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Abstract

This paper investigates edge induction as a
method for augmenting Word Usage Graphs,
in which word usages (nodes) are connected
through scores (edges) representing semantic
relatedness. Clustering (densely) annotated
WUGs can be used as a way to find senses
of a word without relying on traditional word
sense annotation. However, annotating all or
a majority of pairs of usages is typically in-
feasible, resulting in sparse graphs and, likely,
lower quality senses. In this paper, we ask if
filling out WUGs with edges predicted from the
human annotated edges improves the eventual
clusters. We experiment with edge induction
models that use structural features of the exist-
ing sparse graph, as well as those that exploit
textual (distributional) features of the usages.
We find that in both cases, inducing edges prior
to clustering improves correlation with human
sense-usage annotation across three different
clustering algorithms and languages.

1 Introduction

Recently, Word Usage Graphs (WUGs) have
emerged as a new paradigm in the computational
study of lexical semantic change (Schlechtweg
et al., 2021b). For a given target word (lexeme),
a word usage graph consists of a set of usages,1

along with humanly generated relatedness scores
for some subset of the pairs of usages. Together, the
usages (nodes) and relatedness scores (edges) form
a weighted graph. Graph clustering techniques can
be used to discover word senses, where each cluster
of usages is understood to be a distinct sense of the
target word.

This procedure relies on a simpler human an-
notation task than assigning a sense from a fixed
inventory to each usage, thus allowing us to obtain
more annotations with the same number of annota-
tion hours. Moreover, since no sense inventory is

1Contexts drawn from a corpus including the target word.

required, new or otherwise undocumented senses
can be discovered by the procedure. These two
factors make WUG annotation particularly useful
in applications involving Lexical Semantic Change
(LSC), since they make it more feasible to cover a
large vocabulary and consider novel or unattested
historical senses.

The SemEval-2020 task on Unsupervised Lex-
ical Semantic Change Detection used Diachronic
Word Usage Graphs (DWUGs) to develop LSC
evaluation datasets for four languages, namely En-
glish, German, Swedish, and Latin (Schlechtweg
et al., 2020). The use of DWUGs for this pur-
pose has since been adopted in LSC benchmarks
for Italian (Basile et al., 2020), Russian (Kutuzov
and Pivovarova, 2021), Spanish (Zamora-Reina
et al., 2022), Norwegian (Kutuzov et al., 2022),
Chinese (Chen et al., 2023), Japanese (Ling et al.,
2023), and most recently Slovenian (Pranjić et al.,
2024). Each benchmark consists of a diachronic
corpus and a set of target words over which human
annotation was conducted.

While WUG annotation is less burdensome than
traditional word sense annotation, the creation of re-
liable benchmarks over multiple time periods, still
requires a substantial annotation effort. A complete
graph on N usages has (N · (N − 1))/2 edges and,
since sense frequency distributions can be highly
skewed, sampling a small number of usages does
not ensure a representative sample of senses. Thus
far, this issue has been addressed by creating sim-
plified LSC benchmarks with reduced annotated
edges over two time periods (with the exception
of Kutuzov and Pivovarova (2021), who created
a benchmark over three time periods). Addition-
ally, as word senses are automatically derived from
relatedness judgments of sparse graphs, the evalua-
tion of approaches to LSC is typically conducted
through Graded Change Detection (i.e., ranking
the target words by the degree of semantic change
across the corpus) regardless of Word Sense Induc-
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(a) Sparse usage relatedness judgments
from human annotators (ARI=0.06)
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(b) Missing edges inferred with graph-
structural features (ARI=0.37)
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(c) Missing edges inferred with struc-
tural and textual features (ARI=0.62)

Figure 1: The WUGs for ausspannen. Only positive (weight ≥ 2.5) edges are shown. Colored regions (labeled
Sense 1–4) correspond to human usage-sense annotation, while node colors correspond to clusters found by the
SBM-binomial model using three different sets of edges: (a) only the human-annotated edges, (b) augmented
with induced edges (gray) using structural evidence, and (c) augmented edges induced with structural and textual
evidence. ARI scores indicate correlation with human usage-sense annotation. This example is drawn from
Experiment 3 which is described in Section 6.3.

tion (i.e., assessing the quality of word meaning
derived by computational models). As a result,
more and more so-called form-based approaches
to LSC have been developed to quantify change.
These models sidestep the fundamental aspect of
sense modeling that connects LSC to other relevant
NLP tasks such as Word Sense Disambiguation and
Induction (Periti and Tahmasebi, 2024; Aksenova
et al., 2022), and which would make the results of
an LSC detection model more interpretable. For
example, the SOTA approach to LSC (known as
APD) currently consists in measuring the degree
of change as average pairwise distance between
the contextualized embeddings for a given word
(Giulianelli et al., 2020).2

In this paper, we investigate edge induction as
a methodology for augmenting human relatedness
judgments in the creation of WUGs, with the goal
of reducing the annotation effort required to derive
high-quality WUGs. We investigate the following
research questions:

RQ1 Can edge induction reduce the human anno-
tation burden required to produce high-quality
WUGs?

RQ2 What are the relative contributions of graph-
based (structural) and usage-based (contex-
tual) features in WUG edge prediction?

In addition to considering the classification perfor-
mance of edge induction models, we assess the
quality of augmented WUGs in terms of how well
their node clusters correspond to human-annotated
word senses.

2We refer the reader to Periti and Montanelli (2024); Tah-
masebi et al. (2021); Kutuzov et al. (2018); Tang (2018) for
extensive overviews.

2 Related work

In the Word in-Context (WiC) task (Pilehvar and
Camacho-Collados, 2019; Loureiro et al., 2022), a
model is expected to determine, if two usages of a
target word are related or unrelated. As this is simi-
lar to WUG annotation, recent work has shown that
large language models such as GPT and BERT can
be used as computational annotators of DWUGs,
reducing the burden of annotation through WiC as-
sessments (Periti and Tahmasebi, 2024; Periti et al.,
2024).

This work is similarly motivated. However in
contrast to WiC, edge induction leverages a (partial)
WUG annotated by humans to infer missing edges,
instead of solely relying on models’ assessments of
relatedness. For example, given a WUG where us-
age pairs ⟨u, v⟩ and ⟨v,w⟩ are known to be related,
an edge induction model may infer that usages u
and w are also related, based on the information
provided by the partial graph (see Figure 2a). We
use the term structural features to denote predic-
tive features derived from the partial graph, and
contextual features to refer to textual features of
the usage applicable in the standard WiC task.

3 Edge induction models

A WUG can be regarded as a weighted graph, with
a set of nodes (usages) N, and a weight function
W : E 7→ {1, 2, 3, 4},3 where the domain of W is a
subset of pairs of nodes in N; i.e., E ⊆ E , where
E is the set of edges on the complete graph KN .

3These weights correspond to the Likert scale provided
to human annotators: unrelated, distantly related, closely
related, and identical. In some cases, we allow other values
in [1, 4], as when the graph is constructed with relatedness
scores aggregated over multiple annotator judgments.
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An edge induction model is a function that finds
a W ′ : E′ 7→ {1, 2, 3, 4} such that E′ ⊃ E, while
retaining E′ ⊆ E . The intended interpretation is
that W ′ extends W in such a way that (potentially)
uses information encoded in W to induce values
W ′(u, v) for edges missing from the domain of W.

The simplest operationalization of edge induc-
tion is as classification, such that, given ⟨u, v⟩ ∈ E ,
the classifier features can be computed from W
(structural features), and potentially some other
auxiliary information (as in the case of our textual
features). Since our experimental focus is on fea-
tures, all of the induction models we experiment
with in this paper are four-way multi-class logistic
regression models provided with different combi-
nations of structural and textual features (described
below).

xl-lexeme-cos XL-Lexeme (Cassotti et al., 2023)
is an XLM-R-based model trained on a large multi-
lingual corpus of combined WiC datasets. It uses
a Siamese architecture similar to sentence BERT
(Reimers and Gurevych, 2019), but with the target
word marked off by special tokens. The model is
trained to minimize the contrasting loss (Hadsell
et al., 2006) between pairs of usage embeddings,
with cosine distance used as the underlying dis-
tance function.

For a pair of usages u and v, let

xxl-lex
⟨u,v⟩ = δcos(u, v), (1)

where δcos is cosine distance and u and v are the
XL-Lexeme embeddings of usages u and v com-
puted with the lemma of the WUG in question
marked as the target.4

Since XL-Lexeme is currently state-of-the-art in
the WiC task (Periti and Tahmasebi, 2024), we use
xxl-lex
⟨u,v⟩ to investigate the predictive contribution of

contextual features in our experiments.

log-triangle Intuitively, we should be able to in-
fer something about missing edges based on the
edges that have been annotated. This feature works
on the intuition of “completing the triangle” be-
tween u and v based on the known edges. Suppose
we have another usage w and, following Figure 2a,
let x = W(u,w) and z = W(w, v) and suppose we
know that x = z = 4 (i.e,. both pairs ⟨u,w⟩ and
⟨w, v⟩ are closely related), we might expect that u

4Note that xxl-lex
⟨u,v⟩ is a scalar value, meaning that the regres-

sion model using only this feature essentially finds data-driven
thresholds that segment [−1, 1] (the range of δcos) into four
bins corresponding to the edge annotation schema.
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Figure 2: Setup for triangle path count edge induc-
tion. The value of the missing edge (ŷ) can be in-
ferred from the weights along each of the known paths
{(x1, z1), ..., (xn, zn)} from u to v.

and v are closely related too and therefore assign
W ′(u, v) = ŷ := 4. In fact, given that x = 4 we
might generalize to expect that y = z. However,
this is less true when x = 3. And when both x
and z are 1 or 2, it is difficult to say what can be
inferred about y. Moreover, as in Figure 2b, we
may have multiple intermediary wi’s that we want
to use to “complete the triangle” and aggregate the
information provided by their conjunction — pure
heuristics won’t get us very far.

The general case is described by Figure 2. There
is no edge between usages u and v, but we do have
edges between u and some number of other usages
w1,w2, ...,wn and edges between each wi and v.
We define the triangle path count as a count vector
of the weights along all the length-2 paths from u
to v. Formally,

xtri
⟨u,v⟩[i] =

∑

wj

{1 | ⟨W(u,wj),W(wj, v)⟩ = pi},

(2)
where pi indexes the set of the possible length-2
paths of weights (i.e., permutations of {1, 2, 3, 4}).
If all counts xtri

⟨u,v⟩[i] = 0, then xtri
⟨u,v⟩ is undefined —

assuming that the domain of W is constructed from
independently distributed samples from

(N
2

)
, the

fact that there is no length-2 path between u and v
doesn’t tell us anything about what W ′(u, v) should
be.

To account for the fact that each additional path
of a given type likely provides marginally less pre-
dictive information about the correct label for ⟨u, v⟩,
we use the point-wise log of the triangle path count
as input features to the logistic regression model.5

5A more natural way to account for this diminishing in-
formation content would be with a Multinomial Naive Bayes
model, that operates on xtri, however we found the classifi-
cation performance of that model to be similar to that of the
logistic regression model using the log-count feature. For
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xlog-tri
⟨u,v⟩ [i] = log(xtri

⟨u,v⟩[i] + 1) (3)

log-triangle+xl-lexeme-cos Finally, the model
that combines textual and and structural features
simply uses the concatenation of xl-lexeme-cos
and the log-triangle features:

xlog-tri+xl-lex
⟨u,v⟩ = xlog-tri

⟨u,v⟩ ⊕ [xxl-lex
⟨u,v⟩ ] (4)

3.1 Iterated inference

Models that use xlog-tri (and xlog-tri+xl-lex) have un-
defined features when there are no length-2 paths
from u to v. Suppose we have a trained classifier
C which, given an existing weight function W and
auxiliary information A, predicts new weights; i.e.,
CW,A : N × N 7→ [1, 4]. Letting W0 be the initial
weight function and E0 = Dom(W0) be the edges
for which we have ground-truth weights, we infer
edges in stages as follows:

W i(u, v) =

{
W0(u, v) if ⟨u, v⟩ ∈ E0

CW i−1,A(u, v) otherwise.
(5)

In other words, we preserve all of the original
(ground-truth) edge weights while updating in-
ferred weights with new predictions at each iter-
ation. Other schemes are of course possible, but
this one seeks a balance between propagating infor-
mation from the larger graph at each iteration and
remaining grounded in the seed edges (hopefully
avoiding excessive error propagation).

3.2 Levels of stratification

There are several choices for how to divide the
predictive domain of each classifier. Intuitively,
we would expect words to behave similarly with
respect to the inferential evidence provided by the
xlog-tri and xxl-lex features.

But there might be differences across words (es-
pecially considering that different words have dif-
ferent patterns of polysemy and part-of-speech)
and across languages. Given a limited annotation
budget, it would be beneficial to share training data
as much as possible. We experiment with three
schemes:

this reason and because the logistic regression model is more
readily compatible with additional features, we only report the
results of the logistic regression models.

word-level A classifier is trained based on the
training edges for each word, regardless of lan-
guage. At inference time, edges are inferred us-
ing the word-specific classifier with the same seen
edges initializing the graph.

language-level Training data is merged across
words in a given language. At inference time,
the language-specific classifiers are used to pre-
dict edges for words in the corresponding language.
Graphs are initialized with the word-specific seen
edges, which may be the edges from the training
set (as in Section 6.1) or edges from new words
from the same language that weren’t seen at train
time (as in Section 6.3).

cross-lingual Only one classifier is trained using
data from all training words. As before, the classi-
fier can be used to infer edges in WUGs for words
both inside or outside of the training set.

3.3 Evaluation: Correlation with human
annotators

We evaluate edge induction models by their
weighted average pairwise Spearman correlation
with human annotators, defined as follows:

∑
h∈H ρ(yh, ŷm,h)∑

h∈H | yh | , (6)

where yh is the sequence judgments by annotator
h, ŷh is the corresponding sequence of model pre-
dictions on the same items, and ρ is the Spearman
correlation coefficient.

Pairwise Spearman correlation is a common
metric for evaluating agreement among annota-
tors of usage relatedness (e.g., Erk et al., 2013;
Schlechtweg et al., 2021b). We use this metric
to evaluate our edge induction models in order to
assess how well they perform as computational
annotators.

4 Clustering

Correlation Clustering has traditionally been used
with sparsely human-annotated WUGs. For ex-
ample, to identify senses forming the basis of
the SemEval-2020 bencmark (Schlechtweg et al.,
2020). We also experiment with two varieties
of Stochastic Block Model (SBM; Holland et al.,
1983), a family of generative models which may
better accommodate the uncertainty introduced by
computationally-annotated edges.

In an SBM, an edge between nodes u and v is
determined by a random variable which depends
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on the blocks that u and v belong to. The param-
eters of the distributions that generate edges be-
tween pairs of blocks and the block membership
of nodes can be jointly inferred through Bayesian
non-parametric inference. In this way, SBMs can
discover both assortative block structures (clus-
ters), in which nodes belonging to the same block
are more likely to have an edge, as well as other
more general relationships between blocks, as ex-
pressed though the graph’s edges.

The Hierarchical SBM (Peixoto, 2014) gen-
eralizes the SBM by imposing an additional
block structure on the first-order blocks. The in-
ferred relationship between — and membership
in — second-order blocks allows the model to find
informative priors for the first-order blocks. In prin-
ciple the model can be nested to an arbitrary depth.
In practice Peixoto (2014) provides methods to in-
fer the hierarchical structure.6 One benefit of using
hierarchical models is they they can find smaller
well-defined blocks compared to vanilla SBM. This
is particularly advantageous to our use-case, since
sense distributions are known to be highly skewed
(Kilgarriff, 2004).

In both standard and hierarchical SBM, block
membership determines the likelihood of an edge
between two nodes. Unknown values aside, WUGs
are complete graphs — the existence of an edge is
not informative for finding a good clustering. For
that reason, we experiment with two SBM variants
that can be adapted to our situation.

sbm-binomial The weighted SBM (Aicher et al.,
2015; Peixoto, 2018) draws edge weights from a
distribution in the exponential family. As with the
SBM, these distributions are parametrized by the
block membership of the nodes. Schlechtweg et al.
(2021a) found the Binomial distribution to have the
best fit to WUG edge weights.

sbm-layers We also experiment with an ap-
proach that uses the layered model of Peixoto
(2015). In this model, each of the four edge weights
are treated as a different type of edge. The genera-
tive process allows the the edge likelihood between
blocks to be treated independently for each block
while the blocks (clusters) themselves are inferred
jointly.

In all of our experiments that use SBM mod-
els, we cluster according to the most frequently-

6Both of our SBM models use hierarchical implementa-
tions from graph-tool.skewed.de (v.2.45).

assigned blocks over 10 000 samples from the ag-
glomerative Markov chain Monte Carlo algorithm,
after first minimizing the entropy of the model.7

correlation Correlation clustering (Bansal et al.,
2004) scores possible partitions according to the
difference between the sum of positive edges across
clusters and sub of the weight of negative edges
within clusters. Following (Schlechtweg et al.,
2021b), we shift all of the edge weights by 2.5
so that edges weighted 1 and 2 are negative and
edges weighted 3 and 4 are positive. We also use
their implementation of the cluster search, which
uses simulated annealing to approximate an opti-
mal solution.

4.1 Evaluation: Adjusted Rand Index

For two partitions of the same set, the Rand Index
(RI; Rand, 1971) measures the proportion of pairs
of items that either appear in the same or different
clusters in both partitions. RI is a measure of cor-
relation between partitions that, crucially, doesn’t
rely on any explicit alignment of clusters. The Ad-
justed Rand Index (ARI; Hubert and Arabie, 1985)
accounts for the possibility that pairs of items are
assigned together or apart at random by normaliz-
ing with the expected value of the RI.

5 Data

Our experiments draw on two sets of WUGs. We
use the German DWUG DE dataset (Schlechtweg
et al., 2022, v2.3.0). In particular, we use the subset
of this data which is additionally annotated with
usage-sense annotations (24 of 50 lemmas and 50
of 200 usages per lemma). In contrast to the usage-
usage annotation used to construct the WUGs, the
usage-sense annotation (Schlechtweg, 2023) was
carried out in the traditional way where annota-
tors select a sense from a predefined list of senses.
This will allow to evaluate how well the derived
WUG clusters correlate with traditional sense anno-
tation. Each usage was annotated by 3 annotators
and we use the sense annotated by a majority (2)
as the ground-truth. Usages where the annotators
disagree (83 out of 1200) are excluded from the
correlation analysis.

Additionally, the resampled dataset is a larger
dataset of WUGs (Schlechtweg et al., 2024)8 from
three languages (German, English, and Swedish),

7We use minimize nested blockmodel dl with default
parameters.

8https://www.ims.uni-stuttgart.de/data/wugs
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which are much more densely annotated with
usage-usage edges. This allows us to experiment
with the effect of different amounts of ground-truth
data (Sections 6.1 and 6.2).

In Section 6.3, we use the German portion of
the DWUG DE corpus that doesn’t overlap with the
sense-annotated lemmas to test the usefulness of
edge induction in a simulated low-data scenario.

Some of the data contains overlapping human
usage-usage annotation. In all of our experiments,
we use the median (rounded up to the nearest inte-
ger) of these judgments as the ground-truth edge
scores for clustering and training edge induction
models. For testing the edge induction models,
we use the disaggregated judgments to compute
annotator-wise correlations of the model prediction
with human judgments (see Section 3.3).

6 Experiments

Given limited human usage-sense annotation, we
conduct two stages of experiments. First (Sec-
tion 6.1), we use the densely annotated resampled
WUGs to test how well edge induction models
recover edge weights given different amounts of
usage-usage annotation for training and graph ini-
tialisation. Likewise (Section 6.2), we test the
robustness of different clustering methods with
respect to recovering sense clusters with limited
usage-usage annotated data. Next (Section 6.3)
we construct a more realistic scenario in which
pre-trained edge induction models are used to pre-
dict edges in sparsely-annotated WUGs of “new”
words. These enriched graphs are then clustered
and compared to human usage-sense annotations.

Ultimately the end-to-end results (correlation
with human sense annotation) are what matter, but
considering the intermediate results will allow us
to better explain the final performance and make
recommendations that generalize to more WUG
creation scenarios (for example, given different
annotation budgets).

6.1 Experiment 1: Edge induction
performance

For 5 different folds, we reserve 10% of the edges
in each resampled WUG for testing. Of the re-
maining edges, for each fold, we train classifiers
with different amounts of training data, from 50 to
300 annotated edges, using each of the stratifica-
tion schemes described in Section 3.2. At inference
time, we initialize the graphs with the edges that

were seen during training and infer the remaining
edges, including the edges in the respective test set.
For models that use xtri and xtri+xl-lex, four rounds
of inference are performed.

The results are shown in Figure 3. Overall, the
results are good. In the best cases, our models
roughly achieve parity with human-human agree-
ment for a moderate number ground-truth of edges
(see (Schlechtweg et al., 2021b)), and have decent
agreement in low-data scenarios.

The models that combine textual and structural
features (i.e., xtri+xl-lex) perform best for all but the
smallest number of ground-truth edges, especially
in the language-level and cross-lingual case. It’s
important to consider that the number of ground-
truth edges are reported per word, so at 50 ground-
truth edges, the cross-lingual model has many more
training examples than any of the individual word-
level models. However, this is exactly the point
of training models at higher levels of stratification,
since it makes quality inference more efficient in
terms of annotation effort.

We also see that iterated inference does make
a difference. For word-level models the perfor-
mance actually degrades at higher inference inter-
actions, suggesting that the model may suffer from
some degree of error propagation. This is not the
case with language-level and cross-lingual models,
which have richer training sets: subsequent infer-
ence iterations do improve the performance, though
there is not much change after the second round for
the combined model. Crucially, subsequent rounds
also have better predictive coverage, since the trian-
gle count-based models are unable to make an edge
prediction when there is no length-2 path between
the corresponding nodes. For the purposes of the
clustering, this means that later inference rounds
should almost always be preferred, especially in
the language-level and cross-lingual setups.

6.2 Experiment 2: Clustering robustness
In this experiment, we use the same data, folds,
and training limits as in Experiment 1, this time
experimenting with clustering results. The goal of
this experiment is to observe the stability of each
clustering algorithm given different numbers of
ground-truth edges. We perform this experiment as
a precursor to clustering on induced edges, since
it will provide context for any clustering improve-
ments stemming from edge induction. Each of the
algorithms we experiment with is designed to work
on graphs with missing edges, so it is important to

97



50 100 150 200 250 300
ground-truth edges

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

av
g.

 S
pe

ar
m

an

word-level

50 100 150 200 250 300
ground-truth edges

language-level

50 100 150 200 250 300
ground-truth edges

x-lingual
log-triangle
log-triangle+xl-lexeme-cos
null
xl-lexeme-cos

Figure 3: Weighted average Spearman correlations between model predictions and human annotations (see Section
3.3). Here, the scores are computed by considering annotations from all lemmas together, and then averaged over 5
folds. For models using log-triangle features, inference iterations are shown with increasingly saturated lines,
with iteration 4 being the most saturated. A proportional random baseline (gray) is show for comparison. Analogous
to the models, label proportions are computed at the word, language and cross-lingual level. Language-specific
results are provided in Appendix A.
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Figure 4: ARI spread over lemmas (first averaged over 5 folds), for different number of edge annotations. For each
algorithm the ARI is computed with respect to the clusters achieved by the same clustering algorithm provided with
300 annotations These results are only useful to compare across algorithms insofar as they give an idea of how
quickly the algorithm converges to a clustering result.

understand how much the results change for WUGs
with different amounts of missing data. For each
algorithm, we compute the ARI between clusters
produced with 50 to 200 ground-truth edges and
clusters produced by the same algorithm with 300
ground-truth edges.

The results are presented in Figure 4. Naturally,
all methods produce clusters more similar to the
300-edge clusters when provided with higher num-
bers of ground-truth edges. With 50 ground-truth
edges, clustering is very poor across all cluster-
ing algorithms for the majority of words. The
results using the sbm-binomial method improve
fastest with increasing numbers of ground-truth
edges, and at 200 edges, it performs best on Ger-
man and Swedish, while correlation performs
best for English.

Even at the highest number edges, though, there
is a wide spread of performance across words. It is

important to interpret all of these results bearing in
mind that the ARI is compared to clusters produced
by the same algorithm, just with more data. For an
extrinsic validation of the clusters, we must turn to
Experiment 3, which compares clusters to human-
annotated sense data.

6.3 Experiment 3: Realistic scenario
Experiment 3 imitates a scenario in which one
has (1) a number of “new” words with very lim-
ited edge annotation, and (2) another collection
of words with larger and more densely annotated
WUGs.

For the sparsely-annotated data, we draw from
DWUG DE, selecting the 24 words that have been
annotated with sense data. For each word, we con-
struct graphs with only the 50 usages that were
annotated with sense data and all of the annotated
edges that include only those usages (median 55
edges per word; see Appendix B for word-level
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Figure 5: ARI of WUG clusters versus human sense an-
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based on human usage-usage annotation alone, while
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edges. Disaggregated results for the xtri+xl-lex models
can be found in Appendix C.

counts) The densely-annotated data, is drawn from
the full set of usages of lemmas in DWUG DE that
don’t overlap with the words annotated for sense
(26 words). We reserve 10% of the edges for testing
and train language-level classifiers on the remain-
der.

We then predict edges on the sparsely-annotated
WUGs and compare the clusters to human-
annotated sense data. As a baseline, we com-
pute clusters for the graphs with only ground-truth
edges. For each edge induction model, we compute
clusters using the graph enriched with predicted
edges (retaining the ground-truth edges that exist).

The results (Figure 5) show clear improve-
ments over the sparse graph clusters for all in-
duction models and clustering algorithms. The
sbm-binomial algorithm performs slightly bet-
ter than the correlation clustering algorithm on
graphs with edges induced by models that include
the xxl-lex. Moreover, there is a tighter spread in
performance across words for the sbm-binomial
algorithm.

In cases where xxl-lex isn’t used, sbm-layers
performs best on average.

In all cases, there are still some words where the
correlation with human sense annotation is very
poor, median but performance can be improved
greatly by using induced edges.

7 Conclusion

In this paper we investigate the question of whether
missing edges in WUGs can be induced using infor-
mation derived from the existing human annotated
edges. Our final goal is to improve downstream
clustering performance by using only as much hu-
man annotation as is needed. To set the stage, we
first explore how well edge induction models that
exploit structural and textual features correlate with
human WUG annotation for different amounts of
ground-truth data (Section 6.1). Then, we charac-
terize the stability of clustering algorithms, finding
notable differences in the clusters as more ground-
truth edges are added across all 3 algorithms (Sec-
tion 6.2). Finally, we conduct an experiment show-
ing that edge induction models can be used to im-
prove the clustering of sparse WUGs even when
they are trained on data from a completely dis-
joint set of lemmas (Section 6.3). These results
show that edge induction can be a valuable tool
for improving the quality of sense clusters inferred
from sparsely-annotated WUGs. This can allow
researchers and lexicographers to cover a larger set
of lemmas on a limited annotation budget. It also
points to annotation strategies that strategically use
triangles to maximize the utility of each human
annotation.

Importantly, we saw that both structural (graph-
based) and contextual (language model-based) fea-
tures contribute to the WUG quality improvements
resulting from augmenting with induced edges.
This is significant since there may be situations
when it is desirable to avoid the possibility of in-
troducing historical biases with language model-
derived features.

This work leaves room for further improvements
on edge induction and clustering in WUGs. The it-
erated inference strategy described in Section 3.1 is
just one of many possible strategies for incorporat-
ing distant graph information while minimizing er-
ror propagation. More principled approaches, such
as Message Passing Neural Networks (Gilmer et al.,
2017; Zhang and Chen, 2018) should also be inves-
tigated. Likewise, some versions of the Stochastic
Block Model (i.e., Peixoto, 2019) can account for
missing edges, which theoretically makes joint in-
duction of edges and clusters possible, though no
implementation currently exists for weighted net-
works.
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8 Limitations

A notable limitation of the results in Section 6.3
stems from the use of usage-sense annotation for
evaluation. One of the motivations for WUGs is
that they can be used to discover unattested word
senses. By its nature, usage-sense annotation as-
sumes a fixed sense inventory — it could simply
be that some of the senses discovered by the clus-
tering process were not present in the sense inven-
tory used for annotation, either because they were
missing or because the clusters capture a more fine-
grained notion of sense. Nevertheless correlation
with usage-sense annotation is an important way to
validate that usage clusters correspond to what we
think of as word senses.

Finally, in this work, our investigation is con-
fined to English, Swedish, and German WUGs.
Since these languages are all closely related, the
cross-lingual results should be interpreted with that
in mind. Otherwise, our proposed methods are
language-agnostic, and we do not anticipate sig-
nificant challenges in adapting them to other lan-
guages.
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A Edge induction by language
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Figure 6: Weighted average Spearman correlations between model predictions and human annotations (see Section
3.3). Here, the scores are computed by considering all annotations from each respective language, and then averaged
over 5 folds. For models using log-triangle features, inference iterations are shown with increasingly saturated
lines, with iteration 4 being the most saturated.
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B Experiment 3 data

usages edges % edges
lemma

Pachtzins 139 179 1.85
Ackergerät 153 193 1.65
Festspiel 150 193 1.72
aufrechterhalten 140 201 2.05
Ausnahmegesetz 159 202 1.60
weitgreifend 164 205 1.52
Einreichung 160 207 1.62
Unentschlossenheit 176 223 1.44
Mut 200 237 1.19
Frechheit 200 258 1.29
Kubikmeter 200 258 1.29
Truppenteil 200 258 1.29
Entscheidung 200 261 1.31
Gesichtsausdruck 200 265 1.33
Tier 200 272 1.36
Mulatte 200 276 1.38
vergönnen 200 278 1.39
Naturschönheit 198 283 1.44
Lyzeum 200 284 1.42
Behandlung 200 315 1.58
vorliegen 200 331 1.66
Tragfähigkeit 182 337 2.03
voranstellen 200 379 1.90
vorweisen 168 384 2.72
beimischen 200 594 2.97
verbauen 168 1053 7.46

Table 1: Statistics of ground truth data used for train-
ing the edge induction models used in Section 6.3.

usages edges % edges
lemma

Seminar 50 22 1.76
Spielball 50 26 2.08
Sensation 50 27 2.16
Engpaß 50 32 2.56
Eintagsfliege 50 42 3.36
Manschette 50 43 3.44
Armenhaus 50 44 3.52
artikulieren 50 49 3.92
Knotenpunkt 50 50 4.00
abbauen 50 50 4.00
packen 50 54 4.32
Rezeption 50 54 4.32
Mißklang 50 56 4.48
Abgesang 50 57 4.56
zersetzen 50 60 4.80
überspannen 50 68 5.44
Fuß 50 68 5.44
Titel 50 68 5.44
abgebrüht 50 76 6.08
Schmiere 50 76 6.08
Dynamik 50 81 6.48
abdecken 50 84 6.72
Ohrwurm 50 86 6.88
ausspannen 50 151 12.08

Table 2: Statistics of ground truth data used for edge
induction (inference) and clustering in Section 6.3.
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C Cluster characteristics

Correlation Clustering

usage-sense judgments only edge induction
H(C) | C | H(C) | C | ARI H(C) | C | ARI

lemma

Spielball 0.17 2 1.17 5 0.05 0.69 4 -0.01
Rezeption 0.37 3 1.80 8 0.08 0.64 4 0.26
Sensation 0.48 3 1.67 7 0.20 1.43 6 0.23
Mißklang 0.51 3 1.46 6 -0.00 -0.00 2 -0.02
artikulieren 0.54 3 1.38 6 0.08 1.36 5 0.17
Abgesang 0.62 3 1.90 9 0.07 1.12 7 0.12
Dynamik 0.64 2 1.76 8 0.13 0.91 4 0.47
Manschette 0.64 4 0.51 4 0.06 0.76 5 0.21
zersetzen 0.68 2 0.68 3 0.34 0.67 3 0.60
Armenhaus 0.68 2 1.76 8 0.11 1.10 5 0.31
Knotenpunkt 0.68 3 1.52 8 -0.01 1.35 6 0.23
Engpaß 0.69 3 1.05 5 0.32 0.88 4 0.34
Ohrwurm 0.69 3 0.68 4 0.66 0.55 3 0.59
Eintagsfliege 0.69 3 0.94 4 0.31 0.68 3 0.50
abgebrüht 0.69 3 1.33 6 0.30 0.92 4 0.78
Titel 0.80 4 0.82 5 0.00 1.03 5 0.07
Seminar 0.92 4 1.29 5 0.12 0.88 4 0.12
packen 1.01 4 1.88 8 0.20 1.45 6 0.41
abbauen 1.04 4 0.92 4 0.32 1.17 5 0.36
ausspannen 1.18 5 1.32 6 0.47 1.23 5 0.63
überspannen 1.22 5 1.38 6 0.20 0.67 3 0.48
abdecken 1.27 6 1.43 6 0.29 0.77 4 0.48
Fuß 1.34 8 1.31 6 0.09 1.43 6 0.48
Schmiere 1.45 8 1.67 7 0.11 0.69 3 0.45

Table 3: Distributional characteristics of correlation clusters from Section 6.3 compared to the human usage-sense
annotation. The edge induction column shows the best-performing edge induction model in terms of median ARI
(log-triangle+xl-lexeme-cos) while judgments only is the result of clustering only on ground-truth usage-usage
edges. H(C)=entropy of the sense/cluster distribution, | C | = number of senses/clusters, ARI=ARI with usage-sense
annotation.
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SBM-binomial

usage-sense judgments only edge induction
H(C) | C | H(C) | C | ARI H(C) | C | ARI

lemma

Spielball 0.17 2 0.37 2 0.17 0.97 3 0.08
Rezeption 0.37 3 0.85 3 0.21 1.07 4 0.26
Sensation 0.48 3 0.37 2 0.26 1.17 4 0.38
Mißklang 0.51 3 0.53 2 0.21 0.50 2 -0.02
artikulieren 0.54 3 0.23 2 0.14 1.59 5 0.14
Abgesang 0.62 3 0.67 2 0.02 1.37 4 0.08
Dynamik 0.64 2 0.47 2 -0.04 1.16 4 0.49
Manschette 0.64 4 0.67 3 0.38 1.09 4 0.30
zersetzen 0.68 2 0.37 2 0.00 1.08 4 0.60
Armenhaus 0.68 2 0.53 3 0.19 1.16 4 0.33
Knotenpunkt 0.68 3 0.33 2 0.02 1.36 4 0.22
Engpaß 0.69 3 0.17 2 -0.00 1.04 3 0.37
Ohrwurm 0.69 3 0.69 2 0.84 1.09 4 0.63
Eintagsfliege 0.69 3 0.33 2 0.02 1.27 4 0.47
abgebrüht 0.69 3 0.40 2 -0.01 1.37 5 0.60
Titel 0.80 4 0.50 2 -0.02 0.95 3 0.13
Seminar 0.92 4 -0.00 1 0.00 1.11 5 0.11
packen 1.01 4 0.40 2 0.03 1.31 4 0.44
abbauen 1.04 4 0.65 2 0.10 1.33 4 0.38
ausspannen 1.18 5 0.37 2 0.06 1.42 5 0.63
überspannen 1.22 5 0.68 3 0.13 1.29 4 0.43
abdecken 1.27 6 0.81 3 0.23 1.23 4 0.45
Fuß 1.34 8 0.70 3 0.08 1.37 4 0.35
Schmiere 1.45 8 1.21 5 0.29 1.45 5 0.52

Table 4: Distributional characteristics of sbm-binomial clusters from Section 6.3 compared to the human usage-
sense annotation. The edge induction column shows the best-performing edge induction model in terms of median
ARI (log-triangle+xl-lexeme-cos) while judgments only is the result of clustering only on ground-truth usage-
usage edges. H(C)=entropy of the sense/cluster distribution, | C | = number of senses/clusters, ARI=ARI with
usage-sense annotation.
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SBM-layers

usage-sense judgments only edge induction
H(C) | C | H(C) | C | ARI H(C) | C | ARI

lemma

Spielball 0.17 2 -0.00 1 0.00 0.44 2 0.30
Rezeption 0.37 3 -0.00 1 0.00 0.49 3 0.70
Sensation 0.48 3 -0.00 1 0.00 0.82 3 0.45
Mißklang 0.51 3 -0.00 1 0.00 1.12 4 0.03
artikulieren 0.54 3 -0.00 1 0.00 1.33 4 0.05
Abgesang 0.62 3 -0.00 1 0.00 1.16 4 -0.02
Dynamik 0.64 2 -0.00 1 0.00 0.93 3 0.48
Manschette 0.64 4 -0.00 1 0.00 0.59 3 0.61
zersetzen 0.68 2 0.28 2 0.03 0.87 4 0.67
Armenhaus 0.68 2 -0.00 1 0.00 0.99 4 0.42
Knotenpunkt 0.68 3 -0.00 1 0.00 1.23 4 0.20
Engpaß 0.69 3 0.17 2 -0.00 0.55 2 0.16
Ohrwurm 0.69 3 0.40 2 0.08 0.53 3 0.15
Eintagsfliege 0.69 3 -0.00 1 0.00 0.89 4 0.35
abgebrüht 0.69 3 0.40 2 -0.01 1.18 4 0.57
Titel 0.80 4 -0.00 1 0.00 1.56 5 0.23
Seminar 0.92 4 -0.00 1 0.00 0.50 2 -0.01
packen 1.01 4 0.37 2 0.04 1.05 3 0.25
abbauen 1.04 4 -0.00 1 0.00 1.05 4 0.21
ausspannen 1.18 5 0.37 2 0.06 1.41 5 0.61
überspannen 1.22 5 0.10 2 0.02 0.95 3 0.38
abdecken 1.27 6 0.55 2 0.33 0.94 4 0.48
Fuß 1.34 8 -0.00 1 0.00 1.02 3 0.29
Schmiere 1.45 8 0.33 2 0.01 1.25 5 0.39

Table 5: Distributional characteristics of sbm-levels clusters from Section 6.3 compared to the human usage-sense
annotation. The edge induction column shows the best-performing edge induction model in terms of median ARI
(log-triangle+xl-lexeme-cos) while judgments only is the result of clustering only on ground-truth usage-usage
edges. H(C)=entropy of the sense/cluster distribution, | C | = number of senses/clusters, ARI=ARI with usage-sense
annotation.
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