-supervised learning is effective
on the given data, and we will continue to utilize
this approach in the subsequent stages of our exper-
iments.

Morfessor- Turkish BP MP SP BR MR SR
Supervised 0.570 0.093 0.037 0.372 0.055 0.037
Unsupervised 0.583 0.130 0.032 0.468 0.097 0.032
Semi-supervised 0.614 0.134 0.052 0.485 0.099 0.052

Table 1: Evaluation of Morfessor on Turkish input (BR:
boundary recall, BP: boundary precision, MR: mor-
pheme recall, MR: morpheme precision, SR: segmenta-
tion recall, SP: segmentation precision)

4 Results and Observations

Curious about Morfessor’s inner workings, we
examined Morfessor’s output via visual inspec-
tion. Starting with a random selection of 200,000
words from the word list, we focused on the
semi-supervised Morfessor’s behavior. Segmenting
1,600 words from the gold standard file, we allo-
cated 400 words as the evaluation test set. The ran-
dom words were selected because we only wanted
to observe the Morfessor in an unbiased and fair
way.

Throughout the segmentation process, Morfessor
adeptly identified suffixes and partitioned associ-
ated suffix groups into one or multiple components.
Nonetheless, it maintained a reasonable count of
word fragments. Syllabification played a vital role,
enabling efficient segmentation with reduced sylla-
ble counts.

Morfessor categorized words lacking suffixes
into two classes: monosyllabic and polysyllabic.
Monosyllabic words remained undivided, whereas
polysyllabic counterparts experienced arbitrary
breakage into smaller pieces.

Segmenting words attached with suffixes, Mor-
fessor isolated the base word and either singular
or compound suffixes, subject to word length and
contextual factors. Diminutive suffixes could face

division or remain cohesive according to the pre-
vailing situation. Overall, Morfessor’s functional
design shed light on its competence in achieving
satisfactory segmentation outcomes.

word

without any 
suffix

at least 1 
suffix

1 syllable

more than 1 
syllable

2 syllables

more than 2 
syllable

no 
segmentation

random 
segmentation

separates the 
suffix

separates 
from one of 
the suffixes

continue 
segmenting 

suffix

no more 
segmentation

Figure 2: How Morfessor separates the words in general

As a result, the Morfessor has its logic to sepa-
rate words, sometimes leading to errors. For exam-
ple, the suffix “ler” indicates the plural form of the
word and should be separated from the root word.
However, when this suffix combines with another
suffix like “ler i”, Morfessor incorrectly separates
the word into the root word and “leri”. Alterna-
tively, “roman”, a French word that means novel,
is broken down due to its last syllable “an”, which
is precisely similar to the “an” suffix in Turkish.
Morfessor separates words more or halts them if
there is more than one legal and invalid suffix in a
more than two-syllable word structure. Therefore,
foreign word splitting is a challenge that should be
solved.

Based on our observations, we can derive addi-
tional insights:

1. Morfessor does not segment words into the
smallest possible units. We, therefore, choose
the second segmentation in the first concept.

2. The second concept is to select the best seg-
mentation from Morfessor’s five possible out-
puts. We select the segmentation that does not
contain invalid suffixes.

3. The third concept is to keep foreign-borrowed
words intact. We implement these concepts
by randomly selecting 9000 words from the
Turkish dataset and dividing the gold standard
file into 400 words for the test set and 1600
for the training set. Morfessor is also trained
on these 1600 words. Therefore, our input
dataset contains 10600 words.
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As we see in Table 1, the semi-supervised Mor-
fessor has the best result. Therefore, we chose it
as the benchmark for our further experience to ex-
amine our idea and evaluate it. The results are in
Table 2.

Semi-supervised Morfessor BP MP SP BR MR SR
1-best segmentation 0.576 0.114 0.052 0.444 0.082 0.052
2-best segmentation 0.579 0.117 0.055 0.441 0.083 0.055
The invalid morphemes segmentation 0.579 0.118 0.052 0.440 0.084 0.052
Considering borrowed words 0.627 0.158 0.140 0.531 0.128 0.140

Table 2: Results of the most probable best segmenta-
tion and considering borrowing words in Turkish (BR:
boundary recall, BP: boundary precision, MR: mor-
pheme recall, MR: morpheme precision, SR: segmenta-
tion recall, SP: segmentation precision)

Morfessor generates the most likely segmenta-
tion as the “1-best”. To better understand the im-
pact of other possible segmentations, we choose
the “2-best” segmentation. The table shows that
precision improves slightly while recall decreases
slightly. Another option is to select the best of the
“5-best” segmentations while accounting for invalid
morphemes. If an invalid morpheme is detected,
Morfessor will choose the subsequent segmenta-
tion that does not contain that morpheme. If no
segmentations are missing, the algorithm will re-
turn the first segmentation as the best. Because
the results did not improve significantly, we tried
another idea. In this case, we used the foreign bor-
rowed words we prepared. We will check to see
if Morfessor produced any borrowed words. If so,
Morfessor should combine the segments, as these
are prohibited morphemes.

1- best segmentation 2- best segmentation no-invalid morpheme considering borrowing words
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Figure 3: Illustration of the observed ideas

The graph shows that considering borrowed
words significantly improved Morfessor’s perfor-
mance. This suggests that having a dataset of bor-
rowed words can improve Morfessor’s accuracy
and obtain a more detailed segmentation list.

5 Conclusion

In this study, we decided to focus on Morfessor
2.0, a powerful probabilistic tool designed for mor-
phological segmentation specifically tailored for
the Turkish language. Our objective was clear:
achieve accurate morpheme segmentation in Turk-
ish and discover methods to improve Morfessor’s
overall performance. We started by utilizing the
MorphoChallenge 2010 Turkish dataset, then ex-
panded our sources by gathering extra data compris-
ing borrowed words and even invalid morphemes.

Taking a closer look at different method-
ologies, our research involved three main ap-
proaches—supervised, semi-supervised, and un-
supervised learning applied to Morfessor. When
measuring Morfessor’s effectiveness, we relied on
six essential evaluation metrics: boundary recall,
boundary precision, morpheme recall, morpheme
precision, segmentation recall, and segmentation
precision. After thorough analysis, one particu-
lar technique stood out among the rest—the semi-
supervised approach demonstrated superior accu-
racy compared to the others.

While exploring how Morfessor functions, we
noticed some remarkable abilities; primarily, it
excels in recognizing suffixes and breaking them
down into smaller sets. Crucially, though, it avoids
excessive fragmentation during this breakdown pro-
cess. Despite those strengths, however, there were
still difficulties faced in segmenting foreign terms.
Addressing this challenge head-on, we suggested
innovative strategies to boost Morfessor’s capacity
to handle foreign vocabulary better. These creative
solutions entailed examining alternative segmenta-
tions (second-best), discarding faulty morphemes,
and incorporating borrowed phrases from various
languages. Upon merging incorrect morphemes
and foreign loans throughout the segmentation pro-
cedure, we witnessed notable progress in both pre-
cision and recall ratios related to Turkish. For inter-
ested readers, you can find all relevant experiments
and corresponding outputs on our project’s GitHub
page 3.

Wrapping up our investigation, we believe our
work constitutes a major leap forward in crafting
a far-reaching segmentation algorithm equipped
to skillfully tackle the labyrinthine nuances found
in not only Turkish but also other highly inflected
languages. As part of our future plans, we intend

3https://github.com/Soheila-Behrooznia/
TurkishMorphologySegmentation
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to spotlight and incorporate even more extensive
catalogs of foreign terminology present in Turkish,
ultimately leading to enhanced precision concern-
ing segmented word directories.
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Daniela Gerz, Ivan Vulić, Edoardo Ponti, Jason Narad-
owsky, Roi Reichart, and Anna Korhonen. 2018. Lan-
guage modeling for morphologically rich languages:
Character-aware modeling for word-level prediction.
Transactions of the Association for Computational
Linguistics, 6:451–465.

John A Goldsmith. 2010. Segmentation and morphol-
ogy. The handbook of computational linguistics and
natural language processing, pages 364–393.

Hamid Haghdoost, Ebrahim Ansari, Zdenek Žabokrt-
ský, Mahshid Nikravesh, and Mohammad Mahmoudi.
2020. Morphological networks for persian and turk-
ish: What can be induced from morpheme segmenta-
tion? Prague Bull. Math. Linguistics, 115:105–128.

Hamid Haghdoost, Ebrahim Ansari, Zdeněk Žabokrtský,
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Abstract

Despite the increasing popularity of multilin-
gualism within the NLP community, numer-
ous languages continue to be underrepresented
due to the lack of available resources. Our
work addresses this gap by introducing exper-
iments on cross-lingual transfer between 158
high-resource (HR) and 31 low-resource (LR)
languages. We mainly focus on extremely LR
languages, some of which are first presented
in research works. Across 158 ∗ 31 HR–LR
language pairs, we investigate how continued
pretraining on different HR languages affects
the mT5 model’s performance in representing
LR languages in the LM setup. Our findings
surprisingly reveal that the optimal language
pairs with improved performance do not neces-
sarily align with direct linguistic motivations,
with subtoken overlap playing a more crucial
role. Our investigation indicates that specific
languages tend to be almost universally benefi-
cial for pretraining (super donors), while oth-
ers benefit from pretraining with almost any
language (super recipients). This pattern re-
curs in various setups and is unrelated to the
linguistic similarity of HR-LR pairs. Further-
more, we perform evaluation on two down-
stream tasks, part-of-speech (POS) tagging and
machine translation (MT), showing how HR
pretraining affects LR language performance.

1 Introduction

According to the Endangered Languages Project
(Belew, 2019), more than 3000 languages are at
risk of extinction. In recent years, the NLP commu-
nity has undoubtedly broadened its efforts and pre-
sented very ambitious projects (NLLB Team et al.,
2022; Bapna et al., 2022) to incorporate more and
more languages into practical use. However, even
well-known multilingual transformer models (e.g.,
mBERT (Devlin et al., 2019), XLM-R (Conneau

*Research was done while at AIRI.

Figure 1: The workflow of cross-lingual transfer be-
tween HR and LR languages with further downstream
evaluation on POS-tagging and MT tasks.

et al., 2020), and mT5 (Xue et al., 2021)) and cross-
lingual benchmarks (XGLUE (Liang et al., 2020),
XTREME (Ruder et al., 2021)) cover only about
100 of the most presented languages.

In this work, we aim to tackle this gap in under-
representation or even the absence of experiments
for LR languages, considering constraints in both
labeled and unlabeled text data, as well as linguis-
tic knowledge and experimental base. We present
the study of cross-lingual transfer in the case of ex-
tremely LR languages, examining how continued
pretraining on HR languages impacts model perfor-
mance on LR languages in the Masked Language
Modeling (MLM) setup with additional measure-
ments of its effects on downstream performance
(see Figure 1 for more details). We aim to explore
whether it is possible to conduct model pretrain-
ing on HR languages and observe improvements
compared to zero-shot performance when evalu-
ating on unseen LR languages. Additionally, we
measure model performance on downstream tasks:
POS tagging and MT.

In more detail, we first collect a dataset with
raw text data (see Appendix A.3 for the list of lan-
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guages and Section 3 for criteria of LR and HR
languages). Next, we exclude some languages due
to data quality issues. Thereby, we experiment
with 158 HR and 31 LR languages, resulting in
4898 HR-LR language pairs for further investiga-
tion of cross-lingual transfer. Next we assess the
zero-shot performance of the mT5 model on the
raw data from LR languages. Afterward, we per-
form continued pretraining of the model with the
MLM objective on data from each HR language
and evaluate performance of fine-tuned models on
all LR languages. Finally, we analyze the factors,
such as data and linguistic features, that lead to suc-
cessful cross-lingual transfer between HR and LR
languages. We also measure the downstream per-
formance of successful HR-LR language pairs in
POS tagging and MT tasks for LR languages with
available annotated data. We do not use data from
LR languages during training and use it for evalua-
tion only. We use the term donor to denote the lan-
guages that serve as sources for knowledge transfer
through continued pretraining. On the other hand,
we use the term recipient to indicate the languages
used to evaluate transfer learning efficiency.

The main contributions of this work can be sum-
marized as follows: (i) We collect and present the
dataset with 189 languages. (ii) We conduct cross-
lingual transfer experiments between 158 HR and
31 LR languages. (iii) We interpret cross-lingual
transfer results across data and linguistic features.
(iv) We investigate how cross-lingual transfer im-
pacts the performance of downstream tasks, focus-
ing mainly on the POS tagging and MT tasks. The
code is available1.

2 Related Work

The cross-lingual transfer involves leveraging ex-
isting resources available for HR languages to im-
prove methods for LR languages. This approach
can be particularly beneficial for LR languages
that lack extensive linguistic resources and data
for NLP applications. Wu and Dredze (2020) state
that the mBERT’s performance for LR languages
is not on par with that for HR languages, and
there is an unequal representation of languages
within models. Libovický et al. (2019) show that
mBERT context embeddings capture similarities
between languages, but achieving a proper cross-
lingual representation requires the availability of

1Code: https://github.com/Vitaly-Protasov/LR_
Transfer

parallel corpora, which is lacking for most LR lan-
guages. Malkin et al. (2022) show that the selection
of pretraining languages significantly impacts the
performance, indicating that there are more effec-
tive donors than English. Additionally, Turc et al.
(2021) show that Russian and German can serve
as better donors for reliable transfer. Fujinuma
et al. (2022) experiment with different number of
languages during pretraining and find it promis-
ing in terms of impact on performance on un-
seen languages. There are also different suggested
strategies for choosing the proper donor language.
Kocmi and Bojar (2018) propose using vocabulary
overlap to find a better HR donor. Lauscher et al.
(2020) demonstrate that typological motivation in
language selection positively impacts the transfer
learning scores, as well as the size of the source
language. Muller et al. (2021) show that the type
of language script used plays an essential role, and
transliteration helps to improve the quality of trans-
fer learning. Eronen et al. (2023) also show that
fine-tuning on linguistically similar languages (de-
fined using WALS (Dryer and Haspelmath, 2013)
improves the performance on several downstream
tasks. Muller et al. (2022) investigate cross-lingual
transfer using diverse data, revealing that morphol-
ogy and language modeling performance are strong
predictors of its success. Dolicki and Spanakis
(2021); Lin et al. (2019) establish that no individ-
ual WALS feature stands out as the most crucial
across various tasks.

Transfer learning has long emerged as a piv-
otal technique in machine translation, particularly
for LR languages. Zoph et al. (2016) introduce
an approach that uses HR language data to en-
hance neural machine translation (NMT) for LR
language pairs, achieving notable improvements
in their translation quality. Further exploration by
Aji et al. (2020) reveal that word embeddings are
a critical component of transfer learning, and their
proper alignment is essential for optimal results.
These findings highlight the critical role of transfer
learning in addressing challenges associated with
the limited availability of linguistic data in NMT.

The studies mentioned above focus on well-
resourced languages with labeled data, which has
resulted in neglecting LR languages that already
lack available data. This study aims to address
this gap by investigating cross-lingual transfer for
several understudied LR languages.
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3 HR-LR Multilingual Corpus

We assemble from various existing sources a text
corpus. Appendix A.3 lists all used languages.

3.1 Text sources

To assemble a corpus for the need of cross-lingual
experiments, we use a wide range of linguistic re-
sources in addition to commonly used corpora. We
deliberately do not include projects, such as Os-
car (Ortiz Suárez et al., 2019) and Cleaned Colos-
sal Common Crawl (Raffel et al., 2020) because
they are already partially represented in the train-
ing set of large language models such as XLM-R
and mT5. The general corpus includes text ma-
terials from the following projects: (i) Wikipedia
in every language available (CC BY-SA); (ii) Uni-
versal Dependencies project2 (de Marneffe et al.,
2021) (original texts without annotation, the license
for every treebank is different, mainly GNU GPL
3.0/LGPLLR/CC BY-based); (iii) The Hamburg
Center for Language Corpora (HZSK-PUB)3 (pri-
mary linguistic research textual data, not restricted
by copyright or personal data protection); (iv) The
Endangered Languages Archive4 (text content only,
no multimedia, non-commercial private research or
educational activity); (v) Corpora with annotated
languages of CIS countries5 (Krylova et al., 2015).

3.2 Text processing

We aggregate languages according to their official
names and codes presented in a large database,
The World Atlas of Language Structures (WALS6)
(Dryer and Haspelmath, 2013). To ensure high data
quality for language processing, we exclude lan-
guages with a high presence of HTML tags in the
collected data, accounting for 15% of the gathered
data. We assume that a large amount of code would
significantly affect results, as HTML tags are easier
to predict than words in natural languages.

We collect both HR and LR languages. We de-
fine a LR language based on a specific range of to-
kens: 10k tokens as a lower bound and 350k tokens
as an upper bound (Yang et al., 2019). Thus, we
categorize languages exceeding the upper bound as
HR ones. Refer to Appendix A.2 for the list of all
languages we collected.

2https://universaldependencies.org
3https://corpora.uni-hamburg.de/hzsk
4https://www.elararchive.org
5http://web-corpora.net
6https://wals.info/feature

4 Cross-lingual Transfer Methodology

The main goal of our experiments is to figure out
whether the training on HR language donors im-
proves the modeling of LR recipient languages, try
to interpret it and to observe possible performance
of transfer learning in downstream tasks.

4.1 Base model

In our experiments, we utilize the widely used pre-
trained multilingual language model mT57(Xue
et al., 2021). It is an encoder-decoder model trained
on 101 languages from the mC4 dataset. It was
originally pretrained in the transfer learning pro-
cedure and has shown itself well in transferring
knowledge. We think the encoder-decoder archi-
tecture is more flexible and has more possible ap-
plications for future works than only encoder or
decoder-based models. Due to its multitask fine-
tuning, we decided not to use its another version,
mT0 (Muennighoff et al., 2023). Considering our
lack of labeled data, exploring its multitask zero-
shot performance is unnecessary here.

4.2 MLM pretrainig on donor languages

Following the original article of the mT5, we use
the Masked Language Modeling (MLM) objective
for the continued pretraining on HR donor lan-
guages. More specifically, in the case of mT5
model, this is a denoising task for prediction
masked spans (sequential set) of tokens. Similarly
to the original paper, we also utilize early stopping.
We limit the data to perform the training for all
languages under the same conditions and minimize
the training time: 500k sampled sentences are cho-
sen for continued pretraining on each HR language.
We conduct this procedure 5 times to consider the
variance of results based on different subsets of
training data. We then average the results from the
top-performing checkpoints within each training
iteration. Textual data sourced from HR languages
is employed during both the training and validation
steps, while LR language data is utilized during the
testing step only to measure the performance on
unseen LR languages.

4.3 Evaluation on low-resource languages

We use the perplexity metric (Brown et al., 1992)
to evaluate the MLM step. Perplexity has its limi-
tations when evaluating language modeling perfor-
mance, which may become evident in downstream

7https://huggingface.co/google/mt5-base
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tasks. Since we deeply explore the results of cross-
lingual transfer, we also plan to conduct down-
stream evaluation afterward to see whether the con-
tinued pretraining on HR languages impacts the
downstream performance on LR languages. Here,
we first measure the zero-shot model’s performance
in modeling all 31 LR languages. Secondly, we use
the best model’s checkpoints from each run after
continued pretraining on different HR language and
evaluate them across all LR languages.

4.4 Analysis of transfer learning results

We are also interested in exploring potential factors
that affect cross-lingual transfer results, determin-
ing whether they lead to success or failure in vari-
ous language pairs. Following Lin et al. (2019), we
utilize linguistic and data-level features to interpret
cross-lingual transfer results.

4.4.1 Data-level analysis
Regarding the data level, we calculate the subto-
ken overlap between languages. We measure the
overlap between unique subtokens in HR-LR pairs:

o12 =
S1 ∪ S2

S2
, (1)

where S1 is the set of unique subtokens of donor
(HR) languages, and S2 is the set of unique target
(LR) languages subtokens. In our experiments, we
use the mT5 tokenizer. Here, we consider how the
subtoken overlap between HR and LR languages
relates to the model’s performance in LR languages
after continued pretraining in donor languages.

4.4.2 Linguistic-level analysis
We investigate language similarity by leveraging
their typological characteristics. According to pre-
vious works, we consider WALS features. We de-
liberately avoid relying on GramBank (Skirgård
et al., 2023) and lang2vec (Littell et al., 2017).
GramBank, despite its extensive data coverage, of-
fers features that are quite specific and narrow in
scope, resulting in a heterogeneous and uninfor-
mative set for our purposes. On the other hand,
lang2vec represents each feature from the WALS
as one-hot encoding vectors, which increases the
number of features. This might affect the outcomes
of statistical tests due to the interdependence of
many of these features. To interpret the results,
we employ the Logistic regression model (Hosmer
and Lemeshow, 2000) to obtain coefficients associ-
ated with input features. These coefficients serve

as indicators of the strength in the relationship be-
tween input features and target variables learned
during model training. This analysis enables us to
assess the importance of various language features
in achieving successful transfer learning results.

To mitigate biases in absolute perplexity values,
we use binary targets to indicate if perplexity de-
creases (1) or remains unchanged (0) after contin-
ued pretraining. Each data point in our training
dataset is represented as a binary vector, where ev-
ery element signifies whether both languages share
the same value for a specific linguistic feature (1)
or not (0). Finally, we consider the regression co-
efficients to identify which typological character-
istics should be shared between donor and target
languages for successful cross-lingual transfer.

4.5 Downstream evaluation
4.5.1 POS tagging task
We consider the POS tagging task since it is one
of the few tasks with annotated data available for
the LR languages. Specifically, we utilize datasets
from UD treebanks. However, only 6 out of the 31
LR languages have data available: Bambara, Bho-
jpuri, Cantonese, Coptic, Guarani, Komi-Zyryan.

To evaluate the cross-lingual transfer perfor-
mance of different HR-LR pairs in POS tagging,
we train logistic regression on top of mT5 embed-
dings. Our training and validation data come from
a donor HR language’s training and validation sets
extracted from the UD corpus. Afterward, we as-
sess the model’s performance on target LR lan-
guages’ test sets taken from their UD corpora.

4.5.2 Machine translation task
Additionally, we aim to experiment with another
downstream task – Machine Translation (MT).
Here, we use data from the NLLB project (NLLB
Team et al., 2022; Bapna et al., 2022) as the only
open-source dataset with MT data for extremely
LR languages that we consider. This dataset con-
tains parallel corpora for numerous language pairs,
but in the case of LR languages, we see that only a
few of them contain parallel HR-LR corpora, and
only for two HR languages, such as English and
Afrikaans, there are HR-LR datasets: 8 pairs for
English and 7 pairs for Afrikaans.

While evaluating the MT setup, we aim to
explore how cross-lingual transfer impacts the
model’s performance on different HR-LR pairs.
To do this, we follow a series of steps. First, we
conduct separate experiments for each HR-LR pair
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LR language LR perplexity
(zero-shot)

HR language
(best)

LR perplexity
after training

Akan 33.07 Afrikaans 30.04
Atikamekw 61.72 Afrikaans 49.77
Bambara 51.67 Lithuanian 38.39
Bhojpuri 31.27 Hindi 113.48
Cantonese 58.27 Slovene 53.3
Chichewa 13.72 Afrikaans 43.55
Coptic 4.72 Afrikaans 10.21
Dagbani 47.81 Slovene 57.71
Greenlandic (South) 35.55 Afrikaans 39.68
Guaraní 3.99 French 3.04
Kashmiri 26.27 Lithuanian 34.90
Komi-Zyrian 110.02 Yazva 66.56
Koryak 88.66 Slovene 53.28
Kurmanji 32.44 Afrikaans 66.22
Madurese 33.61 Afrikaans 31.81
Nanai 72.91 Slovene 38.38
Quiché 165.78 Slovene 63.78
Romani (Lovari) 25.1 Afrikaans 40.43
Rundi 21.92 Afrikaans 33.50
Samoan 12.52 Lithuanian 23.88
Sesotho 12.77 Afrikaans 26.21
Shor 167.74 Slovene 98.91
Sranan 35.44 Afrikaans 14.09
Swati 40.65 Afrikaans 53.08
Tabassaran 57.19 Slovene 50.54
Tat (Muslim) 70.32 Afrikaans 82.90
Tofa 62.38 Slovene 61.98
Tsakhur 41.74 Slovene 25.60
Tsonga 40.41 Afrikaans 48.76
Udi 55.01 Afrikaans 72.88
Yukaghir (Kolyma) 104.8 Slovene 68.45

Table 1: Comparison of zero-shot results of the mT5 model on LR languages with the results after continued
pretraining on HR languages. We highlight the best scores among language pairs.

by training the out-of-the-box model in the MT
setup and evaluating its performance afterward.
This allows us to measure the performance be-
fore the cross-lingual transfer. Then, we select the
best-performing model checkpoints for each HR
donor after continued pretraining and repeat train-
ing and evaluation on MT data using these selected
checkpoints. Finally, we compare the model’s per-
formance on the MT task before and after cross-
lingual transfer across various HR-LR pairs.

To ensure consistency in the obtained results, we
intend to use identical test sets across all experi-
ments with specific HR-LR pairs. This enables us
to compare and analyze the impact of cross-lingual
transfer on the MT results more accurately. Also,
following the approach we do in Section 4.5.1, we
restrict the training data to match the number of to-
kens available in the least-resourced language pair
to ensure a fair comparison.

5 Results and Analysis

5.1 General cross-lingual transfer results

In Table 1, you can see the comparison of the zero-
shot results with the best results after continued
pretraining on HR donors. Across 16 out of 31
LR languages, continued pretraining resulted in
diminished perplexity scores. In this context, «best»
refers to the lowest perplexity score attained among
all iterations of continued pretraining. We also

examine the most effective HR donors. Figure 4
illustrates relative perplexity scores between zero-
shot results and results after continued pretraining
across the most effective HR-LR pairs (refer to
Appendix A.1 and Appendix A.2 for results for all
4898 HR-LR pairs). After pretraining on Slovene,
the model demonstrates lower perplexity for 14
LR languages. Similar results are observed for
Afrikaans, also with 14 LR languages, Lithuanian
with 12, and French with 11.

As well as Turc et al. (2021), we observe that
English may not be the optimal language for cross-
lingual transfer. In our experiments, Afrikaans
and Slovene show the best performance in cross-
lingual transfer for extremely low-resource lan-
guages. Thus, we consider them as «super-donors»
in the scope of our experiments. There are also
instances where such languages as Guaraní and
Coptic exhibit universal target characteristics after
pretraining on various HR languages.

5.2 Correlation with subtoken overlap

To assess how the overlap of subtokens in data af-
fects the performance of different HR-LR language
pairs, we calculate the Pearson correlation coeffi-
cient between these data features and the results of
cross-lingual transfer for these pairs.

We observe a moderate correlation between
subtoken overlap and ∆perplexity (rstat = −0.33,
pvalue < 0.01), where ∆perplexity is a difference
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between results before and after continued pretrain-
ing. This indicates that as the degree of subtoken
overlap grows, we observe a decrease in perplexity
on LR languages (see Figure 2 for the distribution
of different pairs in such axes).
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Figure 2: The correlation of subtoken overlap between
HR and LR languages and ∆perplexity (perplexity val-
ues are given in logarithmic scale). Darker colors show
a greater density of points, where each point represents
a HR-LR pair.

5.3 Interpretation using linguistic features
We also utilize linguistic features to interpret cross-
lingual transfer results. To maintain the validity of
our findings, we exclude features not annotated in
at least half of the considered languages. Thus, we
have only 21 out of 194 WALS features for analy-
sis; 12 are specifically related to word order, and
the rest to morphology. It is important to note that
the absence of annotation in WALS may lead to
possible gaps in our analysis. Thus, some crucial
factors may be missed. We utilize these features
for training the logistic regression model (see Ap-
pendix 3 for regression coefficients of 21 linguistic
features we relied on).

Surprisingly, the genealogical family feature has
a negative coefficient, suggesting that the model
performs better when the donor and target lan-
guages are unrelated. At the same time, positive
coefficients are observed for similar morphological
features (e.g., prefixing vs. suffixing), indicating
whether features like Tense or Number tend to be
expressed with prefixes or suffixes. The word or-
der typically does not play an important role, as
only the order of verb and object appears to be
significant.

5.4 Downstream evaluation results
5.4.1 POS tagging results
In this downstream evaluation, we investigate
whether continued pretraining can help in POS tag-

ging experiments. Here, for each LR language,
we compare how well models trained on the best
donors from the MLM setup perform against mod-
els trained in three randomly chosen languages.
We want to determine if training on the best lan-
guage yields better results for POS tagging than
training on random ones. As described in 4.5.1,
we train logistic regression using word embeddings
to identify part-of-speech. If a word consists of
multiple tokens, we use their average embedding.
Additionally, we limit the training data to the num-
ber of tokens available in the least-resourced donor
language for fair comparison. We evaluate perfor-
mance using both Accuracy and F1-score metrics.

Table 2 shows the results for 6 LR languages
with available data. When trained on the best
HR donors, such as Bambara, Bhojpuri, Guarani,
Komi-Zyryan, the model achieves the best perfor-
mance in at least one metric. However, for Can-
tonese and Coptic, the best donors from MLM ex-
periments do not result in the highest performance.
In Figure 5, you can see the heatmap of POS tag-
ging results for all considered HR languages in the
case of the aforementioned 6 LR languages.

LR HR Setup Accuracy F1-score
Arabic random 0.266 ± 0.000 0.284 ± 0.0
Armenian random 0.344 ± 0.000 0.381 ± 0.000
Dutch random 0.159 ± 0.0 0.175 ± 0.0

Bambara Lithuanian best 0.378 ± 0.004 0.368 ± 0.004
Arabic random 0.364 ± 0.0 0.428 ± 0.0
German random 0.5 ± 0.0 0.504 ± 0.0
Persian random 0.648 ± 0.000 0.627 ± 0.000

Bhojpuri Hindi best 0.705 ± 0.000 0.722 ± 0.000
Italian random 0.165 ± 0.000 0.175 ± 0.000
Polish random 0.468 ± 0.000 0.447 ± 0.000
Russian random 0.411 ± 0.000 0.388 ± 0.000

Cantonese Slovene best 0.351 ± 0.000 0.373 ± 0.000
Danish random 0.052 ± 0.000 0.013 ± 0.000
German random 0.073 ± 0.000 0.092 ± 0.000
Irish random 0.208 ± 0.000 0.121 ± 0.000

Coptic Afrikaans best 0.146 ± 0.000 0.1 ± 0.000
Faroese random 0.208 ± 0.000 0.214 ± 0.000
French random 0.188 ± 0.000 0.229 ± 0.000
Irish random 0.167 ± 0.000 0.167 ± 0.000

Guarani Slovak best 0.25 ± 0.000 0.186 ± 0.000
Chinese random 0.369 ± 0.000 0.334 ± 0.000
Estonian random 0.519 ± 0.000 0.42 ± 0.000

Komi-Zyryan Urdu random 0.431 ± 0.000 0.456 ± 0.000
Slovene best 0.581 ± 0.000 0.536 ± 0.001

Table 2: The comparison shows evaluation results on
POS tagging for 6 LR languages after pretraining on
the most effective donors from MLM experiments, com-
pared to 3 randomly selected HR languages. We ob-
serve that utilizing the best donors for transfer learning
achieves better results in the POS tagging task compared
to employing random HR languages.

5.4.2 Machine translation results
In contrast to the POS tagging, our data availabil-
ity here is significantly limited. As mentioned in
Section 4.5.2, we have a substantial amount of an-
notated data only for Afrikaans and English, total-
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Figure 3: Coefficients of the WALS features obtained from the Logistic Regression model for the interpretation of
cross-lingual transfer results.

ing 7 and 8 HR-LR pairs, respectively. Based on
the general cross-lingual transfer results (Section
5.1), we observe that Afrikaans tends to perform
better as a super-donor, while English does not
show satisfactory results in that regard. Therefore,
we decide to proceed with evaluation in Machine
Translation setup using data of Afrikaans only. As
supported by Figure 4, we limit our scope only to
the top-performing HR donors.

In Figure 6, you can see the results of the MT
setup where we perform fine-tuning on 7 Afrikaans-
LR pairs. We report the comparisons using the
∆chrf metric, which indicates the difference in
results with and without transfer learning on dif-
ferent HR languages. You can see that cross-
lingual transfer significantly boosts MT perfor-
mance in evaluating Afrikaans-Sesotho, Afrikaans-
Swati, and Afrikaans-Tsonga. However, there is
no improvement in the evaluation of Afrikaans-
Chichewa. When looking at absolute values, cross-
lingual transfer experiments demonstrated the most
significant improvement in performance when ap-
plied to Afrikaans-Akan and Afrikaans-Sesotho
pairs, with an increase of more than 0.2 in the chrf.

5.5 Super donors and super recipients

Surprisingly, as Figures 4,5,6 (but much more ap-
parent from the heatmaps presented in the Ap-
pendix A.2) corresponding to the MLM, POS, and
MT tasks respectively, show, a fraction of LR lan-
guages tend to be super recipients, benefiting un-
conditionally from all other HR languages. Ad-
ditionally, some HR languages tend to be super
donors, benefiting all languages unconditionally,
regardless of the donor’s or recipient’s linguistic
characteristics. Furthermore, the sets of such super

donors and super recipients do not tend to general-
ize completely across tasks (MLM, POS, MT).

5.6 Further discussion

Our experiments demonstrate that transferring
knowledge from HR languages during continued
pretraining can enhance the performance of the
mT5 model in the MLM setup across various LR
languages. Subsequent downstream evaluation also
exhibits such improvement, particularly in the case
of the POS tagging and Machine Translation tasks.

The analysis of the MLM experiments reveals
that most word order features have no significant
impact. HR-LR language pairs from the same fam-
ilies correlate negatively with the results; however,
this correlation shifts to positive when they share
the same morphological feature as affix. Addition-
ally, a higher degree of overlap between subtokens
in languages tends to yield better performance in
cross-lingual transfer. Meanwhile, other charac-
teristics show no significant correlation with the
results from MLM experiments. At the language
level, Afrikaans and Slovene are determined as the
best donor languages, and continued pretraining
on them tends to better results across most LR
languages examined in this study. It aligns with
the findings of Turc et al. (2021), who identified
a different pair of Germanic and Slavic languages,
German and Russian, as the best donors. Most lan-
guages that exhibit promising results as donors be-
long to the Indo-European language family, specif-
ically falling under the classification of Standard
Average European (SAE) languages (Haspelmath,
2008). However, languages with the best results
are peripheral members of the SAE continuum, i.e.,
have only some characteristics of SAE languages.
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Figure 4: This heatmap illustrates the HR and LR languages where mT5 achieved lower perplexity scores than
zero-shot performance. The colors represent the difference (∆perplexity) in perplexity after cross-lingual transfer
by the continued pretraining on donors versus the zero-shot setup. Please refer to Appendix A.2 for detailed results
of all LR and HR languages considered.
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on HR donors from Table 2.
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Figure 6: Machine Translation results for 7 Afrikaans-
LR pairs. Here, we measure the difference between
the model’s performance with and without continued
pretraining on different HR donors and report the results
in the ∆chrf metric. It is important to note that fine-
tuning and evaluation for MT were explicitly conducted
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101



In downstream evaluation, the findings from
POS tagging demonstrate that employing optimal
donor languages during pretraining outperforms
pretraining on randomly selected languages in most
cases. In Machine Translation, our investigation
focuses on a particular pipeline for translation from
Afrikaans to various LR. Consequently, we can
conclude that pretraining on well-performing HR
donors from the MLM step contributes to enhanced
translation performance, particularly for extremely
low-resource languages that we consider.

6 Conclusion

In this work, we present extensive experiments on
cross-lingual transfer for HR-LR language pairs,
leveraging HR languages for continued pretraining
of the mT5. We observe that the performance of
cross-lingual transfer significantly correlates with
morphological features. Additionally, a higher de-
gree of overlap between subtokens can contribute to
better performance. Meanwhile, other characteris-
tics do not significantly correlate with cross-lingual
transfer results. We also observe improved down-
stream evaluation results, showing successful POS
tagging and MT tasks performance. Finally, some
LR languages tend to be super recipients, namely
benefiting from all languages, and some HR lan-
guages tend to be super donors namely benefiting
all languages with no apparent linguistic relation
between donor and recipient.
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A Appendix

A.1 The most efficient high-resource
languages

Table 3 lists the most effective HR languages for
cross-lingual transfer with the corresponding LR
languages with decreased perplexity.

A.2 Cross-lingual transfer results
Figures 7 and 8 depict the heatmaps of various
LR-HR language pairs, with corresponding colors
indicating perplexity scores measured in the MLM
setup. These scores represent the average values
across 5 runs of continued pretraining on each HR
language. Here, you can see 158 high-resource and
31 low-resource languages.

A.3 Statistics of the collected corpus
As we discussed in Section 3, we gathered the cor-
pus of textual data for 189 languages. In order
to divide language by high and low resource, we
first calculated some statistics for each language.
In Table 4, you can see official names, number of
symbols and tokens for each language. We used
the tokenizer from the mT5 model for text tokeniza-
tion.

HR language LR languages with lowered perplexity
Afrikaans Akan, Atikamekw, Bambara, Cantonese, Komi-Zyrian

Koryak, Madurese, Nanai, Quiché, Shor
Sranan, Tofa, Tsakhur, Yukaghir (Kolyma)

Asturian Koryak, Nanai, Quiché, Shor, Sranan
Tsakhur, Yukaghir (Kolyma)

Azerbaijani Quiché
French Atikamekw, Bambara, Guaraní, Komi-Zyrian, Koryak

Nanai, Quiché, Shor, Sranan, Tsakhur
Yukaghir (Kolyma)

German Quiché
Guianese French Creole Quiché

Hindi Guaraní
Hungarian Guaraní
Japanese Quiché
Javanese Quiché

Lithuanian Atikamekw, Bambara, Cantonese, Guaraní, Koryak
Madurese, Nanai, Quiché, Shor, Sranan
Tsakhur, Yukaghir (Kolyma)

Sinhala Quiché
Slovak Quiché
Slovene Atikamekw, Bambara, Cantonese, Komi-Zyrian, Koryak

Madurese, Nanai, Quiché, Shor, Sranan
Tabassaran, Tofa, Tsakhur, Yukaghir (Kolyma)

Yazva Komi-Zyrian

Table 3: High-resource languages that were used for
training the mT5-Base, which achieved a lower per-
plexity metric than in zero-shot performance on low-
resource languages.
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Name N_tokens, kk N_symbols, kk Name N_tokens, kk N_symbols, kk
Abaza 1.33 2.35 Buriat 172.16 344.66
Acehnese 1.47 3.09 Choctaw 0.001 0.002
Arabic (Egyptian) 157.47 291.76 Cebuano 1365.37 3319.73
Afrikaans 46.5 126.33 Chamorro 0.06 0.13
Akan 0.33 0.62 Chechen 378.15 477.3
Albanian 0.002 0.005 Cherokee 0.17 0.22
Amharic 5.37 6.85 Chukchi 4.08 5.12
Arabic (Moroccan) 1.1 2.07 Chuvash 277.48 442.77
Arabic
(Modern Standard)

1.83 1.83 Chichewa 0.28 0.75

Apurinã 0.002 0.0035 Cantonese 0.02 0.02
Archi 0.0012 0.0019 Coptic 0.1 0.13
Arabic (Lebanese) 0.0015 0.0026 Crimean Tatar 1.24 2.6
Armenian (Eastern) 0.12 0.26 Cornish 0.9 1.88
Armenian (Western) 0.09 0.17 Catalan 463.18 1168.29
Armenian (Iranian) 212.94 569.39 Chatino (Yaitepec) 1.21 3.05
Adyghe (Shapsugh) 3.32 5.58 Cheyenne 0.06 0.1
Altai (Southern) 2.46 4.6 Czech 336.81 819.13
Assamese 11.18 18.87 Dagbani 0.28 0.55
Asturian 117.6 304.59 Dogri 0.006 0.009
Atayal 0.71 1.35 Dhivehi 4.35 5.77
Atikamekw 0.33 0.71 Dargwa 11.64 23.4
Avar 5.73 10.82 Danish 0.52 1.46
Awadhi 0.57 1.04 Dutch 598 1675.76
Aymara (Central) 0.92 1.81 Dutch (Zeeuws) 1.43 3.12
Azerbaijani 90.5 230.74 English 7920.93 24002.62
Azari (Iranian) 39.73 74.9 Estonian 97.8 265.66
Balinese 2.04 4.87 Even 0 0.01
Bambara 0.17 0.31 Ewe 0.085 0.153
Beja 0.003 0.003 Faroese 4.17 9.4
Bengali 28.14 56.44 Finnish 243.97 715.36
Bhojpuri 0.01 0.02 Frisian (North) 2.74 5.65
Bikol 3.39 8.63 French 1541.64 4046.63
Belorussian 168.71 467.04 Frisian 0.007 0.016
Breton 21.79 43.06 Frisian (Western) 29.12 69.47
Burmese 26.12 64.79 Fuzhou 1.95 2.86
Bashkir 58.9 122.15 Gaelic (Scots) 4.52 9.25
Bislama 0.13 0.28 Gagauz 0.43 1.02
Basque 12.73 35.51 Georgian 65.7 149.49
Bugis 0.98 2.05 German 6.94 21.3

Bulgarian 147.44 367.2
Guianese
French Creole

0.53 1.06
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Name N_tokens, kk N_symbols, kk Name N_tokens, kk N_symbols, kk Name N_tokens, kk N_symbols, kk
Gilaki 1.33 2.38 Kinyarwanda 0.71 1.65 Samoan 0.31 0.61
Guajajara 0.0016 0.0023 Kurmanji 0.02 0.04 Sango 0.04 0.06
Galician 108.96 282.46 Karakalpak 0.71 1.55 Serbian-Croatian 375.92 828.15
Greek (Modern) 167.59 387.4 Kannada 40.49 94.87 Sindhi 9.28 15
German (Ripuarian) 1.01 2.21 Kongo 0.12 0.26 Seediq 1.14 2.28
Gorontalo 1.3 3.1 Komi-Permyak 1.82 3.19 Sesotho 0.22 0.49
Greenlandic (South) 0.15 0.36 Korean 254.45 318.2 Shan 5.09 7.59
German (Timisoara) 1761.41 5469.18 Kapampangan 1.85 4.41 Shona 1.32 3.11
Guaraní 0.03 0.02 Karachay-Balkar 4.38 9.14 Shor 0.18 0.31
Gujarati 19.35 34.67 Kurdish (Central) 16.77 29.46 Slovene 92.81 239
German (Viennese) 9.44 21.27 Karelian 0.01 0.02 Seminole 0 0
German (Zurich) 0.003 0.006 Koryak 0.25 0.43 Sinhala 18.78 37.48
Hakka 1.67 2.68 Khanty 0.0004 0.0005 Saami (Northern) 1.27 2.62
Hausa 5.58 13.62 Kumyk 1.16 2.45 Solon 1.49 2.93
Hawaiian 0.53 1.02 Komi-Zyrian 0.03 0.05 Somali 3.51 8.41
Haitian Creole 7.72 15.97 Lak 16.46 30.72 Sorbian (Upper) 3.71 7.64
Hebrew (Modern) 308.46 623.18 Lao 1.74 4.17 Spanish 1233.15 3408.23
Hindi 81.33 160.75 Latvian 54.26 135.41 Sranan 0.2 0.43
Hungarian 297.86 779.47 Luganda 1.47 3.38 Sardinian 3.39 7.95
Icelandic 23.58 55.33 Ladin 0.45 0.94 Sorbian (Lower) 0.83 1.69
Igbo 1.16 2.27 Lezgian 10.34 18.87 Santali 6.21 8.12
Ilocano 4.39 10.03 Low German 20.84 51.3 Sotho (Northern) 0.84 1.86
Indonesian 0.28 0.89 Lingala 0.53 1.06 Sundanese 12.54 31.15
Ingush 8.09 14.27 Lithuanian 78.83 199.57 Slovincian 1.2 2.14
Indonesian (Jakarta) 209.58 612.28 Liv 0.004 0.009 Slovak 91.75 224.02
Irish 0.27 0.6 Ladino 1.31 3.25 Swahili 14.32 35.39
Irish (Munster) 15.82 34.2 Luxemburgeois 17.24 41.58 Swedish 0.36 0.99
Italian 1018.44 2776.36 Mari (Hill) 1.71 2.91 Swati 0.14 0.34

Itelmen 0.0005 0.0008 Maithili 2.86 5.27 Swedish
(Västerbotten) 882.57 2204.72

Italian (Genoa) 2.57 4.9 Maori 1.2 2.25 Tagalog 21.96 54.45
Italian
(Napolitanian) 1.99 3.9 Macedonian 83.34 211.18 Tahitian 0.11 0.19

Italian (Turinese) 12.27 23.48 Madurese 0.2 0.42 Tajik 20.91 43.76
Javanese 17.44 43.98 Meithei 0.47 0.94 Tashlhiyt 0.53 0.89
Jamaican (Creole) 0.42 0.9 Mingrelian 4.43 8.19 Tabassaran 0.06 0.11
Japanese 750.08 1244.1 Marathi 17.82 36.2 Telugu 79.39 178.59
Kabardian 18.8 29.62 Minangkabau 34.7 86.25 Thai 79.96 226.41

Kashmiri 0.13 0.22 Mongol
(Khamnigan) 13.48 30.69 Tigrinya 0.13 0.14

Kazakh 72.64 184.75 Malgwa 21.64 48.87 Turkmen 4.05 8.47
Kabyle 1.58 2.83 Maltese 5.37 11.79 Tamil 0.03 0.08

Kabiyé 1.84 2.39 Malay 83.7 241.85 Tibetan
(Modern Literary) 34.98 41.26

Galician 108.96 282.46 Mari (Meadow) 189.06 275.65 Tat (Muslim) 0.06 0.11
Greek (Modern) 167.59 387.4 Mordvin (Moksha) 1.45 2.24 Tongan 0.36 0.65
German (Ripuarian) 1.01 2.21 Mandarin 497.71 659.72 Tofa 0.03 0.06
Gorontalo 1.3 3.1 Mansi 2.58 3.99 Tok Pisin 0.16 0.34
Greenlandic
(South) 0.15 0.36 Manx 1.57 3.07 Tsakhur 0.09 0.15

German
(Timisoara) 1761.41 5469.18 Mordvin (Erzya) 7.81 15.25 Tsonga 0.25 0.58

Guaraní 0.03 0.02 Mon 4.98 7.33 Tamil (Spoken) 65.88 188.99
Gujarati 19.35 34.67 Marshallese 0.002 0.003 Tswana 0.5 1.15
German (Viennese) 9.44 21.27 Mundurukú 0.002 0.002 Tetun 0.42 1.01
German (Zurich) 0.003 0.006 Malayalam 45.49 118.33 Tulu 1.14 2.15
Hakka 1.67 2.68 Mazanderani 2.73 5.08 Tupi 0.006 0.008
Hausa 5.58 13.62 Nanai 0.24 0.41 Turkish 169.37 468.8
Hawaiian 0.53 1.02 Nauruan 0.13 0.26 Tuvan 24.8 51.9
Haitian Creole 7.72 15.97 Navajo 5.67 8.52 Tatar 59.84 127.89
Hebrew (Modern) 308.46 623.18 Ndonga 0.003 0.008 Udi 0.1 0.16
Hindi 81.33 160.75 Nadroga 0.2 0.43 Udmurt 4.76 9.24
Hungarian 297.86 779.47 Nepali 13.5 27.54 Ukrainian 619.13 1523.74
Icelandic 23.58 55.33 Nias 0.36 0.77 Urdu 57.23 110.15
Igbo 1.16 2.27 Norwegian 224.43 608.76 Urubú-Kaapor 0.001 0.001
Ilocano 4.39 10.03 Narom 0.98 1.96 Uyghur 12.66 18.24

Indonesian 0.28 0.89 Neo-Aramaic
(Assyrian) 0.0026 0.0021 Uzbek 45.15 104.75

Ingush 8.09 14.27 Nenets (Tundra) 0.47 0.78 Venda 0.11 0.25
Indonesian
(Jakarta) 209.58 612.28 Nivkh

(South Sakhalin) 0.73 1.14 Veps 2.96 6.83

Irish 0.27 0.6 Newar (Dolakha) 24.93 45.29 Vietnamese 424.35 742.98
Irish (Munster) 15.82 34.2 Oirat 7.97 14.12 Welsh 40.94 82.34
Italian 1018.44 2776.36 Ossetic 2.96 4.91 Wolof 1.3 2.54
Itelmen 0.0005 0.0008 Oriya 16.53 18.51 Warlpiri 0 0
Italian (Genoa) 2.57 4.9 Panjabi 27.68 42.51 Wu 6.67 9.11
Italian
(Napolitanian) 1.99 3.9 Papiamentu 11.04 19.5 Waray-Waray 187.45 446.09

Italian (Turinese) 12.27 23.48 Pangasinan 0.63 1.29 Xhosa 0.61 1.56
Javanese 17.44 43.98 Polish 629.24 1616.18 Yi 0.001 0.001
Jamaican (Creole) 0.42 0.9 Portuguese 600.72 1550.9 Yukaghir (Kolyma) 0.026 0.044
Japanese 750.08 1244.1 Provençal 32.42 76.25 Yakut 16.84 33.18
Kabardian 18.8 29.62 Persian 298.12 601.61 Yiddish (Lithuanian) 7.43 14.58
Kashmiri 0.13 0.22 Qafar 0 0.0001 Yoruba 4.69 8.03
Kazakh 72.64 184.75 Quiché 0.02 0.04 Yup’ik (Central) 0.004 0.009
Kabyle 1.58 2.83 Romani (Lovari) 0.2 0.49 Yurt Tatar 2.28 4.04
Kabiyé 1.84 2.39 Rundi 0.14 0.31 Yukaghir (Tundra) 0 0.01
Kirghiz 27.32 65.52 Romanian 195.88 485.41 Yazva 14.23 25.9

Khakas 1.44 2.89 Romansch
(Sursilvan) 5.07 12.59 Zazaki 5.46 10.8

Khmer 10.98 28.84 Russian 2372.32 6397.2 Zhuang (Northern) 0.28 0.52
Kikuyu 0.18 0.34 Rutul 0.36 0.67 Zulu 1 2.34

Table 4: All languages presented in the data we collected and used for the experiments.This table includes all
collected languages with number of symbols and tokens (tokenized by mT5-Base tokenizer), where "kk" - millions.
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Figure 7: Heatmap for the first 79 high-resource languages with absolute perplexity scores of 31 low-resource
languages.
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Figure 8: Heatmap for the second 79 high-resource languages with absolute perplexity scores of 31 low-resource
languages.
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Abstract

In Machine Translation, various tokenisers are
used to segment inputs before training a model.
Despite tokenisation being mostly considered a
solved problem for languages such as English,
it is still unclear as to how effective different to-
kenisers are for morphologically rich languages.
This study aims to explore how different ap-
proaches to tokenising Maltese impact machine
translation results on the English-Maltese lan-
guage pair. We observed that the OPUS-100
dataset has tokenisation inconsistencies in Mal-
tese. We empirically found that training mod-
els on the original OPUS-100 dataset led to
the generation of sentences with these issues.
We therefore release an updated version of the
OPUS-100 parallel English-Maltese dataset, re-
ferred to as OPUS-100-Fix, fixing these incon-
sistencies in Maltese by using the MLRS to-
keniser. We show that after fixing the inconsis-
tencies in the dataset, results on the fixed test
set increase by 2.49 BLEU points over mod-
els trained on the original OPUS-100. We also
experimented with different tokenisers, includ-
ing BPE and SentencePiece to find the ideal
tokeniser and vocabulary size for our setup,
which was shown to be BPE with a vocabu-
lary size of 8,000. Finally, we train different
models in both directions for the ENG-MLT
language pair using OPUS-100-Fix by train-
ing models from scratch as well as fine-tuning
other pre-trained models, namely mBART-50
and NLLB, where a finetuned NLLB model
performed best.

1 Introduction

Tokenisation tends not to be given much attention
in Machine Translation (MT), particularly since it
is thought of as a solved problem for languages
such as English (Erdmann, 2020). However, it can
become an issue when generic tokenisers are ap-
plied to languages that have particular syntactic
rules that are different from those commonly found
in English. This is reflected by Domingo et al.

(2019) who demonstrate that different tokenisers af-
fect language pairs very differently. Moreover, sev-
eral modern neural machine translation approaches
also employ subword tokenisation in conjuction
with word tokenisers as part of the preprocessing
step (Wei et al., 2021; Xu et al., 2021; Oravecz
et al., 2022). Not much thought tends to be given
to the impact that tokenisation could have on the
results of the machine translation. It is well known
however, that tokenisation affects BLEU results
(Post, 2018). In our research, we investigate the
impact that different tokenisation approaches can
have on the MT evaluation of Maltese, a morpho-
logically rich language with Semitic roots. We
experiment with different tokenisers, namely BPE
(Sennrich et al., 2016a), SentencePiece (Kudo and
Richardson, 2018), Moses Tokeniser (Koehn et al.,
2007), OpenNMT Tokeniser (Klein et al., 2017),
and a regex tokeniser specifically built for Maltese
(Gatt and Čéplö, 2013). We refer to this as the
MLRS tokeniser.

It was seen that most regular word-level English
tokenisers do not tokenise/detokenise everything
correctly. For example, it was seen that if the
MT output has characters such as “-”, an English
detokeniser usually splits this character from other
words by adding a space. This is the correct ap-
proach for English, but in Maltese most articles
contain “-” and should remain joined as one word
in the output (such as il-kelb, (the dog) should be
tokenised as il- kelb rather than il - kelb.

In order to carry out an empirical evaluation
of different tokenisation approaches, we also
consider different Machine Translation (MT) ap-
proaches, including a baseline system trained
from scratch using the base Transformer archi-
tecture (Vaswani et al., 2017), a model based on
the large Transformer architecture, a fine-tuned
mBART-50 model (Tang et al., 2020), NLLB (out-
of-the-box) (Costa-jussà et al., 2022) and a fine-
tuned version of NLLB, referred to as NLLB-FT.
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Notably, the pre-trained model mBART-50 does not
contain previous knowledge of Maltese whereas
NLLB has encountered Maltese during its training.

Another challenge that we face when training
NMT systems for low-resource languages is the
lack of high-quality publicly available data. For
our experiments, we utilize the OPUS-100 dataset
(Zhang et al., 2020a). However, upon further anal-
ysis, we noticed that the Maltese documents con-
tained several tokenisation errors that added spac-
ing where there should be none. These errors do
not occur in a systematic way, which motivated
us to look into the impact that such inconsisten-
cies would have on the results. Evaluation metrics
such as BLEU, tend to favour a larger number of
n-grams. The type of errors present in OPUS-100
were producing more tokens and this could result
in an inflated BLEU score.

To this end, we investigate the impact of incor-
rect tokenisation in OPUS-100 when Maltese is the
target language. Our translation efforts focus on
the English - Maltese language pair since English
is normally used as the source language whenever
the target is Maltese, both in a research setting but
also in an application scenario.

Our contributions are the following:

(C1) We release an updated version of the Maltese
part of OPUS-100, referred to as OPUS-100-
Fix,1 fixing the tokenisation inconsistencies
with the Maltese sentences and show how the
outputs are improved when trained on OPUS-
100-Fix.

(C2) We conduct a thorough evaluation of MT mod-
els trained with different word and subword to-
kenisers, including different vocabulary sizes.

(C3) We further train new models for the English-
Maltese language pair on OPUS-100-Fix, in-
cluding fine-tuning of mBART-50 and NLLB
as well training new models from scratch, ob-
taining better results than a baseline.

2 Literature Review

2.1 Tokenisation

There are different approaches to tokenisation and
the type of approach taken might depend on the
language or the task at hand. Word-level tokenisers
split the text into individual tokens, usually denoted

1https://huggingface.co/datasets/MLRS/
OPUS-MT-EN-Fixed

by spaces or other markers. However, in languages
such as Mandarin, such approaches are not appro-
priate since there are no clear boundaries between
words. Word-level tokenisers might also not be
ideal for morphologically rich languages (Alyafeai
et al., 2023), as there is no shared information be-
tween words that share the same stem or lemma
but have different prefixes or suffixes.

A hybrid approach is known as subword tokeni-
sation where rare/compound words are split into
smaller subwords and frequent words are kept as
tokens in their entirety. This has become a very
common approach in neural systems. By using sub-
word tokenisers such as Byte-Pair Encodings (BPE)
(Sennrich et al., 2016b) or SentencePiece (Kudo
and Richardson, 2018), the input text can be effi-
ciently tokenised into subwords and passed to the
neural MT systems.

In spite of the different conditions that languages
present, using a subword tokeniser is generally
taken as the defacto approach for many languages
(albeit sometimes with another tokenisation ap-
proach, such as including a word-level tokeniser
(Wei et al., 2021; Xu et al., 2021; Oravecz et al.,
2022)), including Maltese.

The following subsections explore popular to-
kenisation algorithms that will be used for our ex-
periments.

2.1.1 BPE
BPE (Sennrich et al., 2016a) is an unsupervised
subword tokeniser. It iteratively merges the most
frequent pair of consecutive bytes in the training set
to build a vocabulary of subword units, until the pre-
determined vocabulary size is reached. Throughout
our experiments, we will use the original BPE al-
gorithm as mentioned in the original paper.2

2.1.2 SentencePiece
Similar to BPE, SentencePiece is also an unsu-
pervised subword tokeniser and the vocabulary
size is also pre-determined. Internally, Senten-
cePiece supports two algorithms: Unigram Lan-
guage Model (Kudo, 2018) and BPE (Sennrich
et al., 2016a). Apart from this, it also implements
subword regularization which is not done in the
original (subword-nmt) implementation of BPE.

The Unigram tokeniser is different to BPE in the
sense that it starts from a big vocabulary and itera-
tively removes tokens until it reaches the specified
vocabulary size. It takes into account the whole

2https://github.com/rsennrich/subword-nmt
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training set and selects the tokens that maximise
the likelihood of the data. It tries to determine the
optimal vocabulary of subword units by choosing
token boundaries based on the inidividual character
frequencies.

Throughout this research, whenever training our
own SentencePiece tokeniser, we will experiment
with both versions of SentencePiece, one which
internally uses BPE and one which internally uses
Unigram.

2.1.3 MLRS Tokeniser
The tokeniser from MLRS (Gatt and Čéplö, 2013)3

is also used. It utilizes regular expressions to to-
kenise linguistic expressions that are specific to
Maltese, such as separating certain prefixes and
articles.

2.1.4 Moses Tokeniser
The MosesDecoder (Koehn et al., 2007) package
contains a tokeniser4 that is commonly used and is
intended to be language-agnostic, since it simply
separates punctuation from words while at the same
time keeping URLs and dates intact. Apart from
this, it also normalizes characters such as quotes.

2.1.5 OpenNMT Tokeniser
The OpenNMT Tokeniser (Klein et al., 2017) is
very similar to the Moses Tokeniser, in the sense
that it is language-agnostic, normalizes characters
such as quotes and also separates punctuation from
words. Contrastively, it does not keep certain words
intact such as URLs and dates, and instead splits
them as it would any other words.

2.2 Pre-trained Multilingual Models
According to Liu et al. (2020), using mBART-25 as
the pre-trained model has been shown to improve
translations over a randomly initialized baseline
in low/medium resource language. mBART-25 is
a transformer model trained on the BART (Lewis
et al., 2019) objective. It is trained on 25 differ-
ent languages. mBART-25 was later extended to
include 25 more languages and was called mBART-
50 (Tang et al., 2020). However, neither model
included Maltese.

A more recent multilingual model is No Lan-
guage Left Behind (NLLB) (Costa-jussà et al.,
2022). NLLB-200 is a large multilingual model
trained on 200 languages, one of which is Maltese.

3https://mlrs.research.um.edu.mt/index.php?
page=demos

4https://www.statmt.org/moses/

The architecture is built on the standard Trans-
former encoder-decoder architecture (Vaswani
et al., 2017). The dataset used to train NLLB
was collected from various sources, some of which
were in the Maltese language. The fact that NLLB
is already pre-trained with Maltese knowledge al-
lows us to experiment both with fine-tuning the
model further on our dataset but also to experiment
with evaluating the pre-trained NLLB model out-
of-the-box.

2.3 Previous MT Approaches for
Low-Resource Languages

Most MT systems nowadays contain a number
of pre-processing and post-processing techniques.
Low quality datasets often have noise in them and
pre-processing techniques are vital to ensure that
this noise is not passed to the MT systems. Filtering
data before training is a common pre-processing
approach (Morishita et al., 2022; Oravecz et al.,
2022; Tars et al., 2022; Rikters and Miwa, 2023).
There are numerous techniques, such as language
identification, removing duplicate sentence pairs,
sentences where the word or length ratio between
the source and target is greater than a specified
amount, sentence pairs that have a high cosine sim-
ilarity or whose source and target sentences are
identical etc. Oravecz et al. (2022) go a step further
and remove specific segments of noise patterns that
were noticed in a particular dataset.

There are also post-processing techniques that
can be done, to choose the best output from a num-
ber of possible outputs. One such technique is
the reranking technique, used by Morishita et al.
(2022) and Cruz (2023). The authors use this tech-
nique to select the most likely candidate from a
set of candidates, using a Source-to-Target Neu-
ral Machine Translation (NMT) system, a Target-
to-Source NMT system and a Masked Language
Model. The overall score is how likely each system
is to choose that particular output for the current
input. For the Masked Language Model, different
pre-trained models were used depending on the
target language since naturally the model needs to
be trained on the target language to give accurate
results.

2.4 Maltese Machine Translation
Limited research exists in the context of Maltese
machine translation.

There are works on multilingual MT systems,
trained on multilingual corpora which include Mal-
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tese. Zhang et al. (2020b) used OPUS-100 (Zhang
et al., 2020c) to train a multilingual system that
achieved 47.4 and 62.3 BLEU in the ENG→MLT
and MLT → ENG directions respectively. Ma
et al. (2020) presented a MT system based on a
pre-trained language model which is further fine-
tuned on OPUS-100. They achieved 48.0 and 63.0
BLEU in the ENG→MLT and MLT→ ENG di-
rections respectively. More recently, Yang et al.
(2022) created a multilingual model that is first
trained on high-resource languages with the aim
of transferring knowledge to the low-resource lan-
guages. They achieved 49.9 and 65.8 BLEU in
the ENG → MLT and MLT → ENG directions
respectively.

Williams et al. (2023) proposed a submission
for the 2023 IWSLT speech translation task. Their
system is a cascade solution where they utilize a
fine-tuned XLS-R model for ASR and a fine-tuned
version of mBART-50 as the MT model.

3 Methodology

3.1 Fixing OPUS-100
3.1.1 Original Dataset
The OPUS-100 dataset (Zhang et al., 2020c)
dataset contains parallel sentences for over 100
languages. In our case, we are using the English-
Maltese portion of this dataset. It contains over a
million sentences.

After performing initial experiments, we noticed
that this dataset has a number of tokenisation issues
on the Maltese side. The inconsistencies identified
are the following:

1. Additional spacing between words and their
articles (such as il-kelb (the dog) sometimes
incorrectly being represented as il- kelb). A
quick estimate shows that 23.2% of the arti-
cles are incorrectly tokenised.

2. Additional spacing between specific words
that include apostrophes (such as ta’ (of) being
represented as ta ’)

3. Inconsistent characters to represent an apos-
trophe, where sometimes the curled apostro-
phe/smart quote character is used instead of
the straight quote.

Curiously, the mistakes do not appear to be con-
sistent throughout the dataset, but a significant
amount of the sentences do contain a combination
of these errors.

One snippet of a sentence in the OPUS-100 test
set is: “Id- doża ta ’ Temodal tista ’ [...]”, meaning
“The Temodal dose may [...]”. Here, one can see
Inconsistency 1 (with the term Id- doża, which
should be Id-doża) and Inconsistency 2 (with the
terms ta ’ and tista ’, which should be ta’ and tista’
respectively).

These tokenisation errors appear in both the train-
ing set and the test set. BLEU works with n-grams,
therefore if a specific word is split up by a space,
they get rewarded for two words being correct
rather than one, leading to inflated results. This
is evidently the case with issues 1 and 2 above. If
a system is taught to split ta’ into ta ’, then BLEU
will reward it as if it got two words after each other
correct rather than treat it as one word as it should
be.

3.1.2 OPUS-100-Fix
As detailed in Section 3.1.1, the original Maltese
portion of the OPUS-100 dataset has inconsisten-
cies, namely with articles and words containing
punctuation, which affect the BLEU score as well
as the quality of the translations. Thus, we set out
to fix the three issues noted in Section 3.1.1.

Firstly, to fix the issue of the word and its article
being separated, we used the detokeniser created
for Maltese by MLRS5 to get a list of all the possi-
ble articles. The detokeniser searches for the arti-
cles using regular expressions. The articles found
followed by a dash and another word were merged
together.

Secondly, to fix the issue of common Maltese
particles with apostrophes at the end having the
apostrophe split from the word (such as ta ’), once
again we use the MLRS detokeniser which inter-
nally uses regular expressions to get a list of possi-
ble particles. These particles that are immediately
followed by a space and an apostrophe have the
space removed. Therefore they are merged together
as one word.

Lastly, all occurrences of the curled apostrophe
character were changed to the standard apostrophe
character.

3.2 Evaluating different Tokenisers
A common technique in NMT is to tokenise the
input first. There are various tokenisers, some of
which are word-level or rule-based and some of
which are subword tokenisers. One can also com-
bine different tokenisers (Wei et al., 2021; Xu et al.,

5mlrs.research.um.edu.mt
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2021), by first tokenising using the word tokenisers
and then feeding this to the subword tokenisers.

When it comes to neural approaches that deal
with Maltese, we expect that the most appropri-
ate tokenisation technique is a subword tokeniser.
This is due to the fact that character-level embed-
dings in Maltese do not store enough information
and word-level tokenisation does not take advan-
tage of stem/lemma similarity, with Maltese being
morphologically rich.

In our experiment, we try three different sub-
word tokenisers, namely SentencePiece (which by
default adapts the Unigram tokenisation algorithm),
the adapted version of BPE used within Sentence-
Piece as well as the original BPE tokeniser. We also
use three word-level tokenisers. Two of the word-
level tokenisers are popular in the field (namely
MosesDecoder (Koehn et al., 2007) and OpenNMT
(Klein et al., 2017)) and another one of which is
specifically designed for Maltese (the tokeniser
from MLRS (Gatt and Čéplö, 2013)). Follow-
ing (Wu et al., 2016) and (Denkowski and Neu-
big, 2017), who suggested tokeniser vocabulary
sizes should be between 8,000 and 32,000, we use
three different vocabulary sizes: 8,000, 16,000 and
32,000.

3.3 Different architectures trained on
OPUS-100-Fix

We set out to experiment with different architec-
tures and techniques to set baseline results for mod-
els trained on OPUS-100-Fix. Each model has
three variations. The first variation is the model
as it is, with standard pre-processing and post-
processing. The second variation, detailed in Sec-
tion 3.3.1 includes an additional pre-processing
step, where the data is filtered thoroughly before
being passed on for training. The third variation,
detailed in Section 3.3.2 is a post-processing step
to make a better choice from the potential outputs.

3.3.1 Filtering of Data

We follow the most common approaches used in
WMT shared tasks (Morishita et al., 2022; Oravecz
et al., 2022; Tars et al., 2022) to filter data before
feeding it to train the system. A number of opera-
tions are performed on the training set, namely by
removing sentences:

• Over 150 words in either the source or target
text.

• Containing single words with more than 40
characters in either the source or target text.

• Where the ratio between the total character
count and the number of words is greater than
12 for both the source and target text.

• Where the ratio of the number of words in
the source text to the number of words in the
target text exceeds 4.

• Where the ratio of the total character count in
the source text to the total character count in
the target text exceeds 6.

• Where the source and target texts are identical.

• Where the cosine similarity between bag-of-
words vector representations of the source and
target text is greater than 0.96.

3.3.2 Noisy Channel Reranking
Following Morishita et al. (2022), we implement
a post-processing technique to select the best out-
put from the best 5 possibilities. Instead of select-
ing the best output using just the Source-to-Target
NMT system, we also use a Target-to-Source NMT
system, and a Masked Language Model. The over-
all score is determined by evaluating how probable
it is for each model to choose the given output for
the given input.

For example, the Target-to-Source system scores
how likely it is that the source sentence is the output
produced given the target sentence. The Masked
Language Model scores how likely it is that the
target sentence is produced in that particular or-
der. This is done by masking tokens one by one,
which results in pseudo-log-likelihood scores, as
described by Salazar et al. (2019). This process is
designed to ensemble different results from differ-
ent models to get a better output. In the case of
Maltese, we trained a basic Language Model (LM)
trained on the OPUS-100-Fix training set. The
hyperparameters are detailed in Section A.1.

4 Evaluation

4.1 Experiment Setup
All models are built using the Fairseq (Ott et al.,
2019) library. Fairseq is a library that allows for
easy implementation of a machine translation sys-
tem through CLI commands, meaning minimal
code is needed to create a fully working machine
translation system. Throughout all experiments,

113



we wanted to keep the hyperparameters the same
to ensure a fair assessment. The hyperparameters
are detailed in Section A.2.

Given that these experiments focus on tokenisa-
tion issues which are present only on the Maltese
portion, we present results in the ENG → MLT
direction, however we also list all results in the
MLT→ ENG direction in the appendix for com-
pleteness.

4.1.1 Transformer (base) - Baseline Model
The architecture for the first model is the base trans-
former architecture by Vaswani et al. (2017) with
six encoder and decoder layers with 512 dimen-
sions each. There are eight attention heads for both
the encoders and decoders, with 2,048 dimensions
for each.

4.1.2 Transformer (large)
The second model trained from scratch is based
on the Transformer (large) submission detailed by
Vaswani et al. (2017). As described by the authors,
the big architecture has six encoder and decoder
layers with 1,024 dimensions each. There are 16
attention heads for both encoders and decoders with
4,096 dimensions each.

4.1.3 mBART50 fine-tuned
For this system, a pre-trained mBART-50 model
(Tang et al., 2020) was used and fine-tuned on our
data. Following Williams et al. (2023), an mBART-
50 model was used over mBART-25, since the for-
mer was found to perform better.

The architecture of mBART-50 is based on the
architecture of mBART-25 (Liu et al., 2020), which
itself is a modified version of Vaswani et al. (2017).
In their case, they use 12 encoder and decoder lay-
ers of 1,024 dimensions on 16 attention heads.

4.1.4 NLLB
Costa-jussà et al. (2022) proposed a model trained
on 200 distinct languages, including Maltese,
called NLLB as described in Section 2.2. Since this
includes Maltese, 2 experiments were conducted:
pre-trained and fine-tuned. For pre-trained, the
model was used as-is out-of-the-box without fur-
ther training and evaluated on the test sets. For
fine-tuned, the model was further trained on the
training sets. In both cases once again Fairseq (Ott
et al., 2019) was used to fine-tune and infer the
results. This model is also the biggest model that
is being experimented with, since it has 24 encoder
and decoder layers with 2,048 dimensions on 16

attention heads. The attention heads have 8,192
dimensions each. Due to resource constraints, we
only experimented with the 600M parameter ver-
sion in this study.

4.2 Results

To evaluate the systems, the BLEU and CHRF2
scores are the metrics used. Although BLEU has
its pitfalls (Kocmi et al., 2021), it is still used in a
lot of previous papers and thus can be used to com-
pare our results to previous literature. Moreover,
although there are neural based metrics nowadays
such as COMET (Rei et al., 2020) it is not yet clear
as to how well they work with the Maltese language
and correlate to human scores.

4.2.1 OPUS-100 vs OPUS-100-Fix
Following the issues found in OPUS-100, OPUS-
100-Fix was created that fixed these issues to sat-
isfy Contribution C1. We created an experiment to
train two Transformer (large) models: one using
the original OPUS-100 dataset and another using
the fixed OPUS-100-Fix dataset. We then tested
these models on both test sets. An additional exper-
iment was done where we detokenised the output
of the model trained on the original OPUS-100, to
measure the extent to how much the BLEU scores
inflate when evaluated on the original test set. For
example, if the model outputs il- kelb, it will deto-
kenise it to il-kelb before evaluating. In all cases, a
SentencePiece (Unigram) tokeniser is trained with
a vocabulary size of 8,000.

The BLEU results can be seen in Table 1. The
model trained on OPUS-100-Fix achieves the best
BLEU score when evaluated on the fixed test set,
outperforming even the model trained on OPUS-
100 with the detokenised output. The CHRF2
scores can be found in the appendix.

The model trained on OPUS-100 achieves the
best BLEU score (51.48) when evaluated on the
OPUS-100 test, but achieves the lowest (48.38)
when evaluated on the OPUS-100-Fix test set.
This shows how inflated the results on the origi-
nal OPUS-100 are, as described in Section 3.1.1.
Naturally, this only occurs if the MT output itself
contains these errors, hence why the BLEU score
drops by a significant amount when we detokenise
the output (or train on a clean training set) and
evaluate on the OPUS-100 test set.

We note that detokenising post-hoc seems to
perform marginally worse than training on OPUS-
100-Fix in both testing scenarios. We note that
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Training Set OPUS-100 Test Set OPUS-100-Fix Test Set
OPUS-100 51.48 48.38
OPUS-100 (Detokenised Output) 46.27 49.54
OPUS-100-Fix 47.00 50.87

Table 1: BLEU scores of Transformer (large) models trained on OPUS-100 and OPUS-100-Fix (ENG→MLT).

the main difference is that the system trained on
OPUS-100 tends to not include the articles when
possible, such as writing Kummenti instead of Il-
Kummenti (meaning Comments instead of The com-
ments), potentially due to the conflicting examples
in the training set.

One can also notice the increase in the BLEU
score that happens once the test set is fixed, where
the model trained on OPUS-100-Fix achieves 47.00
BLEU on the OPUS-100 test set but 50.87 BLEU
on the OPUS-100-Fix test set. This is obviously
not the case with the model trained on OPUS-100,
since the output contains the same tokenisation
errors found in the training set.

4.2.2 Evaluating different Tokenisers
Following the tokenisation errors found in the
OPUS-100 dataset, we set out to satisfy Contribu-
tion C2 by experimenting with different tokenisers
as a preprocessing step to see whether there are
significant differences in the tokeniser used in an
MT system in the context of Maltese.

Table 2 shows the Transformer (large) and the
NLLB-FT models using the different tokenisers de-
scribed in Section 3.2. Throughout this experiment,
every tokeniser used has 8,000 vocabulary size.

In the case of NLLB-FT, the model is pre-trained
on a tokeniser that adapts SentencePiece. There-
fore, when evaluating on NLLB-FT, we must use
their pre-trained SentencePiece model. This is not
the case with the Transformer (large) model, there-
fore we can perform additional experiments on this
model with other tokenisers, including BPE.

Our results show that overall, there does not
seem to be significant improvements when pairing
a subword tokeniser with another word-level to-
keniser. Using the Transformer (Large) model, a
BPE tokenizer alone works best in both directions,
whereas when using NLLB-FT, the pre-trained Sen-
tencePiece model alone performs the best. The
best performing model overall was NLLB-FT with
52.25 BLEU and 76.14 CHRF2 scores.

We also set out to determine which vocabulary
sizes work best in our experiments. We used a
Transformer (Large) model throughout as this al-

Model BLEU CHRF2
Transformer (large)
SentencePiece-Unigram (SP-U) 50.87 74.96
SP-U + MLRS 50.36 75.29
SP-U + Moses 51.17 75.09
SP-U + OpenNMT 50.91 75.08
SentencePiece BPE (SP-BPE) 50.94 75.04
SP-BPE + MLRS 49.08 74.66
SP-BPE + Moses 51.25 75.18
SP-BPE + OpenNMT 50.94 75.04
Byte Pair Encoding (BPE) 51.29 75.08
BPE + MLRS 49.82 75.04
BPE + Moses 50.24 74.62
BPE + OpenNMT 51.29 75.07
NLLB-FT
SentencePiece Unigram (SP-U) 52.25 76.14
SP-U + MLRS 50.32 75.86
SP-U + Moses 50.86 75.21
SP-U + OpenNMT 51.74 75.75

Table 2: Models trained and evaluated on OPUS-100-
Fix (ENG→MLT).

lows us to experiment with using and training our
own subword tokenisers from scratch. For this ex-
periment we used both versions of SentencePiece
as well as BPE with three different vocabulary
sizes: 8k, 16k and 32k.

The results can be seen in Table 3. In all cases
having a smaller vocabulary size achieves the high-
est BLEU and CHRF2 scores. It is interesting that
there is a very sharp drop in performance when
using SentencePiece (both the unigram version and
BPE version) with higher vocabulary sizes. We
experimented with different vocabulary sizes be-
tween 8,000 and 16,000 for the unigram version
and 16,000 and 32,000 for the BPE version and
a drop in performance is observed as the vocabu-
lary size is increased. The overall best performing
model is the original BPE with a vocabulary size
of 8,000 in both directions.

For completeness, we present the results of the
above experiments in the MLT→ ENG direction
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Vocabulary Size BLEU CHRF2
BPE
8,000 51.29 75.08
16,000 50.00 74.56
32,000 41.67 68.20
SentencePiece (Unigram)
8,000 50.87 74.96
16,000 2.73 18.48
32,000 0.05 16.32
SentencePiece (BPE)
8,000 50.94 75.04
16,000 50.76 74.70
32,000 1.39 15.41

Table 3: Transformer (Large) trained on OPUS-100-Fix
(ENG→MLT) with different tokenisers.

in Section C.

4.2.3 Different architectures trained on
OPUS-100-Fix

We also set out to satisfy Contribution C3, by eval-
uating different models and techniques using this
new OPUS-100-Fix dataset as well as using the op-
timal tokenisers and the optimal vocabulary sizes
from the previous section. These models were
therefore all trained using BPE with a vocabulary
size of 8,000, except for the pre-trained models
(mBART50 and NLLB), in which case their respec-
tive tokenisers were used.

The results can be seen in Table 4. The NLLB
pre-trained model (out-of-the-box) achieves the
lowest BLEU and CHRF2 scores, whereas NLLB-
FT achieves the highest. In almost all cases, filter-
ing seems to hurt performance except in the NLLB-
FT model. This could be due to the general lack
of data, which is less of an issue in the case of
NLLB-FT since it is pretrained. Reranking is also
generally an improvement over filtering but still
overall worse than not doing either.

For completeness, the results in the MLT →
ENG direction can be seen in Section D.

5 Conclusion

This paper presents an updated version of OPUS-
100, OPUS-100-Fix, which fixes numerous incon-
sistencies in the Maltese data. It is seen that by
fixing these inconsistencies, the results improve.
Apart from that, we also experiment with numer-
ous tokenisers where we observed that using BPE
alone, with a vocabulary size of 8,000, achieves the

Model BLEU CHRF2
Transformer (base) 48.64 73.77
Filtering of data 47.38 72.81
Noisy Channel Reranking 47.75 73.01
Transformer (large) 51.29 75.08
Filtering of data 50.93 74.86
Noisy Channel Reranking 51.44 75.28
mBART50 fine-tuned 50.25 74.12
Filtering of data 49.09 73.39
Noisy Channel Reranking 49.40 73.62
NLLB Pre-trained 39.69 71.72
NLLB-FT 52.25 76.14
Filtering of data 52.65 76.29
Noisy Channel Reranking 52.03 75.85

Table 4: Models trained and evaluated on OPUS-100-
Fix (ENG→MLT)

best results on our data. We finally experiment with
different models, both fine-tuned (including NLLB
and mBART) and those trained from scratch, and it
can be seen that fine-tuning NLLB yields the best
performance.

5.1 Limitations

The metrics used to present the results are BLEU
and CHRF2, and as seen in Kocmi et al. (2021),
may not directly agree with human evaluation.

Apart from this, although OPUS-100 is a com-
monly used dataset, it is not human reviewed and
therefore it could have other types of noise than
those fixed in this research such as incorrect trans-
lations that could affect performance. For accu-
rate comparisons between models, especially pre-
trained models that are potentially trained on higher
quality data, it would be better to ensure that the
test set is manually reviewed and validated.

5.2 Future Work

For future work it would be beneficial to utilize
monolingual data. It is assumed that if we use
backtranslation to include the monolingual data,
certain techniques such as filtering of data will lead
to a higher performance increase.

Apart from this, a LM was trained from scratch
using our limited training set for the reranking tech-
nique. It would be beneficial to experiment with
using a larger Maltese LM trained on more data
for this technique, such as BERTu (Micallef et al.,
2022).
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A Hyperparameters

A.1 Language Model Hyperparameters

For the noisy channel reranking, we used the fol-
lowing hyperparameters. The same hyperparam-
eters as6 were used to train the model, namely, a
dropout of 0.1, Adam optimizer with betas of 0.9
and 0.98, weight decay of 0.01, a learning rate
of 0.0005 with an inverse square root scheduler,
warmup updates of 4,000, and an initial learning
rate of 1e-07. 2,048 max tokens were passed per
batch per GPU with an update frequency of 16 per
GPU. Two GPUs were used to train the system. In
the case of English, we used the pre-trained LM
described in Yee et al. (2019).

6https://github.com/facebookresearch/fairseq/
blob/main/examples/language_model/README.md
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A.2 Experiment Setup Hyperparameters
We follow the same hyperparameters as Williams
et al. (2023). An Adam optimizer is used with the
Adam betas being 0.9 and 0.98. Label smoothed
cross entropy is used with a label smoothing of
0.2. The dropout probability is 0.1 and the weight
decay is set to 1e-04 . The maximum tokens per
batch was set to 2,048. Finally, the learning rate is
set to 1e-03, but the initial learning rate is actually
smaller, at 1e-07 and increases using a learning rate
scheduler to linearly increase the rate after 4,000
steps. Once the learning rate reaches 1e-03, the
rate is then decayed by the inverse square root of
the update number.

The validation occurs every 10,000 steps, where
the BLEU score on the dev set is calculated. The
model keeps training with a patience of 10, mean-
ing that if the model does not improve this BLEU
score after 10 validation steps, then it stops train-
ing.

For standard generation, the beam size is set to
5. After the sentences are inferred, the sentences
are detokenised using the respective tokeniser used
and scored using Sacrebleu (Post, 2018).

B OPUS-100 vs OPUS-100-Fix

Table 5 shows the CHRF2 scores of the experi-
ments described in Section 4.2.1.

C Evaluating different Tokenisers - MLT
→ ENG

Table 6 shows the MLT→ ENG results using the
different tokenisers.

Table 7 shows the MLT → ENG results using
the different vocabulary sizes. Similar results to
the ENG→MLT are achieved.

D Different architectures trained on
OPUS-100-Fix - MLT→ ENG

Table 8 shows the BLEU and CHRF2 scores for dif-
ferent architectures trained and evaluated on OPUS-
100-Fix.
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Training Set OPUS-100 Test Set OPUS-100-Fix Test Set
OPUS-100 75.01 74.85
OPUS-100 (Detokenised Output) 75.00 74.84
OPUS-100-Fix 75.14 74.96

Table 5: CHRF2 scores of Transformer (large) models trained on OPUS-100 and OPUS-100-Fix (ENG→MLT).

Model BLEU CHRF2
Transformer (large)
SentencePiece Unigram (SP-U) 61.94 77.12
SP-U + MLRS Tokeniser 61.27 76.91
SP-U + Moses Tokeniser 61.91 77.18
SP-U + OpenNMT Tokeniser 61.94 77.12
SentencePiece BPE (SP-BPE) 62.45 77.45
SP-BPE + MLRS Tokeniser 64.08 78.45
SP-BPE + Moses Tokeniser 62.28 77.46
SP-BPE + OpenNMT Tokeniser 62.45 77.45
Byte Pair Encoding (BPE) 64.47 78.92
BPE + MLRS Tokeniser 63.40 78.25
BPE + Moses Tokeniser 64.44 78.86
BPE + OpenNMT Tokeniser 64.45 78.91
NLLB-FT
SentencePiece Unigram (SP-U) 68.04 81.17
SP-U + MLRS Tokeniser 67.70 80.89
SP-U + Moses Tokeniser 63.42 79.76
SP-U + OpenNMT Tokeniser 67.14 80.54

Table 6: Models trained and evaluated on OPUS-100-Fix (MLT→ ENG).

Vocabulary Size BLEU CHRF2
BPE
8,000 64.47 78.92
16,000 64.08 78.69
32,000 60.83 76.47
SentencePiece (Unigram)
8,000 61.94 77.12
16,000 3.36 18.80
32,000 2.14 16.03
SentencePiece (BPE)
8,000 62.45 77.45
16,000 60.38 76.21
32,000 3.16 17.16

Table 7: Transformer (Large) trained on OPUS-100-Fix
(MLT→ ENG) with different tokenisers.

Model BLEU CHRF2
Transformer (base) 61.67 77.05
Filtering of data 61.76 76.97
Noisy Channel Reranking 62.08 77.21
Transformer (large) 64.47 78.92
Filtering of data 64.67 78.90
Noisy Channel Reranking 65.07 79.33
mBART50 fine-tuned 64.14 78.28
Filtering of data 57.57 73.13
Noisy Channel Reranking 58.66 74.05
NLLB Pre-trained 60.11 77 .82
NLLB-FT 68.04 81.17
Filtering of data 66.98 80.46
Noisy Channel Reranking 65.78 79.42

Table 8: Models trained and evaluated on OPUS-100-
Fix (MLT→ ENG)
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Abstract

We propose the first MT models for Innu-
Aimun, an Indigenous language in Eastern
Canada, in an effort to provide assistance tools
for translation and language learning. This
project is carried out in collaboration with an
Innu community school and involves the partic-
ipation of other participants, within the frame-
work of a meaningful consideration of Indige-
nous perspectives. Our contributions in this
paper result from the three initial stages of this
project. First, we aim to align bilingual Innu-
Aimun/French texts with collaboration and par-
ticipation of Innu-Aimun locutors. Second, we
present the training and evaluation results of the
MT models (both statistical and neural) based
on these aligned corpora. And third, we col-
laboratively analyze some of the translations
resulting from the MT models. We also see
these developments for Innu-Aimun as a useful
case study for answering a larger question: in a
context where few aligned bilingual sentences
are available for an Indigenous language, can
cultural texts such as literature and poetry be
used in the development of MT models?

1 Introduction

Innu-Aimun, formerly known as Montagnais (ISO
code moe,1 Glottolog mont1268)2, is the language
of the Innu, an Indigenous people present in the
Quebec and Labrador provinces of Canada. It is a
polysynthetic language, member of the Algonquian
language family and part of the Cree-Innu-Naskapi
dialect continuum (Drapeau, 2014b).

According to the latest Statistics Canada cen-
sus (2021), an estimated 11,605 locutors speak
Innu-Aimun, when including the related Naskapi
language.3 This figure has seen a negative vari-
ation compared to the previous census (2016), 4

1ISO 639-3 - moe
2Glottolog - mont1268
3Statistics Canada: Indigenous languages in Canada, 2021
4Indigenous languages across Canada

and UNESCO considers Innu-Aimun to be endan-
gered/unsafe.5 This echoes other assessments made
by language specialists (Baraby et al., 2017; Dra-
peau, 2014a, 2011).

A lack of available services in Innu-Aimun has
been documented, with insufficient availability of
professional translators and interpreters, for Innu-
Aimun and for all Indigenous languages in Que-
bec.6 In a revitalisation effort, a new professional
Innu-Aimun translation and interpretation program
is being offered.7 In this context and with the aim
of helping Innu-Aimun translators as well as lan-
guage learners and users in general, we are taking
the first steps to develop a Machine Translation
(MT) system for the Innu-Aimun language and
French language pair. This project is carried out in
collaboration with the Innu-Aimun teaching staff
of Innu community school École Kanatamat. The
project also involves the participation of students
in Innu-Aimun translation and interpretation from
the new college program at Cégep de Sept îles.

Innu-Aimun being originally an oral language,
the Innu have a rich tradition of oral storytelling but
also, since more recently, an ever growing written,
literature, including novels and poetry (St-Gelais,
2022). It is for the most part written in French,
with some publications in bilingual Innu-Aimun
and French editions. Although working with liter-
ary and poetic data presents big challenges, such
as artistic and figurative translations or particular
writing styles, we take these constraints as an op-
portunity to answer the following questions: Can
these types of texts have a positive impact on the
results of Machine Translation models for Innu-
Aimun and French languages?

Innu-Aimun, as is generally the case with In-
digenous language in Canada, is not covered by

5UNESCO World Atlas of Languages - Montagnais
6Final report of the Viens Commission (in French)
7Innu-Aimun Interpretation and Translation program at

Cégep de Sept-Îles (in French)
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currently available MT systems. It is also under-
represented—if not absent—of Large Language
Models (LLM) which are increasingly used as
translation tools. In the face of recent question-
ing on the cultural sensitivity and awareness of
general NMT models and LLMs, we propose a
more culturally-aware approach, based on cultural
texts and involving collaboration and participation
of Innu-Aimun locutors.

Our paper is structured as follows. We present a
brief state-of-the-art related to our topic in Section
2 and our proposed methodology for the present
study in Section 3. Section 4 presents results from
the first MT models as well as qualitative observa-
tions and analyses. Section 5 concludes this paper.

2 Related Works

The existing language technologies for Innu-
Aimun today are mainly online language tools,
such as a bilingual dictionary, a verb conjugation
application and learning games (Junker et al., 2016).
Similar tools exist for the neighboring language of
Eastern Cree.8 Other important building blocks,
such as morphological models, have been devel-
oped for related languages among which Plains
Cree is notable (Arppe et al., 2016). A word seg-
mentation tool based on deep learning has also been
proposed for Innu-Aimun (Tan Le et al., 2022).

The only Indigenous language for which MT
currently exists in Canada is Inuktitut. The devel-
opment of MT for Inuktitut was made possible by
the availability of the Nunavut Hansard Corpus,
constructed from the bilingual Inuktitut-English
debates of the Legislative Assembly (Joanis et al.,
2020). This availability of data also made it possi-
ble to improve word segmentation (Le and Sadat,
2020) and the study of gender biases in the bilin-
gual corpus (Hansal et al., 2022; Le et al., 2023).

As several computational linguists have noted
(notably Bird (2020)), it is primordial, when work-
ing on Indigenous language technology or resource
development, to adopt a community-based and col-
laborative approach, to avoid repeating colonial
research patterns. An exemplary participatory ap-
proach to Neural Machine Translation (NMT) was
demonstrated in the Masakhane Project for African
languages (Nekoto et al., 2020). Closer to Indige-
nous languages in Canada, Bontogon (2016) has
taken the necessary but often overlooked step of

8An example is the bilingual East Cree dictionary

human evaluation of the Indigenous language learn-
ing tool, in this case including by native speakers.

In addition to research approaches, closer atten-
tion has also been brought to the cultural aware-
ness in machine translation tools themselves, espe-
cially with the recent advent and ubiquity of Large
Language Models (LLM). For example, Yao et al.
(2024) have underlined the limits of NMT models
and LLMs when it comes to translating sentences
with cultural content and proposed a data curation
pipeline and an evaluation metric to better address
this issue. Masoud et al. (2024) have benchmarked
the performance of several state-of-the-art LLMs
on cultural differences, using three of the largest
and most represented cultural groups (American,
Chinese, and Arab) and have noticed significant
challenges even at this level of representation.

3 Proposed Methodology

3.1 Creation of Innu-Aimun/French
alignments with collaboration and
participation of Innu-Aimun locutors

Two main reference aligned corpora are used for
evaluation as part of this comparative study, based
on three bilingual Innu-Aimun and French texts.
The first corpus, denonated as kapesh is based on
literary texts by Innu author An Antane Kapesh.9

These texts were manually aligned with the partic-
ipation of Innu-Aimun translation students acting
as single annotators.

The second corpus, denonated as youth, is based
on a collection of poems written by Innu youth,10

for which a sample representing 25% of the po-
ems from the original text were manually aligned,
with verses being treated as short sentences. Part
of these the manual alignments for this sample of
poems were performed by Innu-Aimun translation
students, with every poem aligned by a single an-
notator. Another part was aligned in collaboration
with the Innu-Aimun teaching staff from Kanata-
mat school. The goal was to allow immediate com-
munity benefits from the collaboration, even at the
data collection and validation stage. These took the
form of the creation of elementary-level exercises
based on the poems in Nin Auass and their align-
ments formed in collaboration with the teaching
staff.

9Eukuan nin matshi-manitu innu-ishkueu (Kapesh, 2019)
and Tanite nene etutamin nitassi? (Kapesh, 2020)

10The collection is titled Nin Auass (Bacon and Morali,
2021)
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Based on this sample of manually aligned poems,
we evaluated several automated alignment methods,
found that, for the type and quantity of text in the
youth corpus, the best alignment method was Gale
and Church (1993). Hence the remaining 75 % was
automatically aligned with this method.

Table 1: Studied corpora

Corpus Domain Nb sentences

kapesh Novel/Essay 1280
youth Youth poems 1907

Table 1 present the aforementioned bilingual cor-
pora with their domain and their total number of
sentences (before splitting).

3.2 Evaluating MT performance of aligned
texts as one corpus

The main objective of this first MT study involving
the Innu-Aimun language is to examine its feasi-
bility with the available published bilingual texts
(Innu-Aimun and French), mostly literary and po-
etic texts. Given the small amount of texts, our ap-
proach is to assess how these texts behave as a sin-
gle unified corpus. Similarly to Joanis et al. (2020),
we train/validate and test on the same resulting cor-
pus, as the data is too limited to conduct a general-
ization study (i.e. testing on an entirely different
corpus than the one used in training/validation).

We test two types of MT methods: Statisti-
cal Machine Translation (SMT), as proposed by
Koehn et al. (2003) and Neural Machine Transla-
tion (NMT). While neural methods have achieved
state of the art for many high-resourced languages,
the statistical approach requires less data and test-
ing it is particularly relevant in low-resource con-
texts such as ours. The model used for NMT is
based on the standard Transformer architecture
(Vaswani et al., 2017).

For the distribution between the training, vali-
dation and test sets, a portion equivalent to 85%
of the corpus is reserved for training, then the rest
(15%) is divided in two for validation and testing
(7.5% each). This split scheme was chosen because
of the low availability of bilingual data for training.
Datasets were cleaned and then segmented using
language-agnostic BPE (Sennrich et al., 2016) with
a vocabulary size of 16K.

Metrics used for NMT and SMT results quan-
titative evaluations are sacrebleu (Post, 2018) and
ChrF++ (Popović, 2015).

In addition to quantative evaluation, the Innu-
Aimun teaching staff from Kanatamat also con-
tributed to a series of qualitative observation and
analyses, for a small sample of translations gener-
ated by the SMT models.

4 Evaluations

4.1 Quantitative evaluations of MT Models

Tables 2 and 3 respectively present the results of
the NMT and SMT evaluations for different combi-
nations of individual corpora. The kapesh model is
trained and evaluated solely on the kapesh corpus,
the youth model is trained and evaluated solely and
the youth corpus and the kapesh+youth model is
trained and evaluated on a combination of both
corpora.

From our NMT results, we can conclude that
at this scale of data (i.e. less than four thousand
sentences), NMT performance does not seem to
be viable for any usage. The SMT results show
that, for the Innu-Aimun/French pair at this data
scale, the statistical approach to machine transla-
tion generally performs much better than the neural
approach. This hypothesis of SMT superiority over
NMT is statistically significant with p < 0.05 for
both corpora and their combinated scores. Statis-
tical significance was tested using Bootstrap Re-
sampling, proposed for MT by Koehn (2004), and
suggested by Dror et al. (2018). We used the lat-
ters’ implementation of the algorithm specified by
Berg-Kirkpatrick et al. (2012).

The overall best quantitative results are achieved
by the kapesh-only SMT model. Its scores are
much higher than the youth-only scores, but
only slightly higher than that of the combined
kapesh+youth scores.

4.2 Qualitative observations

Since the combined evaluation set include sen-
tences/verses from both corpora, it is hard to dis-
criminate impact of the combination on each of
the corpora. The following subsection examines
in detail and qualitatively a set of SMT-generated
translations, from individual and combined models,
to better understand this impact.

Those translations were collaboratively ana-
lyzed, involving computational linguistics re-
searchers and Innu-Aimun teaching staff. This also
allows to gain a more concrete and qualitative ap-
preciation of the generated translations quality.

Tables 4, 5 and 6 present example translations

123



Table 2: NMT evaluations of Innu-Aimun/French corpora

Corpus moe-fr (BLEU) moe-fr (ChrF++) fr-moe (BLEU) fr-moe (ChrF++)

kapesh 0.28 13.4 0.62 13.2
youth 0.05 7.0 0.11 5.2
kapesh+youth 0.19 12.3 0.25 13.1

Table 3: SMT evaluations of Innu-Aimun/French corpora

Corpus moe-fr (BLEU) moe-fr (ChrF++) fr-moe (BLEU) fr-moe (ChrF++)

kapesh 4.41 22.7 4.16 33.6
youth 0.652 11.4 0.249 20.9
kapesh+youth 4.22 20.9 3.27 30.7

from the kapesh corpus, while tables 7, 8 and 9
present example from the youth corpus.

In table 4, the two translations seem quite far
from the reference one when we compare the words.
However, from the perspective of an Innu-Aimun
locutor, the general meaning of the translated sen-
tence from the kapesh+youth model can still be
understood. In this translation, it is rather the syn-
tax that is not good. The sentence could have been
considered a better translation without the last five
words (" à ce qu’il dit ").

In table 5, the translation of the kapesh model
is more incomplete: it is partially composed of
Innu-Aimun words. We can see in the translation
of the kapesh+youth model that the French words
“ chose ” and “ je vais ” (Kapesh, 2020) are also
used in the reference translation. However, for
the translation of the kapesh+youth model to be a
good representation of the concepts in the source
sentence, the concept of “other” should be removed
and the concept “say” should be added.

In table 6, the translation of the kapesh model is
syntactically incorrect in French. The translation
of the combined kapesh+youth model, even if it
does not represent a complete sentence, could be
considered correct except for its plural (the source
sentence is singular only).

In table 7, the youth model uses the Innu word
“ kie ” rather than the word “ et ” (Bacon and Morali,
2021): the presence of the kapesh sentences during
training allowed the model to perfect its translation,
perhaps by taking advantage of the frequency of
the word pair kie/et in this other corpus.

In table 8, we see that training on both youth and
kapesh corpora allows to generate a more complete
sentence than training on youth alone. In collabo-

ration with the Innu-Aimun teaching staff, we can
confirm that "moi je suis le loup" is a not only a
correct translation, but it is also closer to the literal
meaning that the reference translation, which is a
more figurative one.

In table 9, although the kapesh+youth model
translation gets none of the words of from the ref-
erence translation, it is a correct translation of the
source sentence. This hints that the very low BLEU
and ChrF++ scores of the youth model might not
reflect the actual quality of the translations. Ad-
ditionally, similarly to the previous example, it is
actually closer to the literal meaning of the source
sentence.

We can emphasize two key points from the above
observations. First, we can see that poetry can
contribute to an MT corpus: the youth corpus al-
lows the kapesh corpus to get better, more precise
translations for its literary sentences. Second, even
though they were considered somewhat imprecise,
with artistic quality (e.g. rhymes) often being pri-
oritized over translation accuracy, the youth verses
can be properly translated by an SMT model. This
is true especially when the training also involves
sentences from a literary corpus, as the translations
can then become more complete and syntatically
correct.

We can also conclude that poetry can be involved
in—and be useful for—low-resource MT for an In-
digenous language, especially if other quality tex-
tual sources are scarce. In that matter, quantitative
scores might not be suitable for proper evaluation
of the generated translations, since the latter can
greatly differ from the reference ones even, if they
are correct.

Overall, the results show that while interesting
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Table 4: Qualitative comparison of kapesh SMT model, with and without youth: example #1

Source sentence (Innu-Aimun) « Ne auass tapuetueu nenu etikut. » (Kapesh, 2020)
Translation (Reference) « L’enfant se laisse convaincre. » (Kapesh, 2020)
Translation (kapesh SMT Model) l’enfant est qu’il tapuetueu ce que lui dit.
Translation (kapesh+youth SMT Model) l’enfant est d’accord avec ce que lui dit à ce qu’il.

Table 5: Qualitative comparison of kapesh SMT model, with and without youth: example #2

Source sentence (Innu-Aimun) « Mak kutak tshekuan tshe uitamatan. » (Kapesh, 2020)
Translation (Reference) « Je vais te dire encore une chose. » (Kapesh, 2020)
Translation (kapesh SMT Model) la uitamatan et les autres.
Translation (kapesh+youth SMT Model) et les autres choses que je vais.

Table 6: Qualitative comparison of kapesh SMT model, with and without youth: example #3

Source sentence (Innu-Aimun) « Mak kutak tshekuan. » (Kapesh, 2020)
Translation (Reference) « Et il y a autre chose. » (Kapesh, 2020)
Translation (kapesh SMT Model) et les autres y.
Translation (kapesh+youth SMT Model) et les autres choses.

Table 7: Qualitative comparison of youth SMT model, with and without kapesh: example #1

Source sentence (Innu-Aimun) « kie nutin » (Bacon and Morali, 2021)
Translation (Reference) « et le vent » (Bacon and Morali, 2021)
Translation (youth SMT Model) kie le vent
Translation (kapesh+youth SMT Model) et le vent

Table 8: Qualitative comparison of youth SMT model, with and without kapesh: example #2

Source sentence (Innu-Aimun) « NIN MAIKAN » (Bacon and Morali, 2021)
Translation (Reference) « MOI LE LOUP » (Bacon and Morali, 2021)
Translation (youth SMT Model) je loup
Translation (kapesh+youth SMT Model) moi je suis un loup

Table 9: Qualitative comparison of youth SMT model, with and without kapesh: example #3

Source sentence (Innu-Aimun) « shashish shash »(Bacon and Morali, 2021)
Translation (Reference) « les jours s’éternisent »(Bacon and Morali, 2021)
Translation (youth SMT Model) la longtemps
Translation (kapesh+youth SMT Model) il Y A LONGTEMPS déjà

results can be achieved with a few thousand sen-
tences available, fully ready-to-use MT will require
more than the current data for Innu-Aimun.

5 Conclusion

The current study has shown how difficult it can be
to obtain good translations when first developing
MT for an Indigenous language for which there are
very few sentence pairs, and yet how the literary
and poetic texts available, even if written in partic-
ular styles, can potentially contribute to building a

general corpus for MT. We have also shown how
at the present scale and types of available text for
Innu-Aimun and French, SMT offers much better
results than NMT. We carried this project collabora-
tively, involving both computational linguistics re-
searchers and Innu-Aimun teaching staff, and with
the participation of Indigenous and non-Indigenous
speakers of Innu-aimun.
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Abstract

This paper explores the impact of different
back-translation approaches on machine trans-
lation for Ladin, specifically the Val Badia
variant. Given the limited amount of paral-
lel data available for this language (only 18k
Ladin–Italian sentence pairs), we investigate
the performance of a multilingual neural ma-
chine translation model fine-tuned for Ladin–
Italian. In addition to the available authentic
data, we synthesise further translations by us-
ing three different models: a fine-tuned neural
model, a rule-based system developed specif-
ically for this language pair, and a large lan-
guage model. Our experiments show that all ap-
proaches achieve comparable translation qual-
ity in this low-resource scenario, yet round-trip
translations highlight differences in model per-
formance.

1 Introduction

In recent years, a variety of methods have been de-
veloped to apply neural machine translation (NMT)
also in low-resource scenarios (Shi et al., 2022;
Haddow et al., 2022; Ranathunga et al., 2023). The
back-translation technique has shown to be partic-
ularly effective in such settings (Sennrich et al.,
2016; Edunov et al., 2018), offering the potential
for substantial improvements in translation quality.

This work investigates the influence of the back-
translation model selection for a low-resource lan-
guage. We do this, by comparing the results ob-
tained by fine-tuning a pre-trained multilingual
NMT model using synthesised translations gen-
erated by (i) a NMT system fine-tuned on the avail-
able parallel data, (ii) a rule-based machine transla-
tion (RBMT) system developed for the specific lan-
guage pair, and (iii) a large language model (LLM)
prompted to translate given texts, accompanied by
8 exemplary samples.

The quality of the synthesised data, which in
turn is determined by the underlying models used

to generate it, matters (Burlot and Yvon, 2018).
In our case, the synthesised translations originate
from three models based on a different paradigm.
Thus, the synthesised data is characterised by the
specific strengths and weaknesses of the respective
paradigms.

Rule-based systems are robust and computation-
ally lightweight, but may face challenges in dealing
with ambiguity. Moreover, they lag behind at the
grammatical level. Neural models show a high abil-
ity to adapt to provided texts, but perform less well
when confronted with out-of-domain data (Shen
et al., 2021). In contrast, language model-based
approaches (LLMs) are praised for their ability to
produce fluent, coherent texts, but they are prone
to hallucinations (Rawte et al., 2023). It is there-
fore an interesting question to investigate how this
affects the quality of the NMT models trained on
this data. This comparative analysis sheds light on
the nuanced contrasts inherent in the different MT
methods.

Our results show that in this low-resource sce-
nario the back-translation model does not have
a significant impact, and the performance of the
models converges to similar results in terms of
BLEU/chrF++ points. This assertion is supported
by an empirical analysis carried out on the Val Ba-
dia variant of Ladin. Our main contributions are:

• we are the first to explore MT for Ladin in
general, with a specific focus on the Val Badia
variant,

• we compare an RBMT-, an NMT- and an
LLM-based back-translation, providing in-
sights into the efficacy of the methods for
Ladin,

• we establish baseline results and make the test
data, the RBMT system, as well as the best-
performing models publicly available
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In Section 2 we describe our data collection
and corpus creation process. In Section 3 we
present the three different methods used for the
back-translation of monolingual Ladin data into
Italian. Section 4 gives an overview of the con-
ducted experiments and Section 5 presents the ob-
tained results. Section 6 discusses related work and
similar approaches. In Section 7, we summarize
and discuss future work.

The Ladin Language Ladin is an officially
recognised minority language, and thus taught in
schools, used in the media, and employed in public
administration. For this reason, an effective ma-
chine translation system could make a significant
contribution to facilitating and supporting commu-
nication in this language. However, Ladin is still an
unexplored language in the field of machine trans-
lation. Indeed, nearly no parallel data1 is publicly
available for this language, except for a few hun-
dred samples on OPUS (Tiedemann, 2012). This
language, spoken by around 30,000 people in the
northern Italian Dolomite regions, exhibits signif-
icant diversity across its five main variants (Val
Badia, Gherdëina, Fascia, Fodom, Anpezo), each
shaped uniquely by its development in different
valleys. This diversity is not only evident in the
spoken language but has also resulted in distinct
standards for written communication. The first au-
thor of the paper originates from the Val Badia and
is a native speaker of Ladin. Therefore, in this work
we concentrate on the standard written language of
this valley. In the rest of the paper, we will use lvb
as language code to refer to this variant of Ladin,
and ita for Italian.

2 Data

This section gives an overview of the linguistic
resources available for the Ladin language and de-
scribes the method employed to collect data for the
specific Val Badia variant of Ladin.

2.1 Available Resources

Publicly accessible parallel data for Ladin is scarce.
The Open Parallel Corpus (Tiedemann, 2012) e.g.
lists 1543 Ladin–German, 220 Ladin–Italian, and
81 Ladin–English sentences. However, these texts
are mainly specific to the variants of Gherdëina and
Fassa and were not disseminated by public insti-
tutions. For our experiments, we were provided

1In a machine readable format.

with the archive of the weekly newspaper La Usc
di Ladins2 and a digitised version of the dictionary
Ladin Val Badia – Italian (Moling et al., 2016).
From these data sources we extracted monolingual
texts as well as a small dataset of parallel sentences.
We furthermore used the dictionary as the basis
for implementing a RBMT system. The collection
of other parallel texts is time-consuming and has
therefore been left for future work.

2.2 Parallel Data

The Ladin (Val Badia) – Italian dictionary (Moling
et al., 2016) contains, alongside the word entries,
also sentences that illustrate their usage. For these
sentences the corresponding Italian translation is
also given. We have collected this data to create our
training dataset, which contains a total of 18, 139
sentences. These sentences are basic and short be-
cause they were created specifically to illustrate
the use of words and phrases. The average length
is 23.43 and 25.69 characters for Ladin and Ital-
ian respectively. This dataset has been publicly
released.3

2.3 Ladin Monolingual Data

The Ladin newspaper La Usc di Ladins, digitally
archived since 2012, provides an extensive dataset
of monolingual texts. These texts are published in
five different variants, each corresponding to one
of the five Ladin valleys. We extracted these texts
from the PDF documents and segmented them into
individual sentences using the NLTK library (Bird
et al., 2009), specifically setting Italian as the lan-
guage to accommodate Ladin. In total, we accumu-
lated 1, 937, 608 sentences. These sentences had
to be categorised by variant, as described below.

Variant Classification In order to train a variant
classifier, labeled training data is essential. How-
ever, the monolingual data from the newspaper
PDFs lacked these labels. Therefore, we collected
the texts from the newspaper’s website.4 Here, the
article excerpts are categorized according to their
origin valleys and the corresponding language vari-
ants, allowing us to create a labeled dataset.

We gathered a corpus of 7, 766 article excerpts
with a total of 42, 745 individual sentences for train-
ing. These sentences were then split into training
(comprising 75% of the sentences) and test data

2https://www.lausc.it/
3https://www.doi.org/10.57967/hf/1878
4https://www.lausc.it
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variant # sentences # characters
val-badia 746.704 71.619.515
gherdeina 491.575 57.704.414
fascia 407.605 52.504.357
fodom 146.049 16.615.059
anpezo 145.674 16.425.301

Table 1: Variant classification of monolingual data.

(the remaining 25%). Using the 2, 500 most fre-
quent 3-gram characters as features, we trained
an XGBoost variant-classifier (Chen and Guestrin,
2016). On the test data, our classifier achieved
94.48% accuracy in classifying these 5 labels.

The resulting model was used to predict the
variant of each of the 1, 937, 608 sentences in the
monolingual dataset. Table 1 reports the respec-
tive number of classifications (and the total number
of characters) for each variant. 746,704 sentences
were classified as val-badia and were considered
for further processing.

Data Preparation Because of the spelling re-
form in 2015, we further processed the sentences
classified as val-badia to exclude any with words
that are no longer valid. To do this, we used the
implementation of our RBMT system which is ex-
plained in more detail in Section 3.2. We used
the system to identify unknown words and tried to
adapt them to the new spelling according to cer-
tain rules. Sentences where this was not possible
were left out. This process ensured that the filtered
sentences fully adhered to the new spelling, which
also facilitated the rule-based translations. We col-
lected a total of 274,665 sentences (≈ 31% of the
extracted sentences) which constitute the mono-
lingual Ladin data we used in our experiments.
Among the unused sentences, ≈ 100k contain only
one unknown word/typo so there would be still po-
tential to acquire additional data if additional time
were spent analysing and preparing these texts.

2.4 Italian Monolingual Data
As monolingual data for Italian, we used the
ELRC-CORDIS_News dataset5 from OPUS (Tiede-
mann, 2012), which contains 123,691 Italian sen-
tences.

2.5 Test Data
This section introduces the three test sets on which
the models were evaluated. This test data differs

5https://elrc-share.eu/

considerably from the training data, so that it can
be considered out-of-domain data.

Testset 1 This dataset includes the statute of the
Stiftung Südtiroler Sparkasse, a nonprofit founda-
tion dedicated to supporting and promoting vari-
ous initiatives and projects, primarily within the
province of Bolzano. The document is rich in for-
mal and legal terminology. It contains 424 sen-
tences6.

Testset 2 This dataset is a festive compendium
of the history of the region associated with this
language (Kager, 2022). It combines historical
narratives with legal and administrative statements.
The result is a mixture of stylistic elements and
lexical domains. It contains 833 sentences7.

Testset 3 This dataset delves into the literary
realm with the classic story of Pinocchio (Collodi,
2017), a text rich in narrative prose, dialogue and
idiomatic expressions, challenging the models with
its creative and figurative language. It contains
1563 sentences8.

3 Back-translation Strategies

The so-called back-translation, first introduced
in Sennrich et al. (2016), refers to the process of au-
tomatic translation of monolingual texts in the tar-
get language to the source language. This method
of enriching additional training data in the source-
to-target translation direction (where the target side
remains authentic) has proven to be particularly ef-
fective and is particularly valuable in low-resource
scenarios. In this section we present the three differ-
ent back-translation strategies used in our research
to translate monolingual Ladin texts into Italian.

3.1 Neural MT

There is evidence that low-resource languages
benefit from multilingual models (Aharoni et al.,
2019). For this reason, we opted to utilise a
pre-trained, multilingual model, specifically the
Helsinki-NLP/opus-mt-ine-ine9 model avail-
able from the Hugging Face Model Hub, as our

6https://huggingface.co/datasets/sfrontull/
stiftungsparkasse-lld_valbadia-ita

7https://huggingface.co/datasets/sfrontull/
autonomia-lld_valbadia-ita

8https://huggingface.co/datasets/sfrontull/
pinocchio-lld_valbadia-ita

9https://huggingface.co/Helsinki-NLP/
opus-mt-ine-ine
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base model. This model, which is part of OPUS-
MT (Tiedemann and Thottingal, 2020), was trained
to translate between 135 Indo-European languages,
to which Ladin and Italian also belong.

The Marian MT model, configured for
Helsinki-NLP/opus-mt-ine-ine, features 6 en-
coder and 6 decoder layers, each with 8 attention
heads and a feed-forward dimension of 2048. The
model employs a beam search size of 6, a dropout
rate of 0.1, and an embedding size of 512. It shares
embeddings between the encoder and decoder.

We fine-tuned this model for the two translation
directions lvb→ ita and ita→ lvb on the available
authentic training data. We trained a single model
for both directions by using the tags »ita« for lvb
→ ita and »lld_Latn« 10 for the opposite direction
as prefixes of the source text. In the rest of the
paper, we refer to this fine-tuned model as N1. For
fine-tuning, we utilized the AdamW optimizer11

with the defaults settings.
The fine-tuning greatly improves the model in

both translation directions, as the scores reported
in Table 4 and 3 show. This demonstrates that the
data is reliable and that the model adapts well.

3.2 Rule-based MT

For low-resource languages, RBMT frameworks
offer a crucial advantage: leveraging linguistic
expertise to overcome the limitations of data-
driven methods (Khanna et al., 2021). Consid-
ering the similar sentence structure and compo-
sition of Ladin and Italian (they are both Romance
languages), it can be assumed that a rule-based
MT system can also perform well without exces-
sive structural transfer work. The available Ladin
Val Badia-Italian dictionary served as the founda-
tion for the rule-based MT system we developed
in Apertium (Forcada and Tyers, 2016) for this
language pair.

This dictionary provides, in addition to the indi-
vidual words and word translations, also a list of
all inflected forms for each lemma. To effectively
utilise this dictionary within our translation system,
we mapped the lexicographical data to paradigms
within the framework of Apertium (monodix for-
mat). Specifically, we created 742 paradigms for

10We (re)used the tag »lld_Latn« because it is listed as
a valid target language ID, as few Ladin texts were already
included in the training of this model.

11https://huggingface.co/docs/transformers/
v4.41.0/en/main_classes/optimizer_schedules#
transformers.AdamW

a total of 19,034 lemmas. This extensive set in-
cludes multiple lexical categories: 597 adverbs,
3,366 adjectives, 11,496 nouns, 162 pronouns, and
2,439 verbs. Additionally, we incorporated proper
nouns, short phrases, and wordgrams that were
identified during the monolingual text extraction
process. The resulting bilingual dictionary contains
a total of 30,468 entries. The integration with Aper-
tium was facilitated by connecting to and reusing
the pre-existing module for Italian12. The Ladin
module13 and the Ladin–Italian14 module can be
found on GitHub. In the rest of the paper, we refer
to this RBMT system as R1.

According to aq-covtest15 R1 has a coverage
of 96.66% on Testset 1, 95.81% on Testset 2 and
95.90% on Testset 3. However, since we did not
develop disambiguation modules, we designed the
system to select the first suggestion in cases of mor-
phological and lexical ambiguity, which can some-
times result in incorrect choices that may distort
the meaning of the texts. To counteract this, and to
further enhance the rule-based translation system,
we extracted the 900 most common word n-grams
from the texts and added their corresponding trans-
lations as entries to the bilingual dictionary.

In addition to the data, we have also included
13 1-level structural transfer rules to avoid com-
mon errors. For example, in Ladin, the word pa is
used to emphasize a question. In Italian, however,
there is no corresponding word for this purpose.
We have therefore developed a rule to exclude this
word from the translation. The other rules include
gender correction, dealing with reflexive verbs and
prepositions.

3.3 MT with a Large Language Model

LLMs have shown remarkable capability in under-
standing and generating human-like text across var-
ious languages and domains (Brown et al., 2020).
However, their performance in MT tasks exhibits
significant variability across languages, especially
when comparing high-resource languages to low-
resource languages (Robinson et al., 2023). We
explore the utilisation of a LLM, specifically GPT-
3.5 Turbo (OpenAI, 2024), to generate translations
from Ladin to Italian. The process involved leverag-

12https://github.com/apertium/apertium-ita
13https://github.com/schtailmuel/

apertium-lld-ita
14https://github.com/schtailmuel/apertium-lld
15https://wikis.swarthmore.edu/ling073/

Apertium-quality

131

https://huggingface.co/docs/transformers/v4.41.0/en/main_classes/optimizer_schedules#transformers.AdamW
https://huggingface.co/docs/transformers/v4.41.0/en/main_classes/optimizer_schedules#transformers.AdamW
https://huggingface.co/docs/transformers/v4.41.0/en/main_classes/optimizer_schedules#transformers.AdamW
https://github.com/apertium/apertium-ita
https://github.com/schtailmuel/apertium-lld-ita
https://github.com/schtailmuel/apertium-lld-ita
https://github.com/schtailmuel/apertium-lld
https://wikis.swarthmore.edu/ling073/Apertium-quality
https://wikis.swarthmore.edu/ling073/Apertium-quality


ing the advanced capabilities of the LLM, accessed
through the gpt-3.5-turbo-0125 API endpoint.
In the rest of the paper, we refer to this LLM as L1.

To enhance throughput and reduce the number
of API requests, we generated the translation of 16
Ladin texts in a single request. We provided a set of
8 example translations in JSON format, randomly
selected from the available authentic training data
and instructed the LLM to generate translations
for 16 Ladin texts, which were also provided as a
JSON dictionary, with empty Italian translations.
Listing 1 (Appendix A) showcases an exemplary
prompt.

With this prompting approach, we translated the
entire monolingual Ladin corpus into Italian. By
providing the exemplary translations as JSON, we
were able to reduce the failure rate (invalid/incom-
plete answers). The extent to which these exam-
ples also helped with the translation itself remains
open. The entire process spanned approximately
100 hours, with an average processing time of
around 22 seconds per request.

4 Experiments

We used the opus-mt-ine-ine16 model as base
model for the experiments. In the rest of the paper,
we use BM to refer to this model. We fine-tuned BM
with the various data sets using the Transformers
library (Wolf et al., 2020), specifically leveraging
the Seq2SeqTrainer module. We always trained
a single model for both directions using the corre-
sponding prefixes.

We configured the training to process batches
of 16 samples, and restricted the input and output
sequences to a maximum of 128 tokens to ensure
manageable computation loads. The models were
evaluated each 16,000 steps. As a stopping crite-
rion, we used three consecutive evaluations result-
ing in an improvement of less than 0.2 chrF points
on the validation set. For training, we utilised an
NVIDIA TITAN RTX graphics card with 24 GB.
In total, we have trained 15 models:

• Model N1: BM fine-tuned with the available
parallel data consisting of 18,139 sentences.

• Models N2/R2/L2: BM fine-tuned with authen-
tic data and Ladin monolingual data backtrans-
lated (BT) to Italian using N1/R1/L1 respec-
tively.

16https://huggingface.co/Helsinki-NLP/
opus-mt-ine-ine

Testset 1 Testset 2 Testset 3
ref 425.7 306.3 697.4

BM 545.8 325.8 595.7
N1 1237.6 437.8 805.3
N2 633.3 414.0 695.1
N3 484.5 331.8 606.8
N4 367.5 323.4 605.4
N5 476.2 320.9 593.4

R1 559.5 421.5 727.8
R2 593.8 405.7 722.2
R3 434.8 309.5 601.0
R4 402.4 305.3 594.3
R5 387.8 306.1 608.1

L1 380.3 294.3 517.8
L2 695.6 406.1 675.3
L3 396.0 345.4 634.4
L4 377.0 318.0 563.7
L5 393.3 316.1 569.6

Table 2: Mean perplexity (ita) of selected models.

• Models N3/R3/L3: This iteration extends the
training base of N2/R2/L2 by integrating Italian
monolingual data that has been translated into
Ladin utilising N2/R2/L2 respectively.

• Models N4/R4/L4: BM fine-tuned with same
training data as N3/R3/L3 models, but with
Ladin and Italian monolingual data backtrans-
lated with N3/R3/L3 model.

• Models N5/R5/L5: This iteration extends the
training base of N4/R4/L4 by adding also the
forward-translations (FT) as training data.

• Models A1/A2: A1 was trained on the com-
bined training data used to trained N4, R4
and L4. In A2 we additionally included the
forward-translations into the training data.

We refer to the models N1, . . . , N5 that were
trained with NMT backtranslated data as N-models.
Analogously, we use the term R-models and L-
models to refer to RBMT and LLM models, re-
spectively.

Models N4/R4/L4 illustrate the gains achieved
through iterative back-translation (Hoang et al.,
2018). Additionally, models N5/R5/L5 demonstrate
potential improvements achievable with syntheti-
cally generated forward-translation data.

We evaluated these models on the 3 test sets
presented in Section 2.5. The results are presented
and analysed in the following section.
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Testset 1 Testset 2 Testset 3
Ladin (Val Badia)→ Italian BLEU / chrF++ BLEU / chrF++ BLEU / chrF++

NMT opus-mt-ine-ine BM 8.17/34.81 8.07/34.27 2.29/21.12
BM fine-tuned with authentic data N1 12.65/41.55 11.49/39.90 11.83/36.40
+ lvb monolingual BT with N1 N2 13.01/42.98 12.40/41.26 13.23/36.84
+ ita monolingual BT with N2 N3 21.98/50.32 19.37/47.35 15.01/39.15

+ lvb and ita monolingual BT with N3 N4 22.90/50.67 21.12/48.38 16.17/40.41
+ lvb and ita monolingual FT with N3 N5 21.49/49.94 20.53/48.16 15.10/39.47

RBMT apertium-lld-ita R1 11.38/39.72 11.60/41.49 8.48/34.48
BM fine-tuned with authentic data
+ lvb monolingual BT with R1 R2 14.43/42.76 13.27/42.00 13.99/37.37
+ ita monolingual BT with R2 R3 22.17/50.33 19.27/48.17 15.89/40.19

+ lvb and ita monolingual BT with R3 R4 21.36/50.24 20.27/49.08 16.34/40.76
+ lvb and ita monolingual FT with R3 R5 22.50/50.64 20.37/49.04 16.36/40.47

LLM gpt-3.5-turbo-0125 L1 26.77/53.20 21.17/48.52 10.37/32.36
BM fine-tuned with authentic data
+ lvb monolingual BT with L1 L2 12.93/43.20 12.21/41.21 13.22/36.94
+ ita monolingual BT with L2 L3 22.69/50.74 20.37/48.40 15.26/38.99

+ lvb and ita monolingual BT with L3 L4 23.01/51.17 21.38/49.24 15.12/39.37
+ lvb and ita monolingual FT with L3 L5 23.11/50.84 20.86/48.50 15.19/39.29

ALL BM fine-tuned with authentic data
+ lvb and ita monolingual BT with N3, R3, L3 A1 23.58/50.68 21.30/48.78 15.32/39.56
+ lvb and ita monolingual FT with N3, R3, L3 A2 24.12/51.42 22.24/49.69 15.98/39.64

Table 3: Evaluation Results for Ladin to Italian Translation

5 Results and Discussion

The results of the various experiments conducted
are presented in Table 3 and Table 4, where the
SacreBLEU (Post, 2018) and chrF++ (Popović,
2015) scores for different models and test sets are
detailed. To facilitate comparison, the best scores
for each approach have been underlined, and the
overall best scores for each testset are highlighted
in bold.

Additionally, as recommended in Edunov et al.
(2020), in Table 2 we report the mean perplexity
values for the Italian translations generated by the
different models to complement BLEU’s empha-
sis on adequacy. Perplexity measures how well
a language model can predict the next word in a
sequence based on the preceding words. Lower
perplexity means that the model is more confident
and accurate in its predictions, indicating that it
can better reproduce the structure and patterns of
the language it generates. Therefore, we present
the mean perplexity values obtained from GPT-2
(Radford et al., 2019) , computed using the imple-
mentation available from Hugging Face17.

17https://huggingface.co/spaces/
evaluate-metric/perplexity

Several findings can be deduced from these re-
sults, and will be discussed below. In general, there
is evidence that augmenting the training data with
monolingual data through back-translation is effec-
tive. N1 shows that fine-tuning the model with only
authentic training data substantially improves the
results in both directions (compared to BM) in terms
of BLEU/chrF++ points. This shows on the one
hand that the training is effective and on the other
hand that the available data is adequate. However,
it is also evident that the model generates less fluent
text, as indicated by the perplexity scores which
increase for this model.

The results reveal a progression in difficulty
among the test sets, where Testset 3 emerges as
the most challenging one. On this test set, all ap-
proaches achieve similar low scores, suggesting the
presented approach may face limitations with more
complex texts.

In the translation direction lvb → ita, the best
results were achieved by combining the differ-
ent back-translations, as model A2 results indicate.
This emphasises the importance of a broad and di-
versified dataset. Remarkably, the A2 model is also
competitive in the reverse translation direction (ita
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Testset 1 Testset 2 Testset 3
Italian→ Ladin (Val Badia) BLEU / chrF++ BLEU / chrF++ BLEU / chrF++

NMT opus-mt-ine-ine BM 0.08/5.34 0.55/13.68 0.05/6.86
BM fine-tuned with authentic data N1 10.22/37.11 10.14/37.48 12.76/35.31
+ lvb monolingual BT with N1 N2 19.09/46.92 18.05/45.44 16.50/37.46
+ ita monolingual BT with N2 N3 19.54/47.02 19.45/46.21 16.66/37.36

+ lvb and ita monolingual BT with N3 N4 19.61/46.35 19.16/45.63 16.40/37.84
+ lvb and ita monolingual FT with N3 N5 20.24/46.72 19.39/45.88 15.56/36.97

RBMT apertium-lld-ita R1 4.94/37.50 4.50/36.89 3.19/27.44
BM fine-tuned with authentic data
+ lvb monolingual BT with R1 R2 19.18/46.59 16.96/44.97 15.21/36.76
+ ita monolingual BT with R2 R3 19.86/46.83 17.70/45.69 15.04/36.60

+ lvb and ita monolingual BT with R3 R4 20.93/47.65 19.32/46.58 16.65/38.16
+ lvb and ita monolingual FT with R3 R5 19.97/46.88 18.65/46.19 16.61/38.12

LLM gpt-3.5-turbo-0125 L1 5.54/29.03 3.84/28.98 1.16/18.60
BM fine-tuned with authentic data
+ lvb monolingual BT with L1 L2 22.09/48.69 19.71/46.59 14.16/35.67
+ ita monolingual BT with L2 L3 21.59/48.23 19.96/49.96 14.23/35.81

+ lvb and ita monolingual BT with L3 L4 20.82/47.86 19.87/46.59 16.55/38.04
+ lvb and ita monolingual FT with L3 L5 20.93/47.70 19.38/46.37 15.84/37.29

ALL BM fine-tuned with authentic data
+ lvb and ita monolingual BT with N3, R3, L3 A1 19.83/47.16 19.94/46.40 16.54/37.91
+ lvb and ita monolingual FT with N3, R3, L3 A2 20.81/47.50 19.71/46.36 16.36/37.82

Table 4: Evaluation Results for Italian to Ladin Translation

to lvb), although it does not achieve the best results.

A comparison of the models N1, R1 and L1 sug-
gests that the LLM generates more fluent texts (low
perplexity) but perhaps does not always accurately
reproduce the meaning, as attested by the perfor-
mance on Testset 3 (low perplexity but also low
BLEU score). In this assessment, the RBMT sys-
tem R1 also performs better than the fine-tuned
NMT model N1. One of the reasons for the high
perplexity values of N1 is that this model tends to
hallucinate because it has been fine-tuned with a
small data set. However, this does not seem to af-
fect the performance as the models trained on this
data do not perform considerably worse.

The performance of the LLM varies significantly,
with pronounced differences between the three test
sets in both directions of translation. The signif-
icant difference observed between Testset 1 and
Testset 2 in the translation direction from lvb→ ita
cannot be seen in the R- and N-models. It remains
unclear to what extent the LLM benefits from the
given examples in the prompt. However, by pro-
viding an example, the propensity for errors was
minimised, resulting in fewer mistakes during exe-
cution. Even though LLMs are not (yet) suitable for

generating texts in low-resource languages out-of-
the-box (see performance of L1 in Table 4), Ladin
and low-resource languages in general could ben-
efit from this technology. Our experiments show
that models trained on back-translations from L1
performed best on Testset 1 and Testset 2 in the
translation direction ita→ lvb.

The inclusion of forward translations in the train-
ing data did not consistently improve the models,
with the exception of the R-models for lvb→ ita.
This suggests that these synthesised texts introduce
too much noise. However, model A2 was able to
benefit from this data in the translation direction
lvb→ ita. Filtering this data could slightly improve
the model.

As the models achieve similar scores on the test
data, we also examined the quality of round-trip
translations to gain additional insights. For this, we
used 10k sentences from the monolingual Ladin
and Italian data (which were also used for train-
ing, hence the high scores), translated them into
the other language and then back-translated them.
This concept of so-called round-trip translation is
a suitable evaluation method (Zhuo et al., 2023).
We used the R4/N4/L4 models for this purpose, ap-
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A/B lvb A−→ ita B−→ lvb ita A−→ lvb B−→ ita
BLEU / chrF++ BLEU / chrF++

N4/N4 70.57 / 82.56 64.19 / 81.26
N4/R4 58.57 / 74.50 47.16 / 72.09
N4/L4 63.90 / 78.09 59.47 / 78.46
R4/N4 70.80 / 82.20 68.38 / 83.00
R4/R4 80.12 / 88.94 68.51 / 84.73
R4/L4 70.36 / 81.98 67.41 / 82.68
L4/N4 63.72 / 77.53 57.02 / 76.54
L4/R4 57.13 / 73.32 46.95 / 71.52
L4/L4 72.31 / 83.69 65.74 / 82.02

Table 5: Results for Round-Trip Translations

plying one model A for one direction and the same
or a different model B for the opposite direction.
Table 5 shows the obtained results. It can be clearly
seen that the results are worse when a different
model is used for the reverse translation. This
shows that although the models achieve similar re-
sults with the test data, they work differently. The
R4 model proves to be the most stable here, as its
translations can be back-translated well by all three
models. For other combinations, a high variance
can be observed.

The translation models N418, R419, and L420 have
been released on Hugging Face, making them ac-
cessible for further research and application.

6 Related Work

Data augmentation such as back-translation (Sen-
nrich et al., 2016; Hoang et al., 2018) and transfer
learning (Zoph et al., 2016) are established strate-
gies to improve MT systems. These concepts are
discussed in Haddow et al. (2022); Ranathunga
et al. (2023), with a focus on low-resource sce-
narios. The fact that the synthesised data plays a
critical role in the quality of the systems trained on
it, as it also introduces a certain degree of noise,
was discussed extensively in Edunov et al. (2018);
Xu et al. (2022). It was shown that tagging syn-
thetic data can be beneficial in the training pro-
cess (Caswell et al., 2019). In our work we do
not apply advanced techniques to differentiate syn-
thetic from real translations in training. The fact
that RBMT systems can still be valuable for low-
resource languages and can even help to achieve
better results was also demonstrated for Northern

18https://doi.org/10.57967/HF/2695
19https://doi.org/10.57967/HF/2693
20https://doi.org/10.57967/HF/2694

Sámi (Aulamo et al., 2021) . In our experiments,
we could also observe this in the translation direc-
tion lvb→ ita. This could be due to the ability of
the RBMT system to provide general knowledge
that is not available in the relatively limited par-
allel training datasets (Aulamo et al., 2021). The
use of LLMs for MT and different prompting tech-
niques was investigated in Zhang et al. (2023) and
their performance in the machine translation of
low-resource languages has already been analysed
in Moslem et al. (2023). Even if they struggle to
generate texts in low-resource languages (Robin-
son et al., 2023), it has already been claimed that
they can contribute to advances in machine transla-
tion of such languages. Our work is an example of
how LLMs can be used in machine translation of
a low-resource language; however, further prompt
engineering is needed to make better use of such
models.

7 Conclusion

In this work, we conducted a detailed comparison
of RBMT, NMT and LLMs for back-translation in
a low-resource scenario. We have tested various
back-translation approaches and evaluated them
for a previously unexplored language in the field
of machine translation.

Our current methodology involved the exclusion
of numerous Ladin monolingual sentences. How-
ever, this filtering would be less important for the
translation direction lvb → ita. This previously
discarded data could be re-incorporated to improve
the performance of the models in this particular
translation direction.

The round-trip translation scores indicate that
the initial back-translation with the RBMT sys-
tem leads to more robust models. Improving the
ambiguity resolution of this rule-based translation
system could lead to even better results.

The simplicity of the prompts used to feed the
LLMs provides a further starting point for inves-
tigations. In particular, the question arises as to
whether the results can be improved by further
prompt engineering, e.g., by including the mean-
ing for the distinct words occurring in a text using
the available dictionary. Investigating the effects
of prompt optimisation could provide new insights
into maximising the efficiency of LLMs in machine
translation, especially in low-resource scenarios.

We plan to address these research questions in
our future work.
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A Prompt template

I’ll give you samples for the translation from Ladin to Italian:

{
"translations": [

{
"Ladin": "scrí sües minunghes",
"Italian": "scrivere le proprie opinioni"

},
{

"Ladin": "mëte la secunda",
"Italian": "mettere la seconda"

},
{

"Ladin": ’"zessa, i á prescia!"’,
"Italian": ’"scansati, ho fretta!"’

},
{

"Ladin": "passé ia le rü",
"Italian": "oltrepassare il fiume"

},
...
{

"Ladin": "chësc liber é to",
"Italian": "questo libro è tuo"

},
]

}

Please generate the translation of each of the 16 entries in the given dictionary, where the
translations are empty. Return the same JSON dictionary where the values for Italian are filled:

{
"translations": [
{
"Ladin": "Sperun da salvé almanco val’, dijun:",
"Italian": ""

},
{
"Ladin": "Ince tröc toponims y cognoms ladins desmostra che l’identité ladina é coliada

ala natöra y ala cultura da munt",
"Italian": ""

},
{
"Ladin": "De profesciun este pech... co este pa rové pro chësc laur?",
"Italian": ""

},
...
{
"Ladin": "I dormi n pü’ domisdé y spo ciamó val’ ora dan mesanöt",
"Italian": ""

}
]

}

Listing 1: Prompt template used to obtain the Italian translations from the LLM.
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Abstract

African languages are not well-represented in
Natural Language Processing (NLP). The main
reason is a lack of resources for training models.
Low-resource languages, such as Amharic and
Ge’ez, cannot benefit from modern NLP meth-
ods because of the lack of high-quality datasets.
This paper presents AGE, an open-source tripar-
tite alignment of Amharic, Ge’ez, and English
parallel dataset. Additionally, we introduced a
novel, 1,000 Ge’ez-centered sentences sourced
from areas such as news and novels. Further-
more, we developed a model from a multilin-
gual pre-trained language model, which brings
12.29 and 30.66 for English-Ge’ez and Ge’ez
to English, respectively, and 9.39 and 12.29
for Amharic-Ge’ez and Ge’ez-Amharic respec-
tively.

1 Introduction

Language is the foundation on which commu-
nication rests, allowing us to share ideas and
interact with one another (Adebara and Abdul-
Mageed, 2022). One of the NLP applications is
machine translation (MT), which helps facilitate
human-machine and human-human communica-
tions (Abate et al., 2019). Data availability is one
of the criteria to categorize one language as a high
or low-resource language (Ranathunga et al., 2021).
Recently, interest in low-resource MT has been in-
creasing both within the MT research community
(Haddow et al., 2022), as well as in native speaker
communities (Nekoto et al., 2020). Modern NLP
technologies, however, have primarily been devel-
oped in Western societies (Adebara and Abdul-
Mageed, 2022). The current state-of-the-art(SOTA)
MT models were trained on enormous datasets, in-
cluding sentences in a source language and their
corresponding target language translations, which
is the most effective of these systems(Tonja et al.,
2023).

To date, there is no publicly available MT sys-
tem for Ge’ez language and it’s not represented
in the commercial MT systems such as Lesan1,
Google Translate2, Microsoft Translator3, and Yan-
dex Translate4. It is also not included in large-scale
pre-trained multilingual models like NLLB(Team
et al., 2022), MT5(Xue et al., 2021), ByT5(Xue
et al., 2022), and M2M-100(Fan et al., 2020). This
makes it harder for people to learn and use the
language. So, by focusing on Ge’ez, an ancient lan-
guage with profound cultural and religious signifi-
cance in Ethiopia, alongside Amharic, the country’s
official working language, and English, a global
lingua franca, this dataset aims to bridge the gap
between historical linguistic treasures and modern
technological advancements. Through this work,
we aim to provide a dataset for researchers and
technologists aiming to advance machine transla-
tion capabilities, linguistic studies, and cultural
preservation efforts. Furthermore, by enriching the
available resources for Ge’ez, we contribute to the
broader goal of advancing low-resource languages.

2 Related work

One of the major challenges in developing MT
models for Ge’ez is the lack of public data. There
were attempts to compile parallel corpora for Ge’ez
to English and Ge’ez to Amharic MT tasks, but
the development was unsatisfactory. (Mulugeta,
2015) researched Ge’ez-Amharic MT using SMT.
He used IRSTLM for language modeling. The
research was conducted on a dataset comprising
12,840 parallel Amharic-Ge’ez sentences, achiev-
ing an average translation accuracy with a BLEU
score of 8.26 based on 10-fold cross-validation.
(Abate et al., 2019) is the only publicly available
dataset that was part of an effort to train Statistical

1https://lesan.ai
2http://translate.google.com/
3https://www.microsoft.com/en-us/translator/
4https://translate.yandex.com
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Machine Translation(SMT) for English-Ethiopian
Languages and made 11,663 Ge’ez-English paral-
lel sentences. They achieved English-Ge’ez and
Ge’ez English translations with a BLEU score of
6.67 and 18.01, respectively. Using deep learn-
ing approaches, (Getachew and Yayeh, 2023) have
explored bidirectional NMT from Ge’ez to En-
glish. The experiment was conducted by leveraging
16,569 parallel sentences from the Holy Bible and
Battle of Saints and manually preparing daily con-
versational sentences. The results indicated that the
transformer (?) model achieved BLEU scores of
27.19 for English to Ge’ez translation and 29.39
for Ge’ez to English translation. Another work by
(Tegenaw et al., 2023) used NMT and transformers
and attempted three experiments that used a pre-
trained masked language model (MLM) utilizing a
monolingual dataset of 33,004 sentences for each
language. The experiments involved a parallel cor-
pus for supervised learning without a pre-trained
model and fine-tuning a pre-trained MLM with a
bilingual dataset. The outcomes were evaluated us-
ing the BLEU score, achieving 31.65 in the second
and 33.02 in the third experiment. Another recent
work by (Wassie, 2023) improved translation by 4
BLEU using a new model but faced challenges with
NLLB-200 for Ge’ez due to insufficient data. They
also experimented with GPT-3.5’s trial, which re-
sulted in a 9.2 BLEU score, underperforming com-
pared to their model’s 15.2. They also highlighted
the difficulties of training Ge’ez MT models.

A recurring issue noted in these experiments
is the absence of data sharing with the public do-
main. As shown in Table 1, there is a lack of open-
sourcing data and models, a significant obstacle
to the representation of Ge’ez in NLP. This also
indicates that despite extensive research in various
studies, it’s important for a unified effort among
researchers to create and distribute resources open
to the public. The collaborative effort would sup-
port further progress in expanding resources for the
Ge’ez language.

3 Ge’ez Language

Ge’ez (ethiopge‘ez), which is also known as
Ethiopic, is one of the oldest Semitic languages
(Tareke et al., 2002) and its alphabets is among
the oldest alphabets still in use in the world of to-
day. Furthermore, the Ge’ez language is among
the four languages (Sabaean, Greek, and Arabic)
that have been and continue to be used for ancient

inscriptional arts. Ge’ez is currently not an actively
spoken language nor a native tongue of any peo-
ple. Its use is limited to the liturgical language of
the Ethiopian Orthodox Tewahedo, Eritrean Ortho-
dox Tewahedo, Ethiopian Catholic, and Eritrean
Catholic Christians(Molla and Tabor, 2018). It is
also used during prayer and at regularly scheduled
public religious feast celebrations. The Bible dom-
inates the literature, and it comprises the Deutero-
canonical books. According to (Molla and Tabor,
2018), this language also has many medieval and
early modern original texts. The majority of the es-
sential works are correspondingly the literature of
the Ethiopian Orthodox Tewahedo Church. These
works include Christian Orthodox liturgy (service
books, prayers, hymns), hagiographies, and a range
of Patristic literature. Around 200 texts were writ-
ten about home-grown Ethiopian saints from the
fourteenth to the nineteenth century. The religious
alignment of Ge’ez literature was due to traditional
education being the obligation of priests and monks.
More info about the alphabet on Ge’ez can be found
in the appendix section.

4 Creation of the dataset

We introduce our newly Ge’ez-centered parallel
dataset; AGE — Amharic, Ge’ez , English for
machine translation.

4.1 Data Collection
Machine Translation (MT) necessitates using par-
allel sentences from source and target languages.
We started by creating a novel parallel dataset
comprising 1,000 sentence pairs. After cleaning,
we extracted 17585 and 18676 sentence pairs for
Amharic-Ge’ez and Ge’ez-English, respectively.
The reason behind the number inconsistency is
that some sources have either Amharic-Ge’ez or
English-Ge’ez. For instance, with "Kufale" (The
Book of Jubilees), our dataset comprised only
sentence pairs in Ge’ez and English. The ex-
tracted pairs were collected from The Open Siddur
Project5, YouVersion6, Ethiopic Bible7, and Awde
Mehret8.

4.2 Data pre-processing
Our dataset, sourced from diverse sources, exhib-
ited significant textual inconsistencies. We found

5https://opensiddur.org/
6https://www.bible.com/
7https://www.ethiopicbible.com/
8https://awdemehret.org/
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Language Author(s) Sentences Dataset Model Technique
Amharic, Ge’ez (Mulugeta, 2015) 12, 840 ✗ ✗ SMT
Amharic, Ge’ez (Kassa, 2018) 13,833 ✗ ✗ SMT
Amharic, Ge’ez (Abel, 2018) 976 ✗ ✗ SMT
Ge’ez, English (Abate et al., 2019) 11,663 ✓ ✗ SMT
Ge’ez, English (Getachew and Yayeh, 2023) 16,569 ✗ ✗ NMT
Amharic, Ge’ez (Tegenaw et al., 2023) 33,004 ✗ ✗ NMT
Amahric, Ge’ez (Wassie, 2023) 4,000 ✗ ✗ MNMT

Table 1: Summary of related works for Ge’ez: Sentences show the number of sentences used during the experiment.
Dataset and Model show the availability of datasets and models in publicly accessible repositories, and Technique
shows the method used to build models.

Figure 1: Data collection and pre-processing pipelines

Language Pair Sentences Token Avg. Length
Amharic 17,584 17,585 13.35
Ge’ez 51,212 13.43
English 18,722 27,884 13.81
Ge’ez 54,160 13.43

Table 2: Overview of the Dataset Sizes and Characteris-
tics

portions of the data excessively disordered and re-
moved them from our collection. Figure 1 shows
the general framework for the dataset development
process. It had two primary tasks. The first task
was data collection, which involved identifying the
sources from which the tripartite parallel Amharic,
Ge’ez, and English sentences were collected. The
second task was translating a few collected sen-
tences to Ge’ez. This task involved translators
and reviewers. Three translators and three eval-
uators were assigned to handle a set of 1,000 sen-
tences. We made an in-house tool to ease the trans-
lation and evaluation process, which significantly
streamlined the entire workflow. We performed sev-
eral preparatory actions to standardize all tokens
in Amharic and English sentences gathered from
multiple sources. These actions included cleaning
the data (eliminating URLs, hashtags, and repeated
sentences), normalizing Amharic homophone char-
acters, and converting English characters to lower-
case.

5 Baseline Experiments

As shown in table 1, prior research predominantly
employed SMT(Josef and Ney, 2001), and a very
few NMT using transformers (Vaswani et al., 2017).
To extend these studies, we incorporated an ap-
proach by leveraging the NLLB-200 (Team et al.,
2022), a pre-trained language model.

• NLLB-200: a sparsely gated 54B parame-
ter Mixture-of-Experts(MoE) model. It has
demonstrated SOTA results across many lan-
guage pairs, improving the previous model’s
BLEU scores by 44%

Accessing the large NLLB-200 model requires
a minimum of four 32GB GPUs just for inference,
showcasing the need for significant computational
resources. So, we used the NLLB-200 600M pa-
rameter variant, a dense transformer model distilled
from NLLB-200 due to its much lower resource
requirements, making it a more practical option for
our computational constraints.

The work by (Adelani et al., 2022) to effectively
adapt to large-scale pre-trained models and get
improved performance suggests that these mod-
els have better capability for relatively smaller
datasets. So, we split our dataset into TRAIN
(80%), DEV (10%), and TEST split (10%). We
fine-tune the model using the HuggingFace trans-
former tool(Wolf et al., 2020) with a learning rate
5e-5, a batch size of 4 per device, a maximum
source length, and a maximum target length of
128, and a beam size of 10. All the experiments
were performed on Google Colab Pro. Then, the
quality of translation is assessed using the BLEU
score(Papineni et al., 2002), a standard in the
field for its objectivity and correlation with hu-
man judgment. Our baseline experiments focused
on bidirectional translation tasks, Amharic-Ge’ez
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Language pair BLEU
Amharic-Ge’ez 9.39
Ge’ez-Amharic 12.29
English-Ge’ez 12.87
Ge’ez-English 30.66

Table 3: Baseline results of NLLB-200 600M

and English-Ge’ez translations, aiming to estab-
lish a foundational understanding of the NLLB-200
600M model’s capabilities within the context of our
dataset. Since our primary focus was developing
machine translation for Ge’ez, we skipped train-
ing the model on bidirectional English-Amharic
translation.

6 Results and Discussion

In this work, we adapted the NLLB-200 600M
model to evaluate its performance in the Ge’ez
language. Our results as shown in Table 3 re-
veal a clear gradient in BLEU score performance
across various language pairs. For translations
from Amharic to Ge’ez and vice versa, the model
achieved BLEU scores of 9.03 and 12.26 for evalu-
ation, with a slight increase in the prediction phase
to 9.39 and 12.87, respectively. Our BLEU scores
showed a dramatic increase in scores for the Ge’ez
to English language pair. Notably, English transla-
tions demonstrated superior performance, with the
Ge’ez to English pair achieving the highest scores
of 30.35 in evaluation and 30.66 in prediction, in-
dicating a robust model capability in this language
direction.

The higher scores in recorded in translations in-
volving English may be due to a combination of fac-
tors, including the richer linguistic resources avail-
able for English and the NLLB-200’s pre-training,
which includes 21.5 billion sentences in English
(Team et al., 2022). The difference in scores be-
tween the language pairs involving Amharic and
those involving English points to the challenges as-
sociated with being low-resource. The lower BLEU
scores for Amharic to Ge’ez suggest inherent diffi-
culties in capturing the nuances of Ge’ez, a Semitic
language with complex morphology. (Tran et al.,
2014) stated that translating into morphologically
rich languages is a particularly difficult problem in
machine translation due to the high degree of inflec-
tional ambiguity in the target language, often only
poorly captured by existing word translation mod-
els. On the other hand, better performance was reg-

istered for Ge’ez to English translation, which is an
encouraging sign of the model’s adaptability, espe-
cially considering that Ge’ez data wasn’t included
in NLLB-200’s pretraining data. The model’s suc-
cess in this area showcases the potential of such
systems when appropriately fine-tuned, even when
working with languages traditionally underserved
by NLP technologies. Finally, we will release our
models and dataset for the public to use and expand
on our work.

7 Conclusion and Future Works

This paper presents an attempt to prepare a standard
parallel corpora for Ge’ez. One thousand newly
translated sentences were gathered from nonreli-
gious domains, and the rest text data was gathered
from religious domains on the internet. Then, the
data are further pre-processed and normalized to
prepare a parallel dataset for the model training
task. Using our dataset, we fintuned NLLB-200
model. The experimental results show that translat-
ing to and from English resulted in a better BLEU
score than English to Ge’ez and Amharic to Ge’ez
and vice versa. The abundance of English data in
the pre-trained model and the morphological rich-
ness of Ethiopian languages significantly impact
the model’s performance during bidirectional train-
ing involving Ge’ez and Amharic and when these
languages are target languages. To the best of our
knowledge, this is the first ready-to-use Amharic,
Ge’ez, English tripartite dataset. Our initiative to
make the dataset and models open source will open
doors for many researchers and developers. Future
works include increasing both the quantity and di-
versity of the dataset. We also intend to incorporate
the several Ge’ez data sources that are now absent
from this dataset.
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A Appendix

A.1 Loss Graph
Training loss curves for NLLB200 600M model
between Amharic, Geez, and English, showing the
progress of model learning over 10,000 steps. By
the end of the 10,000 steps, the training loss for all
models seems to converge, which means they may
be approaching their optimal performance.

A.2 In-house tool web interface
Screenshot of a multilingual translation review in-
terface showing sentence pairs in Amharic, Geez,
and English, alongside user interaction options for
approving or commenting on the translations for
quality assurance and data curation purposes.

Figure 2: NLLB-200 Loss Graph

Figure 3: Reviewers interface of our in-house system.

Figure 4: Interface of our in-house system receiving all
the data.
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Abstract
Using large language models, this paper
presents techniques to improve extremely low-
resourced indigenous language translations.
Our approaches are grounded in the use of
(1) the presence of a datastore consisting of
a limited number of parallel translation exam-
ples, (2) the inherent capabilities of LLMs like
GPT-3.5, and (3) a word-level translation dic-
tionary. We harness the potential of LLMs
and in-context learning techniques in such a
setting for using LLM as universal translators
for extremely low-resourced languages. Our
methodology hinge on utilizing LLMs as lan-
guage compilers for selected language pairs,
hypothesizing that they could internalize syn-
tactic structures to facilitate accurate transla-
tion. We introduce three techniques: KNN-
Prompting with Retrieved Prompting Context,
Chain-of-Thought Prompting, and Learning-
from-Mistakes Prompting, with the last method
addressing past errors. The evaluation results
suggest that, even with limited corpora, LLMs,
when paired with proper prompting, can ef-
fectively translate extremely low-resource lan-
guages.

1 Introduction

In recent years, LLMs have showcased astonishing
capabilities in the realm of natural language pro-
cessing, particularly in tasks like language transla-
tion (Zhu et al., 2023), text generation (Yuan et al.,
2022), and contextual understanding (Behnia et al.,
2022). The robust functionality of these models
has led us to reconsider their potential role in in-
digenous language translation.
In our pursuit to facilitate translations from Chi-

nese to Taiwanese indigenous languages, we lever-
age the power of LLMs, buttressed by three foun-
dational pillars: the presence of a datastore con-
sisting of a limited number of parallel translation
examples, the inherent capabilities of LLMs like
GPT-3.5, and the integration of a word-level trans-
lation dictionary.

In this paper, we delineate three translation
methodologies that build upon each other in a cu-
mulative fashion. Each method represents a layer
in our stratified approach, starting from leverag-
ing contextual similarity in KNN-Prompting with
Retrieved Prompting Context (RPC) to harnessing
the didactic potential of Chain of Thought (CoT)
Prompting, and culminating in the Learning-from-
Mistakes (LFM) Prompting technique that incor-
porates feedback mechanisms for continuous im-
provement. Figure 1 provides an overview of our
methodologies, illustrating a step-by-step transla-
tion enhancement process designed for the Tai-
wanese indigenous language context.

This paper is structured as follows: In Section
2, we review the literature and discuss the posi-
tion of this study. In Section 3, we explore the
CoT Prompting methodology, followed by an in-
depth analysis of the LFM Prompting approach.
In Section 4, we report the evaluation results.
Through empirical evaluation and expert reviews,
we demonstrate the effectiveness of the proposed
methodologies.

2 Related Work

LLMs have exhibited excellent performance in
language translation tasks, particularly evident in
well-represented source languages like English
and Chinese. Despite significant strides in trans-
lation performance for these languages, there re-
mains a notable gap in the exploration of LLMs
for low-resourced languages or those that have not
been pre-trained. This aspect represents an under-
explored area within the domain of research.

2.1 Low Resource Translation with LLM
LLMs’ effectiveness on various task is primar-
ily attributed to two main properties. Firstly, in-
context learning (Brown et al., 2020; Lester et al.,
2021) allows the model to learn to solve specific
problems by providing a small number of exam-
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Figure 1: Methodology Overview

ples within the input context. The second one
is the ability to follow the instruction (Ouyang
et al., 2022; Mishra et al., 2021; Wei et al., 2021),
instruction-tuned LLMs can be guiding to solve
new task based on text instruction just as the sce-
nario they were trained.
Recently, some research has focused on enhanc-

ing these instruction following LLMs through in-
context learning, (Nguyen et al., 2023; Ahuja et al.,
2023) explores the generation of unsupervised few-
shot demonstrations to enhance translation effec-
tiveness in low-resource scenarios. Additionally,
(Yao et al., 2023) utilized cultural awareness to
optimize alignment in different languages, further
augmenting the translation performance of LLMs.
It is noteworthy that, the mentioned works

above have focused on low-resource data for
LLMs in languages that have been encountered
during the pre-training phase. In contrast, our em-
phasis lies in a scenario where the model has not
been previously trained in this specific language.
In contrast to conventional approaches, we refrain
from training parameters on limited parallel cor-
pora (Gu et al., 2018; Lalrempuii and Soni, 2023).
Instead, our goal is to leverage the understanding
and reasoning capabilities of LLMs, coupled with
the provided data, to accomplish translation tasks
for previously unseen languages.
In summary, to the best of our knowledge, no

study has delved into the challenges and applica-
tions of utilizing LLMs for languages that have not
been encountered before.

2.2 Indigenous Language Translation
In the context of preserving and revitalizing in-
digenous languages, the work by (Zheng et al.,

2022) stands as a notable contribution. Zheng and
colleagues introduce the Amis-Mandarin dataset,
which includes a parallel corpus comprising 5,751
Amis and Mandarin sentences. This dataset is
of particular relevance to our research on translat-
ing Chinese sentences into Taiwanese indigenous
languages. The Amis-Mandarin dataset provides
a valuable resource for studying indigenous lan-
guage translation. It aligns with the objectives of
our study, as it offers a substantial parallel corpus,
a fundamental component for training and evalu-
ating translation models. Our research similarly
leverages parallel corpora, although we focus on
the translation of Chinese into various indigenous
languages, including but not limited to Amis. In
this study, we conduct experiments on six differ-
ent indigenous languages.
Furthermore, (Zheng et al., 2022) compile a

comprehensive dictionary containing 7,800 unique
Amis words and phrases, each accompanied by
its Mandarin definition. This lexical resource en-
hances the utility of their dataset for translation
tasks. In our research, we assume the existence of
a similar dictionary, emphasizing the importance
of word-level translation between Chinese and Tai-
wanese indigenous languages.

Stap and Araabi (2023) evaluates the transla-
tion performance of different systems for Spanish
to 11 indigenous languages from South America.
The authors find that LLMs like ChatGPT are not
yet good at translating into indigenous languages.
This is likely due to a number of factors, including
the lack of training data for indigenous languages,
the complex grammar and sentence structure of in-
digenous languages, and the difficulty of capturing
the nuances of indigenous culture in translation.
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2.3 Unveiling LLMs’ Proficiency in Tool
Usage

In recent research, (Schick et al., 2023) discovered
that LLMs exhibit the ability to discern how to em-
ploy tools provided by users, including external
data. They adeptly combine this external informa-
tion with their own knowledge to effectively ad-
dress problem -solving tasks. These investigations
delve into the mechanisms of CoT (Inaba et al.,
2023) and Self-instruction (Yang et al., 2023) ap-
proaches, exploring how these methodologies as-
sist LLMs in comprehending questions and utiliz-
ing the tools at their disposal. Additionally, there
has been the development of question- answering
datasets, such as ToolQA (Zhuang et al., 2023; In-
aba et al., 2023), which aimed at faithfully evalu-
ating the ability of LLMs to use external tools for
question-answering.
Inspired by these explorations into the under-

standing and application capabilities of LLMs, we
take a similar approach in our method design. We
offer KNN examples and word-by-word transla-
tion as tools for LLMs to improve their language
translation abilities.

2.4 Position of Our Paper
This research stands at the intersection of multiple
areas, addressing the challenges of translating into
low-resource indigenous languages using LLMs
like ChatGPT. While prior works have explored
low-resource translation and indigenous language
preservation, our study distinguishes itself in two
key aspects:

1. Languages Unseen in Pre-training: Unlike
previous research that has primarily focused
on low-resource data for LLMs in languages
encountered during pre-training, our work
emphasizes the scenario where the model has
not been previously trained in the specific
target language. We tackle the challenge of
translating into languages that lack represen-
tation in themodel’s training data, making our
approach more versatile and applicable to a
broader range of indigenous languages.

2. Few-Shot Prompting Techniques: Our re-
search pioneers the application of few-shot
prompting techniques to enhance translation
capabilities for indigenous languages. We in-
troduce innovative methods, including KNN-
Prompting with RPC, CoT Prompting, and

paper In-context
Learning

Fine-tune
Parame.

Low-Resource
Language

Unseen
Language

(Yao et al., 2023) ✓
(Nguyen et al., 2023) ✓ ✓
(Guerreiro et al., 2023) ✓ ✓
(Gu et al., 2018) ✓ ✓ ✓
(Lalrempuii and Soni, 2023) ✓ ✓ ✓
Our work ✓ ✓ ✓

Table 1: An overview of the existing language transla-
tion studies

LFM Prompting, tailored to leverage LLMs’
inherent understanding and reasoning abili-
ties. These techniques empower LLMs to ef-
fectively tackle low-resource language trans-
lation tasks, even when working with limited
parallel corpora.

In summary, our paper bridges the gap be-
tween LLMs and low-resource indigenous lan-
guage translation, offering practical and innova-
tive solutions for preserving and revitalizing en-
dangered languages. By exploring the potential of
these models in an uncharted linguistic landscape,
we provide a fresh perspective and a promising di-
rection for future research in this domain. For clar-
ity, we also compare the related work in Table 1.

3 Methodology

Problem Setting and Assumptions The primary
objective of this research is to enable the transla-
tion of Chinese sentences into Taiwanese indige-
nous languages through the utilization of LLMs. In
pursuit of this goal, wemake the following assump-
tions for the methods proposed in this study:

• Datastore of Parallel Corpora: Our first
assumption centers on the availability of a
datastore with limited translation examples.
Within this datastore, each data entry com-
prises a pair of sentences: a source sentence
in Chinese (the language intended for transla-
tion) and a corresponding target sentence in
the specific Taiwanese indigenous language.
This resource forms the backbone for our
translation, facilitating the alignment of lin-
guistic patterns and meanings.

• Large Language Models: The cornerstone
of our translation methods is the utilization
of large pre-trained language models, exem-
plified by GPT-3.5, as the primary translation
engines.

• Dictionary Existence: In addition to the
aforementioned resources, we introduce an-
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other assumption: the existence of a dictio-
nary that spans word-level translations. This
dictionary encompasses translations between
indigenous language words and their corre-
sponding Chinese counterparts.

Figure 1 outlines our study’s methods for en-
hancing translation in a cumulative manner. The
KNN-Prompting with RPC method forms the base,
merging contextually similar sentences and word
translations to inform the LLM’s understanding
of grammar and context. The CoT Prompting
adds CoT demonstrations, showing RPC integra-
tion for effective translation. The LFM Prompt-
ing expands upon these with a feedback loop,
leveraging previous translation errors to refine out-
comes. This progressive strategy not only en-
hances LLM’s translation proficiency but also pro-
motes continual learning and accuracy improve-
ment.

3.1 KNN-Prompting with Retrieved
Prompting Context (RPC)

We investigate the application of few-shot learning
through the KNN-Prompting concept, as discussed
in the works of Shi et al. (Shi et al., 2022) and Xu
et al. (Xu et al., 2023). Our approach not only
leverages contextually similar examples but also
incorporates individual translations for each word
in the source language. The methodology unfolds
in the following manner:

• When taskedwith translating a sentence s, our
method initiates by constructing a Retrieved
Prompting Context (RPC) for s. This context
includes:

– k examples that are contextually analo-
gous to s, selected based on their simi-
larity.

– Translations for each word in s, sourced
from a comprehensive dictionary.

• For instances where direct word equivalents
are unavailable, we employ the BERT-base-
chinese model as an embedding tool. This
model aids in computing similarities to iden-
tify the most appropriate substitute words.

• The core principle of our method is to enable
the LLM to assimilate the grammatical norms
and sentence constructs of the target language.
It achieves this through the analysis of the k

Figure 2: KNN-Prompting with RPC

examples, thereby learning to organize the in-
dividually translated words into coherent and
grammatically consistent sentences.

For a practical illustration of this process, please
see Figure 2, which provides a concrete example of
the RPC in action. We also show an example for
prompting in Table 5.

3.2 CoT Prompting

In this methodology, we harness the CoT strategy,
as delineated by Wei et al. (Wei et al., 2022), to
guide the LLM in effectively utilizing the RPC for
translating a given sentence s. Specifically, this
approach involves the following steps:

• When presented with a sentence s for transla-
tion, accompanied by KNN-RPC-prompting
inputs (i.e., k contextually similar examples
and individual word translations), we further
augment the LLM’s input with q CoT demon-
strations. These demonstrations are designed
to illustrate how to use the provided RPC to
formulate the final translated sentences.

• An instance showcasing two CoT demonstra-
tions is illustrated in Figure 3. It is important
to note that these CoT demonstrations are inte-
grated with the KNN-RPC-prompting inputs
to serve as comprehensive prompting mate-
rial for the LLM.

• For detailed examples of this prompting struc-
ture, please refer to Table 6 in the Appendix.
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Figure 3: CoT KNN-Prompting: In this example, we have two CoT demonstrations. Note that each CoT demon-
stration comprises (1) A sample sentence, (2) RPC for the sentence, and (3) The ground-truth sentence. These CoT
demonstrations are integrated with the KNN-RPC-prompting inputs to serve as comprehensive prompting material
for the LLM.

The overarching aim of this methodology is
to empower the LLM with an understanding of
the grammatical rules and the proficiency to fully
leverage the RPC, including both the retrieved sen-
tences and individual word translations, for pro-
ducing coherent and accurate translations.

3.3 Learning-from-Mistakes (LFM)
Prompting

LFM Prompting is a two-stage approach aimed at
enhancing the quality of translations. This method
leverages the result from the CoTKNN-Prompting
and incorporates a feedback mechanism by con-
ducting trial translation to refine the translation
based on past translation errors. Themethodworks
in the following phases:

• Phase 1: Trial Translation with CoT
PromptingWhen given a sentence s to trans-
late, we start by retrieving q contextually sim-
ilar sentence pairs from the data store. Each
pair (sqi , tqi) consists of a Chinese sentence
sqi and its corresponding indigenous sentence
tqi . For each sqi , we employ CoT KNN-
Prompting (the method introduced in Section
3.2) to translate it, resulting in t̂qi . At this
stage, we have (sqi , tqi , t̂qi). Our approach
involves using these results as examples for
the LLM to learn from its translation errors
and make improvements.

• Phase 2: Learning from Past Mistakes The
second phase of LFM Prompting introduces
a crucial element: the incorporation of past
translation errors. Specifically, we treat (sqi ,
tqi , t̂qi) from the Phase 1 as LFM examples.
In this phase, we present the LLM with a set
of such examples, alongside the translation t̂
generated by using CoT KNN-Prompting to
translate s. The language model is tasked
with refining t̂ by considering the error exam-
ples in translation. It uses the provided ex-
amples of mistranslations to correct and im-
prove the initial translation t̂, aligning it more
closely with the correct target language struc-
ture and meaning.

Furthermore, Figure 4 provides a visual repre-
sentation of the entire architecture’s workflow, il-
lustrating the sequential processes outlined above.
We also show a prompting example in Table 7.

4 Experiment

4.1 Model Usage
Utilizing the GPT-3.5-turbo-16k-0613 version
with a temperature setting of 0, we employ Sen-
tence BERT (Reimers and Gurevych, 2019) as the
embedding model to retrieve k-nearest neighbor
sentences. The similarity between sentences is
computed using cosine similarity.
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Figure 4: LFM Prompting

Southern Amis
Methods BLEU1STD BLEU2STD BLEU3STD chrF++STD

Zeroshot 1.0 0.0 0.0 3.9
20-shots 18.0 4.9 1.9 16.3
Knn-Prompting (k=5) 30.1 14.4 6.9 28.1
Knn-Prompting (k=10) 33.3 16.4 8.0 34.2
Knn-Prompting w. RPC (k=5) 38.22.2 10.51.8 4.31.1 41.21.1
Knn-Prompting w. RPC (k=10) 37.82.2 12.53.2 5.21.9 41.51.6
CoT Prompting 44.41.5 14.30.6 5.91.1 43.50.3
LFM Prompting 44.42.7 17.51.8 8.21.7 44.91.9

Table 2: The translation results for Southern Amis

4.2 Data Sets
We use the learning materials for various indige-
nous languages from the ’Klokah’ website 1 pro-
vided by the Foundation for the Research and De-
velopment of Indigenous Languages in Taiwan as
our evaluation corpora. Each indigenous group
consists of 450 sentences with corresponding Chi-
nese translations and a dictionary of 1000 words
(single word translation). For each language, we
divide this dataset into two parts:

• Test Data - A random selection of 100 sen-
tences was used to evaluate the translation
performance of various methods.

• Reference Data - The remaining 350 sen-
tences and all dictionaries were used as ref-
erence materials for the LLM translation.

1https://web.klokah.tw/

4.3 Evaluation Results
4.3.1 Automatic Score
We’ve employed the GPT-3.5-turbo as our foun-
dational language model for translation tests. Ini-
tially, we opted for Southern Amis, an indigenous
language, as our primary focus, evaluating transla-
tion accuracy using the standard BLEU (Papineni
et al., 2002) and chrF++ (Popović, 2017) metrics.
As depicted in Table 2, the zero-shot translation
results indicate the model’s limitations in effec-
tively translating this language in the absence of
reference data, reflected in BLEU scores nearing
zero. However, introducing 20-shot reference data
prompts the model to engage in (Agrawal et al.,
2022) in-context learning, resulting in a marginal
improvement in BLEU scores. This highlights the
potential of few-shot learning.
Furthermore, from the results in Table 2, we

151

https://web.klokah.tw/


Coastal Amis
Methods BLEU1STD BLEU2STD BLEU3STD chrF++STD

Knn-Prompting w. RPC (k=5) 42.91.8 11.80.9 4.71.1 45.40.8
Knn-Prompting w. RPC (k=10) 43.31.2 13.40.6 5.80.8 44.81.1
CoT Prompting 44.52.8 11.93.0 4.72.3 45.71.6
LFM Prompting 44.12.0 12.62.9 5.72.5 46.11.8

Wanda Tayal
Methods BLEU1STD BLEU2STD BLEU3STD chrF++STD

Knn-Prompting w. RPC (k=5) 41.52.5 13.02.1 4.81.6 42.52.4
Knn-Prompting w. RPC (k=10) 42.12.2 13.62.7 5.71.4 42.82.6
CoT Prompting 46.31.8 14.42.6 5.81.2 44.72.1
LFM Prompting 45.22.0 14.01.7 5.80.9 43.92.0

Siji Tayal
Methods BLEU1STD BLEU2STD BLEU3STD chrF++STD

Knn-Prompting w. RPC (k=5) 44.33.2 14.62.1 4.91.7 39.32.0
Knn-Prompting w. RPC (k=10) 44.43.0 14.52.0 5.42.3 40.91.8
CoT Prompting 47.52.7 16.01.2 5.91.4 41.21.0
LFM Prompting 50.01.2 20.01.4 9.32.0 43.42.0

Duda Seediq
Methods BLEU1STD BLEU2STD BLEU3STD chrF++STD

Knn-Prompting w. RPC (k=5) 45.01.2 16.21.5 5.40.8 38.20.8
Knn-Prompting w. RPC (k=10) 45.71.2 17.11.4 6.71.5 39.31.6
CoT Prompting 46.11.6 17.51.4 6.91.0 38.91.1
LFM Prompting 46.31.5 17.32.1 6.91.4 39.31.2

Table 3: The translation results for Coastal Amis,Wanda Tayal, Siji Tayal, and Duda Seediq

can observe that using KNN-Prompting by retriev-
ing contextual-relevant examples improves transla-
tion quality. We can also observe that utilizing the
Chain-of-Thought strategy to guide the LLM also
brings an improvement in translation quality, with
an increase in BLEU scores from 1 to 3. We also re-
port experiment results with Coastal Amis, Wanda
Tayal, Siji Tayal, and Duda Seediq languages. The
results are shown in Tables 3.
When comparing models, we use BLEU3 as the

main performance metric, as BLEU3 considers 3-
gram matches, offering a more holistic view of the
quality of translations, particularly in terms of flu-
ency and coherence. In terms of BLEU3 scores,
CoT Prompting consistently surpasses the base
KNN-Prompting across all languages. This points
towards the importance of capturing longer se-
quences and understanding the grammatical flow
of the indigenous languages. We can also see the
performance boost when we employ the LFM strat-
egy with CoT in the compared languages.

4.3.2 Qualitive Review by Language Expert

In Table 4 in the appendix, we present the results of
an evaluation by a Coastal Amis language expert,
assessing translations from Chinese into Coastal
Amis using various methods. This offers insights
into the effectiveness of these translation strategies
and helps us understand their impact on translation
quality.

• Initially, the expert demonstrates a preference
for translations produced by the LFMmethod,
highlighting its contribution to linguistic pre-
cision and affirming the significant role of the
LFM phase in enhancing translation quality.

• In the second dialogue, the expert’s endorse-
ment of the COT and LFM method suggests
that its incorporation can refine the LLM’s un-
derstanding and conveyance of the target lan-
guage’s nuances.

• There is an identified need for improvement
in translating sentence structures, particularly
with time adverbs such as ” 非常” (very), ”
很” (very), ”最” (most), and the placement of
temporal terms like ”今天” (today), ”明天”
(tomorrow) at the sentence’s end. The LFM
method is anticipated to guide the LLM in
learning and internalizing these linguistic pat-
terns, thereby refining the translations. Chal-
lenges such as dictionary absences are ad-
dressed by seeking synonyms, for instance,
substituting ” 專為” (specially designed for)
with ”最” (most), and ”南邊” (south) with ”
藍色” (blue). We posit that expanding the dic-
tionary will mitigate such issues, further en-
hancing translation fidelity.

Overall, the expert’s reviews imply that the
translation approach integrating the LFM strategy
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tends to yield more precise and culturally attuned
translations. This suggests that for LLMs trans-
lating less-resourced languages, a strategy amalga-
mating error feedback with accumulative learning
might prove more effective. These insights bolster
the methodologies delineated in our paper, posit-
ing that a stratified and iterative enhancement ap-
proach can substantially uplift translation quality,
particularly for languages with constrained struc-
tural and lexical resources.

5 Conclusion

This study delves into the capabilities of LLMs in
translating indigenous languages. Despite a lim-
ited datastore of parallel translations, our intro-
duced methodologies: KNN-Prompting with RPC,
CoT Prompting, and LFM Prompting demonstrate
effectiveness in harnessing LLMs for this task.
Emphasizing our technical contribution, empirical
results highlight the superior performance of the
CoT Prompting and LFM strategy over the com-
pared baseline, signifying its adeptness at captur-
ing intricate linguistic nuances and offering an ad-
vanced approach to preserving linguistic diversity.

6 Limitations

The strength of this framework lies in its capacity
to translate less common, niche languages with a
limited number of examples. Nevertheless, sev-
eral challenges were encountered during the exper-
iments. For example, in the case of the Southern
Amis language, the term ‘we‘ can be translated as
‘kami‘ or ‘niyam,‘ among other options. Determin-
ing whether these terms carry subtle distinctions
in meaning or are interchangeable necessitates the
expertise of native speakers. Moreover, the use of
the BLEU metric provides only one standardized
answer, which may not consistently align with the
actual context.
Furthermore, within the LFM context, structural

or grammatical corrections are solely guided by
prior examples, as the language model itself lacks
the capability for independent reasoning and ad-
justment. Therefore, achieving significant break-
throughs in effectiveness remains a challenge. Fi-
nally, while our methods have demonstrated data-
driven enhancements, they do not fully address the
issue of insufficient few-shot data resulting in in-
consistent translation outcomes. Further research
and innovation are essential in addressing this mat-
ter.
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Coastal Amis language expert reviews translation results

[zh]:你喜歡看書嗎？(En: Do you like reading books?)
[CoT]: Kiso (你, you) maolah (喜歡, like) minengneng (看望, visit) a cudad (書, book) haw
?
[LFM]: Kiso (你, you) maolah (喜歡, like) cudad (書, book) minengneng (看望, visit) haw
?
[language expert]: Maolah (喜歡, like) kiso (你, you) minengneng (看望, visit) to co-
dad (書, book) haw?

[zh]:是的，我很喜歡。(En: Yes, I really like it.)
[CoT]: Hai (是的, yes) , maolah (很喜歡, really like) to kako (我, I) .
[LFM]: Hai (是的, yes) , maolah (很喜歡, really like) to kako (我, I) .
[language expert]: Hai (是的, yes), ma‘olah (很喜歡, really like) kako (我, I).

[zh]:你會織布嗎？(En: Do you know how to weave?)
[CoT]: Mafana‘ (會, know how to) kiso (你, you) a miteno‘oy (織布, Weaving fabric) ?
[LFM]: Mafana‘ (會, know how to) kiso (你, you) miteno‘oy (織布, Weaving fabric) ?
[language expert]: Mafana‘ (會, know how to) kiso (你, you) miteno‘oy (織布, Weav-
ing fabric) haw?

[zh]:我最喜歡夏天。(En: I like summer the most.)
[CoT]: Maolah (很喜歡, really like) kako (我, I) patodongan (專為, Specially designed for)
ko kaciherangan (夏天, summer) .
[LFM]:Maolah (很喜歡, really like) kako (我, I) kaciherangan (夏天, summer) patodongan
(專為, Specially designed for) .
[language expert]: O kaciherangan (夏天, summer) ko kaolahan (最喜愛的, favorite)
ako(我, I).

[zh]:我最喜歡藍色。(En: I like blue the most.)
[CoT]: Maolah (喜歡, like) kako (我, I) patodongan (專為, Specially designed for) sati-
molan (南邊, south) .
[LFM]: Maolah (喜歡, like) kako (我, I) satimolan (南邊, south) patodongan (專為, Spe-
cially designed for) .
[language expert]: O langdaway (藍色, blue) a cengel (顏色, color) ko kaolahan (最喜
歡, favorite) ako (我, I).

[zh]:是的，天氣非常好。(En: Yes, the weather is very nice.)
[CoT]: Hai (是的, yes) , romi‘ad (天氣, weather) tada (非常, very) nga‘ay (好, good) .
[LFM]: Hai (是的, yes) , romi‘ad (天氣, weather) tada (非常, very) nga‘ay (好, good) .
[language expert]: Hai (是的, yes), fangcal (很好, very good) ko romi‘ad (天氣,
weather) anini (今天, today).

Table 4: Result of Language Expert Review
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Knn-Prompting with RPC

You are an Amis language translator. The followings are some [zh] to [amis] examples.
Chinese: 是的，我讀過，這本書很好看。(English: Yes, I’ve read it, and the book is very
interesting.)
[Amis]: Hay, nami’asiptu kaku, kapah kina cudad.
[zh]: 我也很好，謝謝。(English: I’m doing well too, thank you.)
[Amis]: Kapah:tu kaku, aray.
[zh]: 郵差也感到喜悅與滿足。(English: The postman also feels joy and satisfaction.)
[Amis]: U yu-cay satu, mikihatiya a lipahak, a mi’edem tu ulah nu valucu’.
:
:

[zh]: 很好學 (English: Easy to learn.)
[Amis]: kapah
[zh]: 也 (English: Also)
[Amis]: aca
[zh]: 很有趣 (English: Very interesting).
[Amis]: saka’ulahan
Based on the above examples. Could you help to translate [zh]: 很好學，也很有趣. (En-
glish: It’s easy to learn and interesting)

Table 5: Simplified Example for Knn-Prompting with RPC
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CoT Demonstration 1

You are an Amis language translator. The followings some [zh] to [amis] examples.
[zh]: 現在幾點鐘？(En: What time is it now?)
[Amis]: Pina’ay ku tuki anini ?
[zh]: 喔！她什麼時候回來呢？(En: Oh! When is she coming back?)
[Amis]: A, a hacuwa cira a taluma’?
:
:

[zh]: 要 (En: Need)
[Amis]: aw
[zh]: 走 (En: Go)
[Amis]: rakat
[zh]: 幾天 (En: How many days.)
[Amis]: kapina a remi’ad
[zh]: 呢 (En: Question particle)
[Amis]: saw
Based on the above examples. Could you help to translate [zh]: 要走多久呢？
[Assistant:] Hacuwa ku tenes a remakat ?

CoT Demonstration 2

You are an Amis language translator. The followings some [zh] to [amis] examples.
[zh]: 今年，我們伯伯全家人從台北搭車回來。(En: This year, our uncle’s entire family came back from
Taipei by car.)
[Amis]: Anini a miheca, makakarireng a taluma’ku vaki niyam atu wawa nira namaka Taypey.
[zh]: 火車比較快。(En: The train is faster.)
[Amis]: U silamalay ku kalamkamay.
:
:

[zh]: 要 (En: Need)
[Amis]: aw
[zh]: 搭什麼 (En: Take what.)
[Amis]: Makama’an
[zh]: 公車 (En: Bus)
[Amis]: vasu
[zh]: 到 (En: Arrive)
[Amis]: tangasa
[zh]: 台北 (En: Taipei)
[Amis]: Taypak
Based on the above examples. Could you help to translate [zh]: 要搭什麼（車）到台北？
[Assistant:] Makama’an a tala i Taypak ?

CoT Prompting

You are an Amis language translator. The followings are some [zh] to [amis] examples.
Chinese: 是的，我讀過，這本書很好看。(English: Yes, I’ve read it, and the book is very interesting.)
[Amis]: Hay, nami’asiptu kaku, kapah kina cudad.
[zh]: 我也很好，謝謝。(English: I’m doing well too, thank you.)
[Amis]: Kapah:tu kaku, aray.
[zh]: 郵差也感到喜悅與滿足。(English: The postman also feels joy and satisfaction.)
[Amis]: U yu-cay satu, mikihatiya a lipahak, a mi’edem tu ulah nu valucu’.
[zh]: 很好學 (English: Easy to learn.)
[Amis]: kapah
[zh]: 也 (English: Also)
[Amis]: aca
[zh]: 很有趣 (English: Very interesting).
[Amis]: saka’ulahan
Based on the above examples. Could you help to translate [zh]: 很好學，也很有趣. (English: It’s easy to
learn and interesting)

Table 6: Example for Simplified CoT KNN-Prompting

157



LFM Prompting Example

Please analyze the differences between [Your Answer] and [Correct Answer] results.
[zh]:是的，我讀過，這本書很好看。(En: Yes, I’ve read it, and the book is very inter-
esting.)
[Your Answer]:Hay , nami’asiptu kaku , kina cudad kapah .
[Correct Answer]: Hay , nami’asiptu kaku , kapah kina cudad .
Please analyze the differences between [Your Answer] and [Correct Answer] results.
[zh]:我也很好，謝謝。(En: I’m doing well too, thank you.)
[Your Answer]:Kapah:tu kaku , aray .
[Correct Answer]: Kapah:tu kaku , aray .

You are an Amis language translator. The followings some [zh] to [amis] examples.
[zh]:是的，我讀過，這本書很好看。(En: Yes, I’ve read it, and the book is very inter-
esting.)
[amis]:Hay , nami’asiptu kaku , kapah kina cudad .
[zh]:我也很好，謝謝。(En: I’m doing well too, thank you.)
[amis]:Kapah:tu kaku , aray .
[zh]:郵差也感到喜悅與滿足。(En: The postman also feels joy and satisfaction.)
[amis]:U yu-cay satu , mikihatiya a lipahak , a mi’edem tu ulah nu valucu’.
...
[zh]: 很好學 (En: Easy to learn.)
[amis]: kapah
[zh]: 也 (En: Also)
[amis]: aca
[zh]: 很有趣 (En: Very interesting.)
[amis]: saka’ulahan
Check whether the following sentence needs revision:
[zh]:很好學，也很有趣。(English: It’s easy to learn and interesting)
[Your Answer]:Kapah kaku , aca saka’ulahan .
[Correct Answer]:

Table 7: Example for Simplified LFM Prompting. Note that as introduced in the LFM method, when given a
sentence s (i.e., 很好學，也很有趣) to translate, we start by retrieving q contextually similar sentence pairs
from the data store and use CoT KNN prompting to obtain trial translation results (the sentence followed [Your
Answer]) and also the correct answer for enabling LFM.
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Abstract

Cross-lingual classification poses a signifi-
cant challenge in Natural Language Processing
(NLP), especially when dealing with languages
with scarce training data. This paper delves into
the adaptation of ensemble learning to address
this challenge, specifically for disaster-related
social media texts. Initially, we employ Ma-
chine Translation to generate a parallel corpus
in the target language to mitigate the issue of
data scarcity and foster a robust training en-
vironment. Following this, we implement the
bagging ensemble technique, integrating multi-
ple classifiers into a cohesive model that demon-
strates enhanced performance over individual
classifiers. Our experimental results reveal sig-
nificant improvements in adapting models for
Arabic, utilising only English training data and
markedly outperforming models intended for
linguistically similar languages to English, with
our ensemble model achieving an accuracy and
F1 score of 0.78 when tested on original Arabic
data. This research makes a substantial contri-
bution to the field of cross-lingual classification,
establishing a new benchmark for enhancing
the effectiveness of language transfer in linguis-
tically challenging scenarios.

1 Introduction

Cross-lingual transfer learning, which involves
transferring models from one language to another
or from one task to another, has gained significant
attention in the field of natural language processing.
This approach is particularly valuable in scenarios
where task data in the target language is scarce,
posing a limitation to training machine learning
models for specific tasks such as classification. In
such cases, machine translation has emerged as an
effective solution to bridge the language gap, en-
abling acceptable performance in transfer learning
(Ji et al., 2024; Huang et al., 2021).

Furthermore, the use of ensemble techniques
in the context of cross-lingual classification has

shown promise in achieving better performance
and generalisation across multiple languages. En-
semble models, by combining multiple base mod-
els, can effectively capture diverse aspects of the
data and mitigate the impact of language variations,
thereby enhancing the robustness of cross-lingual
classification systems.

The significance of transfer learning lies in its
ability to utilise the wealth of data available in
high-resource languages to benefit low-resource
languages, thus enabling access to various NLP
tasks. Data augmentation techniques, like Machine
Translation, serve to amplify this effect by artifi-
cially expanding the dataset in the target language,
which allows for a richer and more diverse linguis-
tic feature set that models can learn from, leading
to improved performance and reliability in cross-
lingual applications.

The potential of ensemble learning in addressing
the challenges of cross-lingual classification can-
not be overstated. By leveraging the strengths of
multiple learners, ensemble learning introduces a
level of diversity that single models alone cannot
achieve, significantly enhancing performance and
generalisation capabilities across languages. This
diversity is particularly crucial in cross-lingual sce-
narios, where linguistic and semantic disparities
between languages can pose substantial barriers to
effective model transfer. Ensemble methods can
mitigate these barriers by combining predictions
from multiple models, thereby reducing the risk
of misclassification due to language-specific nu-
ances or translation inaccuracies. Moreover, en-
semble learning can adaptively focus on difficult-
to-classify instances, ensuring that the aggregated
model is not only more accurate but also more ro-
bust to the variability inherent in cross-lingual data.
Consequently, the application of ensemble learn-
ing in cross-lingual classification opens up new
avenues for building more resilient and adaptive
NLP systems that can better serve the needs of a
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linguistically diverse world.
In addressing the challenge of cross-lingual

transfer learning in situations where training data
is non-existent, our work introduces an effective
approach that significantly improves the efficacy of
model transfer to the Arabic language, a language
markedly different in structure and lexicon from
English. A key aspect of our contribution is inves-
tigating viable strategies, including the integration
of machine translation with a bagging ensemble ap-
proach, for classifying disaster-related social media
posts in Arabic using solely English data. This tech-
nique demonstrates potential for broad application
across various languages and domains, offering a
solution for scenarios with limited data availability
in the target language, provided there’s access to
extensive data in a resource-rich language.

2 Related Work

With growing interest in cross-lingual text clas-
sification, the challenge persists due to linguistic
variations and data scarcity across languages. En-
semble classification models, employing multiple
weak classifiers and combining their predictions
through consistency functions like voting, have
been widely used in monolingual tasks but less ex-
plored in cross-lingual contexts. Techniques such
as bagging, AdaBoost, random forest, and gradi-
ent boosting have shown promise across various
domains (Dong et al., 2020). Among the limited
literature on cross-lingual applications, Funnelling
and its advanced iteration, Generalised Funnelling
(GFun), stand out for incorporating calibrated pos-
terior probabilities and additional feature vectors to
enhance classification performance on multilingual
datasets. However, they assume the availability of
training data in all target languages (Esuli et al.,
2019; Moreo et al., 2021).

Earlier studies, such as those by (Kilimci and
Akyokus, 2018) and (Bashmal and Alzeer, 2021),
demonstrate the effectiveness of ensemble mod-
els in monolingual settings, suggesting potential
for cross-lingual adaptation. Beyond ensemble
models, research has explored leveraging linguistic
similarities through character-based embeddings,
joint training, and embedding alignment to address
cross-lingual text classification. Techniques such
as instance-weighting have also been employed to
assign larger weights to source instances sharing
common features with target samples during train-
ing. This approach aims to utilise resource-rich

data while accommodating the specifics of the tar-
get language (Li et al., 2021).

While the foundation for cross-lingual text clas-
sification is robust, marked by a variety of method-
ologies from ensemble learning to linguistic feature
exploitation, challenges remain in data availabil-
ity, computational demands, and language diver-
sity. Our work contributes to this ongoing effort
by adapting an ensemble approach designed to en-
hance the effectiveness of cross-lingual classifi-
cation, especially for under-resourced languages.
This approach seeks to build on the existing body of
research, pushing the boundaries of what is achiev-
able in the realm of cross-lingual text classification.

3 Proposed Methodology

3.1 Problem Formulation

The challenge of accurately classifying disaster-
related social media texts across multiple languages
is paramount for effective emergency response, yet
is significantly hindered by the lack of training data
for various languages. This scarcity affects the de-
velopment of effective cross-lingual classification
models, especially for languages with minimal re-
sources. We aim to tackle this issue by focusing on
the cross-lingual classification of disaster-related
texts within the context of languages that are un-
derrepresented in training datasets.

Addressing the data disparity between high-
resource and low-resource languages, which are
often spoken by communities most affected by dis-
asters, is crucial. The goal of this study is to utilise
the abundant data from high-resource languages
to improve the classification accuracy of texts in
low-resource languages. In doing so, we aspire to
enhance global disaster response efforts by ensur-
ing that critical information reaches all linguistic
groups, thereby overcoming language barriers that
could potentially hinder timely and effective disas-
ter management.

3.2 Model Overview

Our proposed model, depicted in Figures 1 and 2,
addresses the challenge of cross-lingual classifica-
tion of disaster-related social media texts through a
structured methodology comprising four main com-
ponents: Data Collection and Translation, Boot-
strapping, Ensemble Model Learning, and Testing
the Ensemble. The process begins with the acquisi-
tion of disaster-related texts from a high-resource
language, namely English, followed by their trans-
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lation into the target language, Arabic, to mitigate
data scarcity. This is complemented by a bootstrap-
ping phase that employs a bagging approach to split
the dataset into separate subsets.

At the core of our methodology is the Ensemble
Model Learning component, which utilises three
classifiers to construct a robust model. This ap-
proach benefits from the diversity of data and sig-
nificantly reduces the risks of overfitting. The en-
semble model is subsequently tested with separate
target language data to evaluate its effectiveness
and applicability in real-world disaster scenarios.
Through this integrated approach, which combines
machine translation, iterative learning, and ensem-
ble learning, we aim to enhance the classification
of disaster-related texts across languages, thereby
improving global disaster response capabilities.

4 Experiments

4.1 Data

We utilise the CrisisNLP dataset (Imran et al.,
2016), with over 17,000 English X posts cover-
ing a range of disaster types such as earthquakes,
floods, and diseases. This dataset was translated
into Arabic using Google Translate to create a par-
allel corpus. To assess the model’s performance in
Arabic, we used the Kawarith dataset (Alharbi and
Lee, 2021) which consists of 5,000 Arabic X posts
with similar disaster classifications. This setup al-
lows for effective cross-lingual model training and
testing.

To prepare the data, we consolidated storm-
related classes into a single "Storm" category to
align both datasets and simplify classification. We
ended up with three classes that are common
to both the training and testing datasets, namely
storm, disease, and irrelevant. Our preprocessing
included removing non-ASCII characters, URLs,
mentions, and normalising text (removing extra
spaces, handling hashtags). This ensured clean,
uniform datasets for our cross-lingual classification
experiments.

4.2 Machine Translation Model Selection

To choose a suitable Machine Translation (MT)
model for translating the data, we evaluated the
performance of three open-source MT systems that
support a wide range of languages, including Ara-
bic, by calculating BLEU (Papineni et al., 2002)
and METEOR (Banerjee and Lavie, 2005) scores.
We sampled 1,000 posts from the English data and

employed a human translator to obtain the refer-
ence translation. The same sample was then trans-
lated using three different MT models: Google
Translate, Facebook’s M2M, and MarianMT. While
the differences in performance were not substantial,
this evaluation assisted us in making the MT deci-
sion. We acknowledge that these metrics measure
how closely the MT translations align with human
translations, which is less critical in our case since
the translation is for classifier consumption.

The results of this study are presented in Table 1.
While the observed BLEU scores may appear low,
they do not necessarily indicate poor model perfor-
mance given the complexity of the task. Translat-
ing social media content is particularly challenging
in machine translation, and achieving high BLEU
scores in this domain is more difficult than in more
formal types of text (Sabtan et al., 2021).

Notably, the observed METEOR scores are
higher than the BLEU scores for the same mod-
els and languages. This could be attributed to
METEOR’s more comprehensive assessment of
translation quality, including synonymy and sen-
tence structure, which might be more forgiving
than BLEU’s strict n-gram matching approach, es-
pecially in the context of social media text.

4.3 Evaluation Metrics
For both the individual models and the ensem-
ble model, these evaluation metrics are calculated
based on their predictions on a separate test dataset.
The evaluation includes calculating accuracy and
F1 scores, including weighted, micro, and macro
F1. The accuracy metric provides an overview
of the model’s overall performance, while the F1
scores give insights into the model’s precision and
recall for each class and their overall performance.

The ensemble model’s evaluation involves com-
bining the predictions of the individual classifiers
using a voting mechanism. The predictions made
by each individual classifier are considered, and
the final prediction for each instance is determined
by the class with the majority vote. The ensemble
model’s accuracy and F1 scores are then computed
based on these aggregated predictions.

4.4 Experimental Settings
We employed the “xlm-roberta-base” (Conneau
et al., 2020) as the base classifier for our ensembles
with the same hyper-parameters, differing only in
the data being handled. The tokenizer was config-
ured with truncation enabled and a maximum to-
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BLEU METEOR

Google Translate 0.144 0.354
Facebook M2M 0.097 0.283
MarianMT 0.081 0.236

Table 1: BLEU and METEOR scores calculated for each Machine Translation model translating the 1K sample to
Arabic using human translation as the reference.

ken length set to the longest instance. Padding was
also used to ensure uniform input lengths during
training. The model architecture was loaded using
the ‘AutoModelFor-SequenceClassification.from-
pretrained’ method, which adapted the pre-trained
XLM-RoBERTa to our specific task with three
classes.

For our model training, we chose a batch size of
64 to balance computational efficiency and gradi-
ent stability, and we limited training to 10 epochs
to optimise exposure to the dataset while prevent-
ing overfitting. The learning rate was set to 1e-5,
chosen through experimentation to ensure fast con-
vergence without overshooting, and weight decay
was applied at a rate of 0.01 as a regularisation
measure to enhance generalisation. To manage re-
sources effectively, we saved the model at the end
of each epoch but limited storage to only the lat-
est model checkpoint, avoiding the resource strain
of multiple checkpoints. This ensures training ef-
ficiency, model performance, and computational
resource management.

4.5 Results
4.5.1 Experiment 1
In the first experiment, we fine-tuned two sepa-
rate XLM-RoBERTa models for classifying paral-
lel datasets (CrisisNLP and translated CrisisNLP),
with each model being exposed to data in one lan-
guage during training. These individual classifiers
were then combined to create an ensemble model
using a voting function to determine predictions
for test instances. The best-performing model for
each language was selected for predicting these in-
stances. Subsequently, the ensemble model aggre-
gated the predictions from the individual classifiers
to generate the final prediction through a voting
mechanism, as illustrated in Figure 1.

The performance of the individual models in
the monolingual setting is presented in Table 2,
where one XLM-RoBERTa model was fine-tuned
on the original English data and another on the
Arabic translation of the same data. Results are re-

Figure 1: The approach of ensembling two individual
classifiers trained on parallel (machine-translated) data
in English and Arabic.

ported using accuracy, macro F1, and weighted F1
scores. The ensemble, combining predictions from
both models and generating final predictions for the
original Arabic test data through voting, achieved
an accuracy of 0.75, with macro and weighted F1
scores of 0.63 and 0.74, respectively. This marks a
significant improvement over our previous bench-
mark, achieving a 0.72 weighted average F1 score
with machine-translated source data for training.
These results underscore the effectiveness of the
ensemble technique in a cross-lingual context, in-
dicating the potential for further improvement by
exploring alternative ensemble approaches.

4.5.2 Experiment 2

Building on the successes of the first experiment,
which already marked improvements over previous
experiments and existing baselines as discussed
in Section 4.5.1, our second experiment aimed at
further enhancing performance by altering the ar-
chitecture of the ensemble model. We introduced
a joint training approach, leveraging an ensem-
ble of three base classifiers. Each classifier was
trained on a unique segment of the data, ensur-
ing complete data separation among the models.
This was achieved by initially merging the parallel
datasets and then dividing this combined dataset
into three segments using a bagging technique.
The classifiers were then trained independently on
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Data Accuracy Macro F1 Micro F1 W Avg F1
Classifier 1 CrisisNLP (En) 0.96 0.96 0.95 0.96
Classifier 2 CrisisNLP (Ar) 0.94 0.94 0.94 0.94
Ensemble Kawarith (test) 0.75 0.63 0.74 0.74

Table 2: Performance of individual XLM-R classifiers on monolingual data. The CrisisNLP (Ar) dataset represents
the machine-translated Arabic data, while Kawarith is an original Arabic dataset used for testing the ensemble. The
last set of results showcases the voting ensemble of both individual classifiers when evaluated on the Kawarith
dataset.

Figure 2: The bagging approach used in this experiment
involves splitting the combined parallel data into three
distinct subsets. Each subset is utilised to train a differ-
ent instance of the XLM-R classifier.

these segments, with the best-performing model
for each segment chosen for test sample prediction.
A majority voting mechanism was subsequently
employed for the final prediction, showcasing the
ensemble’s combined strength in making accurate
cross-lingual classifications, as depicted in Figure
2.

This experiment aimed to maximise the ensem-
ble’s effectiveness by combining parallel training
data, thereby exposing the models to both lan-
guages. The goal was to leverage the collective
strength of the ensemble in adeptly handling the
linguistic diversity presented by the datasets. The
performance of the individual classifiers is pre-
sented in Table 3, with all three models achiev-
ing an accuracy and F1 score of approximately
0.93 on homogeneous data, underscoring their con-
sistency. When evaluated on the original Arabic
data (Kawarith), the ensemble of the three models
demonstrated substantial improvement over the re-
sults of the first experiment, achieving an accuracy
and F1 score of 0.78. Remarkably, this perfor-
mance sets a new benchmark, surpassing existing
efforts in similar cross-lingual classification chal-
lenges and underlining the potency of our ensem-
ble approach in achieving state-of-the-art results in
cross-lingual contexts.

4.5.3 Joint Training

To comprehensively assess the method’s efficacy,
we conducted benchmark comparisons by training
a classifier on combined English and its Arabic
translated datasets. This benchmark allowed a di-
rect evaluation of the ensemble strategy’s benefits
over single-classifier approaches, crucial for under-
standing the impact of using multiple classifiers
together in a cross-lingual context. Our findings
show that while individual classifiers in the ensem-
ble may perform less effectively than a singular
classifier on homogeneous data, the ensemble as a
whole surpasses the single classifier’s performance
on Arabic test data (zero-shot), highlighting the
ensemble’s superior handling of linguistic diversity.
These results, summarised in Table 4, showcase
the ensemble’s ability to outperform despite the
individual weaknesses of its components, demon-
strating its strength in cross-lingual classification.

5 Discussion

The presence of data imbalance posed a signifi-
cant challenge and had a noticeable impact on the
model’s performance. To address this issue, we
made a trade-off between better classification and
the potential loss of data. As a mitigation strategy,
we introduced an additional layer to calculate class
weights, accounting for the class imbalance. The
class weight calculation function was designed to
dynamically assign weights based on the distribu-
tion of instances in each class. If the data is already
balanced, the function assigns equal weights to
all classes. However, for classes with fewer in-
stances, the function assigns higher weights, effec-
tively prioritising those classes during training. By
incorporating this mechanism, we aimed to balance
the training process and alleviate the negative im-
pact of data imbalance on the model’s performance.
This approach is particularly useful in scenarios
where the dataset is heavily imbalanced, as it al-
lows the model to focus more on the underrepre-
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Data Accuracy Macro F1 Micro F1 W Avg F1
Classifier 1 CrisisNLP (En+Ar*) 0.928 0.929 0.928 0.927
Classifier 2 CrisisNLP (En+Ar*) 0.933 0.934 0.933 0.932
Classifier 3 CrisisNLP (En+Ar*) 0.936 0.938 0.936 0.935
Ensemble Kawarith (test) 0.78 0.70 0.78 0.78

Table 3: Performance of individual XLM-R classifiers on distinct subsets of the data. The last row showcases the
voting ensemble of the three individual classifiers when evaluated on the Kawarith dataset. *The CrisisNLP (Ar)
dataset represents the machine-translated Arabic data.

Accuracy Macro F1 Weighted Avg F1
Bagging Ensemble 0.78 0.70 0.78
Joint Training 0.69 0.70 0.70
Joint Training (homo) 0.95 0.95 0.95

Table 4: Performance comparison between bagging ensemble and an individual classifier trained on the same
combined dataset. Last row shows the performance of the classifier when tested on the same training data (test
portion).

Figure 3: The confusion matrix of the ensemble classifi-
cation results achieved through majority voting of three
classifiers. 0, 1, and 2 correspond to irrelevant, storm,
and disease classes, respectively.

sented classes, leading to improved generalisation
and performance across all classes.

With a closer look at the individual scores, we no-
tice that the mis-classification of class 0 (i.e., irrel-
evant) has affected the macro-average F1 resulting
in a score of 0.70. However, the model performs
relatively well in classifying other classes. The
diverse nature of the irrelevant posts makes it chal-
lenging for the model to accurately classify them,
and they are often mis-classified into other classes,
mostly class 1 (storm). Figure 3 displays the con-
fusion matrix, which provides a visualisation of
the classification performance for each individual
class.

6 Conclusion and future work

In this work, we have presented a practical solution
for transferring models across languages when con-
fronted with limited or nonexistent training data.
Our experimentation involved the application of
a bagging ensemble technique, with each experi-
ment employing a distinct approach. By combining
training data from both English and its Arabic trans-
lation, and partitioning (bagging) this combined
dataset into separate splits, we observed a notewor-
thy enhancement in prediction performance com-
pared to existing methodologies. Looking ahead,
our future work will explore alternative ensemble
approaches to tackle the same challenge. Addi-
tionally, extending the scope of our approach to a
wider set of languages and tasks holds promising
potential for further advancement.
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Abstract

This paper investigates the finetuning of end-to-
end models for bidirectional Estonian-English
and Estonian-Russian conversational speech-to-
text translation. Due to the limited availability
of speech translation data for Estonian, we cre-
ated additional training data by web scraping
and synthesizing data from speech recognition
datasets using machine translation. We evalu-
ated three publicly available end-to-end models:
Whisper, OWSM 3.1, and SeamlessM4T. Our
results indicate that fine-tuning with synthetic
data enhances translation accuracy by a large
margin, with SeamlessM4T matching or sur-
passing cascaded speech translation systems
that use state-of-the-art speech recognition and
machine translation models.

1 Introduction

Estonian language, spoken by around one million
native speakers, has benefited significantly from
the Estonian Language Technology Program in the
last decades (Rehm et al., 2020). This initiative has
fostered advancements in several key areas, such as
automatic speech recognition (ASR) (Alumäe et al.,
2023) and machine translation (MT) (Tättar et al.,
2022). These improvements are largely due to in-
vestments in collecting relevant training data and
the successful application of large multilingual pre-
trained models. Another crucial area of language
technology is spoken language translation, which
is essential for maintaining smaller languages like
Estonian in today’s digital world. This technol-
ogy enables native speakers of a small language to
access foreign language content more easily and
allows for the broader dissemination of native lan-
guage content. However, one of the significant
challenges in developing these technologies is the
lack of adequate training data for Estonian, par-
ticularly in conversational speech. This shortage
hampers the ability to further enhance and refine
speech translation tools.

In this study, we explore the finetuning of three
publicly available end-to-end models for bidirec-
tional Estonian-English and Estonian-Russian con-
versational speech translation tasks and evaluate
their accuracy against the cascaded spoken lan-
guage translation approach. Given the scarcity
of speech translation datasets containing signifi-
cant amounts of conversational speech for these
translation directions, we explore two methods to
generate additional data: synthesizing speech trans-
lation training data from ASR training data using
machine translation, and scraping data (e.g., videos
with subtitles) from the internet. We evaluate these
models and finetuning approaches using automatic
metrics (BLEU and BLEURT) on realistic conver-
sational speech evaluation sets.

The main contribution of this paper is demon-
strating that leading large publicly available end-to-
end multilingual speech translation models can be
fine-tuned to excel in translation tasks involving rel-
atively low-resource languages by using synthetic
data generated from diverse ASR training data.
Another innovative aspect of the paper is show-
ing that OpenAI’s Whisper, originally trained only
for translating into English, serves as an effective
base model that can be finetuned for other speech
translation directions. Additionally, we release an
evaluation set for Estonian-English-Russian spo-
ken language translation, which includes conver-
sational speech recordings “from the wild”, com-
plete with manual transcripts and professionally
produced translations1. The best-trained speech
translation models are publicly available2. An ex-
ample of an Estonian TV news broadcast with
English and Russian subtitles generated by our
finetuned Whisper model is available at https:
//www.youtube.com/watch?v=rZPqauCYfXI.

1https://github.com/alumae/
k6net6lke-benchmark

2Finetuned Whisper: https://huggingface.co/
TalTechNLP/whisper-large-v3-et-en-ru.translate
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2 Available models

In this section, an overview of publicly accessible
models suitable for speech translation in the tar-
geted translation directions of our study will be
provided.

2.1 Cascaded spoken language translation

The cascaded speech translation method involves
initially using an ASR system to transcribe speech,
followed by translating these transcriptions with
a text-to-text MT system. Presently, one of the
most widely used multilingual ASR model avail-
able to the public is OpenAI’s Whisper (Radford
et al., 2023). In our tests, we utilized the most
effective large-v3 model of Whisper to transcribe
English and Russian speech. For Estonian, we used
the same model, which was finetuned with 1334
hours of Estonian data available publicly from the
TalTech Estonian Speech Dataset 1.03 (Alumäe
et al., 2023). During the development of this pa-
per, the leading publicly accessible text-to-text
MT model for translations involving Estonian was
Meta’s NLLB-200 (NLLB Team et al., 2022). The
NLLB model is available in various sizes, with the
largest being the mixture-of-experts (MoE) version,
which requires 350 GB of storage. For practical rea-
sons, we opted for the largest dense model, which
has 3.3 billion parameters. Machine translation to
and from Estonian via text is also well supported
by several proprietary vendors via API calls, such
as Google and DeepL. The NLP research group at
Tartu University offers a publicly accessible NMT
system Neurotõlge4 that is effective for Estonian
MT tasks (Tättar et al., 2022), and it also provides a
free web API for batch processing. OpenAI’s GPT
models are also capable of conducting machine
translation through prompting.

2.2 End-to-end spoken language translation

Several publicly available multilingual end-to-end
spoken language translation models have recently
emerged. OpenAI’s Whisper model can perform
translation to English from all its supported speech
recognition languages. Other translation directions
are not supported by this model. The reported
BLEU score for Estonian-to-English translation
for the large-v2 version of Whisper is 18.7, mea-
sured on the FLEURS dataset (Conneau et al.,

3https://cs.taltech.ee/staff/tanel.alumae/
data/est-pub-asr-data/

4https://neurotolge.ee/

2022) and 15.0, measured on the CoVoST 2 (Wang
et al., 2020) dataset. Both of those datasets contain
read speech. Whisper uses Transformer encoder-
decoder architecture.

The Open Whisper-style Speech Model
(OWSM) (Peng et al., 2023b) reproduces Whisper-
style training using a diverse combination of
publicly available datasets and the open-source
toolkit ESPnet (Watanabe et al., 2018). It supports
multilingual automatic speech recognition (ASR)
and any-to-any speech translation (ST). The
latest release of the model (3.1 EBF) uses the
E-Branchformer (Kim et al., 2022) architecture
in the encoder and Transformer in the decoder.
The 1 billion parameter “base” version of OWSM
3.1 EBF has a reported BLEU score of 7.7 on
the English-to-Estonian translation direction,
measured on CoVoST 2.

The third publicly available multilingual speech
translation model originates from Meta’s Seam-
lessM4T project (Seamless Communication et al.,
2023). SeamlessM4T translation models are capa-
ble of translating both speech and text modalities,
and they can produce both text and speech out-
put. Around 100 languages are supported, although
speech output is supported for a much smaller sub-
set of languages. While both Whisper and OWSM
models are trained end-to-end from scratch, Seam-
lessM4T uses a more complicated process for train-
ing. First, a self-supervised speech encoder model
w2v-BERT 2.0 is pretrained, using a corpus of
4.5M hours of unlabeled audio data covering more
than 143 languages. This model is then bridged
with the NLLB text-to-text translation model, using
special adapter layers that map encoded and time-
compressed speech features to the same semantic
space as text tokens. This composed model is then
finetuned for speech-to-text and speech-to-speech
translation tasks, using paired text-text, speech-text
and speech-speech data scraped from the web and
aligned using a dedicated multimodal embedding
and alignment model (Duquenne et al., 2023). The
SeamlessM4T-large-v2 reports a BLEU score of
29.3 on English-Estonian and 27.7 on Estonian-
English test sets of CoVoST 2. On FLEURS,
this model has a BLEU score of 22.4 on English-
Estonian and 31.6 on Estonian-English speech-to-
text test sets.

The out-of-the-box BLEU scores of the de-
scribed models on Estonian-English speech trans-
lation tasks are reported in Table 1. Although the
scores are measured on test sets containing only

167

https://cs.taltech.ee/staff/tanel.alumae/data/est-pub-asr-data/
https://cs.taltech.ee/staff/tanel.alumae/data/est-pub-asr-data/
https://neurotolge.ee/


CoVoST 2 FLEURS
Model #Parameters est-eng eng-est est-eng eng-est
Whisper large-v3 1.55B 15.0 N/A 18.7 N/A
OWSM 3.1 EBF 1B ? 7.7 ? ?
SeamlessM4T-v2 large 2.3B 27.7 29.3 31.6 22.4

Table 1: Speech translation BLEU scores of different publicly available models. N/A denotes that the model is not
capable of translating in this direction, and question marks denote scores that are not reported.

read speech, the scores suggest that these models
could be finetuned to perform well also on more
conversational speech that is known to be more
difficult to translate.

Whisper and OWSM models are designed to
handle audio recordings of any length due to the
integrated speech segmentation in their decoders.
These models effectively generate time-stamped,
subtitle-like transcripts, marking each decoded
word block with start and end times. In the process
of long-form decoding, the models work on 30-
second segments of speech at a time, shifting the
processing window by 30 seconds (or less) to start
where the last decoded word block ended after each
decoding step. On the other hand, SeamlessM4T
models are limited to processing shorter, utterance-
like speech segments, and their translation qual-
ity drops substantially with longer segments, of-
ten only translating the initial part of the segment.
To address this, long recordings must be initially
divided into shorter, speaker-consistent segments,
typically no longer than 20 seconds, using voice
activity detection and speaker segmentation tech-
nologies.

3 Methodology

The main focus of our work is finetuning pub-
licly available speech translation models using ad-
ditional data. Since there are no conversational
speech translation datasets that include Estonian,
we experiment with generating additional data on
our own using two methods: web scraping and data
synthesis. We compare the performance of all three
existing speech translation models before and after
finetuning with the same data.

Although Whisper is originally trained to per-
form only multilingual speech recognition and
speech translation to English, it has been shown
that it can perform speech translation to other direc-
tions with surprisingly high accuracy by changing
only the prefix of the decoder. For example, Peng
et al. (2023a) showed that by only modifying the

prompt, Whisper can achieve 18.1 BLEU score on
the English-German speech translation test set from
the MuST-C corpus (Gangi et al., 2019). Therefore,
we were relatively confident that Whisper can be
finetuned for all translation directions that we were
interested in.

The design of Whisper’s prompt does not sup-
port the specification of alternative translation di-
rections. Consequently, we finetuned Whisper us-
ing extra speech translation data by employing the
“transcribe” prompt, where the language specified
in the prompt matched the intended target language.
At the inference stage, the expected target language
was set in the prompt, but the source language re-
mained unspecified to the model.

On all datasets, Whisper was finetuned5 for three
epochs over the additional translation datasets. A
learning rate schedule with a peak rate of 1e-04
was used, with 500 warmup steps and a linearly
decaying schedule towards 0 after the warmup. An
effective batch size of 64 was used. Stochastic
weight averaging (SWA) (Izmailov et al., 2018)
with a learning rate of 1e-05 was applied during
the last epoch. Adam optimizer was used.

The OWSM 3.1 EBF model underwent fine-
tuning over five epochs, utilizing a batch size of
320 and a maximum learning rate of 2.0e-04, ac-
companied by a warmup phase of 600 steps. A
label smoothing technique was employed with a
smoothing factor of 0.1. During training, a multi-
task encoder-decoder/CTC loss method was used
(with source language transcript as supervision for
the CTC head), setting the CTC loss weight at
0.3. The majority of these hyperparameters were
adopted directly from the ESPnet’s training recipe
for the OWSM 3.1 EBF model without further ad-
justments.

The SeamlessM4T model was finetuned using a
batch size of 48, peak learning rate of 1e-06 with
100 warmup steps. This finetuning setup integrated

5Finetuning code: https://github.com/alumae/
pl-whisper-finetuner

168

https://github.com/alumae/pl-whisper-finetuner
https://github.com/alumae/pl-whisper-finetuner


Direction Duration #Files
Estonian to Eng/Rus 4.15h 7
English to Estonian 3.05h 5
Russian to Estonian 4.51h 6

Table 2: Amount of evaluation data per translaton direc-
tion.

automatic early stopping that measured the model’s
loss on heldout training data after every 1000 model
updates and stopped training when the loss didn’t
improve during the last 10 evaluations. This usually
happened during the second epoch.

For Whisper and OWSM, the training data was
compiled to segments of maximally 30 seconds
in length, which usually involved concatenating
the transcripts of several adjacent utterances from
the long-form training audio, together with the cor-
responding audio chunks (including the audio be-
tween transcription end and start times). The Seam-
lessM4T model was finetuned using the original
utterances and/or subtitle segments.

All finetuning experiments were conducted us-
ing four Nvidia A100 (80GB) GPUs.

4 Experimental results

4.1 Evaluation data

A dedicated evaluation dataset was compiled for
this project, using data from public sources (e.g.
YouTube). When collecting evaluation data, we
tried to ensure that it contains mostly long con-
versational speech recordings with different lev-
els of spontaneousness, such as press conferences,
TV talkshows, YouTube videos, and broadcast
news with many interviews. Length of evaluation
datasets for all directions varied between 3 and
4.6h. Evaluation data is described in Table 2.

Estonian evaluation data was manually tran-
scribed. English and Russian data was all retrieved
from YouTube and we relied on the manually cre-
ated captions of the videos (after some manual
post-editing). We took extra care to select such
videos that have good quality verbatim captions.
The translations for the evaluation data were cre-
ated by professional translators in Estonia, using
both audio transcriptions and audio files as source
data.

Table 3 lists ASR word error rates (WER) of
Whisper-based models on the evaluation data. The
model whisper-large-v3-est stands for Whisper’s
large-v3 model, finetuned using 1334 hours of Es-

Language Model WER
English whisper-large-v3 24.5%
Russian whisper-large-v3 21.1%
Estonian whisper-large-v3 26.6%
Estonian whisper-large-v3-est 9.7%

Table 3: Whisper’s speech recognition WER on evalua-
tion data.

tonian ASR training data.
WERs were calculated using ASR hypotheses

from Whisper’s long-form decoding mechanism.
Due to that, reference sentences are not aligned
with hypotheses. WERs were calculated after re-
moving punctuation, lowercasing both hypotheses
and references, and aligning words in the hypothe-
ses with references, using minimum WER segmen-
tation (mwerSegmenter) (Matusov et al., 2005) via
the SLTev toolkit (Ansari et al., 2021).

It must be noted that Whisper is generally very
accurate on English and Russian evaluation data.
The surprisingly high WER (compared to the re-
sults published by Radford et al. (2023)) is mostly
caused by occasional hallucinations that repeat
some segment transcripts many times.

4.2 Training data

In order to finetune the end-to-end speech trans-
lation models to perform better in translation di-
rectons involving Estonian conversational speech,
we experimented with collecting additional data
from the web, and synthesizing additional data
from ASR training data using MT.

There are some publicly available speech transla-
tion datasets that include a relatively small amount
of Estonian. The dataset with the largest amount of
Estonian is CoVoST 2 with 364 hours of Estonian-
English data and 3 hours of English-Estonian data.
However, CoVoST 2 includes exclusively read
speech and short sentences. The VoxPopuli corpus
(Wang et al., 2021) also contains some Estonian
speech, originating from the European Parliamant
sessions, but only 3 hours of that are transcribed.
Due to the small size or out-of-domain nature, we
did not use those datasets for finetuning.

4.2.1 Scraping web data
Given the relatively small number of Estonian
speakers, the amount of speech data available on
the web for training speech translation models is
limited. We aimed to find data featuring long-form
conversational speech (rather than individual ut-
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Source est→ → est

eng rus eng rus

ETV+ - - - 182.7
TED - - 41.2 -
TV7 - - 16.4 -
YouTube 39.6 18.2 - 433.9

39.6 18.2 57.6 616.7

Table 4: Amount of training data in hours per translation
direction, derived from subtitled online videos.

terances) since Whisper and OWSM require 30-
second speech segments for training to develop
models capable of transcribing long-form speech.
We avoided sources with machine-generated subti-
tles.

We identified several good sources: ETV+ (a
Russian-language TV channel of Estonian state
media), TED talks with Estonian subtitles, TV7
(an international TV channel with Christian back-
ground), and various YouTube channels with con-
sistently good subtitles.

Table 4 lists the amount of data we found for
each translation direction. As can be seen, the
sizes vary significantly across the four translation
directions we target.

4.2.2 Synthetic data
There are two primary methods for generating syn-
thetic data to train speech translation models: (1)
using speech synthesis to create source speech data
from existing MT training data, and (2) using MT
to generate target text data from existing source
language ASR training data. We chose the second
method because we already had substantial amount
of Estonian ASR training data from various con-
versational sources, and the current Estonian-to-
English and Estonian-to-Russian MT systems pro-
duce relatively high-quality translations. The main
drawback of the first method is the lack of MT train-
ing corpora that include transcribed conversational
speech, making it challenging to achieve a wide
variety of speakers and natural-sounding speech
through speech synthesis.

As Estonian source speech data, we used the
data available publicly from the TalTech Estonian
Speech Dataset 1.0. It contains mostly speech from
broadcast sources, with an emphasis on conversa-
tion speech, such as interviews and talk shows. In
addition, it contains speech recordings from var-

ious conferences and seminars, and a relatively
small amount of speech from the Estonian Parlia-
ment. All the speech data consists of long-form
speech and has been manually transcribed and time-
aligned with speech at an utterance level.

When searching for training data for English
and Russian speech, we found it challenging to lo-
cate high-quality, long-form conversational speech
data transcribed at the recording level with ortho-
graphic annotation, as needed for finetuning Whis-
per and OWSM models. For English, we used a
subset of the Gigaspeech corpus (Chen et al., 2021),
which includes long-form recordings (audiobooks,
podcasts, and YouTube videos) transcribed at the
utterance level. However, these utterances are up-
percased, and only a limited set of punctuation
marks (“.,!?”) are retained. To enhance the suit-
ability of these transcripts as MT source data, we
applied true-casing using a custom implementation.
This implementation uses spaCy to split utterances
into sentences and then uppercases sentence start
tokens, proper nouns, and certain special words
(such as I).

For Russian, we couldn’t find any open datasets
that contain sufficient amount of transcribed long-
form speech data. A popular choice for training
Russian ASR models is the Russian Open STT
Dataset6 which contains over 20 000 hours of tran-
scribed Russian speech. However, this dataset con-
tains exclusively relatively short utterances. Al-
though most of the data in this dataset originates
from long-form speech recordings, it is not possible
to reconstruct homogeneous 30-second speech seg-
ments with the corresponding transcripts from this
data, as the utterance IDs have been randomized.
Therefore, we used two online sources as the Rus-
sian speech data, both of which come with good
quality captions: Russian TEDx talks and the Rus-
sian language YouTube channel of the Deutsche
Welle (DW) news broadcaster 7.

The total amounts of ASR datasets used as in-
put for synthesizing MT-based speech translation
data are listed in Table 5. For creating synthetic
data for speech translation, the transcripts were
machine-translated. We used Google Translate for
translating Estonian and English language pair di-
rections. Russian and Estonian language pair trans-
lations were done with University of Tartu’s Neu-
rotõlge MT system. Those choices were based on

6https://github.com/snakers4/open_stt
7https://www.youtube.com/dwrussianreporter
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Language Estonian English Russian

Sources TalTech Estonian Speech
Dataset 1.0

Gigaspeech (subset M):
Audiobooks: 260h
Podcasts: 350h
YouTube: 390 h

DW Russian: 45h
TEDx talks: 57h

Total 1334h 1000h 102h

Table 5: Amount of source-language ASR training data, used as input for creating synthetic speech translation data.

our budget, as well as on the reference transcript
MT evaluation results in Table 6.

4.3 Evaluation metrics

We based our evaluation on two metrics: BLEU
and BLEURT (Sellam et al., 2020). BLEURT is a
learned metric, trained on subjective human evalu-
ations scores of machine translation references and
the corresponding MT candidates. BLEURT out-
puts scores that usually in the range of 0..1 (with
1 being a perfect match) and is found to be bet-
ter correlated with human judgements in several
languages. We used the multilingual BLEURT-20-
D12 model introduced by Pu et al. (2021).

BLEU and BLEURT scores are calculated after
aligning words in the translation candidates with
references, using mwerSegmenter via the SLTev
toolkit.

4.4 Results and discussion

Evaluation results, together with several baselines,
are presented in Table 6.

The first section of rows in the table compares
the performance of different MT systems on ref-
erence transcripts. It can be seen that while there
are substantial differences between the proprietary
systems among individual translation directions,
the average scores in terms of both BLEU and
BLEURT are surprisingly similar. The fully open
source NLLB-200 model however doesn’t reach
the accuracy of the top proprietary systems.

The next section compares MT systems, when
using automatically generated transcripts as input.
For Russian and English, we used the Whisper
large-v3 model, while for Estonian, the finetuned
Whisper model was used. All transcripts were gen-
erated using a beam size of 5, with speech activity
detection activated in order to exclude non-speech
segments from input. It can be seen that for Es-
tonian source speech, using ASR instead of ref-
erences transcripts deteriorates BLEU scores by

around 3 points, while for Russian and English, the
decrease in accuracy is larger, which is probably
tied to the relatively low WER of Whisper on these
datasets, as evident from Table 3.

The third section of rows compares the out-of-
the-box performance of three publicly available
end-to-end speech translation models. Whisper
produced a segmented transcript directly from the
long-form speech recordings, while for OWSM
and SeamlessM4T, we segmented the speech into
single-speaker chunks using pyannote 3.1 (Plaquet
and Bredin, 2023). Decoding was performed using
beam size of 5 for all models. The BLEU scores
of SeamlessM4T demonstrate the complexity of
translating automatically segmented conversational
speech, compared to read speech consisting of sin-
gle utterances: compared to the BLEU scores of
the same model on CoVoST 2 and FLEURS test
data shown in Table 1, the scores on our evaluation
data are lower by a large margin. Contrary to the
Estonian-English results on CoVoST 2, Whisper
outperforms SeamlessM4T on our data, suggesting
that Whisper is better suited for processing con-
versational speech. OWSM 3.1 EBF, which has a
BLEU score of 7.7 on English-Estonian CoVoST
2 data, has close to zero scores on our data in all
directions.

The last section of the table compares end-to-
end speech translation models after finetuning with
synthetic and/or web-scraped data. For Estonian-
English and Estonian-Russian, finetuning on syn-
thetic dataset outperforms web data by a large mar-
gin, which is expected based on the fact that the
Estonian ASR comes from similar domains as eval-
uation data. In general, SeamlessM4T benefits
more than Whisper from finetuning on properly
segmented ASR data than from subtitles. This can
be explained by the fact that subtitle start and end
times are not always properly aligned with speech.
For SeamlessM4T, which is finetuned on individ-
ual subtitle lines and the corresponding speech seg-
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Model Finetuned BLEU BLEURT

web synt. est→ → est est→ → est

eng rus eng rus avg eng rus eng rus avg

Text-to-text translation using reference transcripts

Ref. + NLLB-200 3.3B - - 31.4 25.2 21.5 19.2 24.3 .652 .665 .529 .574 .605
Ref. + GPT3.5-turbo - - 36.1 28.3 21.3 23.8 27.4 .696 .703 .593 .665 .664
Ref. + GPT4 - - 38.3 31.3 19.9 24.6 28.5 .702 .721 .609 .656 .672
Ref. + Google Translate - - 38.9 26.1 25.4 24.2 28.7 .690 .686 .576 .655 .652
Ref. + Neurotõlge - - 34.8 29.3 24.7 23.7 28.1 .656 .672 .558 .619 .626

Cascaded speech translation systems

Whisper + NLLB-200 3.3B - - 28.8 23.1 15.4 13.2 20.1 .568 .568 .439 .537 .528
Whisper + GPT3.5-turbo - - 32.9 26.5 15.1 18.3 23.2 .649 .656 .470 .621 .599
Whisper + GPT4 - - 35.1 29.8 16.3 18.3 24.9 .647 .687 .507 .625 .617
Whisper + Google Translate - - 35.2 23.8 17.4 16.1 22.9 .628 .617 .481 .585 .578
Whisper + Neurotõlge - - 31.9 26.6 16.1 16.0 22.7 .598 .612 .458 .566 .559

Public end-to-end speech translation models

Whisper-large-v3 - - 14.9 - - - - .451 - - - -
OWSM 3.1 EBF - - 0.5 0.0 1.6 0.0 0.5 .176 .153 .147 .095 .143
SeamlessM4T v2 (large) - - 13.2 16.2 6.4 13.9 12.4 .348 .426 .227 .448 .362

Public end-to-end speech translation models after finetuning

Whisper-large-v3 ✓ - 17.9 11.7 13.1 14.3 14.2 .496 .413 .433 .523 .466
Whisper-large-v3 - ✓ 33.2 26.1 14.5 14.8 22.2 .611 .605 .363 .500 .520
Whisper-large-v3 ✓ ✓ 33.0 25.5 17.3 16.3 23.1 .614 .603 .458 .549 .560
OWSM 3.1 EBF - ✓ 25.8 18.7 11.9 8.5 16.2 .541 .463 .377 .360 .435
SeamlessM4T v2 (large) ✓ - 19.3 14.4 6.1 4.3 11.0 .468 .488 .234 .261 .363
SeamlessM4T v2 (large) - ✓ 35.4 26.8 18.8 16.4 24.4 .618 .603 .482 .494 .549
SeamlessM4T v2 (large) ✓ ✓ 34.7 25.9 19.1 12.9 23.1 .617 .605 .470 .426 .529

Table 6: Comparison of baseline scores, cascaded systems, off-the-shelf end-to-end models and finetuned end-to-end
models.

ments, this causes the training data to be often
corrupted. Whisper, on the other hand, is trained
on 30-second chunks of speech that fit typically
several lines of subtitles, and the proper subtitle
timing is not as important.

Apart from a few outliers, the performance of
SeamlessM4T and Whisper are similar, especially
in terms of BLEURT scores. This confirms our
speculation that Whisper can be finetuned to trans-
late into other directions than it was originally
trained for. The performance of OWSM 3.1 EBF
is however noticeably lower than for other models
after finetuning on synthetic data and in order to
save compute time we didn’t even finetune it on
other datasets.

Since the differences between the BLEU scores

from applying different models are relatively small,
we used the Wilcoxon signed-rank test to assess
whether the difference between the scores was sta-
tistically significant. We used BLEU scores of
individual evaluation files as input to the paired
test. Table 7 compares the difference between three
systems: cascaded system involving Whisper and
Google Translate and Whisper and SeamlessM4T
end-to-end models, both finetuned using synthetic
speech translation data. It can be seen that the best
overall performance is achieved by the finetuned
SeamlessM4T model, since no other model is sig-
nificantly better in any of the directons, while it
outperforms both the cascaded system and fine-
tuned Whisper in the Estonian-Russian direction.

Although we haven’t performed proper human
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Model Whisper + Google Translate Whisper-large-v3 ft. SeamlessM4T ft.

est-eng est-rus eng-est rus-est est-eng est-rus eng-est rus-est est-eng est-rus eng-est rus-est

Whisper + Google Translate - - - -
Whisper-large-v3 (finetuned) - - - -
SeamlessM4T (finetuned) - - - -

Table 7: Statistically significant differences between systems, based on BLEU scores: if one of the models is
significantly better than the other, the corresponding cell is colored using the corresponding color.

evaluation of the MT outputs, subjective evalua-
tion by the authors suggests that our best Estonian-
English and Estonian-Russian models produce
translations that are accurate, fluent and there-
fore usable in many practical situations (see a
translated TV news broadcast at https://www.
youtube.com/watch?v=rZPqauCYfXI). For the
opposite direction, the translations have a substan-
tially lower quality by subjective evaluation. These
findings correlate with BLEURT scores in Table 6.

5 Conclusion

In this study, we demonstrated the effectiveness of
finetuning end-to-end models for Estonian conver-
sational speech translation using synthetic and web-
scraped data. Our experiments revealed that syn-
thetic data derived from ASR training corpora sig-
nificantly enhances model performance, especially
for Whisper and SeamlessM4T models. While all
three evaluated models benefited from additional
training data, SeamlessM4T worked the most con-
sistently in all directions, indicating its robustness
in handling conversational speech translation tasks.
The best finetuned models are already usable for
Estonian-English and Estonian-English directions
for real-world speech data.

The future direction of our research is exper-
imenting with simultaneous speech translation
where using end-to-end models is crucial.
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Abstract

Assessing the performance of machine trans-
lation systems is of critical value, especially
to languages with lower resource availability.
Due to the large evaluation effort required by
the translation task, studies often compare new
systems against single systems or commercial
solutions. Consequently, determining the best-
performing system for specific languages is of-
ten unclear. This work benchmarks publicly
available translation systems across 4 datasets
and 26 languages, including low-resource lan-
guages. We consider both effectiveness and ef-
ficiency in our evaluation. Our results are made
public through BENG—a FAIR benchmark-
ing platform for Natural Language Generation
tasks.

1 Introduction

The Machine Translation (MT) task is increasingly
relevant in today’s connected world as accessibil-
ity enables knowledge transfer. Hence, MT sys-
tems are recognized as prime tools in the Natural
Language Processing (NLP) domain (Goyal et al.,
2022). In recent years, Neural Machine Transla-
tion (NMT) (Bahdanau et al., 2015) has led the
field as it achieves state-of-the-art performance for
many language pairs (Gulcehre et al., 2017). How-
ever, NMT systems can become computationally
demanding and the abundance of new systems also
complicates a cross-system comparison. As a re-
sult, newly-released systems often compare their
performance against single systems (NLLB Team
et al., 2022; Tang et al., 2020). Furthermore, re-
cent system analyses also focus on assessing the
capability of commercial translation solutions (Zhu
et al., 2023). To the best of our knowledge, no
work exclusively considers open-source translation
systems. Thus, leading to a lack of clarity when
determining the best-performing and when identi-
fying shortcomings among existing translation sys-
tems, an especially critical task for Low-Resource

Languages (LRLs). While the translation task is
vital to progress in general, it is still largely un-
feasible to the 7, 000+ languages in the world.1

From these, only close to 2, 500 are represented
in the NLP field, with 88% considered to be low-
resource. LRLs have a minimal resource availabil-
ity that causes them to be largely untouched by
the benefits of language technology (Joshi et al.,
2020). With our work, we aim to contribute to a
more complete picture of the current state of the
art of machine translation with a focus on LRLs.

We compare four open-source NMT systems—
LibreTranslate2, Opus MT (Tiedemann and Thot-
tingal, 2020), NLLB (NLLB Team et al., 2022),
and mBART50 (Tang et al., 2020)—on four par-
allel machine-translation benchmark datasets—
OPUS100 (Zhang et al., 2020), Europarl (Koehn,
2005), IWSLT2017 (Cettolo et al., 2017), and
FLORES-200 (NLLB Team et al., 2022). Our
evaluation comprises data from 26 different lan-
guages. Our results suggest that using languages
with lower resource availability does not necessar-
ily translate to lower system performance. How-
ever, we did observe more substantial variations in
the systems’ performance for these languages. Our
analysis also showed that LibreTranslate had the
highest token throughput among the evaluated sys-
tems. Some systems showed proficiency in certain
languages, while others performed better according
to a certain dataset. Our experiments are shared via
BENG (Moussallem et al., 2020), an open-source
benchmarking platform that improves the accessi-
bility of experiment results according to the FAIR
data principles (Wilkinson et al., 2016).3

1https://www.ethnologue.com/
2https://libretranslate.com/
3https://beng.dice-research.org/gerbil
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2 Preliminaries and Related Work

Machine Translation (MT) is the process of trans-
lating from a source language into a target lan-
guage autonomously, i.e., without human interven-
tion (Kenny, 2018; Bhattacharyya, 2015). This can
be achieved through different approaches. Wang
et al. (2022) divide MT techniques into rule-
and corpus-based approaches. Corpus-based ap-
proaches can be further divided into example-based,
statistical, and, more recently, neural approaches.
In this work, we evaluate approaches of the latter
category with a focus on low-resource languages.
We describe both further within this section, along
with relevant MT tools and platforms.

2.1 Low-Resource Languages

There are more than 7, 000 human languages, with
the vast majority being classified as low-resource
languages (LRLs) (Magueresse et al., 2020). In
contrast to high-resource languages (HRLs), LRLs
have a low density of computational corpora (Cieri
et al., 2016). However, it is often challenging to
identify languages as low- or high-resource as the
distinction is often difficult to quantify.

Joshi et al. (2020) propose a language taxon-
omy based on the quantities of labeled and unla-
beled data available in each language. The labeled
data is measured through the LDC catalog and the
ELRA Map repositories, and the unlabeled data is
based on Wikipedia articles.4 The taxonomy sep-
arates languages into six types of languages: The
Left-Behinds (0), The Scraping-Bys (1), The Hope-
fuls (2), The Rising Stars (3), The Underdogs (4),
and The Winners (5). Simplified, class 0 languages
have neither labeled nor unlabeled data; class 1-4
languages have unlabeled data available, but whose
labeled data amount ranges from virtually non-
existent to high; and class 5 languages have both
high volumes of labeled and unlabeled data.

Hedderich et al. (2021) classify low-resource
based on the availability of three data types: 1)
task-specific labeled data that supports supervised
NLP approaches, 2) unlabeled data that supports
unsupervised learning, and 3) auxiliary data that
supports learning by proxy. When both labeled and
unlabeled data are insufficient in either quantity or
quality, other methods can be used to bridge the
gap, e.g., transfer learning, data augmentation tech-
niques, distant supervision, and others (Burlot and

4LDC catalog: https://catalog.ldc.upenn.edu/;
ELRA Map: https://catalog.elra.info/en-us/.

Yvon, 2018; Gibadullin et al., 2019). Similar statis-
tical studies revealed that more languages should
benefit from the availability of NLP tools.

Simons et al. (2022) introduce an automatic ap-
proach to measure Digital Language Support for
every language by measuring a language’s pres-
ence across 143 digital tools. Digital support is
measured by analyzing different categories of a
language’s digital presence, such as the level of
content provision in a language, system encodings,
surface-level tools for text processing, localized
user interfaces, text meaning processing, speech
processing, and the existence of virtual assistants.
The languages are then classified as either still,
emerging, ascending, vital, or thriving according
to their level of digital support.

2.2 Neural Machine Translation Systems

In recent years, Neural Machine Translation (NMT)
has transformed the MT task. By leveraging the
currently available large parallel corpora, the MT
task has been able to improve translation quality
significantly thanks to recent developments in lan-
guage models. However, large parallel corpora
are not available for LRLs, making it difficult to
tailor classic NMT models towards LRLs. Open-
source translation toolkits like OpenNMT (Klein
et al., 2017) and Marian NMT (Junczys-Dowmunt
et al., 2018) also provide different neural archi-
tecture implementations, forming the backbone of
many open-source systems. Below are some ex-
amples of open-source NMT systems that cater to
LRLs.

LibreTranslate is an open-source NMT service
that supports the translation across 46 languages in-
cluding LRLs.5 The tool relies on the open-source
Argos Translate library to train a transformer-based
model from OpenNMT (Klein et al., 2017).6

Fairseq (Ott et al., 2019) provides pre-trained
convolutional and transformer-based MT models
for the English, French, German, and Russian lan-
guages with English as source or target language.
It is also a development toolkit for NMT tools.

Opus MT (Tiedemann and Thottingal, 2020) is
an MT tool trained on the OPUS data (Zhang et al.,
2020) based on Marian NMT (Junczys-Dowmunt
et al., 2018). Opus MT is a transformer-based NMT
system with 6 self-attention layers in the encoder

5https://libretranslate.com/
6Argos Translate: https://github.com/

argosopentech/argos-translate
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and the decoder network, with 8 attention heads in
each layer.

mBART50 (Tang et al., 2020) is an extension of
mBART (Liu et al., 2020) to demonstrate that mul-
tilingual translation models can be created through
multilingual fine-tuning. mBART is a sequence-
to-sequence generative pretraining model that in-
corporates languages by concatenating data. While
mBART was trained on 25 mainly high-resource
languages, Tang et al. (2020) enlarge the embed-
ding layers and combine the monolingual data of
the original 25 languages with additional languages
to extend the model to more than 50 languages—
including LRLs—without requiring to retrain from
scratch.

NLLB (No Language Left Behind) (NLLB
Team et al., 2022) is a collection of language mod-
els created to fill the void left in MT for LRLs.
NLLB aims to narrow the performance gap be-
tween low and high-resource languages. The model
is developed based on a sparsely gated mixture of
experts trained on data obtained with novel data
mining techniques tailored for LRLs. The model’s
performance was evaluated across 40, 000 transla-
tion directions on the human-translated benchmark
dataset FLORES-200.

ALMA (Advanced Language Model-based
Translator) (Xu et al., 2024) is a language model
based on LLaMA-2 (Touvron et al., 2023) built
specifically for machine translation. ALMA intro-
duces a new fine-tuning scheme to improve trans-
lation in a zero-shot scenario. It first fine-tunes
the model on monolingual data and then fine-tunes
it on a parallel corpus. It currently supports 10
language pairs.

With the recent drive of using language mod-
els for machine translation, studies such as Zhu
et al.’s have emerged to assess the machine transla-
tion quality of language models. Zhu et al. (2023)
compared 10 different language models across 102
languages, with three languages, English, French,
and Chinese, as either source or target language
translations. The study provides a good reference
point for translation for commercial solutions, as
gate-kept models often performed better than open-
source solutions. However, due to the large eval-
uation effort, and the cost of using commercial
APIs, the study was only conducted on the first
100 sentences of one dataset: Flores-101 (Goyal
et al., 2022). Furthermore, the language models are
assessed in an in-context learning setting, where in-
structions are provided in addition to the translation

as context. The authors also observed the influence
of different instructions in 6 language pairs.

2.3 Translation Evaluation

The increasing demand for more and better MT
tools led to the development of frameworks to sim-
plify their usage. Multiple frameworks streamline
the building and training process of language mod-
els for translation and offer efficiency. These tools
standardize evaluation procedures and enable the
user to either tune the models per their require-
ments or use them as-is. The user trades off fine-
grained control over the models for simplicity of
use.

2.3.1 Metrics
BLEU (Bilingual Evaluation Understudy) (Pap-
ineni et al., 2002) is an n-gram-based metric used
to evaluate text generation systems, mostly chosen
due to its low computational cost. In MT, BLEU
correlates to human evaluation—the current gold
standard—over the entire output. BLEU focuses on
the precision between the n-grams in the generated
text against those in a reference text. BLEU NLTK
is an implementation of BLEU from the NLTK li-
brary7 with smoothing applied to sentence-level
BLEU scores.

METEOR (Banerjee and Lavie, 2005) is an MT
metric that measures the harmonic mean between
precision and recall of unigram matches, assign-
ing a higher weight to recall. The word-to-word
matching also considers synonyms via the WordNet
synset. METEOR scores correlate to human evalu-
ation at the sentence level, in contrast to BLEU.

chrF++ (Popović, 2015) is a variant of the chrF
score where the F-score is calculated for both the
character n-grams and the word n-grams with the
default order being 6 and 2, respectively. chrF is
a character-based n-gram F-score metric for MT.
It also shows sentence and document-level correla-
tion with human evaluation.

TER (Translation Edit Rate) (Snover et al.,
2006) measures the minimum number of edits re-
quired to make an output match the corresponding
reference. The edits include insertions, deletions,
substitutions, word reordering, capitalization, and
punctuation. Thus, making the method computa-
tionally expensive. The TER score is calculated
by computing the number of edits divided by the
average referenced words.

7https://www.nltk.org/
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2.3.2 Benchmarking Frameworks

Systematic evaluations can be a key factor in a
research field as they allow a clean comparison be-
tween the performance of different approaches over
a set of tasks. Benchmarking frameworks support
such evaluations and aim to standardize the evalu-
ation for a specific task, including a common task
definition, implementation of metrics, and the set
of data that is used throughout the evaluation. In
the past, different benchmarking frameworks have
been proposed for the MT task. The majority of
them are local frameworks, i.e., these frameworks
compute a set of metrics over the system’s output
locally. sacreBLEU (Post, 2018) is such a frame-
work and calls for reproducible BLEU scores in
the community. Despite its name, it not only sup-
ports the BLEU metric, but also chrF, chrF++, and
TER. COMET (Rei et al., 2020) trains multilingual
MT evaluation models. It allows the user to either
train a metric or use the available default models to
score the translation output with its COMET-score.
Appraise (Federmann, 2018) and HOPE (Gladkoff
and Han, 2021) are local human-centric evaluation
frameworks. They rely on human intervention due
to the low agreement between human quality eval-
uation and automatic evaluation metrics for MT.
Moussallem et al. (2020) propose BENG, an on-
line benchmarking platform for natural language
generation that abides by the FAIR data princi-
ples (Wilkinson et al., 2016).8 BENG allows for
the submission of multiple systems to be checked
against a reference dataset and returns a unique
experiment URI with the results. It computes the
BLEU, METEOR, chrF++, and TER scores.

3 Evaluation

3.1 Experimental setup

We evaluated the performance of four NMT tools—
LibreTranslate9, Opus MT (Tiedemann and Thot-
tingal, 2020), NLLB (NLLB Team et al., 2022), and
mBART50 (Tang et al., 2020). We chose NMT ap-
proaches that are open-source, locally deployable,
and support several languages, including LRLs. We
executed our experiments using the Naïve Entity
Aware Machine Translation (NEAMT) tool intro-
duced by Srivastava et al. (2023). This framework
was originally implemented as a step in a multilin-
gual knowledge graph question-answering pipeline.

8https://beng.dice-research.org/gerbil/
9https://libretranslate.com/

It supports a combination of named entity recogni-
tion, entity linking, and MT systems. We’ve used
NEAMT for the standard MT pipelines without any
of the entity-awareness features as it allows modu-
lar and local deployments of new components and
serves them through an API10.

We measured both the quality of the systems’
translation and the inherent time cost. Our first ex-
periment compared the system performance across
multiple languages. However, some datasets were
small and offered limited support for LRLs. So in
our second experiment, we compared the perfor-
mance in languages across the largest datasets and
considered 26 languages from all language classes
of the taxonomy proposed by Joshi et al. (2020).
All of our experiments consider the target language
to be English.

3.2 Datasets

We considered four parallel machine-translation
benchmark datasets OPUS100 (Zhang et al., 2020),
Europarl (Koehn, 2005), IWSLT2017 (Cettolo
et al., 2017), and FLORES-200 (NLLB Team et al.,
2022). The statistics of the datasets are in Table 1
in the form of token and parallel pair counts. All
the datasets have the same number of parallel pairs
across languages, except for IWSLT2017. In this
case, we averaged the number of pairs for the lan-
guages considered in this experiment.

OPUS100 (Zhang et al., 2020) is a parallel trans-
lation dataset randomly sampled from the OPUS
corpus (Tiedemann, 2012) that covers 100 lan-
guages, focused on English. The represented do-
mains in the dataset were not balanced, but sam-
pling filters were applied to ensure no cross-lingual
data leakage. This also means that the dataset is not
sentence-aligned across languages, i.e., the test sets
have different content w.r.t. the language, despite
having the same document size.
Europarl (Koehn, 2005) is a parallel translation
dataset from the Proceedings of the European Par-
liament that covers 11 languages. We used the
common-test-set, a cross-lingual sentence-aligned
split, as presented by Koehn (2005) in our experi-
ments.
IWSLT2017 (Cettolo et al., 2017) is a parallel
dataset based on TED talks introduced for the
IWSLT 2017 multilingual translation task evalua-
tion with language pairs from 5 languages. IWSLT

10The MT models were deployed on a system with Intel(R)
Xeon(R) CPU E5-2695 v3 @ 2.30GHz, 128 GB RAM, and
Debian GNU/Linux 11.
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Datasets

OPUS100 Europarl IWSLT2017 FLORES-200

LC Language \ Parallel pairs 2 000 11 369 4 835 1 012

To
ke

n
co

un
t

5
French (FR) 60 497 470 159 233 492 38 842
German (DE) 43 834 482 529 198 713 36 321
Japanese (JA) 24 617 – 244 772 44 660

4

Dutch (NL) 37 636 479 949 40 413 36 769
Finnish (FI) 34 806 540 970 – 41 844
Hindi (HI) 61 235 – – 51 218
Italian (IT) 39 612 444 961 38 468 37 577
Korean (KO) 26 310 – 261 553 40 255
Russian (RU) 53 537 – – 41 700

3

Bengali (BN) 63 760 – – 56 407
Bulgarian (BG) 30 210 – – 44 817
Estonian (ET) 44 883 – – 41 940
Hebrew (HE) 28 239 – – 40 810
Indonesian (ID) 23 755 – – 33 015
Lithuanian (LT) 76 771 – – 43 636
Romanian (RO) 31 144 – 47 187 43 676
Thai (TH) 48 232 – – 78 226
Ukrainian (UK) 31 266 – – 44 289

2
Irish (GA) 92 241 – – 54 910
Xhosa (XH) 62 678 – – 53 541

1

Macedonian (MK) 37 718 – – 45 400
Malayalam (ML) 47 946 – – 75 526
Nepali (NE) 25 228 – – 54 488
Norwegian Bokmål (NB) 46 924 – – 36 110
Telugu (TE) 26 491 – – 61 108

0 Sinhala (SI) 15 369 – – 23 886

Table 1: Dataset statistics of the test corpora. The token counts were measured with the cased BERT multilingual
base model tokenizer (Devlin et al., 2019).

also introduced an unofficial bilingual task to fol-
low previous editions of the venue that extended
the English-centric dataset to 4 other languages.
The content and the document size of each test set
differ for each language.
FLORES-200 (NLLB Team et al., 2022) is a man-
ually curated dataset that covers 204 languages,
based on Wikinews, Wikijunior, and Wikivoyage.
The translations were done by professional transla-
tors and followed a series of automatic and manual
quality review processes. All documents have the
same content. As the test set of the dataset is kept
blind, in our experiments we evaluated the perfor-
mance on the devtest split.

3.3 Results
The results of the FLORES-200 and OPUS100
are listed in Table 2. NLLB performed better
in the FLORES-200 dataset for 20 of the 26 lan-
guages with a statistically significant difference
to the second-best system.11 Likewise, Opus
MT performed better in the OPUS100 for 19 of
the 26 tested languages. The results of the Eu-
roparl and IWSLT2017 are in Table 3. Libre-
Translate performed best in the Europarl dataset,
while mBART50 performed better in IWSLT2017.
Language-wise, LibreTranslate performed well in
Russian and Estonian, mBART50 in Japanese,

11The significance tests were performed with paired boot-
strap resampling (Post, 2018) with a 95% confidence interval.
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LC Language
FLORES-200 OPUS100

Libre OPUS NLLB mBART Libre OPUS NLLB mBART

5
FR 42.10 41.93 42.42 39.60  34.45 38.94 32.84 36.04

DE 36.22 40.73 41.49 40.48  33.63 36.55 27.01 35.22

JA 13.48 10.67 22.91 23.93  03.93 16.00 13.33 10.72

4

NL 29.51 29.67 31.04 25.89  23.78 34.92 30.80 27.29

FI 24.71 29.55 30.41 26.04  18.29 28.58 24.70 22.74

HI 26.97 09.90 38.37 32.46  12.30 33.78 25.44 25.46

IT 28.70 29.94 33.36 27.35  34.37 38.20 33.55 30.12

KO 14.31 15.80 25.33 20.70  05.60 21.12 14.59 12.91

RU 36.88 30.15 33.29 31.78  37.28 36.84 31.13 34.18

3

BN 16.03 16.16 32.85 09.25  22.42 28.58 20.96 07.33

BG 35.28 34.35 38.11 –  34.25 34.52 32.03 –

ET 38.83 32.03 32.71 31.08  42.14 39.83 28.63 33.80

HE 32.53 34.02 38.19 30.41  26.69 39.74 35.74 29.70

ID 28.44 33.44 40.56 30.36  21.26 41.33 34.59 26.99

LT 26.63 26.58 29.13 28.49  49.43 50.06 37.83 37.74

RO 39.77 39.96 42.39 36.85  39.11 40.24 36.51 30.65

TH 15.28 01.06 25.69 09.25  20.48 08.55 20.35 07.44

UK 27.98 24.26 36.79 27.57  11.11 33.37 26.31 21.73

2
GA 30.52 12.11 34.74 –  57.98 58.35 46.46 –

XH – 02.28 32.78 12.21  – 25.41 23.48 08.47

1

MK – 33.75 39.49 28.02  – 42.37 30.55 24.62

ML – 00.38 32.87 23.98  – 02.86 18.21 19.90

NE – 00.99 37.32 29.66  – 63.92 15.20 49.14

NB 38.25 24.27 38.35 –  35.36 45.15 35.37 –

TE – 00.54 36.40 15.39  – 59.13 25.88 60.98

0 SI – 06.52 30.15 23.50  – 33.89 21.68 23.31

Table 2: BLEU scores of the evaluation for the 17 LRLs and 9 HRLs of the FLORES-200 and OPUS100 datasets.
The corresponding URIs are linked with the experiment’s BLEU, METEOR, chrF++, and TER scores. The results
in bold mark the system with the best BLEU value on a dataset and a statistically significant difference to the
second-placed system. The underlined values are the best BLEU values without a significant difference to the next
highest value on that dataset.

Opus MT in Romanian, and NLLB in French and
German.

3.4 Discussion

We observe a tendency of NLLB and Opus MT
towards achieving a better performance on the eval-
uation part of the dataset on which they have been
trained on in comparison to their overall perfor-
mance. Especially Opus MT seems to be overfit-
ting to its training data, which is reflected by its
performance on the FLORES-200 dataset. Opus
MT achieves high BLEU scores for the languages
Hindi, Irish, Xhosa, Nepali, Telugu, and Sinhala in
the OPUS100, but very low scores for the same lan-

guages in the FLORES-200 dataset. For the NLLB
system, this phenomenon was only observed for
the Nepali language.

As expected, the results indicate that some lan-
guages are supported better than others. This is un-
derlined by Figure 1, which summarizes the BLEU
scores of all four systems on the FLORES-200
dataset. However, the diagram also shows that the
evaluated systems do not always perform better
on class 5 languages when compared to languages
in lower classes. All four systems perform well
when translating French and German to English.
However, the translation of Japanese is not well
supported by all four of them. Instead, all four
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LC Language
Europarl IWSLT2017

Libre OPUS NLLB mBART Libre OPUS NLLB mBART

5
FR 28.38 25.95 23.43 25.97  39.95 42.34 43.06 42.38

DE 25.19 22.18 20.33 22.15  33.76 37.17 38.49 38.08

JA - - - - - 6.39 8.50 15.60 17.03

4

NL 14.16 21.54 19.14 18.93  35.01 40.15 39.96 43.13

FI 19.78 22.17 18.48 21.89  - - - -
IT 26.71 24.52 21.47 20.93  33.19 36.14 36.84 39.48

KO - - - - - 9.38 23.44 20.91 23.95

3 RO - - - - - 37.98 38.94 37.87 34.59

Table 3: BLEU scores of the evaluation of the Europarl and IWSLT2017 datasets. The experiment URIs are linked
with the corresponding BLEU, METEOR, chrF++, and TER scores. The results in bold mark the system with the
best BLEU value on a dataset and a statistically significant difference to the second-placed system. The underlined
values are the best BLEU values without a significant difference to the next highest value on that dataset.
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Figure 1: BLEU scores of all four systems and their average on the FLORES-200 dataset for 9 HRLs and 17
LRLs. The languages are sorted by their class from class 5 on the left to class 0 on the right. Within their class, the
languages are sorted by the average system performance (orange).

systems perform better when translating the class 3
language Romanian than on Japanese or any class
4 language we look at in our evaluation. Simi-
larly, LibreTranslate performs better on Estonian,
Opus MT and NLLB better on Indonesian, He-
brew, and Ukrainian, when compared to Italian
or Dutch. This even includes class 1 languages
like Macedonian or Norwegian Bokmål for which
the four systems achieve better performance than
for most class 4 languages. As counter-examples,
Thai, and Xhosa are not well supported by the ma-
jority of translation systems. Hence, our results
suggest that freely available NMT systems can
show a high BLEU score even on LRLs. At the
same time, this result raises the question, which
features of languages influence the performance
of the NMT systems. It seems reasonable that
an NMT system achieves a similar performance
for similar languages, e.g., languages that origi-
nate from the same language family. However,

although Romanian, French, and Italian belong
to the group of Romance languages and the two
latter even to the smaller group of Italo-Western
languages, the performance of all four systems was
significantly lower on Italian than on French or
Romanian data. Similarly, German and Dutch be-
long to the group of languages but lead to quite
different BLEU scores. Other language families
like West Germanic (Dutch, German), Midlands
Indo Aryan (Hindi, Nepali), and Neva (Estonian,
Finnish) show similar results in our evaluation,
while the languages of the families East Slavic
(Russian, Ukrainian) and Macedo-Bulgarian (Bul-
garian, Macedonian) let to similar BLEU scores
within the families. Although our results point into
this direction, the set of languages in our evaluation
is too small to refute the hypothesis that families or
groups of languages influence the performance of
NMT systems. Hence, answering these questions
remains future work.
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Figure 2: Comparison of the effectiveness (BLEU
scores) and the efficiency (throughput). The latter is
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represents the language class, i.e., unfilled marks repre-
sent a class 0 language while fully filled marks represent
a class 5 language. Up and to the right is better.

Figure 2 shows a comparison of the effective-
ness and efficiency of the single systems during
all experiments that have been carried out within
our evaluation. LibreTranslate shows the highest
throughput in most experiments measured in to-
kens per second. Opus MT and NLLB achieve
similar runtimes while mBART50 had the lowest
throughput in most experiments. At the same time,
we couldn’t find a big difference between LRLs
and HRLs concerning efficiency.

Figure 3 shows the average standard deviation
per language sorted by language class. We observe
increased deviations for LRLs when compared to
HRLs. Despite the models being trained on LRLs-
based data and the systems’ language support for
LRLs, the performance on these languages is still
inconsistent. The Telugu, Malayalam, and Nepali
languages are class 1 languages and show the high-
est deviation. While Bulgarian, a class 3 language,
shows the lowest, followed by French and German,
two class 5 languages. Hindi, a class 4 language,
also shares an increased deviation following other
Middle-Modern Indo-Aryan languages like Ben-
gali and Nepali. Malayalam and Telugu are two
South Dravidian languages with higher variations
as well. This hints at systems having difficulties
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Figure 3: Average standard deviation of BLEU scores
per language over all datasets sorted by language class.
The values have been normalized using the highest stan-
dard deviation (22.06). The orange ring marks the aver-
age value over all languages.

processing languages from these families. No other
family tree in this experiment presented higher devi-
ations, e.g., Romance, Germanic, Slavic, or Finnic
families.

4 Conclusion

We compared four open-source NMT systems on
high and low-resource languages regarding their
effectiveness and efficiency, filling a gap in the
literature that focused on the evaluation of single
systems or the comparison of commercial solutions.
Our experiments show that open-source systems
can perform well on LRLs, showcasing the NLP
community’s efforts in bridging the gap. How-
ever, the performance of the systems in these lan-
guages remains variable. Assessing the impact
of the domain and genre of the training datasets
on the translation quality remains a question for
future work. Despite the existence of numerous
evaluation frameworks for MT, we used BENG to
share the evaluation data via a common space and
hope that it boosts comparability across systems
and datasets. The influence of language families
and writing systems on the translation consistency
of these systems requires further investigation.
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Abstract

The Rosetta Balcanica is an ongoing effort to
expand the resources for low­resource western
Balkan languages. This effort focuses on dis­
covering and using accurately translated, offi­
cially mapped, and curated parallel language
resources and their preparation and use as neu­
ral machine translation (NMT) datasets. Some
of the guiding principles, practices, and meth­
ods employed by Rosetta Balcanica are gener­
alizable and could apply to other low­resource
language resource expansion efforts. With this
goal in mind, we present our rationale and ap­
proach to discovering and using meticulously
translated and officially curated low­resource
language resources and our use of these re­
sources to develop a parallel “gold standard”
translation training resource. Secondly, we
describe our specific methodology for NMT
dataset development from these resources and
its publication to a widely­used and accessi­
ble repository for natural language processing
(Hugging Face Hub). Finally, we discuss the
trade­offs and limitations of our current ap­
proach and the roadmap for future develop­
ment and expansion of the current Rosetta Bal­
canica language resource.
1

1 Introduction

Many underresourced languages are spoken by
ethnic groups residing in regions affected by eco­
nomic, social, or other crises. These circumstances
frequently necessitate the involvement of interna­
tional institutions focused on economic assistance,

1The United States Government retains and the publisher,
by accepting the article for publication, acknowledges that
the United States Government retains a non­ exclusive, paid­
up, irrevocable, world­wide license to publish or reproduce
the published form of this manuscript, or allow others to do
so, for United States Government purposes. The Depart­
ment of Energy will provide public access to these results
of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe­public­
access­plan).

the promotion of human rights, the advancement
of democratic structures and processes, humanitar­
ian aid, peacekeeping, and regional economic and
political stabilization. As part of these activities,
these institutions issue reports and studies that sup­
port their missions and goals.
The documents produced by international orga­

nizations operating in regions affected by these
factors require precise translation to: a) preserve
the original meaning of the master communique,
and b) accurately convey that meaning across the
languages of the regional groups. Such documents
constitute a “golden standard” for any downstream
cross­lingual computational linguistics tasks, par­
ticularly machine translation training. For a data
set to fit such a standard, it must map across par­
allel data sets at the phrase and paragraph levels
with high accuracy, be produced by professional
translators, and be issued by an authoritative pub­
lication body.
Neural machine translation (NMT) (Bahdanau

et al., 2014) is a state­of­the­art approach to ma­
chine translation that uses an end­to­end encoder­
decoder architecture with attention mechanisms
(Vaswani et al., 2017), to translate source lan­
guage sentences into target language sentences.
Attention­based models are particularly well­
suited for translation tasks as they support the
training of models that can maintain attention on
complex relationships and dependencies between
two related sequences. For example, attention­
based models excel at learning relationships be­
tween words and phrases in two languages, even
when the languages do not have a one­to­one map­
ping.
Accurate and complete sentence­to­sentence

alignment between the source and target languages
in a training dataset is particularly important for ef­
fectively training neural machine translation mod­
els because it helps the NMT model form accu­
rate patterns of attention. Therefore, a “golden”
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training set in low­resource languages is of great
value for effective low­resource NMT model de­
velopment, as the training content is meticulously
translated and aligned at the phrase, sentence, and
paragraph levels.
This effort focuses on the Western Balkan lan­

guages, a region in South Central Europe compris­
ing countries formed by the breakup of former Yu­
goslavia and Albania. The languages spoken in
this region include dialects of Southern Slavic lan­
guages (Serbian, Croatian, Bosnian, Macedonian,
Slovenian, etc.), Albanian, and others (Friedman,
2011). These languages and resources were se­
lected due to our familiarity with the region’s cul­
tural, historical, and ethnic circumstances, and our
fluency in several of these language groups (in­
cluding Croatian, Bosnian, Serbian, and to some
degree, Macedonian).
Furthermore, given the significant similarity be­

tween Croatian, Serbian, and Bosnian languages
(Ljubesic et al., 2007), some of these parallel re­
sources, with translations from English, Shqip,
and Macedonian to either Serbian, Croatian, or
Bosnian, can potentially be used to cross­map the
translations between all three languages. This sig­
nificantly boosts these three language resources
and their use for other multilingual tasks (Pour­
damghani and Knight, 2017).
The development of high­quality, meticulously

translated parallel datasets for low­resource lan­
guages such as those in the Western Balkans is
crucial for advancing neural machine translation.
In this paper, we outline the methodology, chal­
lenges, and future directions for creating these
datasets, which serve as foundational resources for
enhancing multilingual and cross­lingual compu­
tational linguistics.

2 Background

Many of the languages of the Western Balkans
are spoken by small national groups or ethnic
minorities and are considered low­resource lan­
guages (Tyers andAlperen, 2010;Mati et al., 2021;
Kunchukuttan and Bhattacharyya, 2021). Alba­
nian, or Shqip, is spoken by 7.5 million people
worldwide, with approximately 4.5 million speak­
ers in the region. Although an Indo­European lan­
guage, it is unique and is not closely related to
any other Indo­European language. Macedonian
(Masson and Davies, 2016), an east­south Slavic
language, is spoken by approximately two million

people.
Furthermore, the region has been severely af­

fected by a series of regional wars, which, in addi­
tion to causing significant population losses, have
been followed by economic depopulation (Lukic
et al., 2012), a trend that continues today (Lutz and
Gailey, 2020). It is estimated that 4.4 million peo­
ple have emigrated from the region (World Bank
Group and WIIW, 2018, p.42).

2.1 Related Work
A number of parallel language resources for the
languages of the Western Balkans. Many of these
resources are the results of volunteer or officially
sanctioned projects where news sites and individ­
ual works of well­known literature or other re­
sources were collected into a corpus.
META­SHARE is the web site that curates

and maintains most of these of parallel lan­
guage resources for Western Balkan languages.
Macedonian­Croatian Parallel Corpus (mk­
hr_pcorp) (Cebović and Tadić, 2016) is a parallel
corpus consisting of fictional synchronic prose
texts with over 500,000 tokens in each language
and 39,735 aligned sentences. South­East Euro­
pean Parallel Corpus (Tyers and Alperen, 2010)
is a corpus of South­East European languages
derived from The South­East European Times
website. The website is a collection of regional
news that was sponsored by the United States
European Command, dedicated to coverage of
Southeast Europe (it ended publication in March
2015). The South­East European Parallel Corpus
includes, among others, resources in Albanian
(41,741,782 tokens), Macedonian (37,623,521
tokens) and Croatian (34,968,453 tokens).
A parallel corpus for the tourism domain focus­

ing on English and Croatian languages was cre­
ated by leveraging automatic data crawlers to col­
lect parallel data from the web (Toral et al., 2017).
The dataset was used to train machine translation
(MT) systems for the tourism domain, aiming to
optimize translation tasks relevant to this specific
field.
Parallel Global Voices (PGV) (Prokopidis et al.,

2016) is a parallel language dataset, derived from
the Global Voices multilingual group of websites,
where volunteers publish and translate news sto­
ries in more than 40 languages.
Parallel Data, Tools and Interfaces in OPUS is a

growing resource of freely accessible parallel cor­
pora. It also provides tools for processing paral­
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lel and monolingual data, as well as several in­
terfaces to search the data, making it a unique re­
source for various research activities (Tiedemann,
2012). Albanian from Taoteba, a collection of vol­
unteer contributed sentences and translations that
has 2,532 Albanian, 77,988 Macedonian, 5,301
Croatian, 45,786 Serbian and 619 Bosnian sen­
tences. A recent survey of resources and methods
for Serbian Language was presented in (Marovac
et al., 2023).
However, most of the available resources such

as Common Crawl2 or Internet Archive3 that are
commonly used by the research community to
build parallel datasets (Banón et al., 2022; El­
Kishky et al., 2019) suffer from limitations. They
often comprise language structures that are either
inadequately translated or lack meticulous align­
ment across languages. In contrast, the resources
utilized inRosetta Balcanica stand out for their rig­
orous curation process. They have been curated
from texts translated by official sources and metic­
ulously mapped to multiple languages, ensuring
high­quality and accurate representations to serve
as resources for a wide range of applications.

2.2 Data Source
The Organization for Security and Cooperation in
Europe (OSCE) (Galbreath, 2007) is the world’s
largest intergovernmental security­oriented orga­
nization. Its mission includes conflict prevention,
arms control, the promotion of democratic val­
ues and processes, and the protection and pro­
motion of human rights, among other objectives.
The OSCE has several missions in the West­
ern Balkans, specifically in Albania, Bosnia and
Herzegovina, Kosovo, and Serbia. As part of its
mission, the OSCE publishes and curates multi­
lingual official documents relevant to its activi­
ties in the region. Their website 4 hosts an exten­
sive resource library of reports and white papers,
with a significant section dedicated to the Western
Balkans.
For its translators, the OSCE requires a uni­

versity degree in interpretation or a related field,
with a requisite perfect command of the languages
of interest and professional proficiency in English
(preferably as a mother tongue). Pertinent to the
region and languages of interest, the OSCE pub­
lishes reports, studies, and white papers on human

2https://commoncrawl.org/
3https://archive.org/
4https://www.osce.org/resources/documents

rights, democratic elections, hate crime statistics,
and other topics within the OSCE’s scope and mis­
sion. Given the scarcity of language resources and
the high quality of multilingual translations, we
have included all these resources.

3 Approach

Our overall approach to the development of
Rosetta Balcanica was to identify the spe­
cific, officially translated multilanguage resources
amenable to raw language processing and then
convert them into a general and neutrally formatted
parallel language resource. From there, we chose
to post­format this neutral resource into a specific
format (e.g. Hugging Face Hub format), with the
intention of making it accessible to a large group
of NLP practitioners.
We started the collection process by attempt­

ing to automate the search, retrieval, and prepro­
cessing of downloaded resources. We encountered
a number of errors related to standard document
formatting (page numbers, header/footer dividers)
that made automation complex, uncertain and error
prone, so we delayed the entire automation process
in favor of manual collection and preprocessing to
make initial progress in corpus development (first
stage/release in a roadmap (see Figure 4). We in­
tend to develop and proceed with a more robust
automation starting with the second stage.

3.1 Selection and Preparation

We selected OSCE resources by language, starting
with Shqip, assuming that there will be at least one
translation (English) for the Shqip resources. In
most cases, we found parallel translations between
English, Shqip and the combination of Macedo­
nian and Serbian, and in some instances, such
as regional publications or annual OSCE reports,
the documents were translated into multiple lan­
guages.

3.2 Parallel Dataset Creation

Following best practices for the development of
parallel datasets, we create a folder for each docu­
ment and then convert each PDF into a plain text
representation. In particular, all document folders
reside in a language combination directory named
corresponding to the language of the documents it
contains. For example, if a directory contains fold­
ers for documents that involve the three languages
English, Macedonian, and Shqip, our language
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combination directory would be named english­
macedonian­shqip. This folder structure allows us
to add more documents to an already existing di­
rectory or to add new language combinations with
new documents in the future.
We applied minimal formatting to remove page

numbers and other non­linguistic features such as
header artifacts. Then, wemade sure that language
files are aligned with each other at the paragraph
and sentence level. The resulting structure is a
folder named after each document, with each file
entry representing a translation of the same content
as seen in figure 1.

Figure 1: A folder structure and sample content for par­
allel language document.

This shows the structure for the content ex­
tracted from the document titled “Conclusions and
Recommendations” from the 5th Annual South
East Media Conference5. Table 1 shows some ran­
dom samples extracted from this document for the
three languages.

3.3 Validation
Given that the sources covered under Rosetta Bal­
canica are officially translated materials, we only
performed spot validation to ensure alignment be­
tween the texts. Specifically, we validated the
translations by randomly sampling parallel sen­
tences and verifying their translations in Google
Translate.

3.4 Hugging Face Hub
Hugging Face is the largest online NLP commu­
nity engaged around the use and sharing of state­
of­the­art models. A part of this community is a
Hugging Face Hub where NLP researchers can up­
load, share, and access data sets and models. At
the time of the writing of this manuscript, there are

5https://www.osce.org/
representative-on-freedom-of-media/384549

over 900 datasets and more than 25 metrics avail­
able. Data on Hugging Face hub follows aDataset
convention. Datasets is a library to easily access
and share data sets and evaluation metrics for Nat­
ural Language Processing (NLP), computer vision,
and audio tasks. Once part of the hub, the data sets
can be loaded into a Hugging Face pipeline with a
single line of code and used to train neural machine
translation models (NMT).

Figure 2: Rosetta Balcanica dataset development and
registration workflow (Release 1).

We use a script that automatically scrapes all
the document folders within a language combi­
nation directory and then extracts and aggregates
all the sentences in each language text file to cre­
ate a single text file corresponding to each lan­
guage. This script then parses these language
files to create a Hugging Face compliant dataset.
Specifically, we create a temporary folder, which
contains language­pair folders for each language.
For example, the language combination directory
english­macedonian­shqip containing documents
from the three languages would result in two lan­
guage pair folders en­ma and en­sh. We followed
the convention of using the first two letters of the
language to name the folder. Each language­pair
directory contains 4 files corresponding to training
and testing files for each language in the language
pair followingHugging Face’s machine translation
dataset convention. These are then zipped up into
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English Macedonian Shqip
OSCE SOUTH EAST EU­
ROPE MEDIA CONFERENCE
CONCLUSIONS AND REC­
OMMENDATIONS

КОНФЕРЕНЦИЈА НА
ОБСЕ ЗА МЕДИУМИ
ВО ЈУГОИСТОЧНА
ЕВРОПА ЗАКЛУЧОЦИ И
ПРЕПОРАКИ

KONFERENCA E OSBE­SË
PËR MEDIA NË EVROPËN
JUGLINDORE KON­
KLUZIONE DHE REKO­
MANDIME

Trade unions need to be recog­
nized as legitimate representa­
tives of journalists.

Синдикатите треба да се
признаат како легитимни
претставници на новинарите.

Sindikatat duhet të njihen si për­
faqësues legjitim të gazetarëve.

Encourage investigative pieces
and journalism also in PSM in
line with best practices of the
sector.

Поттикнување истражувачки
стории и новинарство и во
ЈМС, согласно најдобрите
практики во секторот

Inkurajim i reportazheve dhe
gazetarisë hulumtuese edhe në
transmetuesit publikë në pajtim
me praktikat më të mira.

Table 1: Sample parallel language document content from the OSCE 5th Annual South East Media Conference

rosetta_balcanica.tar.gz which is saved at the root
of the repository.
All these files are currently hosted on Github at

our repository6. The data sets are made accessible
via the compressed zip file through the Hugging
Face Hub by directly accessing the Github repos­
itory. Finally, we upload the dataset to Hugging­
Face Hub 7 for easy access.

4 Dataset Statistics

The first release of the Rosetta Balcanica focuses
on the parallel documents in Shqip and Macedo­
nian. For this release, we used only Shqip re­
sources available through OSCE.

4.1 Corpus Statistics

Counts English Macedonian Shqip
# of Sentences 8567 8567 8567
# of Tokens 137620 148459 168202

# of Unique Tokens 7839 14565 18911

Table 2: Parallel English­Macedonian­Shqip Corpus
Statistics

4.2 Topics Represented

As expected, there is an obvious and deliberate
bias in the topics presented in theOSCE corpus fig­
ure 3. These topics reflect the subjects of the pub­
lications and reports that are within the scope of
OSCE’s mission in the Western Balkan countries ­

6https://github.com/ebegoli/
rosetta-balcanica

7https://huggingface.co/datasets/
sudarshan85/rosetta_balcanica

human rights watch (and related violations), elec­
tions, conflicts and incidents, and overall socio­
cultural and economic development. These top­
ics are expected to dominate the corpus for the
first two to three releases of the dataset while we
are focusing on OSCE and Hague Tribunal origi­
nal sources. We plan to diversify the topics over
time, but, overall, we are deliberately choosing a
narrowly focused dataset that is of a highest qual­
ity, and the tradeoff of that approach will be lower
topic diversity.

5 Challenges and Limitations

Maceodonian and Serbian entries are written in
Cyrillic script. To compare the entries between
Serbian, and, for example, Croatian and Bosnian,
which are otherwise very similar languages, an ad­
ditional transliteration step is required. OSCE is a
trusted dataset so we did not perform translitera­
tion of all the data. We checked 1% of randomly
selected samples and found those accurately trans­
lated.

6 Future Work

The scope of the work presented in this encom­
passes the work on the OSCE dataset, which is
topically narrow, and primarily performing man­
ual preprocessing to minimize “debugging” time.
Future work will encompass a) inclusion of other,
similarly structured parallel language datasets,
and b) automation of dataset retrieval and pre­
processing.
Once we process OSCE resources for all West­

ern languages, we will work to process Hague tri­
bunal documents which are, like OSCE, profes­
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Figure 3: A representation of topics in the corpus.

sionally translated and available in most Western
Balkan languages. After that, we will focus on the
general multi­lingual resources from official me­
dia sources. We will focus on the latter mostly to
diversify the topics and balance out representation.

Rosetta Balcanica is on an ongoing project, and
the development of new resources continues. Al­
though it is an ongoing process, we have identified
releases and milestones (Figure 4) in a roadmap
that maps to the inclusion of specific language re­
sources and the dataset development tools (e.g.
resource retrieval and pre­processing automation,
quality assurance, dataset registration, etc.).

Figure 4: Roadmap of releases for 2021­2023 for
Rosetta Balcanica.

We mentioned earlier that we attempted to au­
tomate the dataset collection/retrieval and pre­
processing step. We found that the complexi­
ties and error­proneness of automation attempts, at
that time, were slowing us down in the process of
dataset development more than they were helping
us. It is evident, though, that this process needs
to be automated in order to be scalable and easily
re­usable, and it is on our roadmap to automate the
process. In fact, we are in the process of improving
the automation process, and we expect that the au­
tomation scripts will be available by the time this
paper is published (mid­2022).

7 Conclusion

There are three takeaways from the Rosetta Bal­
canica effort of that are, we presume, of interest to
the natural language processing community:

1. Similar organizations, with a perhaps differ­
ent mission, are likely sources of the similar
“golden set” materials that can be used for
the development of similar parallel datasets
for low­resource languages. We recommend
exploring similar resources for other low­
resource languages. These could be UN­
ESCO, UNICEF, United Nations, and other
international organizations.

2. The workflow presented in this paper is a
practice that we recommend as well. The ap­
proach we have taken, where we curate a sin­
gle, raw corpus in parallel languages and then
use it to create a training library or modality­
specific dataset (Hugging Face Hub) is an ap­
proach that makes the dataset readily avail­
able to a broad community that uses state­of­
the­art NLP methods (neural machine trans­
lation, etc.). This approach also scales well
because the original, raw source can be used
for the development of other library and
modality­specific datasets.

3. While we found automated retrieval and
preparation of data sources to be challenging
and error­prone, we still intend to pursue this
route in the future, and we encourage other
similar efforts to attempt the same.
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Abstract

Large Language Models (LLMs) have demon-
strated exceptional performances in a wide
range of natural language processing tasks.
However, their success does not always extend
to machine translation, particularly in challeng-
ing scenarios such as translating low-resource
languages. This study investigates the multi-
lingual capability of LLMs, with a case study
on Irish, an extremely low-resource language,
focusing on translation tasks between English
and Irish. We propose a dynamic, efficient
language adaptation framework for English-
centric LLMs, which involves layer-specific
adjustments and subsequent fine-tuning for ma-
chine translation. Our findings highlight sev-
eral key insights: (1) different layers in the
LLM serve distinct functions such as language
understanding and task reasoning, (2) effective
translation requires extensive pre-training on
both source and target languages, and (3) tar-
geted fine-tuning for machine translation leads
to significant improvements of 36.7% for En-
glish to Irish and 133.4% for Irish to English
compared to the previous state-of-the-art.

1 Introduction

Large Language Models (LLMs) have recently
revolutionized the field of Natural Language Pro-
cessing (NLP), demonstrating remarkable perfor-
mance across a wide range of tasks. These mod-
els, built on the transformer architecture, lever-
age vast amounts of data to achieve exceptional
levels of linguistic understanding. However, sig-
nificant challenges remain, particularly in the do-
main of machine translation for low-resource lan-
guages (Bawden and Yvon, 2023). Traditional ap-
proaches for Neural Machine Translation (NMT)
are often data-inefficient and rely on large num-
bers of parallel data pairs to obtain reliable perfor-
mance, limiting their applicability in low-resource

∗Corresponding Author

tasks (Ranathunga et al., 2023; Lamar and Kaya,
2023).

This paper seeks to explore the multilingual ca-
pabilities of LLMs, specifically focusing on Irish,
an extremely low-resource language, and the trans-
lation tasks between English and Irish. Irish, classi-
fied as an endangered language, poses unique chal-
lenges for machine translation. The limited avail-
ability of parallel corpora (Lankford et al., 2022;
Ojha et al., 2021) and the sparse representation
in pre-training datasets (Barry et al., 2022; Tran
et al., 2024) make it a vital candidate for investigat-
ing the potential of LLMs in low-resource settings.
LLMs, such as ChatGPT (OpenAI, 2022, 2024),
BLOOM (Workshop et al., 2023), and the Llama
series (Touvron et al., 2023a,b), are predominantly
English-centric, although pre-trained on multilin-
gual datasets. The extent to which these models
can effectively translate between low-resource lan-
guages remains an open question.

Our research identifies several key insights to
successfully apply LLM to the low-resource sce-
nario, such as the requirement for the LLMs to be
bilingual through extensive pre-training on both
languages. We propose a novel framework for effi-
ciently adapting English-centric LLMs to a novel
unseen language, and further fine-tuning for the
task of machine translation. Our approach involves
a two-stage training process: dynamic continued
pre-training, where we selectively train layers of
the LLM based on their language capability, indi-
cated by retrieval scores, and additional fine-tuning
on specific machine translation datasets. By fo-
cusing on the layers responsible for language un-
derstanding and reasoning, we aim to enhance the
bilingual capabilities of the LLM while being ef-
ficient, requiring only a fraction of the model’s
total parameters for effective language adaptation.
Specifically, we achieve an improvement of up to
46.14 BLEU score for Irish to English translation
and 13.22 BLEU score for English to Irish transla-
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tion compared to previous state-of-the-art methods
on the LoResMT-2021 dataset (Ojha et al., 2021).

Our source code and model weights are
made publicly available at https://github.com/
ReML-AI/UCCIX for future research and bench-
marking purposes.

2 Related Work

2.1 Neural Machine Translation

Neural Machine Translation (NMT) has become
the dominant approach in the field of machine
translation, largely due to the success of sequence-
to-sequence models and the introduction of atten-
tion mechanisms. The advent of the Transformer
model (Vaswani et al., 2017) offers a more effi-
cient and scalable architecture that relies entirely
on attention mechanisms. Transformers have be-
come the backbone for most state-of-the-art (SoTA)
NMT systems (Lankford et al., 2021; Team et al.,
2022). Despite these advancements, NMT sys-
tems still struggle with translating low-resource
languages due to the lack of sufficient training data.
Various approaches have been proposed to mitigate
this issue, such as transfer learning (Zoph et al.,
2016; Chen and Abdul-mageed, 2023) and multi-
lingual NMT (Johnson et al., 2017; Dabre et al.,
2020). These methods leverage information from
high-resource languages or use monolingual data to
further improve translation quality for low-resource
languages, but significant challenges remain. One
of the main challenges is the dependence on paral-
lel data, which is notably deficient for low-resource
languages.

In this work, we explore a recent
paradigm (Workshop et al., 2023; Bawden
and Yvon, 2023), by applying LLMs to the
domain of NMT. We leverage the vast amount of
pre-training conducted for LLMs and investigate
whether their capabilities can be transferred
to NMT tasks, particularly for low-resource
languages. However, it should be noted that while
LLMs can be pre-trained on multiple languages,
their pre-training data is mostly monolingual per
sample, making it uncertain how well the models
can translate across languages.

2.2 Large Language Models

LLMs have garnered attention for their impressive
text generation capabilities and versatility across
various NLP tasks. However, most of these mod-
els, either closed-source ones such as ChatGPT,

or open-source models like BLOOM (Workshop
et al., 2023), and the Llama series (Touvron et al.,
2023a,b) have demonstrated significant proficiency
in handling a variety of languages and tasks. How-
ever, these models predominantly focus on widely
spoken languages like English, leading to a perfor-
mance disparity when applied to low-resource lan-
guages. Recent surveys (Bawden and Yvon, 2023;
Hendy et al., 2023) have investigated the capability
of LLMs for machine translation tasks, reporting
that LLMs can perform well in these scenarios,
especially for high-resource languages. However,
their effectiveness in low-resource settings, such as
in Irish, remains limited due to the lack of adequate
training data.

UCCIX (Tran et al., 2024) is a recent LLM devel-
oped with a focus on Irish, a Definitely Endangered
language as recognized by UNESCO (UNESCO,
2010). Given the limited availability of Irish data,
the authors proposed a framework for language
adaptation of an English-centric LLM to make it
bilingual. Despite this, issues such as catastrophic
forgetting of English have been observed, as a con-
sequence of continued pre-training on Irish data.

With the case study on Irish, we investigate the
potential usages of such models for the translation
tasks between Irish and English, as part of the ef-
fort to preserve the Irish language and prevent its
loss. We analyze the bilingual capabilities of the
LLM and propose an adaptive language adaptation
strategy to balance the model’s performance be-
tween the two languages. This approach aims to
enhance the efficiency of adapting LLMs in low-
resource settings, ensuring robust performance in
both high-resource and low-resource languages.

2.3 Low-Resource Settings

Research on the challenges of addressing low-
resource languages in NLP is essential given the
diversity of languages and the demand for inclu-
sive technology. Since large annotated datasets are
necessary for training strong models, low-resource
languages frequently lack them, making it chal-
lenging to achieve good performance using tradi-
tional techniques. As pointed out in recent sur-
vey (Ranathunga et al., 2023), if there are less than
0.5 million parallel sentences in the parallel cor-
pora, a language pair is deemed “low-resource” in
an MT scenario, and if there are less than 0.1 mil-
lion parallel sentences, it is deemed “extremely
low-resource”.
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Irish, an endangered language, fits into the ‘ex-
tremely low-resource’ category. Recent works re-
port a composite dataset from different sources
amounting to only 25,000 (Lankford et al., 2022)
or 52,000 (Lankford et al., 2021) parallel sentences.
Given this limited amount of data, we investigate
whether the large amount of available monolingual
data can aid in improving performance through the
use of LLMs. Our findings highlight the effective-
ness of further fine-tuning LLMs for the machine
translation task, even with such sparse data.

3 Method

3.1 Preliminary Explorations

Large Language Models (LLMs) are typically built
using the transformer decoder-only architecture,
consisting of multiple stacked transformer lay-
ers. While LLMs are often trained on large-scale
English-dominant text corpora, they often also in-
clude a small percentage of texts in multiple lan-
guages due to the vast size of the training data.
This raises the question of whether LLMs can un-
derstand underpresented languages effectively. For
instance, in the Llama series of models, the Irish
language constitutes less than 0.005% of the train-
ing corpus. To explore this, we conduct few-shot
prompting experiments with the machine transla-
tion task between English (dominant language) and
Irish (extremely low-resource language). Few-shot
prompting allows LLMs to follow specific input
patterns and leverage their pre-trained knowledge
for the translation task. We investigate the per-
formance in both directions: Irish to English (as-
sessing LLM’s understanding of the low-resource
language) and English to Irish (analyzing its ca-

pability to generate text in the target language).
Table 1 shows examples of the prompts used. The
results, presented in Table 2 and Figure 1, highlight
the following insights:

• English-centric LLMs may have some under-
standing of low-resource languages but strug-
gle with text generation in those languages.
This is evident by the strong performance of
the Irish to English direction, with gpt-3.5-
turbo and Llama 2-70B able to outperform the
previous task-specific SoTA (Lankford et al.,
2021), up to 7.97 BLEU score.

• Efficient translation requires extensive pre-
training on both languages, as evidenced by
UCCIX outperforming English-centric LLMs,
beating the much larger gpt-3.5-turbo model.

• Generally, providing examples (few-shot
prompting) helps LLMs follow the task for-
mat better (Figure 1), aligning with previous
findings (Brown et al., 2020).

To further investigate LLM behavior without re-
lying on few-shot prompting and the variants it
created, we analyze the sentence retrieval task. The
sentence retrieval task (Artetxe and Schwenk, 2019;
Dufter and Schütze, 2020; Yong et al., 2023), aims
to identify the closest sentence in English given
a representation of a sentence in a new language
(Irish). We compute sentence retrieval accuracy
at each layer of different pretrained models to un-
derstand where and how language understanding
capabilities emerge. For this analysis, we focus
on the Llama 2 model, a popular and widely-used
open-sourced LLM.

Prompt English->Irish Prompt Irish->English
Aistrigh Béarla go Gaeilge: Aistrigh Gaeilge go Béarla:
Béarla: When needed, EMA and the other European regulators take
action.

Gaeilge: Gníomhaíonn EMA agus rialtóirí Eorpacha eile nuair is
gá.

Gaeilge: Gníomhaíonn EMA agus rialtóirí Eorpacha eile nuair is
gá.

Béarla: When needed, EMA and the other European regulators take
action.

Béarla: mumps Gaeilge: na leicní
Gaeilge: na leicní Béarla: mumps
Béarla: woman holding a phone Gaeilge: bean a bhfuil fón aici
Gaeilge: bean a bhfuil fón aici Béarla: woman holding a phone
Béarla: 17 June 2020 – EU COVID-19 vaccines strategy unveiled
Gaeilge: 17 Meitheamh 2020 – Straitéis an Aontais um vacsaíní

Gaeilge: 17 Meitheamh 2020 – Straitéis an Aontais um vacsaíní
in aghaidh COVID-19 curtha i láthair

in aghaidh COVID-19 curtha i láthair Béarla: 17 June 2020 – EU COVID-19 vaccines strategy unveiled
Béarla: 31 August 2020 - Coronavirus Global Response: The
Commission joins the COVID-19 Vaccine Global Access Facility
Gaeilge: 31 Lúnasa 2020 – An Fhreagairt Dhomhanda ar an

Gaeilge: 31 Lúnasa 2020 – An Fhreagairt Dhomhanda ar an
gCoróinvíreas: An Coimisiún páirteach sa tSaoráid Rochtana
Domhanda ar Vacsaíní in aghaidh COVID-19

gCoróinvíreas: An Coimisiún páirteach sa tSaoráid Rochtana
Domhanda ar Vacsaíní in aghaidh COVID-19

Béarla: 31 August 2020 - Coronavirus Global Response: The
Commission joins the COVID-19 Vaccine Global Access Facility

Béarla: {input} Gaeilge: {input}
Gaeilge: Béarla:

Table 1: 5-shot prompts used to evaluate pre-trained LLMs on machine translation tasks.
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(a) English to Irish translation (b) Irish to English translation

Figure 1: Effects of a number of fewshot examples during prompting for different models on a) English to Irish
translation, and b) Irish to English translation on the LoResMT-2021 dataset.

Model BLEU on English->Irish BLEU on Irish->English
SoTA from LoResMT2021 (Lankford et al., 2021) 36.0 34.6
gpt-3.5-turbo 18.64 42.57
Llama 2-70B 9.63 41.66
Llama 2-13B 3.25 25.60
BLOOM-7B1 0.61 1.84
UCCIX 33.34 46.36

Table 2: BLEU scores on machine translation tasks for baseline NMT model (Lankford et al., 2021), English-Irish
bilingual LLMs (UCCIX (Tran et al., 2024)), and other LLMs.

Figure 2: Sentence retrieval accuracy score across layers
of UCCIX, English-Irish bilingual LLM and Llama 2-
13B, English-centric LLM.

Formally, given D =
{(sga0 , sen0 ), . . . , (sgai , seni ), . . . , (sgaN−1, s

en
N−1), }

a dataset of parallel sentences in Irish (denoted
sga) and English (denoted sen), the sentence
retrieval task involves finding the closest English
sentence given an Irish sentence representation.

A generative (decoder-only) LLM processes the
input textual data autoregressively through each
transformer layer. The text is first tokenized
into subword units and mapped into embeddings
through a learned embedding matrix. The embed-
dings are input to transformer layers, maintaining
their dimensions throughout the forward pass.
Given the initial input embedding at position j as
hj0, the corresponding output latent embedding at
layer l is computed as:

hjl = fl(h
0
l−1, . . . , h

j
l−1) (1)

with fl as the transformer block at layer l, l ∈ [0, L)
for an LLM with L layers. For instance, Llama 2-
13B and the finetuned version UCCIX have L = 41
layers. The sentence representation at each layer
is calculated as the average over embeddings at all
positions:

el =
1

K

K−1∑

k=0

hkl (2)

Thus, the retrieval accuracy for sentence i at
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layer l is determined by:

accuracyl,i =




1 if argmax

i∈[0,N)
cos(egal,i , e

en
l,i ) = i

0 otherwise
(3)

where cos is the cosine similarity between embed-
dings.

As observed in Figure 2, intermediate layers
of UCCIX (visualized as between the 2 horizon-
tal lines) achieve almost perfect retrieval score, a
trend that can also be noticed in the base LLaMA
2 model, although to a lesser extent. This leads us
to hypothesize that there are two types of layers
in the architecture of LLMs: (1) interface layers,
which consist of the input layer (the first few layers)
that analyze the language of the input text, extract-
ing information such as syntax, lexical structure,
and the output layer (the last few layers) that map
back to the token space of the target languages,
and (2) reasoning layers, which are the interme-
diate layers capable of reasoning and performing
the task at hand. As the interface layers contain in-
formation about the unique characteristics of each
language, they fail in retrieving sentences with the
same meaning but written in different languages,
hence the low retrieval scores.

3.2 Proposed Framework for Dynamic and
Efficient Language Adaptation

Building on our insights, we propose a framework
for efficiently adapting LLMs to understand addi-
tional languages and to the machine translation task.
This framework, as depicted in Figure 3, involves
two main stages: dynamic continued pre-training
for language adaptation and additional fine-tuning
on machine translation data.

Based on our preliminary experiments, we hy-
pothesize that certain layers of the LLM function
as interface and reasoning layers for bilingual un-
derstanding. Thus, we dynamically identify and
train only the relevant layers. Specifically, we use
the retrieval score accuracyl for each layer l of the
original English-centric LLM to guide this process.

For the input layers, which are part of the inter-
face layers, we select layers from 0 to the first layer
that has a retrieval score larger than αs:

linput = {l | 0 ≤ l ≤ argmin
l

(accuracyl > αs)}
(4)

Similarly, for the output interface layers, we select
from the last layer and move backward to the first

layer that has a retrieval score smaller than αe:

loutput = {l | argmax
l

(accuracyl < αe) ≤ l < L}
(5)

By focusing training on these identified layers,
we aim to enhance the LLM’s bilingual capabilities
by targeting the layers in charge of language under-
standing while maintaining the reasoning capabili-
ties of the LLM. Moreover, the proposed training
strategy is efficient, as it reduces number of layers
that require training.

After the dynamic continued pre-training stage,
we further fine-tune the LLM on specific machine
translation datasets. This step ensures that the
model not only understands both languages but also
effectively translates between them. The additional
training is performed on both directions: English
to Irish and Irish to English with full fine-tuning,
as both interface layers and reasoning layers are
vital to adapt the LLM to this specific task. During
this stage, we compute the training loss solely on
the target language sentence, and ignore prediction
loss on the task prompt and input sentence.

4 Experiments

4.1 Datasets

For language adaptation with continued pre-
training, we utilize the monolingual corpus in-
troduced in UCCIX (Tran et al., 2024). The
monolingual dataset includes data from vari-
ous sources such as CulturaX(Nguyen et al.,
2023), Glot500 (ImaniGooghari et al., 2023), Irish
Wikipedia, providing valuable content from Irish
sites and pages. To ensures a fair comparison,
we also choose the base pre-trained LLM to be
Llama 2-13B, same as UCCIX. The dataset in total
has approximately 500M Irish tokens, significantly
smaller than the original 2T tokens used to train
Llama 2.

For the fine-tuning phase, we combine the cor-
pus of LoResMT (Ojha et al., 2021) and ga-
Health (Lankford et al., 2022), both in-domain
datasets for the health domain, resulting in a to-
tal of 17k samples for the training set.

For MT evaluation, we report the BLEU score,
a common metric in the literature, for both transla-
tion directions: English to Irish and Irish to English.
The evaluation set from LoResMT comprises 500
samples for English to Irish and 250 samples for
Irish to English. For the fine-tuning MT data, we
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Agus ar mbeith dúinn á chur
romhainn an mhaitheas phoiblí a
chur ar aghaidh maille le
Críonnacht agus le hIonracas agus
le Carthanacht de réir mar is cuí,
ionas go dtiocfaidh linn a uaisleacht
agus a shaoirse a chur in áirithe do
gach aon duine...

Data

Machine
Translation Data

Translate from English to Irish:
English: Become an organisation fit
for the future
Irish: A bheith ina heagraíocht atá
réidh don todhchaí
--------------------------------
Translate from Irish to English:
Irish: Faoin dociméad seo
English: About the document

Zero-shot/
Few-shot prompting

Fine-tuningEnglish-Irish
Bilingual LLM

Neural Machine Translation

Inference

Neural Machine
Translation Model

Neural Machine Translation

Stage 1: Dynamic Language Adaptation Stage 2: Task Fine-tuning

Stage 3: Inference

Figure 3: Our main pipeline, including two training stages: 1) dynamic language adaptation of base English-centric
to the target language, and 2) further fine-tuning using parallel data for the neural machine translation task.

directly use the corpus from previous works, ad-
hering to the training split of LoResMT to avoid
any data contamination issues. Additionally, the
pre-training corpus from UCCIX is monolingual,
while the evaluation data is parallel between the
two languages. Consequently, the problem of data
contamination is further mitigated.

4.2 Experimental Setup

For language adaptation with continued pre-
training, we start with the base Llama 2-13B model,
pre-trained on an English-dominant corpus of 2T
tokens. This ensures a fair comparison with the
English-Irish bilingual LLM, UCCIX, which also
based on Llama 2-13B. In this foundational work,
for simplicity, we set both αs and αe to 0.075 se-
lecting 11 layers as interface layers for training out
of 41 layers in total in Llama 2-13B. This means
we train approximately 25% of the total model pa-
rameters, ensuring the technique to be efficient,
compared to full fine-tuning. Following UCCIX,
we also expand the tokenizer to include 10k native
Irish tokens before continued pre-training. During
this phase, we train the model with the AdamW op-
timizer for a total of 2 epochs, with a learning rate
of 1e− 4, a batch size of 96 samples, each 4096 to-
kens long. Training is distributed across 6 NVIDIA
H100 GPUs with a gradient accumulation step of
8. We leverage DeepSpeed (Rasley et al., 2020) for
the training process. The pre-trained LLMs can be
used for the machine translation task through few-
shot prompting. By default, we design a prompt in
Irish, with a description of the task and 5 examples
(5-shot prompting), as illustrated in Table 1. The
5 examples are initially randomly chosen from the
development subset.

For fine-tuning the machine translation task, we

Model
BLEU on
English −→
Irish

BLEU on
Irish −→
English

Llama 2-13B 3.25 25.60
UCCIX 33.34 46.36
UCCIX(IA)3 19.53 39.48
UCCIXLoRA 26.14 43.65
UCCIXreasoning_layer 29.27 42.71
UCCIXinterface_layer 30.69 46.07

Table 3: Comparison between our framework with other
language adaptation techniques: full fine-tuning (UC-
CIX), parameter-efficient (UCCIXLoRA, UCCIX(IA)3 )
and the ablation study with the training of reasoning
layers (UCCIXreasoning_layer).

train the model for at most 10 epochs on the train-
ing set. We use the AdamW optimizer, setting the
learning rate to 1e− 4 for full fine-tuning, and to
1e− 3 for training with parameter efficient meth-
ods. These values are chosen through grid search.
We also leverage DeepSpeed in this stage, with a
batch size of 96 samples, each 4096 token long
distributed across 6 H100 GPUs. Each experiment
is repeated 3 times across random seeds, and we re-
port the average results for robust evaluation. The
model is prompted as illustrated in the right part of
Figure 3 for inference.

5 Results and Discussion

5.1 Langugage Adaptation Effectiveness

Table 3 demonstrates the efficiency and perfor-
mance of our proposed dynamic language adap-
tation approach, UCCIXinterface_layer. Despite
training only 25% of the parameters, our method
remains competitive with UCCIX, which employs
full fine-tuning. For instance, the performance drop
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Model
Acc. on

Cloze Test
(0-shot)

Acc. on
SIB-200

(Irish
subset)

(10-shot)

Exact-
match on
IrishQA

(ga)
(5-shot)

Exact-
match on
Natural

Question
(5-shot)

Exact-
match on
IrishQA

(en)
(5-shot)

Acc. on
Wino-
grande
(5-shot)

Acc. norm
on

HellaSwag
(10-shot)

Average

gpt-3.5-turbo N/A N/A 0.2222 0.4660 0.3333 N/A N/A N/A
Llama 2-70B 0.63 0.7059 0.2963 0.3806 0.4074 0.8374 0.8701 0.5897
Llama 2-13B 0.54 0.5343 0.3148 0.3069 0.4444 0.7609 0.8223 0.5319
BLOOM-7B1 0.45 0.1471 0.0000 0.0806 0.1667 0.6519 0.6202 0.3024
UCCIX 0.75 0.7794 0.3889 0.1668 0.3704 0.7135 0.7758 0.5635
UCCIX(IA)3 0.45 0.7353 0.2222 0.2490 0.4815 0.7435 0.7883 0.5242
UCCIXLoRA 0.67 0.7792 0.2963 0.2704 0.5370 0.7474 0.7851 0.5836
UCCIXreasoning_layer 0.64 0.7304 0.2222 0.1950 0.3889 0.7167 0.7903 0.5262
UCCIXinterface_layer 0.69 0.7892 0.3889 0.2404 0.5370 0.7451 0.7971 0.5982

Table 4: Evaluation results of pre-trained models on curated set of Irish (first 3 columns) and English (the following
4 columns) benchmarking datasets (Tran et al., 2024). We compute Average as the mean across all metrics.

is minimal, only 0.29%, for the Irish to English
translation task. Compared to other parameter effi-
cient fine-tuning techniques, including LoRA (Hu
et al., 2022) and (IA)3 (Liu et al., 2022), our dy-
namic interface layers training approach achieves
the strongest performance. Additionally, unlike
other methods that require injecting additional pa-
rameters during training and merging with the orig-
inal model for efficient inference, our method does
not introduce any additional parameters, allowing
the model to be ready for use directly after training.

We conduct an ablation study where we train
the reasoning layers instead of the interface layers
selected in Equation 2 and Equation 3. We denote
this as UCCIXreasoning_layer. Our approach out-
performs this method in both English to Irish and
Irish to English translation directions, with a gap
of 1.42 and 3.36 BLEU scores, respectively.

To further analyze the bilingual capability of
models trained with our proposed approach, both
learning the new language and preserving the ca-
pability in the original language, we benchmark
on the curated set of Irish and English bench-
marking datasets introduced in (Tran et al., 2024).
This curated set includes diverse tasks such as
topic classification and open-ended question an-
swering. The results, as illustrated in Table 4,
highlight the balanced performance between the
two languages for UCCIXinterface_layer, where we
achieve top-1 average score of 0.5982, surpassing
the much larger model Llama 2-70B (0.5897). Our
model also achieves SoTA results on 3 out of 7
datasets, namely SIB-200, IrishQA (Irish version),
and IrishQA (English version). Furthermore, in
benchmarking with Irish tasks, our model performs
comparably to UCCIX, which was fully fine-tuned

Model
BLEU on
English −→
Irish

BLEU on
Irish −→
English

Llama 2-13B-mt 31.74 62.52
UCCIX-mt 49.22 76.44
UCCIXinterface_layer-mt 39.10 80.74

Table 5: Fine-tuning results on machine translation tasks
for baseline English-centric LLM (Llama 2-13B) and
English-Irish bilingual LLMs (UCCIX). Here -mt de-
notes further finetuning for the machine translation task.

to focus on Irish, while being efficient, as we only
trained 25% of the parameters compared to UC-
CIX. This validates our hypothesis on interface and
reasoning layers: fine-tuning interface layers al-
lows the model to understand additional languages
without catastrophic forgetting, and freezing the
reasoning layers helps maintain the model’s useful-
ness and effectiveness.

5.2 Machine Translation Fine-tuning Result

We carry out further fine-tuning experiments to in-
vestigate whether LLMs can be further adapted
to this specific task. As shown in the prelimi-
nary experiment in Section 3.1, prompting pre-
trained LLMs seem to be effective only when they
are extensively trained on both source and tar-
get languages. In addition to fine-tuning UCCIX
and UCCIXinterface_layer, we also fine-tuned the
English-centric LLM Llama 2-13B to investigate
whether exposure to a small amount of parallel data
can enhance its performance. Results in Table 5
indicate that further fine-tuning helps significantly,
with a substantial performance jump for Llama 2-
13B, from 3.25 to 34.16 BLEU score for English to
Irish, and from 25.60 to 62.52 for Irish to English.
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Nevertheless, having a base bilingual pre-trained
LLM is important. Fine-tuning results with both
UCCIX and UCCIXinterface_layer showcase im-
pressive performance gaps. UCCIX-mt achieves
a new SoTA result for Irish to English translation,
with a gap of 13.22 (49.22 compared to 36.0), and
on English to Irish task, and UCCIXinterface_layer-
mt surpasses the SoTA with a gap of 46.14 BLEU
score.

In general, the results convincingly demonstrate
the effectiveness of leveraging large-scale pre-
trained LLMs for machine translation tasks involv-
ing extremely low-resource languages. By further
fine-tuning on the limited available parallel data,
we can significantly enhance translation perfor-
mance, even in resource-constrained scenarios.

6 Conclusion

In this work, we investigate the application of
LLMs to the domain of neural machine transla-
tion, particularly focusing on Irish, an extremely
low-resource language. We analyze the bilingual
capabilities of LLMs and propose a dynamic lan-
guage adaptation strategy aimed at balancing the
model’s performance across multiple languages.
We hypothesize that certain layers of the LLM
serve as interface layers for language understand-
ing, and reasoning layers, and we develop a novel,
efficient training approach that dynamically iden-
tifies and trains only the relevant layers. Our ex-
perimental results demonstrate the effectiveness of
our approach, achieving balanced performance be-
tween languages. Moreover, we show that leverag-
ing large-scale pre-trained LLMs and further fine-
tuning them on machine translation tasks with lim-
ited parallel data can significantly enhance transla-
tion performance in resource-constrained scenarios,
with performance enhancement up to 46.14 BLEU
score. This highlights the potential of our method
to improve machine translation tasks involving ex-
tremely low-resource languages.
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