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Abstract

In this paper we propose a framework for au-
tomatic translation of English text to Ameri-
can Sign Language (ASL) which leverages a
linguistically informed transformer model to
translate English sentences into ASL gloss se-
quences. These glosses are then associated with
respective ASL videos, effectively represent-
ing English text in ASL. To facilitate experi-
mentation, we create an English-ASL parallel
dataset on banking domain. Our preliminary
results demonstrated that the linguistically in-
formed transformer model achieves a 97.83%
ROUGE-L score for text-to-gloss translation
on the ASLG-PC12 dataset. Furthermore, fine-
tuning the transformer model on the banking
domain dataset yields an 89.47% ROUGE-L
score when fine-tuned on ASLG-PC12 + bank-
ing domain dataset. These results demonstrate
the effectiveness of the linguistically informed
model for both general and domain-specific
translations. To facilitate parallel dataset gen-
eration in banking-domain, we choose ASL
despite having limited benchmarks and data
corpus compared to some of the other sign lan-
guages.

1 Introduction

Sign Languages (SL) are the primary means of
communications for the deaf community. It is a
non-verbal form of communication where deaf in-
dividuals use their hands, arms, and facial expres-
sions to share thoughts and ideas. Unlike spoken
languages that rely on sound, ASL employs ges-
tures. Recent linguistic studies have confirmed that
SLs, like other spoken languages, is a complete
natural language with its own syntactical structures
and intricate morphological and phonological prop-
erties. This complexity includes both sequential
and simultaneous affixation of manual and non-
manual elements in its structure.

A challenging aspect of sign language transla-
tion (SLT) is that Sign Languages (SLs) are multi-

Figure 1: Illustration of text to American Sign Language
(ASL) translation using glosses as intermediate step.

channeled and do not have a written form, as noted
by (Langer et al., 2014). Consequently, advance-
ments in text-based machine translation (MT) can-
not be directly applied to SLs. Historically, re-
searchers have used written representations of SLs
to facilitate translation. One common method in-
volves using glosses, which are labels in the spoken
language that correspond to sign language compo-
nents, often including affixes and markers. These
glosses act as an intermediary step in developing
MT systems that translate between SLs and spoken
languages (noted by (Cihan Camgoz et al., 2017;
Camgoz et al., 2018); (Chen et al., 2022)), and vice
versa ((Stoll et al., 2020); (Saunders et al., 2020)).
Other notable works include (Stoll et al., 2020)
that proposed an approach using Neural Machine
Translation (NMT) and motion graphs to generate
sign language videos for a given text. (Moryossef
et al., 2023) have proposed a method of convert-
ing the text to sign language glosses, extracting
the poses for each gloss and translating the poses
to a video. In an earlier attempt, (Dasgupta and
Basu, 2008) have proposed a method translating
text to Indian Sign Language (ISL) using Lexical
Functional Grammar while (Sugandhi et al., 2020)
talks about generating animated avatar using Ham-
NoSys for text to SL translation. For translations
from spoken languages to SLs, glosses are used
to build the system in two phases: translating text



to glosses, and then converting these glosses into
video (see Figure 1). These glosses are then in-
put into systems that generate SL content, such as
avatar animations or auto-encoder based video gen-
erators. Our present research specifically targets
the text-to-gloss translation phase, which is crucial
for producing accurate sign language animations.
However, despite improvements in this area, signif-
icant breakthroughs remain elusive, as indicated by
Rastgoo et al. (2021).

In this paper we propose a framework for au-
tomatic translation of English text to ASL. The
key contributions and results of this work are as
follows:

1. We leverage a novel method called linguisti-
cally informed transformer architecture that
takes into account both the word level and dif-
ferent linguistic feature embeddings using a
Graph Convolution Network (GCN) for the
MT task. The primary focus is to translate
English sentences into ASL gloss sequences.
These glosses are then associated with respec-
tive ASL videos, effectively representing En-
glish content in ASL.

2. To facilitate experimentation, we have manu-
ally created an English-ASL parallel dataset
on banking domain. Banks play a pivotal role
in the daily lives of individuals impacting per-
sonal finance and economic stability. Hence,
facilitating communication for the deaf com-
munity in the banking domain is essential.
The dataset will be released with this paper.

3. Our preliminary results demonstrated that
the linguistically informed transformer model
achieves a 97.83% ROUGE-L score for
text-to-gloss translation on the ASLG-PC12
dataset. Furthermore, fine-tuning the trans-
former model on the banking domain dataset
yields an 89.47% ROUGE-L score when fine-
tuned on ASLG-PC12 + banking domain
dataset.

The above results show a significant improvement
from the baseline GRU-B model. ASLG-PC12
(Othman and Jemni, 2012), the largest text-to-ASL
gloss dataset, offers 87,710 samples but pales in
comparison to mainstream language pairs like En-
glish to French. Its focus on news and politics lim-
its its applicability across domains, necessitating
domain-specific models, increasing data scarcity
challenges.

Figure 2: Classification of signing space into horizontal,
vertical, and lateral regions.

Figure 3: Illustration of Topic-Comment Structure

2 Sign Language (SL) Linguistic Issues

Sign Languages (SL) are visual-spatial natural lan-
guages, utilizing manual and non-manual com-
ponents for linguistic communication (Zeshan,
2003). Manual components include hand shape,
orientation, position, and movement, while non-
manual components consist of facial expressions,
eye gaze, and body posture. Signers utilize a
three-dimensional signing space segmented into
27 cubical regions (Sinha, 2003, 2009). Each sign
formation adheres to complex constraints akin to
spoken languages, with SL morphology primarily
derivational. The closed lexical class in SL encom-
passes classifier hand shapes, discourse markers,
and non-manual signs (Zeshan, 2003). Classifier
hand shapes offer specific hand configurations rep-
resenting referent characteristics, as shown in Fig-
ure 2.

American Sign Language (ASL) is known to
follow a topic-comment structure. This structure
positions the main subject or theme (the topic) at
the sentence’s outset, followed by more specific in-
formation (the comment) (Struxness, 2010). By es-
tablishing context early in the sentence, ASL users
efficiently convey complex ideas (Figure 3). One
important aspect of ASL’s topic-comment structure
is the flexibility in word ordering. While the default
order is topic-comment, ASL allows for variations
based on emphasis and context. For instance, a
speaker might choose to emphasize a particular as-
pect of the comment by placing it before the topic.
This flexibility adds nuance and richness to ASL
communication, enabling speakers to convey sub-
tle meanings and emotions effectively (Struxness,
2010). The flexibility in the structure is the reason



why a simple rule-based approach is not possible
for text to ASL gloss translation.

3 The Linguistically Informed
Transformer for Text to ASL Gloss

The existing NMT models excel at capturing intri-
cate data patterns without requiring manual feature
engineering, offering end-to-end solutions. How-
ever, they often overlook latent linguistic traits cru-
cial for extracting pertinent information. To address
this, we propose a transformer-based architecture
that integrates word embeddings from the encoder
part with diverse linguistic features inherent in text,
enhancing automatic text-to-ASL gloss translation.

3.1 Transformer Model

The input to the model is a sentence consisting
of a word sequence x = (x1, x2, ..., xT ) represen-
tations. We then tokenize the sentence x using a
wordpiece vocabulary, and then generate the in-
put sequence x̄ by concatenating a [CLS] token,
the tokenized sentence, and a [SEP] token. Then
for each token x̄i ∈ x̄, we convert it into vector
space by summing the token, segment, and position
embeddings, thus yielding the input embeddings
h0 ∈ R(n+2)×h, where h is the hidden size. Next,
we use a series of L stacked Transformer blocks
to project the input embeddings into a sequence of
contextual vectors hi ∈ R(n+2)×h. Here, we omit
an exhaustive description of the block architecture
and refer readers to Vaswani et al. (2017) for more
details.

3.2 Syntactic Dependency Graph

Encoding the structural information directly into
neural network architecture is not trivial. Marcheg-
giani and Titov (Marcheggiani and Titov, 2017)
proposed a way to incorporate structural infor-
mation into sequential neural networks through
Graph Convolution Networks (GCN) (Webster
et al., 2019; Kipf and Welling, 2016). GCNs take
graphs as inputs and conduct convolution on each
node over their local graph neighborhoods. The
syntax structure of a sentence is transferred into a
syntactic dependency graph, and GCN is used to
encode this graph information. This kind of archi-
tecture is already utilized to incorporate syntactic
structure with BERT (Devlin et al., 2018) embed-
dings for several NLP based tasks (Duvenaud et al.,
2015).

3.3 Linguistically Informed Transformer

We have incorporated the similar method for the
present text-gloss translation task in this work.
Here, each sentence is parsed into its syntactic de-
pendencies graph and use GCN to consume this
structural information. We use pre-trained GLOVE
embeddings as our initial hidden states of vertices
in GCN. The output hidden states of the GCN is
combined with the context embeddings generated
by the transformer model’s (T5 and BART) encoder
and then passed to the decoder unit.

4 Experiments

Dataset: The ASLG-PC12 corpus (Othman and
Jemni, 2012): consists of 87,710 bilingual sen-
tences. It contains 1,027,100 English words and
906,477 gloss words, along with 4,662 English
word singletons and 6,561 gloss word singletons.
The vocabulary for both sign gloss annotation and
spoken language comprises 16,788 and 12,344
terms, respectively.

ASL-Bank Dataset: Considering the specificity
of the terminology used in banking contexts, we
have also built a set of 3597 text- ASL gloss pairs
through domain experts. The collected phrases are
sourced from banking-related texts and provided to
American Sign Language (ASL) experts for manual
translation into ASL gloss. Refer Appendix D for
data statistics and Appendix E for sample data.

Fine-tuning: We divided the ASLG-PC12 cor-
pus into 52,626 sentences for training, 17,542 sen-
tences for validation, and 17,542 sentences for test-
ing (Amin et al., 2021) and use it to fine-tune a
T5-small, T5-base and BART-base model on A100
GPU for 50 epochs (experiment A). For the ASL-
Bank dataset, we used 3,166 sentences for training,
395 sentences for validation and 396 sentences for
testing. We fine-tuned the three transformer models
from experiment A on A100 GPU for 50 epochs.
Refer Appendix A and B for more details.

Evaluation: Apart from using the standard MT
evaluation parameters like, ROUGE-L (Lin, 2004)
and BLUE (Papineni et al., 2002) scores we also ad-
vocate using a modified BERTScore (Zhang et al.,
2019) as performance metrics. As the BERT mod-
els are trained on natural English text, we cannot
rely on the sentence embeddings it gives for the
ASL gloss sequences for the reasons explained in
introduction. Hence, we proposed to get the word
embeddings of each gloss present in the ASL gloss
sequence and aggregate them to get the sentence



embedding of the ASL gloss sequence which can
be further used to calculate the cosine similarity
score.

5 Results

The results are reported by first comparing the
model performance upon fine-tuning on ASLG-
PC12 (Othman and Jemni, 2012) dataset between
our models of choice T5-small, T5-base (Raffel
et al., 2020) and BART-base (Lewis et al., 2019)
and a GRU based model from Amin et al. (2021)
(Table 1).

Model GRU-B T5-small* T5-base* BART-base*
(Amin et al., 2021)

ROUGE-L 94.37 97.82 97.83 97.36
BLEU-1 93.26 97.68 97.73 97.21
BLEU-2 89.64 97.16 97.22 96.51
BLEU-3 86.68 96.36 96.43 95.53
BLEU-4 83.98 94.65 94.76 94.66
Modified — 97.59 97.58 97.55

BERTScore

Table 1: Comparing scores on ASLG-PC12 test dataset
for text to gloss with other work

From table 1, it is clear that the transformer mod-
els BART-base, T5-small and T5-base are better
performing compared to a GRU model. Further, we
check how well these fine-tuned transformer mod-
els are performing on our ASL-banking dataset
Since ASLG-PC12 dataset has no samples related

Model T5-small* T5-base* BART-base*
ROUGE-L 59.06 59.13 57.71
BLEU-1 60.66 60.98 59.93
BLEU-2 37.44 37.74 36.64
BLEU-3 26.18 26.42 25.48
BLEU-4 19.66 19.85 19.01

Modified BERTScore 87.45 87.64 87.37

Table 2: Test scores when tested on our ASL-banking
dataset using the T5-small*, T5-base* and BART-base*
models

to banking domain, the scores drop when tested
on our banking dataset (Table 2). Hence, we have
further fine-tuned the BART-base model, T5-base
model and T5-small model on our ASL-banking
dataset (Table 3). We also checked if including
an equal number of samples from ASLG datatset
(i.e., 3597 samples) along with our ASL-banking
dataset improves the test scores and we observed
that there is a significant improvement in the test
scores (Table 4).

T5-base model is the best performing trans-
former model for text-to-ASL translation task on

Model T5-small T5-base BART-base
ROUGE-L 78.25 79.96 77.92
BLEU-1 81.11 83.08 79.80
BLEU-2 64.45 67.89 64.19
BLEU-3 53.86 58.14 54.14
BLEU-4 46.69 51.47 47.27

Modified BERTScore 92.06 92.16 92.13

Table 3: Comparing scores on our ASL-Banking test
dataset for text to gloss using transformer models after
further fine-tuning

Model T5-small T5-base BART-base
ROUGE-L 89.17 89.47 85.50
BLEU-1 90.67 90.83 86.83
BLEU-2 82.48 83.05 77.41
BLEU-3 76.87 77.74 70.67
BLEU-4 72.47 73.58 65.50

Modified BERTScore 93.38 93.37 93.09

Table 4: Comparing scores on our ASL-Banking test
dataset using the transformer models fine-tuned on
ASLG + ASL-Banking dataset

both ASLG-PC12 dataset and our ASL-banking
dataset. A few challenges in the text to gloss trans-
lation task are: In some cases, word ordering is
different within the topic part and the comment part
of the predicted texts compared to the gold texts.
In case of wh-questions, the wh word is sometimes
placed at the beginning of the sentences and some-
times at the end. In a few sentences, helping verbs
and articles are not removed. So, they should be ex-
clusively removed using SpaCy’s parts-of-speech
tagging. Few words are being replaced by their syn-
onymous words in the gloss translations. It’s not a
problem while signing the text, but it is reducing
the scores of metrics like ROUGE-L and BLEU.

6 Conclusion

In this paper, we present a linguistically informed
transformer architecture towards automatic trans-
lation of English text to American Sign Language.
The proposed model not only aims at addressing the
poor generalization capability of traditional struc-
tured prediction models but also exploit the linguis-
tic characteristics present within a text to improve
the performance of the translation. We evaluate the
performance of the proposed model with respect to
a popular baseline model from Amin et al. (2021).
We observed that the proposed transformer based
model along with an additional linguistic informa-
tion performs much better than existing baseline
system.



Limitations

1. This work specifically focuses on text to ASL
gloss translation. Hence, the fine-tuned mod-
els cannot be used for generating glosses in
other sign languages like Indian sign language
or British sign language due to differences in
structure.

2. As shown in Figure.1, the glosses generated
using the proposed framework can be mapped
to videos (refer Appendix C) and can be
streamed together. But the output has inconsis-
tencies due variation in resolution and people
signing from video-to-video. This can be tack-
led with video generation which is not in the
scope of this work.

3. Since the syntactical structure of sign lan-
guage is very much different from that of natu-
ral language, open-source LLMs like LLaMA
family can be leveraged by combining exter-
nal sign language rules. It also helps in tack-
ling the limitation of using a single model
for different sign language translations. This
can be achieved with techniques like Retrieval
Augmented Generation (RAG) but this is not
in the scope of this work.
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A Hyperparameters used for fine-tuning
on ASLG-PC12 dataset

1. Training epochs: 50

2. Learning rate: 1e-5

3. Weight Decay: 1e-6

4. Warm-up Epochs: 10

5. Batch size: 10

6. Gradient accumulation steps: 4

7. Optimizer: Adam

B Hyperparameters used for fine-tuning
on our ASL-Banking dataset

1. Training epochs: 50

2. Learning rate: 1e-5

3. Weight Decay: 1e-5

4. Warm-up Epochs: 10

5. Batch size: 2

6. Gradient accumulation steps: 4

7. Attention Dropout: 0.1

8. Optimizer: Adam

The linguistic embeddings which are GCN’s output
hidden states are combined with the last hidden
state of the encoder part as described in section
3.3 during both the fine-tuning processes. In that
way, the GCN is trained along with the transformer
model.

C Video Retriever

The generated ASL gloss sequence is tokenized
into individual glosses using SpaCy tokenizer and
each gloss is mapped to its corresponding ASL
video which is stored in a folder/database. If there
is no video match for a particular gloss, we check if
it is a common noun or an adjective. If yes, then we
try to find a video for its synonym. We use NLTK
word-net to find the synonyms. The synonyms are
sorted in lexicological order. We iterate through
this list and check if there exists a video each of
synonym. As soon as we find a synonym which has
a video, we break the loop and use this video for
signing the original word. If it is neither a common
noun nor an adjective or there is no video even
for any of its synonyms, we will simply sign it
letter-by-letter (as shown in Figure 4).

ASL gloss Text
Tokenizer

Search the gloss
in the dictionary

Sign Representation

Get Synonym

Search synonym
in the dictionary

Finger Spelling

WordNet

ASL
Dictionary

For each token

Gloss found

Gloss not

found

Gloss not found
Gloss

found

Figure 4: Video Retrieval Process flow



D Data Statistics

Conversational Vocabulary Type Count
Type Size

Banker point-of-view 772 Declarative 446
Interrogative 168

Customer point-of-view 1595 Declarative 502
Interrogative 2488

Total: 3597

E Sample Data

English Text ASL Gloss Sequence
A basic savings account it is. I’ll need you to fill out
this form with your personal details.

SAVINGS ACCOUNT BASIC, IT IX. FORM THIS
FILL-OUT NEED YOU, YOUR PERSONAL DE-
TAILS IX-loc.

A basic savings account it is. I’ll need you to fill out
this form with your personal details.

SAVINGS ACCOUNT BASIC, IT IX. FORM THIS
FILL-OUT NEED YOU, YOUR PERSONAL DE-
TAILS IX-loc.

Can I deposit a check via mobile banking? DEPOSIT CHECK MOBILE BANKING CAN I?
How can I assist you in updating your contact infor-
mation for your account?

HOW CAN I ASSIST YOU IN UPDATING YOUR
CONTACT INFORMATION FOR YOUR AC-
COUNT ?

Your credit check came back clear, so we can proceed
with finalizing your account.

CREDIT CHECK YOUR FINISH, CLEAR. AC-
COUNT YOUR FINALIZE CAN PROCEED WE.
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