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Abstract

This paper describes our contribution to Sub-
task 1 of the AXOLOTL-24 Shared Task on un-
supervised lexical semantic change modeling.
In a joint task of word sense disambiguation
and word sense induction on diachronic cor-
pora, we significantly outperform the baseline
by merging clusters of modern usage examples
based on their similarities with the same his-
torical word sense as well as their mutual simi-
larities. We observe that multilingual sentence
embeddings outperform language-specific ones
in this task.

1 Introduction

Semantic change modeling is the task of computa-
tionally determining how the meanings of words
change over time. This semantic shift can be ob-
served in the change of contexts in which the words
appear (Kutuzov et al., 2018).

Given a diachronic corpus of old and new word
usage examples and an inventory of old word
senses with their dictionary definitions, the model-
ing task can be split further into the disambiguation
and the induction of word senses: New usage exam-
ples are aligned with old usage examples and sense
definitions. If an appropriate old sense does not ex-
ist in the sense inventory and an alignment is thus
impossible, a novel word sense is induced instead,
indicating that the word gained a new meaning.

This joint task has been defined by Subtask 1 of
the AXOLOTL-24 Shared Task (Fedorova et al.,
2024), our contribution to which we describe in
the following sections. Like the baseline proposed
by the shared task organizers, we approach the
challenge by measuring the similarity of modern
usage example clusters and old sense definitions.
We further explore impacts on the performance by
merging clusters based on a similarity criterion and
by ensembling different embedding models and
different clusterings.

Our implementation is available on GitHub.1

2 Related Work

The idea of unsupervised clustering to discriminate
word senses goes back at least to using Gaussian
Mixture models on a synchronic corpus (Schütze,
1998). More recently, neural approaches have been
applied to diachronic corpora to detect and quantify
semantic change (Kutuzov et al., 2018).

SemEval-2020 Task 1 produced several ap-
proaches for lexical semantic change detection
between two time-specific corpora (Schlechtweg
et al., 2020). The task was split into the binary clas-
sification of whether words lost or gained senses,
and the ranking of words according to their degree
of change. These sub-tasks were solved, e.g., by
clustering contextual word embeddings and com-
paring their cluster assignments (Karnysheva and
Schwarz, 2020), or by measuring the average co-
sine distances between contextual embeddings of
the same word (Kutuzov and Giulianelli, 2020). In
contrast with AXOLOTL-24, this task considers
whether an old word sense is still present in the
new time period.

Another task more similar to AXOLOTL-24
was defined by the Reverse Dictonary track of
SemEval-2022 Task 1 (Mickus et al., 2022): Given
a dictionary consisting of words, their definitions,
and definition embeddings, user-written definitions
are to be mapped to the correct word by reconstruct-
ing the reference embedding. As these embeddings
were pre-computed, submitted systems were lim-
ited to three specific models. While participating
teams achieved reasonable average cosine similar-
ities using token-level transformers, this was not
evaluated as a classification task.

The Sentence-BERT architecture promises bet-
ter performance than token-level transformers on
sentence-level downstream tasks such as paraphras-

1https://github.com/chbridges/axolotl24
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ing and the measurement of sentence similarities
(Reimers and Gurevych, 2019). While the orig-
inal publication proposes a model for paraphras-
ing in over 50 languages based on MPNet (Song
et al., 2020), the general-purpose LaBSE doubles
the size of the language inventory and suggests cur-
rent state-of-the-art performance in cross-lingual
settings (Feng et al., 2022).

3 Datasets and Task Definition

The AXOLOTL-24 Shared Task provides training
corpora in Finnish and Russian. The Finnish cor-
pus covers the years 1543 to 1650 in its old time
period and the years 1700 to 1750 in its new period,
whereas the Russian corpus covers approximately
the 19th century and the years after 1950. Both
datasets consist of different target words with mul-
tiple word senses, and each sense comprises a sense
ID, a definition, and a usage example. In the case
of Russian, usage examples of old words are often
noisy or missing.

The goal of Subtask 1 is to determine the cor-
rect sense IDs of word usage examples in the new
period. Thus, the corresponding test datasets only
contain sense IDs and definitions in the old period.
Subtask 2, the generation of novel sense definitions,
is out of the scope of this paper. In addition to the
Finnish and Russian test datasets, a third, German
test set based on the DWUG dataset (Schlechtweg,
2023) is provided to quantify the developed sys-
tems’ multilingual performance.

Systems are evaluated with respect to word sense
disambiguation and the joint task including the in-
duction of novel word senses. System performance
on the disambiguation task is measured with the
macro F1 score of sense classifications only of
sense IDs present in the old sense inventory. Addi-
tionally, the overall performance is measured with
the adjusted Rand index, thus ignoring specific
sense assignments but validating whether modern
usage examples of old and novel word senses are
correctly grouped together.

4 Methodology

In this section, we briefly summarize the baseline
algorithm before describing our improvements.

4.1 Baseline

The general approach can be divided into two steps:
the embedding of old word sense definitions and
modern usage examples, and the alignment of the

Figure 1: A conceptual cluster merging. Clusters A and
B get merged, as the angles of their centers with the
old sense vector are small. Novel senses are generated
for clusters C and D. In the second pass, novel sense
vectors are fitted through C and D, merging them if the
angle between these vectors is sufficiently small.

respective embeddings to assign word senses to the
examples. These steps are computed target word
by target word, i.e., no defined sense of a different
word can leak into the assignment.

In the first step, the sense definitions and usage
examples from the old time period are concatenated.
These concatenations and all usage examples from
the new time period are then embedded in a shared
vector space by a transformer model.

In the second step, the new usage examples are
clustered. For each cluster C, an old word sense
sold is assigned to all corresponding usage exam-
ples if the cosine similarity cos(sold, c) between
the old sense embedding sold and a cluster embed-
ding c is greater than a threshold τ ∈ [0, 1]. If no
old sense satisfies this condition, a new sense snovel
is assigned to all usage examples in the cluster.

This final step is solved in a greedy manner:
Once an old sense is assigned to a cluster Ci, it
is removed from a list of candidate senses S and
cannot be assigned to any other cluster Cj , even if
cos(si, cj) > cos(si, ci). This poses a problem if
word senses are split into multiple clusters.

The following subsections propose methods to
alleviate this weakness of the baseline approach.
The impact of each described method on the system
performance is summarized in Section 5.

4.2 Cluster Merging

A straightforward technique to improve the align-
ment of old senses and new usage examples is to
keep the set of candidate senses S fixed and assign
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Finnish Russian
Model ARI F1 ARI F1

Baseline 0.022 0.222 0.098 0.274
Merge-1 0.420 0.557 0.052 0.428
Merge-5 0.420 0.557 0.058 0.428
Merge-1c 0.437 0.570 0.071 0.447
Merge-5c 0.437 0.570 0.077 0.449

Table 1: Development scores at a fixed similarity thresh-
old τ = 0.3. Where Affinity Propagation is used, the
model name indicates the number of ensembled cluster-
ings and the usage of cosine similarity affinity. Highest
scores are indicated in bold, lowest scores in italics.

each cluster C to the sense with the greatest sim-
ilarity, provided that the similarity is greater than
the previously chosen threshold τ . The similarity
is computed between the sense embedding s and
the cluster mean c̄ to capture the overall semantics
of C. Thus, the sense alignment step is defined as:

sC =




argmax

s∈S
cos(s, c̄), cos(·) ≥ τ

snovel, otherwise
(1)

As each old sense can now be mapped to mul-
tiple clusters, this alignment is equivalent to the
merging of clusters when their similarities with the
same old sense are sufficiently large. This reduces
the granularity of old sense clusters. In a second
pass, each novel sense cluster center is considered
a novel sense embedding and novel sense clusters
are merged by the same criterion based on pairwise
cosine similarities. A conceptual such merging in
two dimensions is depicted in Figure 1.

4.3 Two-Stage Ensembling

In addition to merging clusters with respect to the
similarity with the same old sense, we propose
two methods to ensemble results at different stages
of the algorithm: The ensembling of embedding
models and the ensembling of clusterings.

The ensembling of n models is straightforward
and can be solved via the concatenation

e = e1 ⊕ . . .⊕ en (2)

of each model output ei which is then used as the
input to the alignment step of the algorithm.

A crucial part of the alignment step is the clus-
tering of modern usage examples. Some clustering
algorithms such as K-means (Lloyd, 1982) and
Affinity Propagation (Frey and Dueck, 2007) are
initialized using a random seed r based on which
they can converge to different local minima. We

Finnish Russian
Embedding ARI F1 ARI F1

LEALLA-large 0.437 0.570 0.077 0.449
LaBSE 0.277 0.462 0.081 0.572
Finnish-Paraphrase 0.561 0.676 — —
Sentence RuBERT — — 0.056 0.608
Multi-Paraphrase 0.554 0.661 0.118 0.612
Multi ⊕ LaBSE 0.572 0.669 0.120 0.603

Table 2: Development scores at a fixed similarity thresh-
old τ = 0.3 for different sentence embeddings, based
on the best models in Table 1. Highest scores are indi-
cated in bold, lowest scores in italics.

mitigate resulting errors by clustering the input
embeddings multiple times using different random
seeds ri and selecting the final cluster assignments
via a majority vote. Reproducibility is ensured by
fixing the initial random seed r0 and incrementing
it for the subsequent clusterings, i.e., ri = r0 + i.

5 Results and Discussion

The AXOLOTL-24 baseline uses LEALLA-large
(Mao and Nakagawa, 2023) in the embedding step,
a lightweight language-agnostic sentence trans-
former distilled from LaBSE (Feng et al., 2022),
and clusters these embeddings with Affinity Propa-
gation (Frey and Dueck, 2007) using the negative
Euclidean distance as the cluster affinity. We begin
our study by comparing the baseline with our ap-
proach based on LaBSE embeddings on the Finnish
and Russian development sets in Table 1. We gener-
ally prioritize the ARI since the F1 score only quan-
tifies the classification of old word senses. While
the cluster merging significantly improves the ARI
and F1 score for Finnish, there is a slight trade-
off between them in the Russian dataset where a
greatly increased F1 score comes at the cost of a
decreased ARI. The ensembling of clusterings does
not affect Finnish but leads to better results for Rus-
sian. The scores further increase when using the
cosine similarity as the cluster affinity.

We further evaluate additional language-specific
and language-agnostic sentence embeddings from
the Hugging Face Hub in Table 2: a Finnish
paraphrasing model2 (Kanerva et al., 2021), Sen-
tence RuBERT3 (Kuratov and Arkhipov, 2019),
and a multilingual paraphrasing model4 (Reimers
and Gurevych, 2019). Interestingly, we observe
that multilingual models can outperform language-

2TurkuNLP/sbert-cased-finnish-paraphrase
3DeepPavlov/rubert-base-cased-sentence
4sentence-transformers/paraphrase-multilingual-mpnet-

base-v2
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Figure 2: Threshold analysis on the development sets of
both languages. ARI and F1 on the y-axis are mapped
against different similarity thresholds τ on the x-axis.

specific ones, in particular, a concatenation of the
multilingual paraphrasing model and LaBSE. Thus,
we consider this embedding to generalize best and
choose it for further experiments. We do not ob-
serve any improvement when concatenating a third
model.

Next, we analyze how well the system performs
for different similarity thresholds τ in Figure 2.
It shows different behavior for the two datasets:
Increasing τ leads to a decreasing F1 in both lan-
guages but to a decreasing ARI for Finnish and
an increasing ARI for Russian. This indicates that
initial old sense clusters are too granular in both
languages, whereas old and novel sense clusters
are less discriminative in Russian as novel senses
tend to get merged into old ones, reducing the over-
all clustering quality when the similarity thresh-
old is set too small. Thus, increasing τ increases
the proportion of granular novel sense clusters to
coarse-grained old sense clusters. We find that the
preset threshold τ = 0.3 used by the baseline and
our previous experiments is a reasonable choice, as
the Finnish scores are stable up to this value. For
Russian, a slightly higher threshold of τ = 0.4 or
τ = 0.5 might be preferred to account for a greater
ARI without sacrificing too much F1. We choose
τ for Finnish and Russian based on this graph but
suggest cross-validation as a more robust method
to choose the parameter for unseen data. For Ger-
man, which has no development set, we select the
same parameter as for Finnish since the different
performance on Russian can possibly be attributed
to its often noisy or missing word usage examples
in the old period.

Finally, for further analysis, we skip the clus-

ARI
System Finnish Russian German
Baseline 0.023 0.079 0.022
deep-change 0.638 0.059 0.543
Ours (old) 0.596 0.043 0.298
Ours (new) 0.578 0.130 0.298

F1

System Finnish Russian German
Baseline 0.230 0.260 0.130
deep-change 0.756 0.750 0.745
Ours (old) 0.655 0.661 0.608
Ours (new) 0.655 0.563 0.608

Table 3: ARI and F1 scores of the baseline, the winning
team deep-change, our submission to the shared task,
and our updated system on the three test datasets.

tering step and assign a single most probable old
sense to each target word. The result is surprising:
While we achieve an ARI of merely 0.015 on Rus-
sian, we outperform our method on Finnish with
an ARI of 0.614 and an F1 score of 0.680. We
attribute this anomaly to the quality of the dataset,
as the numbers of senses per target word and usage
examples per word sense are imbalanced, includ-
ing several words with only one sense. However,
this characteristic also reveals a weakness in our
algorithm: Clusters are often aligned with an old
sense in the first pass even though the word has no
documented old sense. Possible improvements are
a combination of both passes into one or the usage
of two different similarity thresholds for old and
novel senses.

Our final results are summarized in Table 3. In
our submission to the shared task, we tuned the
similarity thresholds less carefully, used τ = 0.1
for all three test sets, and did not cluster the Finnish
dataset. The new system uses τ = 0.2 for Finnish
and German, and τ = 0.45 for Russian. It does not
affect our ranking on the leaderboards.

6 Conclusion

We presented a simple method to discriminate word
senses on diachronic corpora by clustering usage
examples and merging the resulting clusters if ei-
ther their similarity with a known word sense or
their mutual similarities are sufficiently large. It de-
pends on a similarity threshold τ that can be tuned
on annotated data. The resulting system performs
best when embedding usage examples and word
sense definitions with two different multilingual
models and thus adapts well to different languages.

However, there is room for improvement. For
the proposed algorithm, we suggest the usage of
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two different similarity thresholds for old and novel
sense cluster merging. We further see a weakness in
prioritizing the disambiguation of old word senses
while solving the induction of novel word senses
as a subsequent step.

We support the publication of a similar, better-
normalized dataset for improved comparability be-
tween languages.

Limitations

The AXOLOTL-24 Shared Task takes a step from
the pure quantification of semantic change to more
interpretable results by assigning concrete word
senses to groups of word usage examples and simul-
taneously identifying word usages with no recorded
definition. The presented results do not go beyond
the scope of this shared task. There may be lim-
itations in the comparability between languages
due to significant amounts of noise and imbalance
in the provided dataset. Furthermore, the evalua-
tion does not take the absence of recorded word
senses in the new period into account and thus does
not consider the full spectrum of semantic change
observable in the data. These aspects should be
investigated further in future research.
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