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Abstract

Annotation tools are the starting point for
creating Natural Language Processing (NLP)
datasets. There is a wide variety of tools avail-
able; setting up these tools is however a hin-
drance. We propose EEVEE, an annotation tool
focused on simplicity, efficiency, and ease of
use. It can run directly in the browser (no setup
required) and uses tab-separated files (as op-
posed to character offsets or task-specific for-
mats) for annotation. It allows for annotation
of multiple tasks on a single dataset and sup-
ports four task-types: sequence labeling, span
labeling, text classification and seq2seq.’

1 Introduction

Annotated datasets are of paramount importance to
the Natural Language Processing (NLP) commu-
nity. Their use is at the core of research, e.g. for
training models, evaluating models, and analyzing
trends. One of the first considerations when creat-
ing an annotated dataset is which annotation tool
to choose. There is a variety of (open-source) tools
readily available with extensive feature-sets. We
were motivated by the following observed difficul-
ties with existing tools when designing EEVEE:

* Most existing tools use tool-specific data for-
mats, often with the main annotation happen-
ing on the character level. For token-based
tasks, the annotator thus has to make a (te-
diously) precise selection of the token bound-
aries. Furthermore, many NLP tools expect
token-level inputs (for example, for POS tag-
ging, parsing, NER, and relation extraction).
To obtain annotations on the token level, an
often cumbersome conversion is necessary.

'Code, README and tutorials of EEVEE are avail-
able on https://github.com/AxelSorensenDev/
Eevee, demo video at https://www.youtube.com/
watch?v=HsOsfckvnQo and the tool itself on https:
//axelsorensendev.github.io/Eevee/

* Existing tools often require an installation
which is especially problematic on con-
strained (organization) computers, where
there might be no administrator access.

* Although many of the advanced features (like
active learning) can lead to faster annotation
over time, they require some setup time and
more time for the annotators to get used to
the tool. Time is costly in annotation; in
many cases, annotators only annotate a small
amount of data. Furthermore, most strategies
to increase the speed of annotation (for exam-
ple active learning) could lead to an additional
bias signal for the annotator (Section 7).

* For many tasks, there are task-specific tools;
for example for UD there is list of available
annotation tools.” Instead, we focus on a gen-
eralizable and flexible tool. EEVEE supports
a total of four task types: sequence labeling,
span labeling, text classification, and sequence
to sequence (Section 4).

Based on these observations, we propose EEVEE:
a simple, free, and flexible annotation tool built
around tab-separated files. It is written in Javascript
and runs directly in the browser. It can also be
saved as a desktop application and run offline. The
intuitive interface allows novice users to import a
dataset and set up multiple annotation tasks quickly.
The graphical user interface has two main pages:
the setup page (Section 2) and the annotation page
(Section 3). It supports tab-separated files and raw
text input (Section 4.1). We perform a case study
on NER annotation with the System Usability Scale
from usability engineering (Section 6). Finally, we
compare EEVEE to other toolkits (Section 7).

https://universaldependencies.org/
tools.html#annotation-tools
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Figure 1: A screenshot of the setup page of EEVEE with multiple tasks. The user currently configures the NER task.

2 Setup page

Figure 1 illustrates the setup page where the user
can define the annotation environment. Tasks can
be configured in the task field (Figure 1, top right),
allowing the user to specify the input column (for
the input text) and output column (for the target
task), as well as adding the desired labels. Labels
can also be imported automatically from the anno-
tated file (if it already contains annotations), and a
default label can be set for empty annotations. For
utterance-level tasks (i.e. classification), the anno-
tation is stored in a comment above the text, in the
form “# intent = inform” (see also Figure 4). To
facilitate reproducibility and improve the ease of
setup, the tool allows the import and export of all
settings to configuration files that users can create
for predefined tasks (more details in Section 4.1).

Once a dataset has been imported, the tabular
data field (Figure 1, bottom right) offers a simple
overview of the raw data belonging to each utter-
ance. The user can add new columns or remove
existing ones to achieve the desired result. This
makes EEVEE an easy-to-use tool for extending or
editing tab-separated data as well (see Section 4.1).
Once the data and tasks are ready, the user sim-
ply clicks “Annotate” (Figure 1, bottom left) to
continue to the “Annotation page” (see Section 3).
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Figure 2: Annotation example with the keyboard setting.

3 Annotation page

Figure 2 illustrates an example of a NER task in
the annotation interface. The user is presented with
a clean, minimal annotation environment. The an-
notation process has been designed with efficiency
in mind, enabling the user to navigate the interface
also through keyboard shortcuts.

The navigation bar (Figure 2, bottom right) en-
ables navigation between utterances and, similar
to Prodigy (Montani and Honnibal, 2018), setting
the status of a given task for a given utterance. The
status can be set to four values: completed, wrong,
unsure, and cleared (i.e. none). This overall sta-
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Figure 3: Searching for labels with a navigation bar.

tus is reflected in the progress bar (Figure 2, top
right), allowing the user to spot missing and unsure
annotations easily. The progress bar is also useful
when continuing annotation on a previously saved
annotation file.

EEVEE provides two different annotation modes
for label-based tasks: the keyboard mode and the
search mode. With the keyboard mode (Figure 2),
the user can use the number keys to select labels
and click/select the part of the input where the
label should apply (for utterance-level tasks, simply
pressing the number key is sufficient). In search
mode, a small pop-up appears after selecting a word
or span (see Figure 3), allowing the user to find the
desired label quickly. If there are more than ten
labels, EEVEE defaults to search mode. Finally, the
annotation file can be exported (Figure 2, bottom
left). The current datetime can be appended to
distinguish between different export versions.

4 Tasks

In this section, we will describe the annotation
data format used by EEVEE (for import and export,
importing text files is also supported), and we will
discuss all the supported task types as well as the
configuration files for the setups.

4.1 Data Format

There are many different data formats used in NLP,
which are often task-specific. EEVEE is based
on the well-established tab-separated files ubiqui-
tously used in the NLP field. These are also some-
times called conll-like files, based on the formats
used in the CoNLL shared tasks (Tjong Kim Sang
and De Meulder, 2003; Buchholz and Marsi, 2006).
This format (example in Figure 4) uses empty lines
to separate utterances or sentences and puts one to-

# sent_id = gameboy-1

# intent = inform

1 What PRON O

2 ? PUNCT O

3 Eevee PROPN B-MISC
4 is AUX O

5 evolving VERB 6]
6 ! PUNCT O

# sent_id = gary-1

# intent = goodbye

1 Smell VERB O

2 va PRON )

3 later ADV 0

4 ! PUNCT O

Figure 4: Example of annotated tab-separated file with
SEQ (POS in column 3), SPAN (NER in column 4), and
CLASS (intent classification in the comments) tasks.

ken per line. Annotations and input tokens are sep-
arated by a tab character. Comments and utterance-
level information are included above the texts and
are prefixed with a # character.

4.2 SEQ task-type

In sequence labeling tasks (SEQ), we annotate a sin-
gle label per token, such as POS tagging or token-
level language identification.

4.3 SPAN task-type

SPAN-labeling tasks are where spans are annotated
as sequences of tokens (e.g. NER). Most other tools
supporting this task type (e.g. Stenetorp et al., 2012;
Nakayama et al., 2018) have character-level anno-
tations, although spans normally operate on token-
borders. An advantage of EEVEE is that it automat-
ically selects the entire token if part of the token
is selected, making annotation easier and faster as
the annotators do not have to drag the mouse to the
exact character of the token boundary. The user can
simply select a label (either by clicking or pressing
the corresponding number key) and then click the
desired token (i.e. any character within the token)
or select a span of tokens.

4.4 CLASS task-type

EEVEE also supports CLASSification tasks on the
utterance level. Labels are included as a comment
above the text (e.g. intents in Figure 4). The for-
mat is # [UNIQUE NAME] = [LABEL], fol-
lowing typical meta-data format as used in conll-
like formats. Usage is similar to the previous two
labeling tasks, except that the user does not need to
select a part of the utterance. Keyboard-only anno-
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[{"title":"NER",
"type":
{"name" :"seq_bio",

"isWordLevel" :true},
"output_index":"4",
"input_index":"1",

"labels": ["LOC","MISC", "ORG", "PER"],
"id":01}]

Figure 5: An example of the configuration file format.
The configuration file is a json file consisting of an array
of tasks. Each task has a title, a type, input and output
indices, and finally its corresponding labels.

tation is thus straightforward: the user can simply
press a number key to select desired class labels
and use the arrow keys to navigate the data.

4.5 SEQ2SEQ task-type

The SEQ2SEQ task type allows for text to text tasks
(e.g. translation, question answering, summariza-
tion). This is currently the only task type without
a list of provided labels; the user can directly type
the target text in a text field. The annotations are ut-
terance level and thus also saved in the comments.

4.6 Config Files

Because EEVEE runs entirely in the browser, it will
not internally save the setup for the current annota-
tion task. Therefore, it supports configuration files.
These configuration files are in json format, and
can thus easily be inspected by administrators, and
are easy (i.e. small) to be distributed. An example
of the configuration file format for named entity
recognition (NER) is given in Figure 5.

5 Compatability with other services

A recent development is the Huggingface datasets
library (Lhoest et al., 2021), which has indexed
62K+ datasets in two years. This library does not
share the text directly but through a Python API.
We provide a convenient Python script that automat-
ically downloads data from the datasets library and
converts it to the tab-separated format of EEVEE.

One of the toolkits that operates on tab-separated
formats is MaChAmp (van der Goot et al.,
2021), which is focused on multi-task learning.
MaChAmp supports all the tasks that are included
in EEVEE. For convenience, we provide a con-
version script that takes EEVEE files as input and
outputs a MaChAmp configuration file and the cor-
responding training command.

6 System Usability Study

6.1 Procedure

To assess the usability of EEVEE, we conduct a case
study with two annotators on two tasks, named en-
tity annotation (span labeling), and German dialect
identification (classification). Before annotating
with EEVEE, annotators spent four months labeling
named entities (NE) directly on tab-separated text
files in a text editor using BIO encoding and dialect
identification (DID) labels as utterance-level meta-
data. In this case study, we ask both annotators to
conduct the same NE and DID annotation tasks on
a set of new documents, similar to previous ones
but using the newly introduced EEVEE.

During EEVEE training, we present a 12-minute
tutorial video explaining the setup and annotation
pages to the annotators and provide them with tab-
separated unannotated files and the json configura-
tion files. Two annotators separately annotate the
same eight documents, four from Wikipedia (wiki)
and four from Twitter (X, tweet), summing up to
14.2K tokens and 16 working hours per person.?

6.2 Results

The System Usability Scale (SUS) was introduced
as a quick and reliable tool to measure the usabil-
ity of user interfaces (Brooke, 1995). It consists
of a 10-item questionnaire with 5 responses rang-
ing from ‘Strongly Agree’ to ‘Strongly Disagree’.
SUS has become an industry standard and can be
validly used with small sample sizes. Therefore,
we evaluate the usability of EEVEE using SUS.
The responses given by both annotators (P1 and
P2) are shown in Figure 6. The ratings of the anno-
tators result in total SUS scores of 75.0 and 87.5,
both above the average of 68.0 (Brooke, 2013). The
standard method for interpreting these scores is to
look at which percentile they fall compared to other
systems. As we are not aware of SUS being used
for annotation tools, we can only compare to more
general figures, where our average of 81.25 ranks
at the top 10% and indicates a good (close to excel-
lent) usability (Bangor et al., 2009). We also quali-
tatively survey annotators’ experience and opinions
after two weeks of annotation. Both annotators ap-
praise that the tool is easy to learn and use and
found it pleasant to work almost exclusively with
the keyboard in a lightweight interface. Both an-
notators responded that they would use EEVEE for

3 Annotators are hired student assistants and paid according
to national compensation tables.
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SUS Results

I needed to learn a lot of things before | could get going with this system.

| felt very confident using the system.

| found the system very cumbersome to use.

I would imagine that most people would learn to use this system very quickly.

| thought there was too much inconsistency in this system.

| found the various functions in this system were well integrated.

I think that | would need the support of a technical person to be able to use this system.
| thought the system was easy to use.

| found the system unnecessarily complex.

I think that | would like to use this system frequently.

= Pl
1 P2

Figure 6: The results from the System Usability Scale Questionaire. The x-axis shows their agreement with a given
statement, while the y-axis shows each item.

Brat Potato Doccano Prodigy EEVEE
Stenetorp et al. (2012)  Peiet al. (2022) Nakayama et al. (2018)  Montani and Honnibal (2018)
Open Source v v v X v
Character level v v v v X
Token level* X X v v
Utterance level X v v v v
Data-format standoff json json json/csv conll
Runs on local local local cloud browser
Active learning X v v X
User management X v v v X

Table 1: We only list the annotation export data files in this table, most tools (including EEVEE) also support
importing .txt files. * Note that character level annotations are commonly used for token/span level tasks. But as
noted in Section 4.3, this requires more efforts for annotation and conversion of data formats.

their next annotation jobs.

Since annotators typically spend many hours
in an annotation environment, it is important that
an annotation tool is built with user experience in
mind. We encourage existing and future tools to
consider usability studies such as SUS.

7 Comparison to other annotation
toolkits

We compare EEVEE to other available toolkits in
Table 1. While Eevee does not have the most func-
tionality, it does clearly allow for a simple setup for
token-level tasks. Also, EEVEE provides keyboard
shortcuts for annotation speed.

Other techniques for improving annotation speed
need more tuning and setup and could lead to bi-
ases. For example, active learning could lead to
model bias (Berzak et al., 2016) and coloring rele-
vant words for a task (Pei et al., 2022) could lead
to biases towards these indicators. We leave the

user management up to the organizer of the anno-
tation efforts and prioritize the simplicity in tool
setup. Furthermore, since EEVEE does not need
installation, it does not store or send any data to the
network, which is beneficial for data privacy.

8 Conclusion

We introduce EEVEE, an annotation toolkit focused
on easy setup and usability. It runs directly in the
browser and allows for annotation of multiple tasks.
In addition, it provides convenience scripts for us-
age with other libraries. EEVEE’s main distinguish-
ing features, in contrast to other toolkits, are the
simplicity of its setup and use, as well as annota-
tion directly on the token level (tab-separated files).
To evaluate the tool, we conducted a case study
using the System Usability Scale, resulting in high
usability scores. We also qualitatively surveyed the
annotators’ experience and noted that they would
prefer to use the tool again for annotation.
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Limitations
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into EEVEE. Furthermore, the input is constrained
to text in Unicode font, which is unavailable for
some languages.
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