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Abstract

Coreference annotation and resolution is a vi-
tal component of computational literary stud-
ies. However, it has previously been difficult to
build high quality systems for fiction. Corefer-
ence requires complicated structured outputs,
and literary text involves subtle inferences and
highly varied language. New language-model-
based seq2seq systems present the opportunity
to solve both these problems by learning to
directly generate a copy of an input sentence
with markdown-like annotations. We create,
evaluate, and release several trained models for
coreference, as well as a workflow for training
new models.

1 Introduction

Coreference annotation and entity recognition are
key tasks for performing a wide variety of tex-
tual analyses. They provide important information
about texts as well as serving as the foundation for
many more complicated forms of analysis. Par-
ticularly within the digital humanities (DH), these
tasks are often essential for performing large-scale
studies of corpora (e.g. Underwood et al. (2018);
Papalampidi et al. (2019); Brahman and Chaturvedi
(2020)). However, coreference annotation is con-
siderably more difficult than many binary classifi-
cation tasks. First, coreference requires nuanced
understanding of text, which has been beyond the
capabilities of previous NLP. Second, coreference
requires structured output, such as marking spans
for entity mentions and coreferent mentions, which
has previously required custom software.

Generative large language models (LLMs) have
recently demonstrated a capacity to solve both prob-
lems (Bohnet et al., 2023; Zhang et al., 2023). By
leveraging massive pretraining collections and bil-
lions of parameters, they can identify the subtle,
nuanced patterns of language. In addition, they
can generate text that matches specific text markup
formats. This capability suggests that non-expert

users may be able to use “out of the box” LLMs
to generate complicated marked-up text simply by
providing examples of the desired input and out-
put. While we evaluate this process by comparing
with existing custom-built coreference systems, we
emphasize that the potential impact of this process
extends to a much broader class of markup.

To explore the promise of fine-tuning genera-
tive LLMs for coreference annotation, we evalu-
ate the capabilities of several models to perform
coreference annotation on sentences extracted from
literary texts. Previous research has shown that lit-
erary texts have unique characteristics (Bamman
et al., 2020) that make it difficult to adapt general-
ized NLP models to literary settings. Zhang et al.
(2023) achieve high performance on the LitBank
corpus when data from the corpus is included in
the fine-tuning dataset; we seek to further explore
the capabilities of a model adapted specifically for
literary coreference.

In this work, we find that a fine-tuned t5-3b
model significantly outperforms a state-of-the-art
neural model for literary coreference annotation
(Otmazgin et al., 2022). In addition, we speculate
on the ability of these models to perform more com-
plicated, abstract annotation tasks (e.g. identifying
character relationships) given its performance on
this task.

Specifically, in this work we contribute:

• A high-performing fine-tuned LLM and sup-
porting code that can be used to perform coref-
erence annotation on literary data.1

• An analysis of which LLMs are best suited as
foundation models for coreference annotation.

• An examination of these models strengths and
weaknesses for coreference annotation.

1https://huggingface.co/rmmhicke/
t5-literary-coreference
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2 Related Work

Many researchers have used neural networks (Lee
et al., 2017; Clark and Manning, 2016; Dai et al.,
2019) or encoder-only transformer models like the
BERT models as the basis for coreference systems
(Ye et al., 2020; Joshi et al., 2019; Otmazgin et al.,
2022; Wu et al., 2020). These methods are multi-
step and perform entity recognition and coreference
annotation separately. Some studies have explored
using generative LLMs for coreference, but they
generally either fine-tune on auxiliary tasks (Mul-
lick et al., 2023) or use zero- or few-shot prompting
(Le et al., 2022; Le and Ritter, 2023).

Bohnet et al. (2023) fine-tune two sizes of mT5
(xl and xxl) to output coreference annotations for
multi-lingual data. They annotate speaker interac-
tions fed to the model one sentence at a time. The
model outputs either link or append actions, which
are used to annotate the coreference clusters in the
next model input. Similarly, Zhang et al. (2023)
find that seq2seq models such as T5 perform well
when directly fine-tuned to output sentences anno-
tated for coreference in a format similar to mark-
down. Like Zhang et al. (2023) and unlike Bohnet
et al. (2023), we fine-tune a model to directly pro-
duce inline coreference annotations. Unlike both
papers, we do not attempt to link annotations be-
tween sentences. We also focus specifically on
literary coreference annotation, which Zhang et al.
(2023) include but do not foreground, and compare
encoder-decoder models to decoder-only models.
Finally, we perform a qualitative examination of
the fine-tuned models’ strengths and weaknesses.

Coreference annotation has been applied to a
wide variety of domains, such as movie screen-
plays (Baruah and Narayanan, 2023), biomedical
journals (Cohen et al., 2017), and fiction (Bamman
et al., 2020). Coreference annotation for literary
texts in a variety of languages has also received a
great deal of attention (Poot and van Cranenburgh,
2020; Schröder et al., 2021; Han et al., 2021; Krug
et al., 2015; Roesiger et al., 2018). However, to our
knowledge no work has yet focused on fine-tuning
and evaluating generative LLMs specifically for
literary coreference.

3 Data & Methods

Our training data is drawn from the LitBank corpus
(Bamman et al., 2019), which includes 100 novels
written in English before 1923 representing a mix
of “high literary style... and popular pulp fiction”

Table 1: Example of an input-output pair used during
fine-tuning. In the output, entities are surrounded by
brackets and the association cluster is labeled as an
integer.

Input Output
Carl thrust his hands into
his pockets, lowered his
head, and darted up the
street against the north
wind.

[Carl: 1] thrust [his: 1]
hands into [his: 1] pock-
ets, lowered [his: 1] head,
and darted up [the street: 2]
against the north wind.

(Bamman et al., 2019, p. 2139). The mixture of
publication dates and styles included in the corpus
means that we are able to train and evaluate models
for a variety of sentence styles. Human corefer-
ence annotations are available for the first ~2,000
tokens of each text for people, natural locations,
built facilities, geo-political entities, organizations,
and vehicles (Bamman et al., 2020).

We created a subset of the LitBank corpus con-
taining coreference-annotated sentences from the
92 novels with at least 50 annotated sentences. We
standardized the formatting of each sentence by
hand in an attempt to regularize punctuation. Then,
we created an input and output version of each
sample (see Table 1) where the input is the plain
sentence and the output contains formatted corefer-
ence annotations. These were used to fine-tune and
evaluate each model.

We withhold five novels entirely from the train-
ing dataset and include all sentences (at least 50)
drawn from these novels in the test set. From each
of the remaining 87 novels, we include 40 sen-
tences in the training dataset, 2 sentences in the
validation set, and the remaining sentences (at least
8) in the test dataset. The final dataset had 3,480
sentences for training, 174 sentences for validation,
and 4,560 sentences for testing.

We then fine-tuned different sizes of three LLMs
to perform literary coreference annotation: four
sizes of T5 (small, base, large, 3b) (Raffel et al.,
2020), three sizes of mT5 (small, base, large)
(Xue et al., 2021), and five sizes of Pythia (70m,
160m, 410m, 1b, 1.4b) (Biderman et al., 2023).
mT5 is included to inform future research on mul-
tilingual coreference. Because we are interested in
supporting users with low access to hardware ac-
celerators, models are included only if they can be
fine-tuned on a single GPU. The parameters used
for fine-tuning can be found in Appendix A.

Finally, as a baseline we evaluate three spaCy-
based coreference annotation systems: fastcoref
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Table 2: Results for entity recognition and coreference.
T5 has the best performance, particularly the 3B scale.
FastCoref is a non-seq2seq baseline. The multilingual
mT5 model is similar but not as good as T5, while the
decoder-only Pythia family fails to add any annotations,
correctly repeating only inputs with no annotations.

Model Ent. F1 Coref.
F1

Average
Edit

Distance

Exact
String
Match

Baselines
fastcoref 50.86 40.46 — —
neuralcoref 41.30 29.68 — —
coreferee 35.04 2.81 — —

T5
t5-3b 91.03 80.16 0.1 70.72
t5-large 85.37 71.81 0.44 60.42
t5-base 83.74 61.35 1.74 47.76
t5-small 58.01 35.96 7.36 26.05

mT5
mT5-large 81.90 58.78 1.77 42.39
mT5-base 70.14 47.70 5.12 15.81
mT5-small 0.41 0.24 149.79 0.0

Pythia
pythia-1.4b 0.0 0.0 1077.79 9.06
pythia-1b 0.0 0.0 789.7 9.04
pythia-410m 0.0 0.0 1492.55 8.68
pythia-160m 0.0 0.0 1617.35 7.89
pythia-70m 0.0 0.0 1054.16 6.91

(Otmazgin et al., 2022) using the LingMess
model (Otmazgin et al., 2023), huggingface’s
neuralcoref (which is based on Clark and Man-
ning (2016)), and Explosion AI’s coreferee. We
do not include the performance of the BookNLP
system, the most-used tool for literary coreference
annotation, as it is also trained on LitBank and has
likely seen some of our test sentences. However,
we include a comparison of BookNLP and our fine-
tuned t5-3b model’s performance on two books
not in LitBank: Virginia Woolf’s Orlando and Rad-
clyffe Hall’s The Well of Loneliness, which entered
the public domain in 2024.

4 Results

One advantage of seq2seq LLMs is their ability
to produce complicated, structured output as text
without the need for complex structured predic-
tion model architectures. This means that we can
use “off the shelf” transformers and fine-tune them
using standard methods to produce coreference an-
notations. The problem with directly generating
marked-up text, however, is that the generated out-
put might not be purely additive: it may change the
words in addition to adding annotations.

We therefore evaluate each fine-tuned LLM us-
ing four metrics. We measure the fidelity of the

output with average Levenshtein distance between
the input sentence and the model output stripped
of all coreference annotation. We measure annota-
tion accuracy using F1 scores for entity recognition
and coreference annotation. Finally, we record
whether there is an exact string match between the
human-annotated output and the model output (not
including leading or trailing spaces). This metric
is measured as a percentage of sentences instead of
a percentage of entities, as the F1 scores are.

We expect that the entity and coreference F1
scores will be an underestimate of the true model
performance. This is for several reasons. The first
is that we only count entities as labeled when the
cleaned model output (stripped of entity and coref-
erence annotation) is exactly the same length as
the input string. Additionally, we only count ex-
act entity or coreference matches. Thus, a match
is not made when an entity is selected but mis-
spelled (e.g. [Helene’s: 1] is produced instead
of [Helen’s: 1]) or when a different substring
is selected to represent an entity (e.g. [the study
behind the dining-room: 1] is selected instead
of [the study: 1]). The metric also only counts a
coreference annotation as correct if the exact same
index is used to identify the cluster. Therefore, if
an extra entity cluster is labeled or missed (e.g. a
sentence is annotated [The lady: 1] in the
room picked up [his: 2] hat. instead of [The
lady: 1] in [the room: 2] picked up [his:
3] hat.) some annotations may not be counted
even though they are technically correctly identi-
fied. Finally, there are cases where the annotation
of an entity is somewhat subjective and human ob-
servers may side with the initial annotations or the
model output. For example, the LitBank annota-
tion for the sentence As it chanced, [Dale: 1]
lay face down upon the floor of the loft
does not mark “the loft” as an entity. However,
the model output does, and one could argue that
this is a location which should be annotated. For
these reasons, we expect that the true performance
of these models in the eyes of a human evaluator
would be higher than it appears given the strict F1
scores reported.

In order to provide more generous accuracy met-
rics that are comparable across other studies, we
also use the corefud-scorer developed by Michal
Novák and Martin Popel to report the models’ per-
formance using seven common coreference evalu-
ation metrics (Table 3). We count singletons and
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Table 3: Model results given in common coreference metrics (F1 scores). All Pythia models produce 0.0 F1 in all
cases.

Model MUC B3 CEAFm CEAFe BLANC LEA CoNLL avg.
Baselines

fastcoref 80.08 56.72 58.31 38.38 56.90 54.00 58.39
neuralcoref 52.64 36.08 39.03 24.71 32.35 31.25 37.81
coreferee 41.49 29.77 33.76 22.09 25.18 23.46 31.12

T5
t5-3b 89.19 89.21 89.20 87.20 86.29 85.23 88.53
t5-large 82.14 83.71 83.41 81.19 77.81 77.74 82.35
t5-base 71.71 77.73 75.47 72.82 70.76 65.22 74.09
t5-small 45.62 55.82 52.03 48.10 41.97 36.47 49.85

mT5
mT5-large 68.26 74.75 72.72 69.98 67.07 61.37 71.00
mT5-base 61.38 64.26 62.14 56.83 55.91 49.41 60.82
mT5-small 0.08 0.40 0.56 0.60 0.02 0.22 0.36

Table 4: Example of less-successful input-output pairs
produced from fine-tuned models. The first was pro-
duced by t5-large, the second by pythia-1b.

Input Output
He shivered as if he had
cold slimy water next his
skin.

He shivered as if he had
cold slimy water next to his
skin.

We must go to Athens. We must go to Athens. go to
[Athens: 2]. go to [Athens:
2]: 2]. go to [A [Athens:
2]:]: 2]: 2 to [A [A [A: 2]:
2]: 2]: 2 to [: 2 [A: 2]: 2]: 2
2 2 2 2 to [: 2 [: 2]: 2]: 2 2
2 2 to [: 2 2]: 2 2...

require exact entity matches. Again, for these cal-
culations we only count an entity as labeled if the
clean model output is the same length as the input
sentence. However, the scorer simplifies cases in
which the same entity has been marked twice —
transforming [[he: 1]: 2] to [he: 2] — and
does not require exact spelling matches between
labeled entities.

T5 Of the models tested, fine-tuned t5-3b
achieves the highest performance (Table 2). It ex-
actly reproduces 70.72% of the human-annotated
outputs and has F1 scores of 91.03% for entity
recognition and 80.16% for coreference annotation.
Overall, the T5 models outperform all other model
families; Pythia is unable to correctly identify any
entities or coreference clusters, each mT5 model
underperforms the equivalent T5 model, and all
baselines are outperformed by all T5 models except
t5-small (which is outperformed on coreference
by fastcoref).

Larger models do better. The smaller T5 mod-
els, particularly t5-small, struggle to accurately
match brackets and parentheses. They also fre-

quently miss nested entities such as [[her: 2]
father: 1], randomly neglect to annotate any
entities in a sentence comparable to those for
which it has relatively high performance, or re-
peat substrings and brackets at the end of its out-
put. t5-large sometimes adds extra words to sen-
tences, often when grammatically intuitive (Row 1,
Table 4), replicates only substrings of the original
input, or makes other small formatting errors. It
also continues to struggle with identifying some
of the more complicated multi-word entities and
nested entities. Finally, the replication errors for
t5-3b are mostly formatting errors or the addition /
exclusion of single words or small substrings. The
output of this model sometimes still includes hal-
lucinated repetitions, but it is very rare. Most of
the annotation “errors” made by this model could
be judgment calls, or cases where the original an-
notator had more context. Even this largest model
occasionally struggles with matching brackets and
nested entities, but this is also extremely rare.

If we examine single word replacements made
by t5-small — for cases when the cleaned output
is the exact length of the input — we find that it
struggles with complicated and unusual words (e.g.
bordighera, schiaparelli), names (e.g. Katharine
is replaced by Catarine, explained, and Katarine),
gender (Mr. is replaced by Mrs. five times), pro-
nouns (their is replaced 82 times by 18 unique
strings), and language (however is replaced by
nevertheless, allerdings, cepedant, and totuşi and
Winterbourne becomes Hierbourne). t5-base and
large make similar single word replacements, but
the translation errors are reduced to changing enti-
ties to their spelling in their original language (e.g.
Munich becomes München). The replication er-
rors made by t5-3b are almost all misspellings or
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Table 5: Sentences with coreference annotation from
fine-tuned t5-3b and BookNLP. The sentences are
drawn from Virginia Woolf’s Orlando (Rows 1 and
2) and Radclyffe Hall’s The Well of Loneliness (Rows
3–5).

t5-3b BookNLP
Rows of chairs with all their
velvets faded stood ranged
against the wall holding
their arms out...

Rows of chairs with all
[their: 5] velvets faded
stood ranged against the
wall holding [their: 5] arms
out...

[Fathers: 1] instructed
[[their: 1] sons: 2], [moth-
ers: 3] [[their: 3] daughters:
4].

[Fathers: 1] instructed
[[their: 1] sons: 2], [moth-
ers: 3] [[their: 1] daughters:
4].

... sat [Stephen: 1] with [her:
1] feet stretched out to the
fire and [her: 1] hands thrust
in [her: 1] jacket pockets.

...sat [Stephen: 1] with [her:
2] feet stretched out to the
fire and [her: 2] hands thrust
in [her: 2] jacket pockets.

[Mrs. Williams: 1] glanced
apologetically at [her: 2]:
’Excuse ’im, [Miss Stephen:
2], ’e’s gettin’ rather child-
ish.

[Mrs. Williams: 2] glanced
apologetically at [her:
2]:Éxcuse’ [i: 1]m, [Miss
Stephen: 3],’ [e: 4]’s gettin’
rather childish.

When one’s getting on in
years, one gets set in one’s
ways, and [my: 1] ways fit
in very well with [Morton:
2].

When [one: 1]’s getting on
in years, [one: 1] gets set in
[one: 1]’s ways, and [my: 2]
ways fit in very well with
[Morton: 3].

changes in the plurality of words. Names also con-
tinue to confound the model as do parts of speech.

The CoNLL average coreference score achieved
by the fine-tuned t5-3b model exceeds that of
BookNLP by 9.5%; however, the BookNLP sys-
tem simultaneously provides coreference annota-
tions for each ∼2,000 word section of novel at
once, whereas the T5 model runs on individual
sentences. In order to further compare the two sys-
tems, we thus ran both on 100 random sentences
drawn from two novels excluded from the systems’
training data: Virginia Woolf’s Orlando and Rad-
clyffe Hall’s The Well of Loneliness. The models
produce the same or similar outputs for a large
number of sentences and generally provide very
plausible annotations. Of the 100 sentences, t5-3b
only failed to replicate two inputs, both of which
were quite long, and one of the replication errors
only consisted of a dropped word.

There were some cases in which t5-3b appeared
to perform better than BookNLP: it was better at
identifying when pronouns referred to objects and
not people (Row 1, Table 5), it sometimes identi-
fied the correct coreference cluster when BookNLP
failed (Row 2, Table 5), and in one interesting case
it was able to correctly cluster a name and pronouns
despite a disconnect between the expected gender

Table 6: A mt5-large model fine-tuned only on English
has some ability to identify entities in non-English text.

Input Output
-La condesa de Albornoz -
respondió el niño.

[La condesa de Albornoz:
1] -respondió [el niño: 2].

Mes parents ne peuvent plus
faire autrement.

[Mes: 1] parents ne peuvent
plus faire autrement.

Und vor ihm, in der Ferne
da drüben, stiegen die
blauen Bergriesen auf.

And vor [ihn: 1], in der
Ferne da drüben, stiegen die
blauen Bergriesen auf.

of the name and the gender of the pronouns (Row 3,
Table 5). However, in some cases BookNLP caught
edge cases that t5-3b did not: it more accurately
identified entities written in dialect (Row 4, Table
5) and it occasionally caught less explicit entities
(such as ‘one’ or ‘others’) that the model did not
(Row 5, Table 5).

Overall, however, the performance of the two
models appeared to be largely comparable. Despite
this, we still consider the t5-3b model’s perfor-
mance to be significant for two reasons. Whereas
the BookNLP pipeline required extensive develop-
ment and would be very labor intensive to replicate
for other data genres, fine-tuning the T5 models is
simple and adaptable. In addition, the BookNLP
pipeline is restricted to performing the tasks for
which it has currently been trained; we view this
as a promising calibration for the seq2seq models’
ability to perform tasks that the LSTM cannot, such
as relationship identification and characterization.

mT5 We also tested variations of T5 trained on
larger multilingual collections. Although it per-
forms worse than t5-base and larger, mt5-large
reaches relatively high-performance. This perfor-
mance may be boosted using additional training
data, thus making it a viable option for further
exploration into multi-lingual coreference annota-
tion. Currently, when fed prompting sentences in
German, Spanish, and French the model is able to
reproduce sentences and identify some basic enti-
ties. However, it struggles with longer sentences
and more complicated or opaque entities (Table 6).

Pythia Previous work has only considered
encoder-decoder architectures. We evaluate the
open-source decoder-only Pythia model family
(Biderman et al., 2023). Pythia-based models
are frequently able to replicate inputs. However,
they usually append extensive hallucination to the
replicated input, often adding repeating substrings,
brackets, or integers (Row 2, Table 4). They very
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rarely include any formatting in the replicated text
resembling that used for the coreference annota-
tions. Thus, these models are currently unsuable
for this task.

5 Conclusion

Fine-tuned generative LLMs show great promise
for coreference annotation. They are simple to
apply and can be efficiently trained for specific
corpora from open-source base models. The er-
rors made by large models in replicating inputs are
minor and they are able to capture great complex-
ity in the entities they annotate. In the future, we
hope to extend this method to operate on longer
contexts. Specifically, we propose to pre-pend all
previously identified entities to each successive in-
put. In addition, we believe that the high perfor-
mance of the large, encoder-decoder models like
t5-3b suggests that these models may be capable
of performing more complex annotations, such as
identifying emotional states or power dynamics
between characters.
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A Fine-tuning Parameters

The fine-tuning parameters for each model can be
found below. The batch size varied based on model.

Parameter Value
evaluation_strategy epoch
learning_rate 2e-5
weight_decay 0.01
save_total_limit 3
num_train_epochs 10
gradient_checkpointing True
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