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Abstract

Neural Machine Translation (NMT) remains
a formidable challenge, especially when deal-
ing with low-resource languages. Pre-trained
sequence-to-sequence (seq2seq) multi-lingual
models, such as mBART-50, have demon-
strated impressive performance in various low-
resource NMT tasks. However, their pre-
training has been confined to 50 languages,
leaving out support for numerous low-resource
languages, particularly those spoken in the
Indian subcontinent. Expanding mBART-
50’s language support requires complex pre-
training, risking performance decline due to
catastrophic forgetting. Considering these ex-
panding challenges, this paper explores a frame-
work that leverages the benefits of a pre-trained
language model along with knowledge distilla-
tion in a seq2seq architecture to facilitate trans-
lation for low-resource languages, including
those not covered by mBART-50. The proposed
framework employs a multilingual encoder-
based seq2seq model as the foundational ar-
chitecture and subsequently uses complemen-
tary knowledge distillation techniques to mit-
igate the impact of imbalanced training. Our
framework is evaluated on three low-resource
Indic languages in four Indic-to-Indic direc-
tions, yielding significant BLEU-4 and chrF
improvements over baselines1. Further, we con-
duct human evaluation to confirm effectiveness
of our approach.

1 Introduction

Neural Machine Translation (NMT) models (Bah-
danau et al., 2016; Vaswani et al., 2017; Liu et al.,
2020a; Khandelwal et al.) have shown impressive
results on benchmark datasets, mainly containing
large amounts of parallel data. However, these mod-
els face challenges when applied to low-resource
languages or languages with rich and diverse mor-

1Our code is publicly available at https://github.com/
raypretam/Two-step-low-res-NMT

phology. Previous approaches have leveraged pre-
trained models trained on extensive corpora (Weng
et al., 2019; Wang et al., 2022; Liu et al., 2020b,
2021; Haddow et al., 2022; Roy et al., 2023, 2022)
to address these limitations.

Pre-trained multilingual seq2seq-based models
based on an encoder-decoder framework such as
mBART-50 (Liu et al., 2020b) have been success-
fully used for various low-resource NMT tasks.
Despite being pre-trained with 50 languages, it
needs more support for numerous low-resource lan-
guages. Expanding the capabilities of mBART-
50 to encompass new languages entails a cumber-
some process involving the collection of substantial
amounts of monolingual data and the execution of
pre-training with denoising objectives after initial-
izing mBART-50. This process is time-consuming
and may decrease performance on the initial 50
languages when incorporating new ones, a phe-
nomenon known as catastrophic forgetting (French,
1999).

In contrast, encoder-based pretrained model
XLM-R (Conneau et al., 2020) is designed to ac-
commodate 100 languages, making it suitable for a
wide range of low-resource cross-lingual Natural
Language Understanding (NLU) tasks. Both cross-
lingual and Machine Translation (MT) function-
alities share certain similarities. In cross-lingual
scenarios, training and evaluation occur across dif-
ferent languages, while MT systems process in-
put in one language and produce output in another.
This distinction prompts several experimental re-
search questions, including: 1) How does an XLM-
R based NMT model perform on low-resource mor-
phologically rich languages, particularly those not
covered by mBART-50? 2) Given that low-resource
NMT may be affected by training imbalances lead-
ing to performance degradation, can the applica-
tion of knowledge distillation further enhance the
results?

To address the two aforementioned experimen-
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tal research questions, we utilize our base model,
which follows a seq2seq framework. Here, we ini-
tialize the encoder with the multilingual pretrained
model XLM-R large, while decoder layers are ini-
tialized from scratch, we call this base approach as
XLM-MT. Similar frameworks have been explored
in previous studies (Zhu et al., 2020; Li et al., 2023),
with our approach sharing similarities with (Chen
et al., 2022), who employed it for zero-shot cross-
lingual NMT tasks and froze the embedding layers.
However, our base approach differs in considering
only decoder training. Thereafter, we apply com-
plementary knowledge distillation (CKD) (Shao
and Feng, 2022) to the base XLM-MT model to
address training imbalances. The objective of this
complementary knowledge distillation is to train
the student model with knowledge which comple-
ments the teacher model and avoid knowledge for-
getting, and we refer to this as XLM-MT+CKD.
We empirically evaluate our model across three In-
dic languages and observe significant improvement
in BLEU and chrF scores. Finally, we use human
evaluation to assess the fluency, relatedness, and
correctness of our output. Our contributions are as
follows:
1. We repurpose the XLM-based seq2seq frame-
work in conjunction with a complementary knowl-
edge distillation approach to effectively design an
NMT model for low-resource MT tasks. To the
best of our knowledge, we are the first to integrate
these two approaches effectively for NMT tasks.

2. We conduct comprehensive experiments on three
Indian languages in four directions that are not in-
cluded in mBART-50 and demonstrate the signif-
icance of our approach in enhancing translation
results.

3. We also perform a detailed analysis of the results,
including human evaluation and error analysis, for
our proposed model.

2 Methodology

Given a source language sentence X =
(x1, x2, . . . , xS), and its corresponding target lan-
guage translation Y = (y1, y2, . . . , yT ), an NMT
model is trained to predict the translated sequence
Y ′ using the maximum log-likelihood estimation
(MLE) objective. The probability of predicting the
target sequence Y ′ is computed as p(Y ′|X; θ) =∏T

t=1 p(yt|y0:t−1, x1:S , θ), where θ represents the
model parameters.

2.1 Base Model (XLM-MT)
We initialize encoder layers and encoder embed-
dings with an unsupervised pre-trained multilin-
gual model, XLM-R large (Conneau et al., 2020)
which is trained using masked language model ob-
jective. Then, we train the decoder from scratch
while freezing the encoder parameters. During
training, decoder parameters are learned with an
MLE objective. The underlying assumption is that
the pre-trained encoder parameters have already
learnt a multilingual representation of the source
language. As a result, only the decoder is trained
using MLE objective while leveraging the en-
coder embeddings learned by the pre-trained model.
Lθdec =

∑
(X,Y )∈D logP (Y |X; θdec) where X

and Y represents the source target sentence re-
spectively from the dataset D. The parameter θdec
refers to the parameters of the decoder layers and
embedding.

Algorithm 1 Complementary Knowledge Distilla-
tion

1: Input: Training data D, the number of teach-
ers n.

2: Output: Student model S.
3: Initialize S and teacher models (T1:n) with the

base model, XLM-MT.
4: while not converge do
5: randomly divides the training data D in mu-

tually exclusive n+1 subsets D1, D2, ...Dn+1

6: for t = 1 to n+ 1 do
7: for i = 1 to n do
8: Train Ti on DO(i,t)

9: end for
10: Train S on Dt using Eq 3
11: end for
12: for i = 1 to n do
13: Ti ← S (At the end of each epoch,

reinitialize teacher models with the student
model:)

14: end for
15: end while
16: return student model S

2.2 Complementary Knowledge Distillation
Imbalances in training data lead to performance
degradation in low-resource NMT due to catas-
trophic knowledge forgetting (LeCun et al., 2002;
Shao and Feng, 2022). We leverage complemen-
tary knowledge distillation (CKD) technique (Shao
and Feng, 2022) to overcome this problem in low-
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resource MT. In CKD, n teacher models and a stu-
dent model S are trained in a complementary man-
ner such that S learns from new training samples
while teacher models dynamically provide com-
plementary early samples knowledge to the S. In
our case, both teacher and student models are ini-
tialized with the parameters of our base model,
XLM-MT.

We divide the training set D into n + 1 mutu-
ally exclusive subsets for each epoch. The stu-
dent model S sequentially learns from D1 to Dn+1

while the teacher models learn from all data splits
except Dt. To determine the training data for the
teacher models at timestep t, we utilize an ordering
function, as shown in Eq 1 (Shao and Feng, 2022).
This ordering function covers all data splits except
Dt, ensuring that the teacher models complement
the student model.

O(i, t) =

{
i+ t, i+ t ≤ n+ 1

i+ t− n− 1, i+ t > n+ 1

}

(1)

where, i ∈ {1, 2, . . . , n} and t ∈
{1, 2, . . . , n+ 1}

In the process of word-level knowledge distil-
lation, the student model S benefits from an addi-
tional supervision signal, aligning its outputs with
the probability outputs of the teacher model T .

LKD(θ) = −
T∑

t=1

|V |∑

k=1

n∑

i=1

qi(yt = k|y<t, X)

n

× log p(yt = k|y<t, X, θ) (2)

where |V | denotes the number of classes, p de-
notes the prediction of student and qi is the predic-
tion of teacher model Ti. To balance the distillation
loss and the cross-entropy loss, we introduce a
hyperparameter α for interpolation. Finally, the
overall objective function is

L(θ) = α · LKD(θ) + (1− α) · LNLL(θ) (3)

We employ a reinitialization technique (Zhang
et al., 2018; Zhu et al., 2018) to facilitate two-way
knowledge transfer. After each epoch, we reset the
parameters of the teacher models using those of the
student model. This reinitialization ensures that the
student and teachers begin each epoch with identi-
cal settings. We present the training procedure for
CKD in Algorithm 1. We apply CKD to our base
model in the following 2-step process.
Step 1 - Initialization: In this step, we initialize

both the student and teacher models with the model
obtained after the first step training (c.f., Section
2.1). This initialization ensures that the student
model benefits from the knowledge acquired dur-
ing the initial decoder training.
Step 2 - CKD: In this step, we apply the comple-
mentary KD technique (c.f., Section 2.2) which
enables the model to benefit from the transfer of
complementary knowledge.

3 Experimental Setup

Dataset: For our experiments, we specifically se-
lect three Indic languages, namely Kannada, and
Punjabi that are not included in mBART-50, to as-
sess the effectiveness of our approach. We use
the Samanantar dataset (Ramesh et al., 2022) for
training all our NMT models which contains par-
allel sentences for 11 Indic language pairs. We
consider three languages in 4 directions, namely
Hindi-Kannada, Kannada-Hindi, Kannada-Punjabi,
and Punjabi-Kannada, containing 2.1 million and
1.1 million parallel sentences respectively. We use
the FLORES-200 (Team, 2022) containing 997 and
1012 sentences as our validation and test set respec-
tively.
Implementation Details: We implement our ap-
proach using the Fairseq Toolkit (Ott et al., 2019).
We use Adam optimizer (Kingma and Ba, 2017)
with β1 = 0.9 and β = 0.98. Following the work
by Chen et al. (2021), we use learning rates 5e− 3
and 1e − 3 for the base model and CKD, respec-
tively. We set maximum updates of 200K for the
base model training and 40K for the CKD. We use
12 layers with 16 attention heads in the decoder.
We use the ‘Large’ variant of XLM-R that has 550
million parameters for our experiments. We set
the number of teachers to 1 and α = 0.95. We
set batch size = 32k, and used beam size = 5
throughout our experiments, and following Shao
and Feng (2022) we averaged the last five check-
points. We use BLEU-4 (Papineni et al., 2002)
and chrF (Popović, 2015) score to evaluate our ap-
proach. All the models have been trained on single
A100 GPUs. None of the training methods con-
sumed more than 96 hours.
Baselines We employ various baseline models for
comparison with our approach. To ensure a fair
assessment, we train all baseline models using iden-
tical training data and assess their performance on
the Flores dataset.
Transformer (Vaswani et al., 2017): We uti-
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Model hi-kn kn-hi kn-pa pa-kn hi-kn kn-hi kn-pa pa-kn
BLEU chrF

Transformer 3.60 7.61 1.39 1.04 37.40 34.09 24.19 25.75
Sequence-KD (Kim and Rush, 2016) 4.23 7.88 1.71 1.08 37.43 34.23 24.31 25.89
mBERT-KD (Chen et al., 2020) 4.73 8.67 2.01 1.31 37.47 34.67 24.43 26.22
Selective KD (Wang et al., 2021) 5.35 8.08 2.24 1.19 39.23 35.02 24.57 26.78
Transformer+CKD 4.51 8.89 3.23 1.98 38.54 35.13 24.54 27.01
mBERT-MT (Zhu et al., 2020) 4.98 10.23 3.78 4.17 38.98 35.56 25.01 29.68
SixTp (Chen et al., 2022) 7.01 10.80 6.14 5.45 40.98 35.74 27.62 32.47
XLM-MT (base) 6.08 8.75 6.01 2.98 40.38 35.38 27.12 28.11
XLM-MT + CKD (ours) 9.15 11.46 7.23 6.43 41.11 35.88 29.12 33.98

Table 1: Performance (BLEU-4 and chrF scores) of our model along with seven baseline models on the FLORES-200
dataset on 3 languages in 4 directions between Indic languages: Hindi (‘hi’), Kannada (‘kn’), Punjabi (‘pa’). We
provide additional human evaluation results in Table 4.

lize a standard transformer-based encoder-decoder
model, employing six layers for both the encoder
and decoder.
Word-level Knowledge Distillation (Kim and
Rush, 2016) is a conventional method applied to
enhance NMT results by distilling knowledge at
the word level.
Sequence-level Knowledge Distillation (Kim and
Rush, 2016) is a conventional knowledge distilla-
tion technique applied to enhance NMT results by
distilling knowledge at the sequence level.
BERT-KD (Chen et al., 2020) is a knowledge ex-
tracted from a fine-tuned BERT model is trans-
ferred to NMT models.
Selective KD (Wang et al., 2021) refers to the pro-
cess of distilling and transferring specific, relevant
knowledge from a teacher model to a student model.
Instead of transferring all the knowledge indiscrim-
inately, this approach involves selecting and distill-
ing the most valuable and informative aspects of
the teacher model’s knowledge.
mBERT-MT(Zhu et al., 2020), integrates BERT
into the NMT process. Initially, BERT is employed
to extract representations for an input sequence.
Subsequently, these representations are fused with
each layer of the NMT model’s encoder and de-
coder using attention mechanisms.
sixTp (Chen et al., 2022) is a sequence-to-sequence
(seq-to-seq) model. In its initialization, the en-
coders are initialized with the XLM-R large model,
while the decoder is initialized randomly. The
model undergoes a two-stage fine-tuning process.
In the initial stage, the encoder layers are frozen,
and fine-tuning is performed on the decoders. Sub-
sequently, in the second stage, the model is trained
in an end-to-end fashion.

4 Results

Table 1 presents the BLEU-4 and chrF results for
Hindi to Kannada, Kannada to Punjabi in both di-
rections. It is noteworthy that Hindi, and Punjabi
belong to the Indo-Aryan language family, while
Kannada belongs to the Dravidian family. We com-
pare our results against seven competitive baselines,
namely, vanilla transformer, knowledge distillation
techniques, transformer with CKD, two step train-
ing techniques using mBERT and SixTp, which is
XLM-R based model. We observe that XLM-MT
+ CKD achieves BLEU scores within the range of
(6.43 to 11.46) consistently surpassing the base-
lines. We observe an average improvements of
1.22-5.15 BLEU scores across all language pairs.
We also present chrF scores in Table 1. Notably,
XLM-MT+CKD consistently demonstrates its su-
periority, outperforming all the baselines with aver-
ages of 0.82-4.66 chrF score, across all language
pairs. Further, we conduct human evaluation to
assess the fluency, relatedness and correctness of
the generated text. We present human evaluation
results of sixTp and our model, XLM-MT+CKD
in Table 4.

We also investigate various variants of our model
to validate the effectiveness of our architecture and
present results in Table 2. Additionally, we conduct
comprehensive error analysis in Section 7.

5 Analysis

How would the method perform with the lan-
guages that mBART-50 supported? In addi-
tion to the language pairs outlined in Section 3,
we extend our exploration to include language
pairs supported by mBART-50, facilitating effec-
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Model hi-kn kn-hi kn-pa pa-kn
Transformer 3.60 7.61 2.39 1.04
EncXLM-R

train + Dec 4.72 8.32 5.75 2.11
EncXLM-R

no-train + Dec 6.08 8.75 6.01 2.98
SixTp 7.01 10.80 6.14 5.45
XLM-MT + CKD 9.15 11.46 7.23 6.43

Table 2: Performances (BLEU-4 scores) of our model along with its variants. The score in bold shows the best
scores for the corresponding language pair. Enc + Dec refers to the transformer model without XLM initialization.
EncXLM-R

train + Dec refers to joint training of XLM-R based encoder and decoder. EncXLM-R
no-train+ + Dec refers to only

decoder training.

Model hi-bn mr-hi hi-te
mBART-50 9.25 17.06 9.35
XLM-MT 8.13 15.78 11.56
XLM-MT + CKD 8.67 15.81 12.01

Table 3: Performances BLEU-4 of our model along
with mBART-50 model on the FLORES-200 dataset for
the translation between Indic languages: Hindi (‘hi’),
Telugu (‘te’), and Bengali (‘bn’).

tive comparisons with the mBART-50 model. We
extracted three language pairs from the Saman-
tar dataset—namely, Hindi-Bengali, Telugu-Hindi,
and Marathi-Hindi—and compared our approach
with mBART-50. We present the results in Table 3.
mBART-50 achieves BLEU-4 scores of 9.35 and
17.06 for the language pairs of Hindi-Bengali and
Marathi-Hindi respectively, surpassing the perfor-
mance of XLM-MT+CKD model. For the Hindi-
Telugu pair, our model XLM-MT+CKD achieves
better performance than mBART-50.

5.1 Analysis of different model variants

The aim of this analysis is to assess the effective-
ness of our model with different approaches in
addressing the challenges of machine translation,
particularly for low-resource and morphologically
rich languages. The obtained BLEU scores are
presented in Table 2.
Enc + Dec: To assess the importance of pre-
training initialization in the encoder, we compare
the performance of XLM-MT, which is initialized
with XLM-R large, against a randomly initialized
model. We observe that the encoder initialized with
XLM-R large produces better performance than the
randomly initialized encoder.
EncXLM-R

train + Dec, EncXLM-R
no-train + Dec: To analyze

the effectiveness of the two-stage training process
employed in XLM-MT, we experiment with two

different settings: (a) training encoder and decoder
jointly (the second stage), denoted as EncXLM-R

train +
Dec, and (b) only training the decoder (the first
stage), denoted as EncXLM-R

no-train + Dec. From Table
2, we clearly see the effectiveness of two-stage
training compared to only one of these stages
across all language pairs.

6 Human Evaluation

We follow a procedure similar to previous studies
(Chi et al., 2019; Maurya et al., 2021) to assess the
quality of translated sentences in three Indic lan-
guages in four Indic-to-Indic language pairs. We
randomly selected 50 test data-points for each lan-
guage pair for evaluation. Three key metrics are
used to evaluate the translated sentences: fluency,
relatedness, and correctness. Fluency refers to the
smoothness and coherence of the generated text,
evaluating how well the sentences flow and adhere
to grammatical rules. Relatedness measures how
well the translated sentences are connected to the
given ground truth sentences and capture its key
information. Correctness assesses the accuracy and
appropriateness of the translated sentences in terms
of their meaning and semantics. We present the
translated sentences (randomly shuffled) from two
models XLM-MT and XLM-MT+CKD to three
language experts for each language pair. The se-
lected 12 experts are well versed in the correspond-
ing target language including English. The experts
attained a minimum of graduate degree in English
and have native proficiency in the target language.
The experts are informed about the task and were
renumerated as per industry standard norms. The
experts rated the sentences on a 5-point scale, with
1 indicating very bad and 5 indicating very good,
for each of the three metrics. The final numbers are
in Table 4. These are calculated by averaging all
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Metric hi-kn kn-hi kn-pa pa-kn
SixTp

Fluency 3.13 3.71 2.47 1.97
Correctness 3.04 3.68 2.40 1.87
Relatedness 3.18 3.75 2.33 1.92

XLM-MT + CKD
Fluency 3.23 3.75 2.53 2.01
Correctness 3.71 3.92 2.47 1.85
Relatedness 3.43 3.78 2.51 1.97

Table 4: Human evaluation results of our approach sixTp and XLM-MT+ CKD for three languages in four directions.
The three metrics are Fluency, Relatedness, and Correctness, respectively.

the experts’ responses for each parameter. The an-
notation experts received compensation according
to industry standards for their work. We briefed
them on the objectives and explicit usage of their
annotations

7 Case Study

Table 5 presents several example sentences and
their translations by our proposed approach. No-
tably, there are specific issues with reference 1 in
the XLM-MT translations. In reference 1, XLM-
MT incorrectly translates the sentence using a
wrong gender concept, whereas XLM-MT+CKD
translates correctly. Regarding the Kannada sen-
tence in reference 2, the XLM-MT and XLM-
MT+CKD approaches provide a correct and mean-
ingful translation, albeit with some paraphrasing.

8 Related Work

Neural Machine Translation (NMT) aims to trans-
late a given source sentence into a target sentence.
Typically, an NMT model comprises an encoder,
a decoder, and an attention mechanism. The en-
coder transforms the input sequence into hidden
representations while the decoder maps these rep-
resentations to the target sequence. The attention
mechanism, pioneered by (Bahdanau et al., 2016),
enhances alignment between words in the source
and target languages. Different architectures can be
employed for the encoder and decoder, including
LSTM (Long Short-Term Memory), CNN (Convo-
lutional Neural Network), and Transformer. The
Transformer architecture, introduced by (Vaswani
et al., 2017), consists of three sublayers. Trans-
former has demonstrated state-of-the-art perfor-
mance in NMT tasks (Barrault et al., 2019).

Prior studies (Imamura and Sumita, 2019; Con-

neau and Lample, 2019; Yang et al., 2022; Weng
et al., 2019; Ma et al., 2020; Zhu et al., 2020)
have investigated the integration of pre-trained lan-
guage encoders into NMT models to bolster super-
vised translation performance. (Zhu et al., 2020)
introduce a BERT-fused model that extracts rep-
resentations from input sentences and integrates
them into the encoder and decoder using atten-
tion mechanisms. Recent research (Song et al.,
2019) focuses on developing and refining encoder-
decoder-based multilingual trained language mod-
els for NMT. (Liu et al., 2020c) present mBART,
a Transformer-based encoder-decoder model ex-
plicitly tailored for NMT applications. Wei et al.
finetune the multilingual encoder-based model for
low-resource NMT, and they focus on improving
the MPE for a more universal representation across
languages. (Chen et al., 2021, 2022) have examined
a two-stage framework utilizing an encoder-based
multilingual language model for zero-shot neural
machine translation.

Numerous studies in NMT have incorporated
the Knowledge Distillation (KD) framework. (Kim
and Rush, 2016) introduced word-level KD for
NMT and later proposed sequence-level KD to
enhance overall performance. Investigating the
efficacy of various token types in KD, (Wang et al.,
2021) suggested strategies for selective KD. (Wu
et al., 2020) successfully transferred internal hid-
den states from teacher models to students, achiev-
ing positive results. Various KD approaches have
also been employed in non-auto-regressive Ma-
chine Translation tasks to enhance outcomes. (Gu
et al., 2018) improved non-autoregressive model
performance by distilling information from an au-
toregressive model. (Zhou et al., 2021) conducted
systematic experiments highlighting the impor-
tance of knowledge distillation in training non-auto-
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1. Source (Kannada): Udaharanage, obbaru, motaru karugale rastegala abhivrd’dhige mula karana
endu helabahudu.
Translation: For example, one could say that motor cars were the root cause of
the development of roads.

Reference (Punjabi): Udaharana vajon, koi kahi sakada hai ki motara kara sarakan nu zaruri taura’te
vikas vala lai jandi hai.
Translation: For example, one could say that the motor car essentially leads to
development of roads.

XLM-MT+CKD: Udaharana vajon, koi kahi sakada hai ki motara kara sarakan nu zaruri taura’te
vikas vala lai jandi hai.
Translation: For example, one could say that the motor car essentially leads to
development of roads.

2. Source (Hindi) : kuchh any visheshagyon kee tarah, unhen is baat par sandeh hai ki kya mad-
humeh ko theek kiya ja sakata hai, yah dekhate hue ki in nishkarshon kee un
logon ke lie koee praasangikata nahin hai jinhen pahale se hee taip 1 madhumeh
hai.
Translation: Like some other experts, he is skeptical about whether diabetes
can be cured, noting that these findings have no relevance to people who already
have type 1 diabetes.

Reference (Kannada): Madhumehavannu gunapadisalu sadhyave emba bagge itare itara kelavu
tajñarante avaru kuda sansaya vyaktapadisuttare, ı̄ sansodhanegal.u ı̄gagale
t.aip 1 madhumeha hondiruva janarige yavude prayojanagal.annu nı̄dilla.
Translation: Like some other experts, he doubts whether diabetes can be cured,
because these conclusions are not practical for people who have previously had
type 1 diabetes.

XLM-MT+CKD: Itara kelavu tajñarante, avaru madhumehavannu gunapadisabahude endu
sansayapaduttare, ekendare ı̄ tı̄rmanagal.u ı̄ hinde t.aip 1 madhumeha hondiruva
vyaktigal.ige prayogikavagiruvudilla.
Translation: Like some other experts, he doubts whether diabetes can be cured,
because these conclusions are not practical for people who have previously had
type 1 diabetes.

Table 5: Sample outputs generated from our proposed approach, where the target languages’ source language and
translations are specified for each reference.

regressive models, showing its ability to reduce
dataset complexity and help model variations in
output data. In the realm of multilingual NMT,
(Baziotis et al., 2020) used language models as in-
structors for low-resource NMT models. (Chen
et al., 2020) extracted knowledge from fine-tuned
BERT and transferred it to NMT models. Further-
more, (Feng et al., 2021) and (Zhou et al., 2021)
employed KD to introduce forward-looking infor-
mation into the teacher-forcing training of NMT
models.

9 Conclusion

In this paper, we empirically explored the methods
for improving low-resource NMT, particularly for
Indic languages. We investigated several strategies

for initialization of encoder and decoder, along
with the knowledge distillation techniques. We
conducted experiment on three low-resource Indic
languages in four Indic-to-Indic directions belong-
ing to two language families, specifically focusing
on those not covered by mBART-50. Further, we
perform additional analysis on languages supported
by mBART-50 and high-resource language pairs.

Limitations

A limitation of this study is the increased training
time required for the XLM-MT+CKD model due
to its addition of complementary knowledge dis-
tillation. Furthermore, our validation is limited to
low-resource machine translation tasks, although
seq2seq models have the potential to be utilized
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for a wide range of generation tasks, including
Question Generation and Summarization in both
monolingual and cross-lingual contexts.
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