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Abstract

We present our submission to the AXOLOTL-
24 shared task. The shared task comprises two
subtasks: identifying new senses that words
gain with time (when comparing newer and
older time periods) and producing the defini-
tions for the identified new senses. We imple-
mented a conceptually simple and computation-
ally inexpensive solution to both subtasks. We
trained adapter-based binary classification mod-
els to match glosses with usage examples and
leveraged the probability output of the models
to identify novel senses. The same models were
used to match examples of novel sense usages
with Wiktionary definitions. Our submission
attained third place on the first subtask and the
first place on the second subtask.

1 Introduction

The subject of the AXOLOTL-24 shared task (Fe-
dorova et al., 2024) is diachronic semantic change
detection and explanation. Diachronic semantic
change is understood as the change in word mean-
ings (i.e., words losing old senses and obtaining
new ones) over shorter or longer periods. Accord-
ingly, given a dataset containing usage examples
from different periods (old and new), the task is to
identify and define the new senses that words gain
in the new time period compared to the old one.
The goal of the shared task is to implement a
semantic change modeling system for two tasks:

1) Correctly assigning existing senses to target
word usages and identifying novel, previously
unseen senses;

2) Describing the identified novel senses.

The data in the shared task is provided in three
languages: Finnish, Russian, and German (the sur-
prise language for which only the test split is avail-
able). For each language, examples from old and
new periods are given. Each data point consists

Team ARI F1

deep-change 0.413 0.750
Holotniekat 0312 0.641
TartuNLP (ours) 0.310 0.590
IMS_Stuttgart 0.287 0.487
ABDN-NLP 0.221 0.431
WooperNLP 0.187 0.316
Baseline 0.041 0.207

Table 1: Overall results on the Subtask 1.

Team Overall BLEU BERTScore
TartuNLP (ours) 0.467 0.208 0.726
WooperNLP 0.340 0.020 0.660
ABDN-NLP 0.253 0.045 0.461
baseline 0.218 0.013 0.423

Table 2: Overall results on the Subtask 2.

of a target word and its usage example, gloss (tar-
get word definition), the period the example comes
from, and usage and sense IDs. The data includes
glosses for both time periods in the training and
validation splits, while glosses for the new time
period are not provided in the test splits. The “old”
and “new” periods differ for each language. For
Finnish, old texts are dated before 1700, and new
ones are dated after 1700. For Russian, the old tar-
get word usages are from the 19th century, and the
new data represents modern usages of words. For
German, the old period is from 1800 to 1899, and
the new period is from 1946 to 1990 (Schlechtweg,
2023).

Although we participated in both subtasks, we
were primarily interested in the second subtask of
producing definitions for new senses. We imple-
mented a solution that matches identified novel
sense usages with definitions from an external re-
source (Wiktionary). Our approach is based on a
binary classification task to predict whether a pro-
posed definition matches the sense under consider-
ation. We reused this binary classification model
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for the second subtask of describing the identified
novel senses.

Our system attained the first place on the second
subtask (Table 2) and obtained competitive results
on the first subtask (Table 1).

2 Methodology

We propose a simple classification-based solution
for both subtasks. We adopt the GlossBERT ap-
proach (Huang et al., 2019) that treats word sense
disambiguation as a sentence pair classification
task, where each pair comprises a usage example
and a sense definition. In turn, we frame the prob-
lem of new sense identification as the problem of
matching between usage examples and sense def-
initions. Accordingly, the matching problem can
be solved with a binary classification model that,
given a usage example and a sense definition, out-
puts the probability of the sense definition correctly
describing the usage example.

We adopt the cross-encoder model that simul-
taneously processes the usage examples and the
sense definitions with the same model. Given a
usage example and a sense inventory, we apply the
classification model to predict binary probabilities
for each example/sense definition combination. If
the highest probability over all candidate pairs ex-
ceeds a predefined threshold, the system assigns
the highest probability sense to the usage example.
Otherwise, the sense used in the example is deemed
to be new.

2.1 Subtask 1: Bridging Diachronic Word
Uses and a Synchronic Dictionary

This subtask aims to assign a sense ID to every
usage example from the new period; the sense ID
may come either from the senses in the old period
or, if the system identifies a novel sense, a unique
new sense ID is created.

The data for the first subtask contains sense def-
initions and correct usages, which can be used to
construct positive examples for our task formula-
tion. However, having only positive examples for
a classification model is generally insufficient. To
produce negative examples, we employ a simple
algorithm. We only consider words associated with
at least two distinct sense IDs. For a given sense
ID and its associated gloss, we create all possible
combinations of the gloss with the usage examples
associated with the other sense IDs of the same
word (consult Appendix A for additional details).

We expect that the negatives obtained with this al-
gorithm are hard and, as such, are more useful for
training that could be obtained, for instance, via
random sampling.

We transform every split of every language by
extending it with negative examples created with
the procedure described above. For each language,
we train a separate classification model on the train
split and evaluate on the development split. When
training and evaluating the classifier, we do not
consider the period (old or new) from which the ex-
amples come. The best checkpoint for each model
is selected based on the development F1 score.

Having trained the classification models, we per-
form inference on the test set and transform the
output into the expected format. During inference,
the usage examples from the old period are ignored
and the classification is performed only on pairs of
usage examples from the new period and sense defi-
nitions from the old period. If the highest predicted
probability for a usage example is above a thresh-
old, we assign the sense ID of the most probable
sense definition to the usage example. Otherwise, a
new sense ID is created. The final result submitted
for evaluation contains both the predicted senses
for the examples from the new period as well as
the positive examples in the test split from the old
period.!

For the surprise language—German—the train-
ing process is slightly different. No training or
validation data is provided, so we train and validate
the classification model on the positive and nega-
tive examples obtained from the old period in the
test data. Inference, however, is exactly the same.

2.2 Subtask 2: Definition Generation for
Novel Word Senses

Subtask 2 aims to define each novel sense identi-
fied in the first subtask. Despite the name of the
subtask, our approach does not generate any new
definitions. We also do not train any additional
models. As previously mentioned, we consider this
task a matching problem, except that the defini-
tions for the novel senses are not present in the data
provided in the shared task. To solve this prob-
lem, we scrape the definitions of the surface forms,
for which we identified at least one example as
the usage of a novel sense, from the Wiktionary.
More specifically, we scrape the definitions from

'Since the test examples for the old period were already
annotated, we simply copied their sense definitions to the
submitted result file.
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the language-specific Wiktionary versions for each
language (i.e. Finnish,” Russian,’ and German®*
Wiktionaries).

Having scraped the necessary definitions, we
head straight to inference on the test set. We reuse
the models and predictions from the first subtask.
We collect the examples identified as the usages of
the novel senses from the predictions and match
them with the Wiktionary definitions using the clas-
sifier models trained in the first subtask. After that,
we add the matched definitions to the predicted new
senses.

2.3 Implementation Details

Different from GlossBERT (Huang et al., 2019),
which is based on the BERT (Devlin et al., 2019)
model, we instead use XLM-RoBERTa (Conneau
et al., 2020) as the base model for our classifiers.
XLM-RoBERTza is a multilingual model that in-
cludes Finnish, Russian, and German in its training
data. We expect our system to benefit from the
multilinguality. Instead of full fine-tuning, we opt
for parameter-efficient fine-tuning. More specifi-
cally, we train bottleneck adapter (Houlsby et al.,
2019) classifiers for each language. We adopted
this approach because it makes our solution com-
putationally lightweight and easily reproducible.

In GlossBERT, Huang et al. (2019) differenti-
ate between training setups with and without weak
supervision, with the former including the defined
word itself in the gloss, as well as highlighting it
in the usage example. According to the experimen-
tal results reported by Huang et al. (2019), weak
supervision appears to bring minor improvements
in sense prediction. However, we do not use weak
supervision in our submission. The reason is that
Finnish and Russian are substantially more mor-
phologically rich languages than English; thus, the
target words rarely appear in their dictionary forms
in the usage examples. Moreover, in some cases,
the orthography also differs between old and new
periods.

To delimit context and gloss, Huang et al. (2019)
use the special [SEP] token that is pre-trained into
the BERT model via the next sentence prediction
task. However, RoOBERTa (Zhuang et al., 2021),
and by extension XLM-RoBERTa, omitted the next
sentence prediction task in the pre-training. As
a result of that, the </s> token that is used by

2https://fi.wiktionary.org/
Shttps://ru.wiktionary.org/
*https://de.wiktionary.org/

RoBERTa in place of [SEP] does not have the same
classification-oriented meaning. For this reason,
we employed the tabulation symbol as the delim-
iter instead.

For each language, we employed different vari-
ations of the base model and varying training se-
tups. For Finnish, we used the large version of
XLM-RoBERTza and trained for ten epochs in half-
precision with a batch size of 128 and 3 steps of gra-
dient accumulation. We observed that the training
did not converge with a smaller effective batch size.
For Russian, we trained the classifier adapter with
the base version of XLM-RoBERTa for 50 epochs
with a batch size of 144. We also experimented
with the large version of the model for the Russian
language; however, it showed no improvements
compared to the base version. For German, we did
not train the classifier from scratch. Instead, we
continued training from the best checkpoint trained
on the Finnish data. The motivation is that there
is considerably more data in Finnish than in Rus-
sian in the shared task, so we assume the Finnish
model to be stronger. We continued training the
Finnish classifier for 20 epochs in half-precision
with a batch size of 48 and 6 steps of gradient ac-
cumulation. All models were trained with a 5e-4
learning rate.

The threshold value for the classifier’s proba-
bility to identify novel senses was selected as the
highest scoring option in the first subtask using the
evaluation script provided by the organizers. We
tested a small number of values in the range of
of 0.2 to 0.5 on Russian and determined the best
value to be 0.35. The same value was used for all
languages without additional testing due to time
limitations.

The models were trained on the University High-
Performance Cluster (University of Tartu, 2018).
We used a single Tesla V100 GPU for Russian and
German, while for Finnish, we used a single A100
80GB GPU. The time elapsed on training is 9 hours
for Finnish, 3 hours for Russian, and 9 minutes
for German. We implemented our solution using
the transformers> and the adapters® libraries. The
source code and the data are available on GitHub’
and HuggingFace Hub,® respectively.

Shttps://github.com/huggingface/transformers
®https://github.com/adapter-hub/adapters
"https://github.com/slowwavesleep/
ancient-lang-adapters/tree/axolotl
8https://huggingface.co/datasets/adorkin/
axolotl-wiktionary-definitions
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Team

Fi-BLEU Ru-BLEU De-BLEU

Fi-BERTScore Ru-BERTScore De-BERTScore

TartuNLP (ours) 0.028 0.587 0.01 0.679 0.869 0.63
WooperNLP 0.023 0.027 0.01 0.675 0.656 0.65
ABDN-NLP 0.107 0.027 0.0 0.706 0.677 0.0
baseline 0.033 0.005 0.0 0.403 0.377 0.49
Table 3: Language specific results for the Subtask 2.
3 Results Wiktionary language Number of unique pages
. Finnish 586,439
The overall results of both subtasks are Presented in German 1.314.597
Tables 1 and 2. For subtask 1, the metrics reported Russian 2,877,010

are the average macro-F1 score and the average
Adjusted Rand Index (ARI) (Hubert and Arabie,
1985) across target words per language. The over-
all F1 and ARI scores are computed as the mean
across all languages. For subtask 2, the evaluation
metrics are the BERTScore (Zhang et al., 2020)
and BLEU (Papineni et al., 2002) averaged across
target words per language. BLEU and BERTScore
values for the entire subtask are the respective aver-
ages across all languages. The overall score is the
mean of BLEU and BERTScore.

Our submission attained the third place out of
eight participants in the first subtask and the first
place out of four participants in the second sub-
task (Table 2). This aligns with our expectations
since we focused on the second subtask from the
beginning and applied the system developed for
the second subtask to the first subtask. When look-
ing at the language-specific measures of subtask
2 (Table 3), one can see considerable differences
between languages. Our system works the best in
Russian while also performing well in German in
terms of BERTScore (although the BLEU score is
close to 0 for all systems). In Finnish, our system is
competitive in terms of BERTScore but underper-
forms compared to the baseline in terms of BLEU.

4 Discussion

Our submission to the second subtask is well ahead
of the other participants in the overall leaderboard
(Table 2) despite the simplicity of our approach.
However, the language-specific results show that
it is not so clear-cut (Table 3). Some of the suc-
cess can be attributed to accidentally matching
the source of definitions for the Russian language,
which is the Russian Wiktionary. We believe so
because the value of the BLEU metric of our sub-
mission in the Russian language is higher than that
of the other teams and in the other languages by an
order of magnitude. However, we do not consider
this a critical issue because the BERTScore metric

Table 4: The number of unique Wiktionary pages per
language.

is reasonably high and well above the baseline for
all languages, suggesting that the matched defini-
tions capture the expected senses well. However,
the corresponding low BLEU scores highlight the
inadequacy of the BLEU metric for this task.
Secondly, our approach to the second subtask
has limitations. More specifically, matching usage
examples only against the definitions of the target
word, while efficient, considerably limits the sys-
tem’s ability to describe completely new senses.
Intuitively, a definition associated with a differ-
ent word may be a more suitable description of a
new sense. A more robust solution would involve
matching usage examples against all available defi-
nitions. However, that would likely require using
a bi-encoder architecture (as proposed by Blevins
and Zettlemoyer (2020), for instance) instead of a
cross-encoder due to the computational complexity
of matching every example with every definition.
Accessing the definitions for all the words
in a given language-specific Wiktionary is time-
consuming because the layout, article structure,
and templates used are completely different for
each Wiktionary version. While there is a resource
providing Wiktionary dumps in a much more con-
venient format,” it is mostly limited in its support
to the English language, with the support for some
languages, such as Russian and German, being
work in progress, and for others, such as Finnish,
completely missing at the time of writing. More-
over, the Finnish, German, and Russian Wiktionar-
ies differ in size and the fullness of their coverage.
A rough estimate can be made by accessing the
Special:Statistics page of each Wiktionary and ex-
amining the total number of unique pages (Table 4).

*https://kaikki.org/
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We note the correlation between the smaller sizes of
the Finnish and German Wiktionaries and the lower
performance of our system on these languages.
Lastly, although we did not focus on the first
subtask, we believe the results of the sense predic-
tion task obtained with our systems could also be
improved. For instance, the choice of the threshold
value for determining a new sense could be done
in a more systematic manner or made learnable.
Similarly, adjusting the training data or the hyper-
parameters might bring further improvements.

5 Conclusion

This paper described our solution to both subtasks
of the AXOLOTL-24 shared task based on leverag-
ing classifier probabilities for usage example/sense
definition pairs. The developed system is concep-
tually simple, adopting a binary classification ap-
proach to predict the probability of a sense defini-
tion matching the usage example and employing
the adapters framework to reduce computation re-
source requirements. Our submission attained the
third place in the first subtask and the first place in
the second subtask, showing the feasibility of our
approach.
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A Training Examples

Table 5 presents two training examples for the Russian word “Ilepo” (Feather). In the first row, we have
a gloss and a matching usage example for the figurative meaning of the word (a symbol of the writer’s
art), which is denoted by the label 1. Each usage example of the word in its other senses is paired with
this gloss and used as a negative example labeled 0. For instance, in the second row, the same gloss is
paired with a mismatching usage example in the literal sense of the word. We omit the rest of the negative
examples and the other senses for brevity.

Gloss Usage example Label
“CHUMBOJI UCKYCCTBa TUCATEJIsI, MICATEIHLCKOTO TPYa, ero pemecaa.”  “Y mero 6oitkoe, ocTpoe mepo.” 1
“CUMBOJI UCKYCCTBa, IIMCATEJIs, [TUCATEIBCKOrO TPY/ia, ero pemecia.” “ITepbst 3Beps.”

Table 5: A subset of training examples for a single word.
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