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Abstract

In Machine Translation, various tokenisers are
used to segment inputs before training a model.
Despite tokenisation being mostly considered a
solved problem for languages such as English,
it is still unclear as to how effective different to-
kenisers are for morphologically rich languages.
This study aims to explore how different ap-
proaches to tokenising Maltese impact machine
translation results on the English-Maltese lan-
guage pair. We observed that the OPUS-100
dataset has tokenisation inconsistencies in Mal-
tese. We empirically found that training mod-
els on the original OPUS-100 dataset led to
the generation of sentences with these issues.
We therefore release an updated version of the
OPUS-100 parallel English-Maltese dataset, re-
ferred to as OPUS-100-Fix, fixing these incon-
sistencies in Maltese by using the MLRS to-
keniser. We show that after fixing the inconsis-
tencies in the dataset, results on the fixed test
set increase by 2.49 BLEU points over mod-
els trained on the original OPUS-100. We also
experimented with different tokenisers, includ-
ing BPE and SentencePiece to find the ideal
tokeniser and vocabulary size for our setup,
which was shown to be BPE with a vocabu-
lary size of 8,000. Finally, we train different
models in both directions for the ENG-MLT
language pair using OPUS-100-Fix by train-
ing models from scratch as well as fine-tuning
other pre-trained models, namely mBART-50
and NLLB, where a finetuned NLLB model
performed best.

1 Introduction

Tokenisation tends not to be given much attention
in Machine Translation (MT), particularly since it
is thought of as a solved problem for languages
such as English (Erdmann, 2020). However, it can
become an issue when generic tokenisers are ap-
plied to languages that have particular syntactic
rules that are different from those commonly found
in English. This is reflected by Domingo et al.

(2019) who demonstrate that different tokenisers af-
fect language pairs very differently. Moreover, sev-
eral modern neural machine translation approaches
also employ subword tokenisation in conjuction
with word tokenisers as part of the preprocessing
step (Wei et al., 2021; Xu et al., 2021; Oravecz
et al., 2022). Not much thought tends to be given
to the impact that tokenisation could have on the
results of the machine translation. It is well known
however, that tokenisation affects BLEU results
(Post, 2018). In our research, we investigate the
impact that different tokenisation approaches can
have on the MT evaluation of Maltese, a morpho-
logically rich language with Semitic roots. We
experiment with different tokenisers, namely BPE
(Sennrich et al., 2016a), SentencePiece (Kudo and
Richardson, 2018), Moses Tokeniser (Koehn et al.,
2007), OpenNMT Tokeniser (Klein et al., 2017),
and a regex tokeniser specifically built for Maltese
(Gatt and Céplé, 2013). We refer to this as the
MLRS tokeniser.

It was seen that most regular word-level English
tokenisers do not tokenise/detokenise everything
correctly. For example, it was seen that if the
MT output has characters such as “-”, an English
detokeniser usually splits this character from other
words by adding a space. This is the correct ap-
proach for English, but in Maltese most articles
contain “-” and should remain joined as one word
in the output (such as il-kelb, (the dog) should be
tokenised as il- kelb rather than il - kelb.

In order to carry out an empirical evaluation
of different tokenisation approaches, we also
consider different Machine Translation (MT) ap-
proaches, including a baseline system trained
from scratch using the base Transformer archi-
tecture (Vaswani et al., 2017), a model based on
the large Transformer architecture, a fine-tuned
mBART-50 model (Tang et al., 2020), NLLB (out-
of-the-box) (Costa-jussa et al., 2022) and a fine-
tuned version of NLLB, referred to as NLLB-FT.
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Notably, the pre-trained model mBART-50 does not
contain previous knowledge of Maltese whereas
NLLB has encountered Maltese during its training.

Another challenge that we face when training
NMT systems for low-resource languages is the
lack of high-quality publicly available data. For
our experiments, we utilize the OPUS-100 dataset
(Zhang et al., 2020a). However, upon further anal-
ysis, we noticed that the Maltese documents con-
tained several tokenisation errors that added spac-
ing where there should be none. These errors do
not occur in a systematic way, which motivated
us to look into the impact that such inconsisten-
cies would have on the results. Evaluation metrics
such as BLEU, tend to favour a larger number of
n-grams. The type of errors present in OPUS-100
were producing more tokens and this could result
in an inflated BLEU score.

To this end, we investigate the impact of incor-
rect tokenisation in OPUS-100 when Maltese is the
target language. Our translation efforts focus on
the English - Maltese language pair since English
is normally used as the source language whenever
the target is Maltese, both in a research setting but
also in an application scenario.

Our contributions are the following:

(C1) We release an updated version of the Maltese
part of OPUS-100, referred to as OPUS-100-
Fix,' fixing the tokenisation inconsistencies
with the Maltese sentences and show how the
outputs are improved when trained on OPUS-
100-Fix.

(C2) We conduct a thorough evaluation of MT mod-
els trained with different word and subword to-
kenisers, including different vocabulary sizes.

(C3) We further train new models for the English-
Maltese language pair on OPUS-100-Fix, in-
cluding fine-tuning of mBART-50 and NLLB
as well training new models from scratch, ob-
taining better results than a baseline.

2 Literature Review

2.1 Tokenisation

There are different approaches to tokenisation and
the type of approach taken might depend on the
language or the task at hand. Word-level tokenisers
split the text into individual tokens, usually denoted

1https://huggingface.co/datasets/MLRS/
OPUS-MT-EN-Fixed

by spaces or other markers. However, in languages
such as Mandarin, such approaches are not appro-
priate since there are no clear boundaries between
words. Word-level tokenisers might also not be
ideal for morphologically rich languages (Alyafeai
et al., 2023), as there is no shared information be-
tween words that share the same stem or lemma
but have different prefixes or suffixes.

A hybrid approach is known as subword tokeni-
sation where rare/compound words are split into
smaller subwords and frequent words are kept as
tokens in their entirety. This has become a very
common approach in neural systems. By using sub-
word tokenisers such as Byte-Pair Encodings (BPE)
(Sennrich et al., 2016b) or SentencePiece (Kudo
and Richardson, 2018), the input text can be effi-
ciently tokenised into subwords and passed to the
neural MT systems.

In spite of the different conditions that languages
present, using a subword tokeniser is generally
taken as the defacto approach for many languages
(albeit sometimes with another tokenisation ap-
proach, such as including a word-level tokeniser
(Wei et al., 2021; Xu et al., 2021; Oravecz et al.,
2022)), including Maltese.

The following subsections explore popular to-
kenisation algorithms that will be used for our ex-
periments.

2.1.1 BPE

BPE (Sennrich et al., 2016a) is an unsupervised
subword tokeniser. It iteratively merges the most
frequent pair of consecutive bytes in the training set
to build a vocabulary of subword units, until the pre-
determined vocabulary size is reached. Throughout
our experiments, we will use the original BPE al-
gorithm as mentioned in the original paper.’

2.1.2 SentencePiece

Similar to BPE, SentencePiece is also an unsu-
pervised subword tokeniser and the vocabulary
size is also pre-determined. Internally, Senten-
cePiece supports two algorithms: Unigram Lan-
guage Model (Kudo, 2018) and BPE (Sennrich
et al., 2016a). Apart from this, it also implements
subword regularization which is not done in the
original (subword-nmt) implementation of BPE.
The Unigram tokeniser is different to BPE in the
sense that it starts from a big vocabulary and itera-
tively removes tokens until it reaches the specified
vocabulary size. It takes into account the whole

2https://github.com/rsennrich/subword-nmt
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training set and selects the tokens that maximise
the likelihood of the data. It tries to determine the
optimal vocabulary of subword units by choosing
token boundaries based on the inidividual character
frequencies.

Throughout this research, whenever training our
own SentencePiece tokeniser, we will experiment
with both versions of SentencePiece, one which
internally uses BPE and one which internally uses
Unigram.

2.1.3 MLRS Tokeniser

The tokeniser from MLRS (Gatt and Cépld, 2013)3
is also used. It utilizes regular expressions to to-
kenise linguistic expressions that are specific to
Maltese, such as separating certain prefixes and
articles.

2.1.4 Moses Tokeniser

The MosesDecoder (Koehn et al., 2007) package
contains a tokeniser* that is commonly used and is
intended to be language-agnostic, since it simply
separates punctuation from words while at the same
time keeping URLs and dates intact. Apart from
this, it also normalizes characters such as quotes.

2.1.5 OpenNMT Tokeniser

The OpenNMT Tokeniser (Klein et al., 2017) is
very similar to the Moses Tokeniser, in the sense
that it is language-agnostic, normalizes characters
such as quotes and also separates punctuation from
words. Contrastively, it does not keep certain words
intact such as URLs and dates, and instead splits
them as it would any other words.

2.2 Pre-trained Multilingual Models

According to Liu et al. (2020), using mBART-25 as
the pre-trained model has been shown to improve
translations over a randomly initialized baseline
in low/medium resource language. mBART-25 is
a transformer model trained on the BART (Lewis
et al., 2019) objective. It is trained on 25 differ-
ent languages. mBART-25 was later extended to
include 25 more languages and was called mBART-
50 (Tang et al., 2020). However, neither model
included Maltese.

A more recent multilingual model is No Lan-
guage Left Behind (NLLB) (Costa-jussa et al.,
2022). NLLB-200 is a large multilingual model
trained on 200 languages, one of which is Maltese.

3https://mlrs.research.um.edu.mt/index.php?

page=demos
*https://www.statmt.org/moses/
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The architecture is built on the standard Trans-
former encoder-decoder architecture (Vaswani
et al., 2017). The dataset used to train NLLB
was collected from various sources, some of which
were in the Maltese language. The fact that NLLB
is already pre-trained with Maltese knowledge al-
lows us to experiment both with fine-tuning the
model further on our dataset but also to experiment
with evaluating the pre-trained NLLB model out-
of-the-box.

2.3 Previous MT Approaches for
Low-Resource Languages

Most MT systems nowadays contain a number
of pre-processing and post-processing techniques.
Low quality datasets often have noise in them and
pre-processing techniques are vital to ensure that
this noise is not passed to the MT systems. Filtering
data before training is a common pre-processing
approach (Morishita et al., 2022; Oravecz et al.,
2022; Tars et al., 2022; Rikters and Miwa, 2023).
There are numerous techniques, such as language
identification, removing duplicate sentence pairs,
sentences where the word or length ratio between
the source and target is greater than a specified
amount, sentence pairs that have a high cosine sim-
ilarity or whose source and target sentences are
identical etc. Oravecz et al. (2022) go a step further
and remove specific segments of noise patterns that
were noticed in a particular dataset.

There are also post-processing techniques that
can be done, to choose the best output from a num-
ber of possible outputs. One such technique is
the reranking technique, used by Morishita et al.
(2022) and Cruz (2023). The authors use this tech-
nique to select the most likely candidate from a
set of candidates, using a Source-to-Target Neu-
ral Machine Translation (NMT) system, a Target-
to-Source NMT system and a Masked Language
Model. The overall score is how likely each system
is to choose that particular output for the current
input. For the Masked Language Model, different
pre-trained models were used depending on the
target language since naturally the model needs to
be trained on the target language to give accurate
results.

2.4 Maltese Machine Translation

Limited research exists in the context of Maltese
machine translation.

There are works on multilingual MT systems,
trained on multilingual corpora which include Mal-
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tese. Zhang et al. (2020b) used OPUS-100 (Zhang
et al., 2020c) to train a multilingual system that
achieved 47.4 and 62.3 BLEU in the ENG — MLT
and MLT — ENG directions respectively. Ma
et al. (2020) presented a MT system based on a
pre-trained language model which is further fine-
tuned on OPUS-100. They achieved 48.0 and 63.0
BLEU in the ENG — MLT and MLT — ENG di-
rections respectively. More recently, Yang et al.
(2022) created a multilingual model that is first
trained on high-resource languages with the aim
of transferring knowledge to the low-resource lan-
guages. They achieved 49.9 and 65.8 BLEU in
the ENG — MLT and MLT — ENG directions
respectively.

Williams et al. (2023) proposed a submission
for the 2023 IWSLT speech translation task. Their
system is a cascade solution where they utilize a
fine-tuned XLS-R model for ASR and a fine-tuned
version of mBART-50 as the MT model.

3 Methodology

3.1 Fixing OPUS-100
3.1.1 Original Dataset

The OPUS-100 dataset (Zhang et al., 2020c)
dataset contains parallel sentences for over 100
languages. In our case, we are using the English-
Maltese portion of this dataset. It contains over a
million sentences.

After performing initial experiments, we noticed
that this dataset has a number of tokenisation issues
on the Maltese side. The inconsistencies identified
are the following:

1. Additional spacing between words and their
articles (such as il-kelb (the dog) sometimes
incorrectly being represented as il- kelb). A
quick estimate shows that 23.2% of the arti-
cles are incorrectly tokenised.

2. Additional spacing between specific words
that include apostrophes (such as ta’ (of) being
represented as ta )

3. Inconsistent characters to represent an apos-
trophe, where sometimes the curled apostro-
phe/smart quote character is used instead of
the straight quote.

Curiously, the mistakes do not appear to be con-
sistent throughout the dataset, but a significant
amount of the sentences do contain a combination
of these errors.

One snippet of a sentence in the OPUS-100 test
set is: “Id- doza ta ° Temodal tista ’ [...]”, meaning
“The Temodal dose may [...]”. Here, one can see
Inconsistency 1 (with the term Id- doza, which
should be Id-doza) and Inconsistency 2 (with the
terms fa * and tista ’, which should be ta’ and tista’
respectively).

These tokenisation errors appear in both the train-
ing set and the test set. BLEU works with n-grams,
therefore if a specific word is split up by a space,
they get rewarded for two words being correct
rather than one, leading to inflated results. This
is evidently the case with issues 1 and 2 above. If
a system is taught to split fa’ into fa ’, then BLEU
will reward it as if it got two words after each other
correct rather than treat it as one word as it should
be.

3.1.2 OPUS-100-Fix

As detailed in Section 3.1.1, the original Maltese
portion of the OPUS-100 dataset has inconsisten-
cies, namely with articles and words containing
punctuation, which affect the BLEU score as well
as the quality of the translations. Thus, we set out
to fix the three issues noted in Section 3.1.1.

Firstly, to fix the issue of the word and its article
being separated, we used the detokeniser created
for Maltese by MLRS? to get a list of all the possi-
ble articles. The detokeniser searches for the arti-
cles using regular expressions. The articles found
followed by a dash and another word were merged
together.

Secondly, to fix the issue of common Maltese
particles with apostrophes at the end having the
apostrophe split from the word (such as ta ’), once
again we use the MLRS detokeniser which inter-
nally uses regular expressions to get a list of possi-
ble particles. These particles that are immediately
followed by a space and an apostrophe have the
space removed. Therefore they are merged together
as one word.

Lastly, all occurrences of the curled apostrophe
character were changed to the standard apostrophe
character.

3.2 Evaluating different Tokenisers

A common technique in NMT is to tokenise the
input first. There are various tokenisers, some of
which are word-level or rule-based and some of
which are subword tokenisers. One can also com-
bine different tokenisers (Wei et al., 2021; Xu et al.,

Smlrs.research.um.edu.mt
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2021), by first tokenising using the word tokenisers
and then feeding this to the subword tokenisers.

When it comes to neural approaches that deal
with Maltese, we expect that the most appropri-
ate tokenisation technique is a subword tokeniser.
This is due to the fact that character-level embed-
dings in Maltese do not store enough information
and word-level tokenisation does not take advan-
tage of stem/lemma similarity, with Maltese being
morphologically rich.

In our experiment, we try three different sub-
word tokenisers, namely SentencePiece (which by
default adapts the Unigram tokenisation algorithm),
the adapted version of BPE used within Sentence-
Piece as well as the original BPE tokeniser. We also
use three word-level tokenisers. Two of the word-
level tokenisers are popular in the field (namely
MosesDecoder (Koehn et al., 2007) and OpenNMT
(Klein et al., 2017)) and another one of which is
specifically designed for Maltese (the tokeniser
from MLRS (Gatt and Cépls, 2013)). Follow-
ing (Wu et al., 2016) and (Denkowski and Neu-
big, 2017), who suggested tokeniser vocabulary
sizes should be between 8,000 and 32,000, we use
three different vocabulary sizes: 8,000, 16,000 and
32,000.

3.3 Different architectures trained on
OPUS-100-Fix

We set out to experiment with different architec-
tures and techniques to set baseline results for mod-
els trained on OPUS-100-Fix. Each model has
three variations. The first variation is the model
as it is, with standard pre-processing and post-
processing. The second variation, detailed in Sec-
tion 3.3.1 includes an additional pre-processing
step, where the data is filtered thoroughly before
being passed on for training. The third variation,
detailed in Section 3.3.2 is a post-processing step
to make a better choice from the potential outputs.

3.3.1 Filtering of Data

We follow the most common approaches used in
WMT shared tasks (Morishita et al., 2022; Oravecz
et al., 2022; Tars et al., 2022) to filter data before
feeding it to train the system. A number of opera-
tions are performed on the training set, namely by
removing sentences:

* Over 150 words in either the source or target
text.

* Containing single words with more than 40
characters in either the source or target text.

* Where the ratio between the total character
count and the number of words is greater than
12 for both the source and target text.

¢ Where the ratio of the number of words in
the source text to the number of words in the
target text exceeds 4.

e Where the ratio of the total character count in
the source text to the total character count in
the target text exceeds 6.

* Where the source and target texts are identical.

* Where the cosine similarity between bag-of-
words vector representations of the source and
target text is greater than 0.96.

3.3.2 Noisy Channel Reranking

Following Morishita et al. (2022), we implement
a post-processing technique to select the best out-
put from the best 5 possibilities. Instead of select-
ing the best output using just the Source-to-Target
NMT system, we also use a Target-to-Source NMT
system, and a Masked Language Model. The over-
all score is determined by evaluating how probable
it is for each model to choose the given output for
the given input.

For example, the Target-to-Source system scores
how likely it is that the source sentence is the output
produced given the target sentence. The Masked
Language Model scores how likely it is that the
target sentence is produced in that particular or-
der. This is done by masking tokens one by one,
which results in pseudo-log-likelihood scores, as
described by Salazar et al. (2019). This process is
designed to ensemble different results from differ-
ent models to get a better output. In the case of
Maltese, we trained a basic Language Model (LM)
trained on the OPUS-100-Fix training set. The
hyperparameters are detailed in Section A.1.

4 Evaluation

4.1 Experiment Setup

All models are built using the Fairseq (Ott et al.,
2019) library. Fairseq is a library that allows for
easy implementation of a machine translation sys-
tem through CLI commands, meaning minimal
code is needed to create a fully working machine
translation system. Throughout all experiments,
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we wanted to keep the hyperparameters the same
to ensure a fair assessment. The hyperparameters
are detailed in Section A.2.

Given that these experiments focus on tokenisa-
tion issues which are present only on the Maltese
portion, we present results in the ENG — MLT
direction, however we also list all results in the
MLT — ENG direction in the appendix for com-
pleteness.

4.1.1 Transformer (base) - Baseline Model

The architecture for the first model is the base trans-
former architecture by Vaswani et al. (2017) with
six encoder and decoder layers with 512 dimen-
sions each. There are eight attention heads for both
the encoders and decoders, with 2,048 dimensions
for each.

4.1.2 Transformer (large)

The second model trained from scratch is based
on the Transformer (large) submission detailed by
Vaswani et al. (2017). As described by the authors,
the big architecture has six encoder and decoder
layers with 1,024 dimensions each. There are 16
attention heads for both encoders and decoders with
4,096 dimensions each.

4.1.3 mBARTS50 fine-tuned

For this system, a pre-trained mBART-50 model
(Tang et al., 2020) was used and fine-tuned on our
data. Following Williams et al. (2023), an mBART-
50 model was used over mBART-25, since the for-
mer was found to perform better.

The architecture of mBART-50 is based on the
architecture of mBART-25 (Liu et al., 2020), which
itself is a modified version of Vaswani et al. (2017).
In their case, they use 12 encoder and decoder lay-
ers of 1,024 dimensions on 16 attention heads.

414 NLLB

Costa-jussa et al. (2022) proposed a model trained
on 200 distinct languages, including Maltese,
called NLLB as described in Section 2.2. Since this
includes Maltese, 2 experiments were conducted:
pre-trained and fine-tuned. For pre-trained, the
model was used as-is out-of-the-box without fur-
ther training and evaluated on the test sets. For
fine-tuned, the model was further trained on the
training sets. In both cases once again Fairseq (Ott
et al., 2019) was used to fine-tune and infer the
results. This model is also the biggest model that
is being experimented with, since it has 24 encoder
and decoder layers with 2,048 dimensions on 16

attention heads. The attention heads have 8,192
dimensions each. Due to resource constraints, we
only experimented with the 600M parameter ver-
sion in this study.

4.2 Results

To evaluate the systems, the BLEU and CHRF2
scores are the metrics used. Although BLEU has
its pitfalls (Kocmi et al., 2021), it is still used in a
lot of previous papers and thus can be used to com-
pare our results to previous literature. Moreover,
although there are neural based metrics nowadays
such as COMET (Rei et al., 2020) it is not yet clear
as to how well they work with the Maltese language
and correlate to human scores.

4.2.1 OPUS-100 vs OPUS-100-Fix

Following the issues found in OPUS-100, OPUS-
100-Fix was created that fixed these issues to sat-
isfy Contribution C1. We created an experiment to
train two Transformer (large) models: one using
the original OPUS-100 dataset and another using
the fixed OPUS-100-Fix dataset. We then tested
these models on both test sets. An additional exper-
iment was done where we detokenised the output
of the model trained on the original OPUS-100, to
measure the extent to how much the BLEU scores
inflate when evaluated on the original test set. For
example, if the model outputs i/- kelb, it will deto-
kenise it to il-kelb before evaluating. In all cases, a
SentencePiece (Unigram) tokeniser is trained with
a vocabulary size of 8,000.

The BLEU results can be seen in Table 1. The
model trained on OPUS-100-Fix achieves the best
BLEU score when evaluated on the fixed test set,
outperforming even the model trained on OPUS-
100 with the detokenised output. The CHRF2
scores can be found in the appendix.

The model trained on OPUS-100 achieves the
best BLEU score (51.48) when evaluated on the
OPUS-100 test, but achieves the lowest (48.38)
when evaluated on the OPUS-100-Fix test set.
This shows how inflated the results on the origi-
nal OPUS-100 are, as described in Section 3.1.1.
Naturally, this only occurs if the MT output itself
contains these errors, hence why the BLEU score
drops by a significant amount when we detokenise
the output (or train on a clean training set) and
evaluate on the OPUS-100 test set.

We note that detokenising post-hoc seems to
perform marginally worse than training on OPUS-
100-Fix in both testing scenarios. We note that
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Training Set

OPUS-100 Test Set

OPUS-100-Fix Test Set

OPUS-100 51.48 48.38
OPUS-100 (Detokenised Output) 46.27 49.54
OPUS-100-Fix 47.00 50.87

Table 1: BLEU scores of Transformer (large) models trained on OPUS-100 and OPUS-100-Fix (ENG — MLT).

the main difference is that the system trained on
OPUS-100 tends to not include the articles when
possible, such as writing Kummenti instead of I/-
Kummenti (meaning Comments instead of The com-
ments), potentially due to the conflicting examples
in the training set.

One can also notice the increase in the BLEU
score that happens once the test set is fixed, where
the model trained on OPUS-100-Fix achieves 47.00
BLEU on the OPUS-100 test set but 50.87 BLEU
on the OPUS-100-Fix test set. This is obviously
not the case with the model trained on OPUS-100,
since the output contains the same tokenisation
errors found in the training set.

4.2.2 Evaluating different Tokenisers

Following the tokenisation errors found in the
OPUS-100 dataset, we set out to satisfy Contribu-
tion C2 by experimenting with different tokenisers
as a preprocessing step to see whether there are
significant differences in the tokeniser used in an
MT system in the context of Maltese.

Table 2 shows the Transformer (large) and the
NLLB-FT models using the different tokenisers de-
scribed in Section 3.2. Throughout this experiment,
every tokeniser used has 8,000 vocabulary size.

In the case of NLLB-FT, the model is pre-trained
on a tokeniser that adapts SentencePiece. There-
fore, when evaluating on NLLB-FT, we must use
their pre-trained SentencePiece model. This is not
the case with the Transformer (large) model, there-
fore we can perform additional experiments on this
model with other tokenisers, including BPE.

Our results show that overall, there does not
seem to be significant improvements when pairing
a subword tokeniser with another word-level to-
keniser. Using the Transformer (Large) model, a
BPE tokenizer alone works best in both directions,
whereas when using NLLB-FT, the pre-trained Sen-
tencePiece model alone performs the best. The
best performing model overall was NLLB-FT with
52.25 BLEU and 76.14 CHRF?2 scores.

We also set out to determine which vocabulary
sizes work best in our experiments. We used a
Transformer (Large) model throughout as this al-

Model |BLEU CHRF2
Transformer (large)

SentencePiece-Unigram (SP-U) | 50.87 74.96
SP-U + MLRS 50.36  75.29
SP-U + Moses 51.17 75.09
SP-U + OpenNMT 5091 75.08
SentencePiece BPE (SP-BPE) | 50.94 75.04
SP-BPE + MLRS 49.08 74.66
SP-BPE + Moses 51.25 75.18
SP-BPE + OpenNMT 50.94 75.04
Byte Pair Encoding (BPE) 51.29 75.08
BPE + MLRS 49.82 75.04
BPE + Moses 50.24 74.62
BPE + OpenNMT 51.29 75.07
NLLB-FT

SentencePiece Unigram (SP-U) | 52.25 76.14
SP-U + MLRS 50.32  75.86
SP-U + Moses 50.86 75.21
SP-U + OpenNMT 51.74 75.75

Table 2: Models trained and evaluated on OPUS-100-
Fix (ENG — MLT).

lows us to experiment with using and training our
own subword tokenisers from scratch. For this ex-
periment we used both versions of SentencePiece
as well as BPE with three different vocabulary
sizes: 8k, 16k and 32k.

The results can be seen in Table 3. In all cases
having a smaller vocabulary size achieves the high-
est BLEU and CHRF?2 scores. It is interesting that
there is a very sharp drop in performance when
using SentencePiece (both the unigram version and
BPE version) with higher vocabulary sizes. We
experimented with different vocabulary sizes be-
tween 8,000 and 16,000 for the unigram version
and 16,000 and 32,000 for the BPE version and
a drop in performance is observed as the vocabu-
lary size is increased. The overall best performing
model is the original BPE with a vocabulary size
of 8,000 in both directions.

For completeness, we present the results of the
above experiments in the MLT — ENG direction
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Vocabulary Size BLEU CHRF2
BPE

8,000 51.29 75.08
16,000 50.00 74.56
32,000 41.67 68.20
SentencePiece (Unigram)

8,000 50.87 74.96
16,000 2.73 1848
32,000 0.05 16.32
SentencePiece (BPE)

8,000 5094 75.04
16,000 50.76  74.70
32,000 1.39 1541

Table 3: Transformer (Large) trained on OPUS-100-Fix
(ENG — MLT) with different tokenisers.

in Section C.

4.2.3 Different architectures trained on
OPUS-100-Fix

We also set out to satisfy Contribution C3, by eval-
uating different models and techniques using this
new OPUS-100-Fix dataset as well as using the op-
timal tokenisers and the optimal vocabulary sizes
from the previous section. These models were
therefore all trained using BPE with a vocabulary
size of 8,000, except for the pre-trained models
(mBARTS50 and NLLB), in which case their respec-
tive tokenisers were used.

The results can be seen in Table 4. The NLLB
pre-trained model (out-of-the-box) achieves the
lowest BLEU and CHREF?2 scores, whereas NLLB-
FT achieves the highest. In almost all cases, filter-
ing seems to hurt performance except in the NLLB-
FT model. This could be due to the general lack
of data, which is less of an issue in the case of
NLLB-FT since it is pretrained. Reranking is also
generally an improvement over filtering but still
overall worse than not doing either.

For completeness, the results in the MLT —
ENG direction can be seen in Section D.

5 Conclusion

This paper presents an updated version of OPUS-
100, OPUS-100-Fix, which fixes numerous incon-
sistencies in the Maltese data. It is seen that by
fixing these inconsistencies, the results improve.
Apart from that, we also experiment with numer-
ous tokenisers where we observed that using BPE
alone, with a vocabulary size of 8,000, achieves the

Model BLEU CHRF2
Transformer (base) 48.64 73.77
Filtering of data 4738 72.81
Noisy Channel Reranking| 47.75  73.01
Transformer (large) 51.29 75.08
Filtering of data 50.93 74.86
Noisy Channel Reranking | 51.44  75.28
mBARTS0 fine-tuned 50.25 74.12
Filtering of data 49.09 73.39
Noisy Channel Reranking | 49.40 73.62
NLLB Pre-trained 39.69 71.72
NLLB-FT 5225 76.14
Filtering of data 52.65 76.29
Noisy Channel Reranking | 52.03  75.85

Table 4: Models trained and evaluated on OPUS-100-
Fix (ENG — MLT)

best results on our data. We finally experiment with
different models, both fine-tuned (including NLLB
and mBART) and those trained from scratch, and it
can be seen that fine-tuning NLLB yields the best
performance.

5.1 Limitations

The metrics used to present the results are BLEU
and CHRF2, and as seen in Kocmi et al. (2021),
may not directly agree with human evaluation.

Apart from this, although OPUS-100 is a com-
monly used dataset, it is not human reviewed and
therefore it could have other types of noise than
those fixed in this research such as incorrect trans-
lations that could affect performance. For accu-
rate comparisons between models, especially pre-
trained models that are potentially trained on higher
quality data, it would be better to ensure that the
test set is manually reviewed and validated.

5.2 Future Work

For future work it would be beneficial to utilize
monolingual data. It is assumed that if we use
backtranslation to include the monolingual data,
certain techniques such as filtering of data will lead
to a higher performance increase.

Apart from this, a LM was trained from scratch
using our limited training set for the reranking tech-
nique. It would be beneficial to experiment with
using a larger Maltese LM trained on more data
for this technique, such as BERTu (Micallef et al.,
2022).
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A Hyperparameters

A.1 Language Model Hyperparameters

For the noisy channel reranking, we used the fol-
lowing hyperparameters. The same hyperparam-
eters as® were used to train the model, namely, a
dropout of 0.1, Adam optimizer with betas of 0.9
and 0.98, weight decay of 0.01, a learning rate
of 0.0005 with an inverse square root scheduler,
warmup updates of 4,000, and an initial learning
rate of 1e-07. 2,048 max tokens were passed per
batch per GPU with an update frequency of 16 per
GPU. Two GPUs were used to train the system. In
the case of English, we used the pre-trained LM
described in Yee et al. (2019).

6https ://github.com/facebookresearch/fairseq/
blob/main/examples/language_model/README . md
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A.2 Experiment Setup Hyperparameters

We follow the same hyperparameters as Williams
et al. (2023). An Adam optimizer is used with the
Adam betas being 0.9 and 0.98. Label smoothed
cross entropy is used with a label smoothing of
0.2. The dropout probability is 0.1 and the weight
decay is set to 1e-04 . The maximum tokens per
batch was set to 2,048. Finally, the learning rate is
set to 1e-03, but the initial learning rate is actually
smaller, at 1e-07 and increases using a learning rate
scheduler to linearly increase the rate after 4,000
steps. Once the learning rate reaches 1e-03, the
rate is then decayed by the inverse square root of
the update number.

The validation occurs every 10,000 steps, where
the BLEU score on the dev set is calculated. The
model keeps training with a patience of 10, mean-
ing that if the model does not improve this BLEU
score after 10 validation steps, then it stops train-
ing.

For standard generation, the beam size is set to
5. After the sentences are inferred, the sentences
are detokenised using the respective tokeniser used
and scored using Sacrebleu (Post, 2018).

B OPUS-100 vs OPUS-100-Fix

Table 5 shows the CHRF2 scores of the experi-
ments described in Section 4.2.1.

C Evaluating different Tokenisers - MLT
— ENG

Table 6 shows the MLT — ENG results using the
different tokenisers.

Table 7 shows the MLT — ENG results using
the different vocabulary sizes. Similar results to
the ENG — MLT are achieved.

D Different architectures trained on
OPUS-100-Fix - MLT — ENG

Table 8 shows the BLEU and CHRF2 scores for dif-
ferent architectures trained and evaluated on OPUS-
100-Fix.
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Training Set OPUS-100 Test Set OPUS-100-Fix Test Set

OPUS-100 75.01 74.85
OPUS-100 (Detokenised Output) 75.00 74.84
OPUS-100-Fix 75.14 74.96

Table 5: CHRF2 scores of Transformer (large) models trained on OPUS-100 and OPUS-100-Fix (ENG — MLT).

Model | BLEU CHRF2
Transformer (large)

SentencePiece Unigram (SP-U) | 61.94 77.12
SP-U + MLRS Tokeniser 61.27 76.91
SP-U + Moses Tokeniser 61.91 77.18
SP-U + OpenNMT Tokeniser 61.94 77.12
SentencePiece BPE (SP-BPE) 62.45 717.45
SP-BPE + MLRS Tokeniser 64.08 78.45
SP-BPE + Moses Tokeniser 62.28 77.46
SP-BPE + OpenNMT Tokeniser | 62.45 77.45
Byte Pair Encoding (BPE) 64.47 78.92
BPE + MLRS Tokeniser 63.40 78.25
BPE + Moses Tokeniser 64.44 78.86
BPE + OpenNMT Tokeniser 64.45 78.91
NLLB-FT

SentencePiece Unigram (SP-U) | 68.04 81.17
SP-U + MLRS Tokeniser 67.70 80.89
SP-U + Moses Tokeniser 63.42 79.76
SP-U + OpenNMT Tokeniser 67.14 80.54

Table 6: Models trained and evaluated on OPUS-100-Fix (MLT — ENG).

Vocabulary Size BLEU CHRF2 Model BLEU CHRF2
BPE Transformer (base) 61.67 77.05
8,000 64.47 78.92 Filtering of data 61.76  76.97
16,000 64.08 78.69 Noisy Channel Reranking | 62.08  77.21
32,000 60.83 76.47 Transformer (large) 64.47  78.92
SentencePiece (Unigram) Filtering of data 64.67  78.90
8,000 61.94 77.12 Noisy Channel Reranking | 65.07  79.33
16,000 3.36 18.80 mBARTS50 fine-tuned 64.14  78.28
32,000 2.14 16.03 Filtering of data 57.57 73.13
SentencePiece (BPE) Noisy Channel Reranking | 58.66  74.05
8,000 62.45 77.45 NLLB Pre-trained 60.11 77 .82
16,000 60.38 76.21 NLLB-FT 68.04 81.17
32,000 3.16 17.16 Filtering of data 66.98 80.46
Noisy Channel Reranking | 65.78  79.42

Table 7: Transformer (Large) trained on OPUS-100-Fix
(MLT — ENG) with different tokenisers.

Table 8: Models trained and evaluated on OPUS-100-
Fix (MLT — ENG)
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