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Introduction

Welcome to Language + Molecules, the inaugural workshop on integrating natural language with mo-
lecular structure! The workshop is scheduled to be held on August 15, 2024 in Bangkok, Thailand
co-located with ACL 2024.

The world faces an enormous number of problems in the coming decades on scales of complexity never-
before-seen, in areas such as climate change, healthcare, and pandemics. To address these issues, we
need to discover inventive scientific solutions which are scalable, flexible, and inexpensive. Broadly
speaking, many of these problems will require molecular solutions from the chemistry domain, such as
developing new drugs, materials, and chemical processes. These solutions exist in extremely large search
spaces, which makes AI tools a necessity. Excitingly, the chemistry field is posed to be substantially
accelerated via multimodal models combining language with molecules and drug structures. Research
in scientific NLP, integrating molecules with natural language, and multimodal AI for science/medicine
has experienced significant attention and growth in recent months. This workshop was organized to help
connect researchers working in this exciting nascent community.

A natural question to ask is why we want to integrate natural language with molecules. Combining
these types of information has the possibility to accelerate scientific discovery: imagine a future where
a doctor can write a few sentences describing a patient’s symptoms and then receive the exact struc-
ture of the drugs necessary to treat that patient’s ailment (taking into account the patient’s genotype,
phenotype, and medical history). Or, imagine a world where a researcher can specify the function they
want a molecule to perform (e.g., antimalarial or a photovoltaic) rather than its low level properties (e.g.,
pyridine-containing). This high-level control of molecules requires a method of abstract description,
and humans have already developed one for communication: language. The following key benefits of
combining language and molecules were explored:

1. Generative Modeling: One of the largest problems in current LLMs—hallucination— becomes a
strength for discovering molecules with high-level functions, abstract properties, and composition
of many properties.

2. Bridging Modalities: Language can serve as a “bridge” between modalities (e.g., cellular path-
ways and drugs) when data is scarce.

3. Domain Understanding: Grounding language models into external real world knowledge can im-
prove understanding of unseen molecules and advance many emerging tasks, such as experimental
procedure planning and reasoning, which use LLMs as scientific agents.

4. Automation: Instruction-following, dialogue-capable, and tool-equipped models can guide auto-
mated discovery in silico and in robotic labs.

5. Democratization: Language enables scientists without computational expertise to leverage advan-
ces in scientific AI.

In particular, this year’s workshop focused on the following themes:

• Going beyond language to incorporate molecular structure and interactions into LLMs.

• Addressing data scarcity and inconsistency: new training methodologies and methods for extrac-
ting data from scientific literature.

• Language-enabled solutions for discovering new drugs and molecules.

• Incorporating domain knowledge from human-constructed databases into LLMs.
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• Instruction-following, dialogue-capable, and tool-equipped LLMs for molecules.

• Sequence representations for molecular structures, including organic molecules, proteins, DNA,
and inorganic crystals.

The workshop had 27 total submissions, from which 11 papers and 7 shared task descriptions were accep-
ted. Between these categories, 14 accepted submissions opted to be included in the archival proceedings.
The shared task had two tracks: molecule generation and molecule captioning. For captioning, there
were 28 participants who had a combined total of 188 submissions. For molecule generation, there were
19 participants and 88 submissions. Submissions achieved improvements over base models of up to 27%
absolute metric increase for molecule captioning and 13 absolute for molecule generation. An overview
of the shared task and submission results will be given at the workshop. This will include the release of
the ensembled captioning results for the “mystery molecules”.

The workshop will have 5 keynote speakers: Kyunghyun Cho, Elsa Olivetti, Marinka Zitnik, Huan Sun,
and Lei Li. Additionally, a poster session, invited oral talks, and a panel discussion on future research
directions will be held.

As a final note, we would like to thank the authors, invited speakers, committee members, and our
scientific advisory board for helping make this workshop happen. We would like to thank the NSF Mo-
lecule Maker Lab Institute for supporting this initiative.
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Abstract

Language-molecule models have emerged as
an exciting direction for molecular discovery
and understanding. However, training these
models is challenging due to the scarcity of
molecule-language pair datasets. At this point,
datasets have been released which are 1) small
and scraped from existing databases, 2) large
but noisy and constructed by performing entity
linking on the scientific literature, and 3) built
by converting property prediction datasets to
natural language using templates. In this doc-
ument, we detail the L+M-24 dataset, which
has been created for the Language + Molecules
Workshop shared task at ACL 2024. In par-
ticular, L+M-24 is designed to focus on three
key benefits of natural language in molecule
design: compositionality, functionality, and ab-
straction.1

1 Introduction

The world faces an enormous number of problems
in the coming decades on scales of complexity
never-before-seen, in areas such as climate change,
healthcare, and pandemics. To address these is-
sues, we need to discover inventive scientific so-
lutions which are scalable, flexible, and inexpen-
sive. Broadly speaking, many of these problems
will require molecular solutions from the chem-
istry domain, such as developing new drugs (e.g.
kinase inhibitors (Ferguson and Gray, 2018)), ma-
terials (e.g. organic photovoltaics (Kippelen and
Brédas, 2009)), and chemical processes (Zhong
et al., 2023). These solutions exist in extremely
large search spaces, which makes AI tools a neces-
sity.

Language-molecule models have emerged as
an exciting direction for molecular discovery and
understanding (Edwards et al., 2021; Zeng et al.,
2022; Edwards et al., 2022; Su et al., 2022; Liu

1The dataset, finetuned baseline, and evaluation code are re-
leased publicly at github.com/language-plus-molecules/LPM-
24-Dataset through HuggingFace.

et al., 2022; Xu et al., 2023; Christofidellis et al.,
2023; Liu et al., 2023b; Luo et al., 2023; Zhao
et al., 2023c; Seidl et al., 2023). However, train-
ing these models is challenging due to the scarcity
of molecule-language pair datasets. At this point,
datasets have been released which are 1) small and
scraped from existing databases (Edwards et al.,
2021; Zeng et al., 2023; Liu et al., 2023a,c; Pei
et al., 2023), 2) large but noisy and constructed by
performing entity linking on the scientific literature
(Zeng et al., 2022; Su et al., 2022), and 3) template-
based built on prediction datasets (Zhao et al.,
2023a; Fang et al., 2023). Approaches utilizing
pseudo-data have also been attempted (Chen et al.,
2023a). These approaches have helped remedy the
problem of data scarcity in this domain; however,
these approaches frequently ignore key benefits of
natural language: 1) compositionality, 2) abstrac-
tion, and 3) functionality (Zhang et al., 2023). To
this end, for the Language + Molecules Workshop
at ACL 2024, we release L+M-24, which we con-
struct to test these three goals, particularly composi-
tionality, using recently released data sources (Zhao
et al., 2023b; Kosonocky et al., 2023; Wishart et al.,
2023). L+M-24 is divided into four categories with
important applications in the small-molecule do-
main: 1) Biomedical, 2) Light and Electricity, 3)
Human Interaction and Organoleptics, and 4) Agri-
culture and Industry. Improving understanding of
these applications can have important implications
in problems such as drug discovery, climate issues,
more efficient and green industrial processes, and
improved food production.

2 Task Formulation

The dataset is primarily intended for
language↔molecule translation, which con-
sists of two tasks: generating 1) a caption given a
molecule and 2) a molecule given a description.

1

https://github.com/language-plus-molecules/LPM-24-Dataset
https://github.com/language-plus-molecules/LPM-24-Dataset
https://huggingface.co/language-plus-molecules


2.1 Designing for Compositionality,
Abstraction, and Function

Overall, we focused on four primary categories of
importance: 1) Biomedical, 2) Light and Electricity,
3) Human Interaction and Organoleptics, and 4)
Agriculture and Industry. These categories and
three properties from each are displayed in Table
1. The biomedical category is focused on drug
properties, functions, and interaction with proteins.
Light and electricity is focused on the ability for a
molecule to produce or absorb light or electricity.
Human interaction and organoleptics focuses on the
effect and experience molecules cause in humans.
Agriculture and industry focuses on molecules used
in industrial processes and food production.

Based on our data sources (below), the proper-
ties we have selected already encode a large degree
of functionality, enhanced by our manual curation.
Further, since these properties are generally short
phrases indicating functionality, they are also ab-
stract and apply to many molecules (e.g., “insecti-
cide”). For compositionality, we explicitly select
certain pairs of properties which we hold out of
the dataset. For example, a molecule may share
two properties which are desirable together (e.g.,
low toxicity and fungicidal). L+M-24 will help to
evaluate whether model’s can generalize to unseen
compositions of properties.

3 Data Sources

We constructed our dataset using three different
databases. We will first describe the process we
used to extract information from each, followed by
our overall strategy for adding hierarchy into the
dataset. We want to deeply thank the authors of
these resources for making them publicly available
for the community.

3.1 PubChem

We used properties extracted from PubChem (Kim
et al., 2016, 2019) as described in (Zhao et al.,
2023c). Properties from this approach include odor,
taste, and decomposition. We note these properties
consist of molecule-specific descriptions, which
the other data sources do not provide.

3.2 Chemical Function (CheF)

Here, we used functional properties extracted from
patent literature by Kosonocky et al. (2023). This
allowed us to capture molecules from the patent lit-
erature in addition to the scientific literature. Here,

Biomedical
anti neoplastic

glaucoma treatment
capillarigenic

Light and Electricity
photoelectric conversion

photopolymerization
dielectric

Human Interaction
pungent

bitter
nephrotoxic

Agriculture and Industry
herbicide
emulsifier
carcinogen

Table 1: Example properties in the dataset. Antineo-
plastic drugs are used to treat cancer. Glaucoma is a
group of eye diseases. Capillarigenic means producing
or causing capillaries. Pungent means having a strong
taste or smell. Nephrotoxic is toxicity in the kidneys.
Photoelectric conversion is the conversion of light into
electricity. Photopolymerization is the process through
which monomers are linked together through a photo-
chemical reaction. A dielectric is a poor conductor of
electricity but can be polarized. A herbidicde is toxic
to plants. An emulsifier stabilizes an emulsion. A car-
cinogen is an agent capable of causing cancer. The full
property list and number of occurrences is available in
the online data repository.

we started with CheF prefinal_v32. We created a
set of properties from both CheF’s property sum-
marizations and from the ChatGPT summarization
source. For the summarization source, we also ap-
plied the WordNet lemmatizer (Bird et al., 2009)
for deduplication. After obtaining a list of proper-
ties, we removed properties pertaining to less than
100 molecules. We then kept properties falling
into the categories of “X-icide”, “anti-X”, “X treat-
ment”, “X modulators”, “X inhibitors”, “X ago-
nists”, “X antagonists”, “light”, and “electricity.”
We manually removed uninformative labels which
were too broad or didn’t describe enough function.
Further, we manually corrected errors in label nam-
ing and duplication.

3.3 ChemFOnt: the chemical functional
ontology resource

In addition to CheF, we also take advantage of an-
other new chemical function data resource: Chem-
FOnt (Wishart et al., 2023). From this datasource,
we collect three categories: health effect relations,
organoleptic effect relations, and role relations.

4 Dataset Details

To convert these properties to natural language,
we follow a template-based procedure using GPT-
4 (OpenAI, 2023) generated compositional tem-
plates.

2obtained via personal communication.
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"alzheimer's treatment"
"bace1 inhibitor"

"anti viral agent"
"mitogen"

"anti carcinogenic"
"lipoxygenase inhibitor"

"fungicide"
"anti oxidant "

The molecule is both a alzheimer's
treatment and a bace1 inhibitor.

The molecule is a mitogen and
lipoxygenase inhibitor, belonging to
the anti oxidant class, and is
characterized as anti viral agent, anti
carcinogenic, and fungicide.

Data Sources 
GPT 4 Written

Templates

Molecules with Multiple Properties Compositional Captions

Figure 1: Example descriptions created for molecules from the training set.

4.1 Template Generation
We utilize GPT-4 (OpenAI, 2023) to generate spe-
cific templates for each combinations of molecular
properties. Specifically, we manually write six tem-
plates: “The molecule is a <0>.”; “It belongs to
the <1> class of molecules.”; “It has an effect on
<2>.”; “It impacts <3>.”; “The molecule is <4>.”;
and “The molecule has a <5>.”. Subsequently, we
use GPT-4 to generate a unique sentence template
for each possible combination by rephrasing up to
six combinations of the six initial templates as a sin-
gle sentence. Ultimately, this process results in the
generation of 917 distinct templates. The templates
were manually checked and corrected to have a
matching standard. The prompts and in-context
examples for GPT-4 are given in the Appendix.

4.2 Converting Templates to Descriptions
For all properties in L+M-24, we first assigned
them to possible templates based on their cate-
gory or by individual consideration. Certain prop-
erties (e.g., polymerization, decomposition) were
expressed in sentence format, so we did not use
templates. Given a molecule with n properties,
we first looked for a template that had the correct
slots (e.g., <0>, <2>, and <2>) for its properties.
When we found possible templates, we picked one
at random and used it to generate a sentence for the
molecule’s properties. If there were no matching
templates, we split the properties into two sepa-
rate equal-sized groups and tried with each group.
We return the concatenation of the two sentence
templates as the molecule description. Note this
process can repeat multiple times.

We note that we are also releasing a version of
the dataset with 5 captions for each molecule. In

this case, we split group sizes at random. Further,
we split sentences apart 50% of the time (even
when there were matching templates) to increase
caption diversity.

4.3 Splitting
Duplicate molecules are merged using RDKit (Lan-
drum, 2021) and molecules which cannot be pro-
cessed are removed. We split the data by first ex-
amining property combinations. 20% of combi-
nations are witheld into the evaluation set. From
molecules in the remaining 80%, we keep 80% for
training and put 20% in evaluation. The evalua-
tion set is split into two tasks: molecule captioning
and molecule generation. For each task, only one
modality will be released prior to the shared task
results.

The training set consists of 160,492 molecule-
description pairs. For the evaluation set, both
molecule generation and captioning contain 21,839
pairs. Further, special splits are released for the
training set which allow for validation using the
training data. They are constructed using the same
procedure as the official evaluation dataset.

5 Evaluation Metrics

Overall, we adopt the evaluation metrics proposed
by Edwards et al. (2022). However, we include
invalid molecules in the calculations of FTS met-
rics (setting the score to zero for invalid molecules).
We also add a uniqueness metric to the generated
molecules for held-out combinations of properties
(Polykovskiy et al., 2020). Further, we also look at
property-specific precision, recall, and F-1 scores.
These scores are calculated by matching tokenized
names in the generated captions. These scores are

3



Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol
Ground Truth 11.30
MolT5-Small 70.9 51.2 74.5 55.8 54.4 70.1 10.79
MolT5-Base 73.8 53.5 75.0 55.9 53.9 71.8 8.53
MolT5-Large 76.9 55.6 77.7 58.0 55.7 74.3 10.06
Meditron-7B 79.2 57.6 79.7 60.2 57.5 75.7 11.91

Table 2: Molecule captioning results on the validation split of L+M-24. Rouge scores are F1 values.

Overall Biomedical Light+Electro Human Interaction Agr.+Industry Held-out Combos
Model P R F-1 P R F-1 P R F-1 P R F-1 P R F-1 P R F-1

MolT5-Small 84.83 8.24 7.88 85.13 23.23 23.33 62.42 4.85 3.27 96.77 0.57 0.56 95.00 4.32 4.36 0.00 0.00 0.00
MolT5-Base 64.11 9.94 9.46 79.58 23.89 24.02 16.08 5.82 3.36 63.94 5.01 5.18 96.85 5.05 5.27 0.00 0.00 0.00
MolT5-Large 59.57 12.49 11.71 70.27 26.99 26.87 16.96 10.90 7.39 62.77 5.99 6.27 88.29 6.06 6.31 0.00 0.00 0.00
Meditron-7B 33.60 16.33 16.81 57.19 33.96 35.27 26.51 16.48 17.49 29.54 7.52 7.07 21.18 7.35 7.40 12.35 0.29 0.56

Table 3: Property-specific molecule captioning results on the validation split of L+M-24.

Model P R F-1 P R F-1 P R F-1 P R F-1 P R F-1 P R F-1
X-icides Toxins Light Electricity X-inhibitors anti-X

MolT5-Small 100.00 0.00 0.00 100.00 0.00 0.00 24.85 9.69 6.54 100.00 0.00 0.00 3.42 0.43 0.09 1.96 0.00 0.00
MolT5-Base 100.00 0.00 0.00 67.45 8.51 8.84 28.00 11.51 6.52 4.17 0.12 0.20 2.20 0.58 0.11 9.70 0.23 0.15
MolT5-Large 100.00 0.00 0.00 69.42 10.29 10.85 15.77 12.28 8.16 18.14 9.52 6.62 8.90 2.28 1.13 4.32 1.16 0.61
Meditron-7B 100.00 0.00 0.00 48.79 11.75 11.05 29.10 20.64 20.64 23.93 12.33 14.34 35.69 19.91 22.65 14.79 9.34 8.98

X-modulator X-agonist X-antagonist X-treatment X-disease X cancer
MolT5-Small 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 55.49 1.99 1.70 87.44 50.08 49.94 71.86 21.03 24.27
MolT5-Base 100.00 0.00 0.00 100.00 0.00 0.00 100.00 0.00 0.00 58.90 2.25 1.80 94.61 55.16 59.18 45.06 25.49 24.54
MolT5-Large 21.30 0.58 0.88 5.91 1.96 1.23 14.30 0.58 0.42 14.27 2.67 2.22 97.18 81.07 81.86 65.76 52.06 51.56
Meditron-7B 42.43 21.24 24.98 39.19 23.23 26.35 34.22 18.98 21.15 28.75 11.35 15.13 97.34 81.11 82.02 79.80 68.65 72.62

Table 4: Selected subproperty group-specific molecule captioning results on the validation split of L+M-24.

Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
Ground Truth 100.0 100.0 0.00 100.0 100.0 100.0 0.00 11.26 100.0
MolT5-Small 56.56 0.00 56.34 64.22 58.10 37.44 NaN 0.49 80.52
MolT5-Base 68.38 0.00 44.79 76.03 65.23 47.46 NaN 7.06 100.0
MolT5-Large 56.42 0.00 55.40 75.70 65.01 39.51 17.52 7.69 99.44
Meditron-7B 69.40 0.01 46.49 77.16 69.34 50.07 2.46 7.80 99.63

Table 5: Molecule generation results on the validation split of L+M-24. The FCD and Text2mol metrics are
computed using only syntactically valid molecules. We found FCD suffers from numerical instability for the small
and base models.

Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Uniqueness↑ Validity↑
Ground Truth 100.0 100.0 0.00 100.0 100.0 100.0 0.0 23.05 100.0 100.0
MolT5-Small 22.80 0.00 54.14 8.99 5.19 3.48 NaN 5.79 10.14 39.79
MolT5-Base 29.51 0.00 48.91 38.78 19.73 14.21 NaN 21.60 5.13 100.0
MolT5-Large 24.37 0.00 63.44 41.56 24.23 15.71 NaN 23.77 12.72 97.82
Meditron-7B 28.04 0.00 53.44 40.90 27.42 16.82 3.91 22.46 74.81 98.58

Table 6: Molecule generation results on the subset of held-out combinations from the validation split of L+M-24
(2107 data points).

further aggregated across specific properties (e.g.,
inhibitors, X-icides, etc.) and the four broad cate-
gories. Aggregations are performed by averaging
scores (i.e., macro-F1). We further compute these
scores specifically for held-out combinations of
properties.

6 Benchmarks

MolT5 models (Edwards et al., 2022) were fine-
tuned for 20 epochs on the “split_train” data split
and evaluated on the “split_valid”, both of which
are available online. Huggingface’s transformers
(Wolf et al., 2019) was used for finetuning with a
learning rate of 2e-5 and weight decay of 0.01. A

batch size of 128 was used for small and base mod-
els, and a batch size of 48 for large models. Further,
Meditron-7B (Chen et al., 2023b) was finetuned for
5 epochs with a context length of 930, 2e-6 learning
rate, and batch size of 8/16 (molecule/caption gen-
eration). Models are released online. Results for
captioning are reported in Tables 2, 3 and 4. Tables
5, and 6 shows results for molecule generation.

Overall, the dataset proves to be fairly challeng-
ing for these naively finetuned models. On caption-
ing, Meditron-7B achieves a maximum overall F-1
score of 16.81 for property identification (Table
3). However, overall it has a much higher preci-
sion than recall, indicating the model only labels
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Ground TruthInput MeditronMolT5-largeMolT5-baseMolT5-small

The molecule is a
luminescent member of the
organic light-emitting class.

Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-
c5ccccc5)cc5)cc4)cc3)cc2)cc1

Invalid

The molecule is both a
platelet aggregation
inhibitor and a cell
adhesion inhibitor.

Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-
c5ccccc5)cc5)cc4)cc3)cc2)cc1

Invalid

The molecule is a
muscarinic agonist that
impacts pain treatment and
is both alzheimer's
treatment and anxiety
treatment.

Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-
c5ccccc5)cc5)cc4)cc3)cc2)cc1

Invalid

The molecule is a jak2
inhibitor and is cancer
treatment.

The molecule is both a
anti psychotic and a
nmda antagonist.

Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-
c5ccccc5)cc4)cc3)cc2)cc1

Invalid

The molecule is a factor
ixa inhibitor, a factor xa
inhibitor, and anti
thrombotic. Invalid

The molecule is a flavoring
agent and a nutrient, as
well as nutty and green.

Cc1ccc(-c2ccc(-c3ccc
(-c4ccc(-c5ccc(-c6ccc
cc6)cc6)cc4)cc4)cc3)cc2)cc1

CC(C)(C)OC(=O)NC(C(=O)
N1CCCC1C(=O)NC(Cc1ccccc1)
C(=O)NC(Cc1ccccc1)C(=O)NC
(Cc1ccccc1)C(=O)NC(Cc1ccccc1)
C(=O)NC(Cc1ccccc1)C(=O)O'

Invalid

Figure 2: Examples of molecules generated by different models for never-before-seen property combinations.

a molecule with a certain property when having
higher confidence. Certain classes of molecules,
such as X-icides, are never identified (Table 4).
Other classes, such as toxins or electricity, show
emergent behavior as model size scales. Interest-
ingly, the models appear to be fairly capable at link-
ing molecules to certain diseases or cancers. We
find that, likely due to poor performance on individ-
ual properties, only the largest model succeeds on
predicting held-out combos, and with poor results.
Additionally, we find that the Text2Mol metric, as
trained on ChEBI-20, shows poor domain transfer
to L+M-24.

The models are able to capture a number of use-
ful properties, such as electroluminescence, dia-
betes treatment, non-alcoholic fatty liver disease,
and emulsifiers. In some cases, the model captures
important characteristics about the molecule but
uses differing language. This poses a challenge for
our evaluation metrics. For example, a molecule
identified in the ground truth as an anti tumor agent

is identified as being a cancer treatment by the
model. In particular, the models appear to struggle
with rarer properties, which are common in our
dataset formulation and in the chemical domain
as a whole. They also struggle with identifying
molecule-protein interactions (e.g., “monoamine
reuptake inhibitor”), although Meditron shows a
large performance jump.

For the molecule generation task, we also find
the dataset to be challenging. We show results gen-
erated by different models on never-before-seen
property combinations in Figures 2 and 3. We
believe the difficulty is for two reasons. First, com-
mon property combinations may have structurally
very different molecules which exhibit those prop-
erties, making evaluation difficult. Second, the
model may not grasp rare properties well. Overall,
this results in the naively finetuned models pro-
ducing similar outputs to many different prompts.
Further, as expected, performance falls on unseen
property combinations and larger models prove
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Ground TruthInput MeditronMolT5-largeMolT5-baseMolT5-small

The molecule is a cytokine
inhibitor, protein kinase
inhibitor, pdk1 inhibitor,
mk2 inhibitor.

Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-c5ccc(-
c6ccccc6)cc6)cc5)cc4)cc3)cc2)cc1

Invalid

The molecule is a aldose
reductase inhibitor, a cox2
inhibitor, and anti
inflammatory.

Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-
c5ccccc5)cc5)cc4)cc3)cc2)cc1

Invalid

Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-
c5ccccc5)cc5)cc4)cc3)cc2)cc1

Invalid

Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-
c5ccccc5)cc5)cc4)cc3)cc2)cc1

Invalid

The molecule has Odor-like
bitter almonds. When
heated to decomposition it
emits toxic fumes of
nitrogen oxides and
cyanides.

The molecule is a
5lipoxygenase inhibitor that
impacts inflammatory
disease treatment.

The molecule is alzheimer's
treatment and it impacts
epilepsy treatment.

Cc1ccc(-c2ccc(-c3ccc(-c4ccc(-
c5ccccc5)cc5)cc4)cc3)cc2)cc1

Invalid

The molecule is a renin
inhibitor, hiv protease
inhibitor, hypertension
treatment, betasecretase
inhibitor.

It has effects on both low
voltage and luminous
efficiency.

Figure 3: Examples of molecules generated by different models for never-before-seen property combinations.

more effective (Table 6).

7 Future Directions

Overall, this dataset proves to be quite challenging.
We find that some specific properties in particu-
lar are challenging for the model. This may be
because the model understands these properties,
but is unwilling to use them in its descriptions due
to the training procedure. This limitation may be
addressed with more sophisticated decoding algo-
rithms or by better finetuning methods. Future
work will also likely benefit from incorporating
other modalities, such as proteins, to provide bet-
ter understanding to the model for some property
types. Notably, certain properties display what
may be emergent behavior; scaling training data or
model size may yield non-linear improvements.

In this dataset, we focus on composition, abstrac-
tion, and function. Future work may also wish to
integrate other recent trends: instruction-following
and dialogue (Fang et al., 2023; Cao et al., 2023;

Zeng et al., 2023; Zhao et al., 2024; Zhang et al.,
2024; Yu et al., 2024), tool use (Boiko et al., 2023;
Bran et al., 2023), additional molecule represen-
tations (e.g., 3D (Tang et al., 2023)), additional
modalities (Xu et al., 2023), or molecule editing
(Su et al., 2022). Further, we note the need for im-
proved evaluation metrics, especially in the case of
molecule generation for function where there may
be many possible outputs. Specific methods for
improving compositionality may be another fruit-
ful avenue for research (Yellinek et al., 2023). It
may also be interesting to use molecule-language
instruction-following models within larger search
frameworks, such as ChemReasoner (Sprueill et al.,
2023, 2024).

8 Conclusion

In this manuscript, we describe the process for
creating the L+M-24 dataset. L+M-24 is designed
to focus on three key benefits of natural language
in molecule design: compositionality, functionality,
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and abstraction. It is the featured shared task at
the First Language + Molecules Workshop at ACL
2024.
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A Prompts and examples for GPT4

• Prompts: You are an expert in the chemical
domain whose task is to create templates to de-
scribe the properties of molecules. You will be
challenged with a list of different cases. Each
case willl have a list of **templates**, and
a **question**. Each template will describe
certain properties. Your goal is to generate a
new template in a sentence based on all the
previous templates.

• Case 1: Templates: - The molecule is a <0>. -
It belongs to the <1> class of molecules. An-
swer: The molecule, characterized as a <0>,
falls under the <1> category of chemical com-
pounds.

• Case 2: Templates: - It has an effect on <2>. -
It impacts <3>. Answer: It impacts <2> and
has an effect on <3>.

• Case 3: Templates: - The molecule is <4>.
- The molecule has a <5>. Answer: The
molecule is <4>. and has a <5>.

• Case 4: Templates: - The molecule is a <0_1>.
- The molecule is a <0_2>. Answer: The

molecule is a <0_1> and exhibits <0_2> prop-
erties.

• Case 5: Templates: - It belongs to the <1_1>
class of molecules. - It belongs to the <1_2>
class of molecules. Answer: The molecule is
in the <1_1> class of compounds, characteriz-
ing it as a member of the <1_2> family.

B Additional Dataset Statistics

Here, we give a brief description of properties in
the dataset. Table 7 shows the number of property-
molecule pairs for different property classes. Fig-
ure 4 breaks the dataset down into different prop-
erty classes. More details can be found in the
dataset repository.

Group Property-Molecule Pair Count
Total 1512865

Biomedical 776712
anti-X 24884

Modulators 2787
Inhibitors 23257
Agonists 1161

Antagonists 3172
Treatments 53070

Disease 316380
Cancer 41456

Inducers 31
Preventive 0

Blocker 47
Drug 260

X-genic 172
X-tropic 17
X-lytic 84

Relaxant 40
Binder 4

Stimulant 60
Depressant 52

health_effect_relations 309532
Light and Electricity 14077

Light 11069
Electricity 3008

Human Interaction 27457
Toxins 1070

organoleptic_effect_relations 20501
Agric. and Industry 694619

X-icides 809
role_relation 693648

Table 7: Number of property-molecule pairs for differ-
ent property groups.
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Figure 4: Breakdown of different property classes in L+M-24.
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Abstract
Pretrained language models (LMs) showcase
significant capabilities in processing molecular
text, while concurrently, message passing neu-
ral networks (MPNNs) demonstrate resilience
and versatility in the domain of molecular sci-
ence. Despite these advancements, we find
there are limited studies investigating the rela-
tionship between molecular structures and their
corresponding textual representations. There-
fore, in this paper, we propose two strategies
to evaluate whether an information integration
can enhance the performance: contrast learn-
ing, which involves utilizing an MPNN to su-
pervise the training of the LM, and fusion,
which exploits information from both models.
Our empirical analysis reveals that the integra-
tion approaches exhibit superior performance
compared to baselines when applied to smaller
molecular graphs, while these integration ap-
proaches do not yield performance enhance-
ments on large scale graphs. Furthermore, we
conduct experiments to assess the impact of
dataset splitting strategies and random seeds on
the overall performance.

1 Introduction

The success of attention mechanisms on sequential
data has introduced a massive family of large lan-
guage models based on Transformer architecture
(Vaswani et al., 2017). It is evident that these large
language models are useful for encoding sequential
objects such as text (Liu et al., 2019), molecules
(Honda et al., 2019), speech (Huang et al., 2021),
and forecasting data (Giuliari et al., 2021). It has
been demonstrated that pretrained molecule lan-
guage models are capable of encoding chemical
elements semantically without learning structures
(Honda et al., 2019; Xia et al., 2022; Chithrananda
et al., 2020; Wang et al., 2019a). Especially for
proteins which function as natural components of
the human body and a representative of molecule
family, they could be efficiently encoded by trans-
former (Rao et al., 2019; Elnaggar et al., 2021;

Rives et al., 2021; He et al., 2021) which acts as
masked language modelers.

In contrast to text, molecules contain inherent
relationships between their elements, indicating
that structural encoding is necessary in addition to
word embeddings. Message passing neural network
(MPNN), emerging as a prominent method for en-
coding structural information in recent years, has
demonstrated its robustness and versatility within
the field of molecular sciences. By leveraging the
2-dimensional topological and 3-dimensional ge-
ometrical information as augmented features (Liu
et al., 2021; Stärk et al., 2022), it is possible to
learn molecular embeddings from structures with-
out sequentially encoding traditional SMILES ex-
pressions.

The advent of MPNNs has promoted the explo-
ration of graph-based learning methods for molec-
ular science. Graph contrastive learning captures
potential different structural distributions to fine-
tune self-learned representations, where both local
and global features are enhanced with chemical
domain expertise (Stärk et al., 2022; You et al.,
2021; Wang et al., 2022). Besides, the success
of GPT (Radford et al., 2018) in traditional natu-
ral language processing tasks also motivates the
research on graph transformers and graph GPT tai-
lored for the molecule domain (Hu et al., 2020b;
Bagal et al., 2021; Rong et al., 2020; Ying et al.,
2021; Zhu et al., 2022). Few studies has been in-
vestigated to appropriately merge text embeddings
and graph embeddings for learning molecule repre-
sentation better. There has been one study which
demonstrated such relationship but with additional
prompting with GPT model (Chen et al., 2024),
which is out of our scope. In this paper, we aim
to explore the interplay between molecular graph
embeddings and SMILE token embeddings. We
propose two categories of techniques for integrat-
ing information: contrast learning and fusion. In
contrast learning-based methods, we incorporate
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Figure 1: Baseline model: language model (LM) and
message passing networks (MPNN). An interaction of
LM and MPNN is investigated in this research.

an MPNN as an auxiliary model to supervise the
training of the language model, operating at node
or graph levels, while we only utilize the language
model for downstream tasks. In fusion-based meth-
ods, we exploit information from both models to
generate outputs for downstream tasks. This is
achieved either by merging the output embeddings
from both models or by integrating the output em-
beddings from one model with the input embed-
dings of the other.

Our main contributions are to as follows:

1. Explore various information integration ap-
proaches to assess the necessity of incorpo-
rating supplementary structural features in
molecular LLMs research, instead of pursuing
state-of-the-art performance.

2. Benchmark a series of combination of
sequential-based methods (LM) and
structural-based methods (MPNN) as
baselines for further research.

2 Related Work

2.1 Molecule Representation Learning

The Simplified Molecular Input Line Entry System
(SMILES) has become a cornerstone in chemin-
formatics, providing a compact and standardized
representation for chemical structures. Conserving
molecular structural information and atom order-
ings, the SMILES descriptor converts a molecule
from its structural representation into a condensed
1-dimensional textual sequence. For example,

a phenol molecule (C6H5OH) is represented as
C1=CC=C(C=C1)O. Similar to the tokenization in
natural language settings, a molecule is expressed
as a sentence and atoms are expressed as words.
This allows efficient utilization of large language
models in chemical research.

2.2 Pretrained Large Language Models
The advent of the transformer architecture
(Vaswani et al., 2023) represents a breakthrough in
the field of natural language processing. Over the
past few years, many excellent pretraining strate-
gies have been proposed, such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019), sig-
nificantly improving the capabilities of the large
language models. As SMILES allows converting
molecular structures into textual sentences, it is
possible to apply language models for molecular
machine learning, which facilitates the research on
pretraining molecular language models.

Based on the implementation of RoBERTa,
ChemBERTa (Chithrananda et al., 2020) employs
chemistry oriented masked-language modelling as
its pretraining strategy, while the improved ver-
sion ChemBERTa-2 (Ahmad et al., 2022) adopts
multi-task regression as another pretraining task
and uses larger training datasets. There are also
other BERT-like transformer models, such as Mol-
BERT (Fabian et al., 2020) and SMILES-BERT
(Wang et al., 2019b), which are pretrained with
different objectives on different molecule datasets.

2.3 Contrastive Learning
Contrastive learning has emerged as a powerful
paradigm in self-supervised learning. Unlike tradi-
tional methods that rely solely on labeled data, this
approach leverages the differences between data to
learn representations. Based on the assumption that
similar instances should be closer in the embedding
space, the objective is to maximize the similarity
between positive data pairs while minimizing the
similarity between negative data pairs. So far, con-
trastive learning has demonstrated efficacy across
diverse domains. A common practice of this ap-
proach is based on data augmentation (You et al.,
2021), where the utilization of unlabeled data en-
hances model generalizability and robustness. Fur-
thermore, this approach is also widely adopted in
the field of multimodality (Radford et al., 2021),
where the availability of different data forms al-
lows leveraging one representation to supervise the
other.
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Figure 2: Contrastive Learning. Above: Node level contrastive learning. Below: Graph level contrastive learning.

3 Methods

We investigate two kinds of information merg-
ing methods: contrast learning-based methods and
fusion-based methods. In contrast learning-based
methods, we use GNN as an auxiliary model to
supervise the training of the language model, while
we only use the language model for downstream
tasks. In fusion-based methods, we make use of in-
formation from both models to generate the output
for downstream tasks. For each kind of method,
we consider different model architectures. In this
section, we will first briefly review the two baseline
models ChemBERTa (Chithrananda et al., 2020)
and NNConv (Gilmer et al., 2017), and then de-
scribe the contrast learning-based methods and the
fusion-based methods.

3.1 Baseline (Fig. 1)

Language Models. We choose ChemBERTa
(Chithrananda et al., 2020) as our baseline model.
The architecture of ChemBERTa is similar to BERT
(Devlin et al., 2019), consisting of an embedding
layer and several encoder layers. A molecule is first
converted into the textual format through SMILES,
and then a SMILES tokenizer is applied to con-
vert the words into input tokens. After embedding
lookup, each token is assigned with an embedding.
Then the encoder layers which consist of a multi-
head self-attention layer and a feed-forward layer
transform the input token embeddings to hidden
state representations. Finally, the task-specific out-
put layer (classifier or regressor) predicts the result.

We ask the ChemBERTa model to produce three-
level information for a molecule. First, node em-

beddings are extracted from the final hidden state
representations. Since the SMILES transformation
preserves atom orderings, each atom in the original
molecule corresponds to a specific output token
embedding. Second, the graph embedding is ex-
tracted from the special token at the beginning of
the sequence. Third, the property prediction result
is the final output.

The entire process can be depicted as follows:

Tokens = Tokenizer(Sequence)

Ein = Embedding(Tokens)

Eout = Encoder(Ein)

N = Eout[Node_Indices]

G = Eout[0]

P = Predictor(G)

(1)

where Ein and Eout represent the input token em-
beddings and final hidden state representations; N ,
G, and P represent the node embeddings, graph
embedding, and property prediction result.

Message Passing Neural Networks. There are
different types of graph neural networks, which
include graph convolution, graph attention and neu-
ral message passing networks (MPNN). Edge at-
tributes or edge features are important in message
passing mechanisms (Johannes et al., 2020; Gilmer
et al., 2017). For the baseline model, we follow
the model setting in the first paper of MPNN for
Quantum Chemistry dataset QM9 (Gilmer et al.,
2017), which iteratively updates the message mt

v
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and the hidden state htv for each node v:

m(t+1)
v =

∑

u∈N (v)

Aggr[h(t)v , h(t)u , euv] (2)

h(t+1)
v = U(h(t)v ,m(t+1)

v ) (3)

Aggr[·] is the function that aggregates neighbor
node u’s information as well as the attributes euv
of the shared edge with u. U(·, ·) updates hidden
states for v.

3.2 Integration 1: Contrastive Learning (Fig.
2)

Node Level Contrastive Learning In order to
compute the constrastive loss, we need a triple
⟨anchor, positive, negative⟩. Anchor and positive
node embeddings are sampled from language mod-
els and message passing networks respectively.
Negative samples are randomly generated from
graphs with a different permutation. For an ex-
ample node triple t = ⟨a, p, n⟩, its corresponding
contrastive learning loss triplet loss is given by:

(4)L(t) = max{d(a, p)− d(a, n) + margin, 0}
where margin is 1.0 and distance measurement
d(i, j) is defined as Lp-norm : d(i, j) = ∥i− j∥p.
p is often set to 2 as an Euclidean distance metric.
In aM mini-batch of training graphs (number of
N nodes) with K triples, the triplet loss is given
by:

(5)L =

M∑

m=1

⌈N
K ⌉−1∑

i=0

K∑

j=1

max{d(amk , pmk )

− d(amk , nm
k ) + margin, 0}

where k = |K|i + j. Consider a binary classifi-
cation problem, as mentioned we need to perform
Readout function to obtain the global information
of a graph. If it is an average function, the total
loss is given by a prediction loss such as negative
log likelihood (NLL) loss, and a regularized triplet
contrastive loss which has been defined above:

L =

M∑

m=1

NLL


MLP


 1

N

⌈N
K ⌉−1∑

i=0

K∑

j=1

amk


 , ym




+ α ·
M∑

m=1

⌈N
K ⌉−1∑

i=0

K∑

j=1

max{d(amk , pmk )

− d(amk , nm
k ) + margin, 0}

(6)

where k = |K|i+ j likewise and α is a regulariza-
tion term.

Graph Level Contrastive Learning. Apart from
establishing negative samples between each pair
of nodes at a fine grained level, we estimate con-
trastive learning at a coarse grained level which
aims at computing the difference between language
model graph embeddings and MPNN graph embed-
dings. This could potentially avoid the situation
that individual nodes with large difference con-
tribute more to the difference of the molecule prop-
erty. Moreover, the complexity is pretty lower than
the complexity of node level comparison, which
will be discussed in part 3.4. Similar to the node
level training loss in (6), the graph level training
loss is defined as:

(7)

L =

M∑

m=1

NLL (MLP (am) , ym) + α′

·
M∑

m=1

max{d(am, pm)− d(am, nm)

+ margin, 0}
where α′ is a regularization term. Note that dif-
ferent molecules could have a similar graph em-
bedding which could lead to a similar quantum
property, for example isomers. And also note that
we use message passing network outputs to self-
supervise (or fine-tune) language model outputs
either in node level and graph level settings. It
means that we do not directly use MPNN outputs
to perform predictions. This is because we want to
see if injecting geometry information of molecules
is beneficial to the end-to-end training of language
models. It is different from the collaborative train-
ing (fusion) which would be introduced in the fol-
lowing parts.

3.3 Integration 2: Fusion (Fig. 3)
Late Fusion Different from self-supervised
learning settings in part 3.2, we introduce another
important interaction between LM embeddings and
MPNN embeddings: late fusion (Sachan et al.,
2021). It is called late fusion since the interac-
tion happens after their corresponding embeddings
hLM and hMPNN are extracted. The interaction is
given by the notation

⊕
, and the prediction is then

given as:

ypred = MLP
(
hLM

⊕
hMPNN

)
(8)

⊕
= {+,max, ∥,⊙} (9)

L =

M∑

i=1

NLL(yipred, y
i) (10)
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Figure 3: Fusion. Top: Late Fusion. Middle: MPNN2LM Joint Fusion. Bottom: LM2MPNN Joint Fusion.

where the interaction contains element-wise addi-
tion, maximization, concatenation and gate func-
tion which is used for building highway layers.

Joint Fusion. Based on the late fusion, we con-
sider two situations: 1) MPNN2LM: fuse initial graph
embeddings and LM outputs ⇒ perform MPNN
downstream tasks, and 2) LM2MPNN: fuse initial to-
ken embeddings and MPNN outputs ⇒ finetune
LM downsteam tasks.

MPNN2LM We initialized the word embedding
for language model: h

(0)
LM. MPNN embedding is

given by hMPNN. Then the fused embedding is
h
(0)
LM

⊕
hMPNN, which would be the input embed-

ding for the pretrained language model. The node
mask is also considered since in part 3.1 we men-
tioned that paddings are added to ensure the same
length of input. After fine-tuning pretrained LM,
we readout the global information h′ to perform
downstream tasks. Overall, the graph embedding
prepared for MLP is:

h′ = Readout
(

LM
(
h
(0)
LM

⊕
hMPNN,mask

))

(11)

LM2MPNN Revisiting how MPNN works by (1)
and (2), the node embedding for v are fused with
the LM output for mask index v: h(t)v

⊕
hLMM(v).

Similar to the neighbor node u, they are fused with
the LM output for mask index u: h(t)u

⊕
hLMM(u).

Then the message is aggregated by:

(12)

m(t+1)
v =

∑

u∈N (v)

Aggr
(
h(t)v

⊕
hLMM(v),

h(t)u

⊕
hLMM(u), euv

)

For the update function U(·, ·), the new update rule:

(13)h(t+1)
v = U

(
h(t)v

⊕
hLMM(v),m

(t+1)
v

)

3.4 Complexity Analysis
Baseline Models. The time complexity for base-
line models are mainly dominated by their cor-
responding model architecture. Assume the in-
put size ∈ RN×d For the pretrained transformer
model, the self-attention module is the bottleneck,
which is bounded by O(N2 · d). Assume that there
are L self-attention layers, then it will increase to
O(N2 · d · L). The complexity for feed forward
layers is O(N · d2 · L). The overall complexity for
baseline LM is then O(N2 · d ·L+N · d2 ·L). For
MPNN, computing each message has a complex-
ity of O(d). The total complexity for the message
passing step is then O(E · d). Updating nodes will
be O(N ·d2). L layers lead to O(L·E ·d+L·N ·d2).
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So it depends on whether the graph is sparse or not.
If graph is sparse, N2 ≫ E, then the complexity of
LM is greater than the complexity of MPNN. This
situation often occurs in real world applications.

Contrastive Learning. For contrastive learning,
apart from the basic complexity for LM and MPNN,
it also includes the complexity for computing con-
trastive loss. Take triplet loss as an example, in
equation (5), the complexity is dominated by the
last term. Assume that computing max only re-
quires O(1). Computing d(·, ·) requires O(d) if the
dimension of inputs is d. Then the overall complex-
ity is O(d ·N) where N is the number of nodes in
the graph. A node level contrastive learning then
requires O(N2 ·d·L+2·N ·d2 ·L+d·N+L·d·E).
For graph level contrastive learning we find that
only complexity of model terms dominates, which
leads to O(N2 ·d ·L+2 ·N ·d2 ·L+L ·d ·E+d),
which is faster than that of node level.

Fusion We simply investigate
⊕

by choosing
max which requires O(1). The element wise max-
imization requires O(N · d) since input size is
N × d. Then the time complexity of late fusion
would be the same as the complexity of nodel level
contrastive learning, which is O(N2 ·d ·L+2 ·N ·
d2 · L+ L · d · (N + E)). MPNN2LM has the same
complexity while LM2MPNN is much more complex
since

⊕
directly affects the complexity of message

passing operation. We already know that the com-
plexity of MPNN is O(E · d). We assume that the
average number of nodes is 2E

N . Then the additional
element wise addition contributions additional
O(E · d), which leads to the overall complexity for
LM2MPNN: O(N2·d·L+2·N ·d2·L+L·d·(N+2E)).

4 Experiment settings

4.1 Dataset

We follow the following paradigm (Luo et al., 2022)
for prediction on quantum chemistry based datasets:
first we perform tests on small scale and classifical
benchmark molecule datasets. In our future works,
we want to test its robustness on large scale and re-
cently proposed benchmarks such as PCQM4Mv2
(Hu et al., 2020a). For small datasets we choose
from MoleculeNet dataset (Wu et al., 2018) which
collects data from physical chemistry, biophysics
and physiology field. It has provided plenty of
molecule datasets to play with (Wu et al., 2018).
For large datasets, we choose QM9 (Gilmer et al.,
2017) as tested in MPNN. The task is to predict

property for each molecule using models in part
3. Selected datasets are HIV, BACE, ESOL and
BBBP (Wu et al., 2018). A simple description of
chosen dataset and task type is listed in table 3.
HIV, BBBP, and BACE are used for binary classi-
fication settings, while ESOL and QM9 are used
for regression settings. For simplicity, we only
choose the first target from all 19 classes, which is
the Dipole moment µ. For the regression problem,
the performance is measured by mean absolute er-
ror (mae). As for the classification, it is measured
by the mean accuracy (acc). Specifically, the pre-
trained ChemBERTa is time-consuming on QM9
and HIV dataset.

4.2 Hyper-parameter settings

There are two pretrained model to choose
from: ChemBERTa and its improved version
ChemBERTa-2. We choose Adam optimizer for
optimizing model parameters with default learn-
ing rate 0.001 when running with pretrained
ChemBERTa-2 (<4G). The initial learning rate is
tuned to 0.0002 when running with ChemBERTa
since the model size is large (>16G) which requires
a small learning rate. We follow a 8:1:1 train-valid-
test ratio for MoleculeNet dataset, and follow an
approximate 21:2:2 train-valid-test ratio for QM9
dataset. Hidden dimension is set to 64. The default
choice for

⊕
is sum (addition). Five fixed seeds

are 0, 7, 42, 100, 2024 for result reproduction.

4.3 Scalability

A single NVIDIA A100 GPU could satisfy all our
experiments. In other words, it is scalable for train-
ing all datasets including large scaled ones. The
maximum usage is observed when running pre-
trained ChemBERTa on HIV dataset. For other
datasets it’s also possible to train on a GeForce
RTX 3090 GPU.

5 Results

Observation 0: Protein language models are
more preferred. A fundamental observation
from experimenting on MoleculeNet is that purely
using message passing neural networks are in-
ferior to language models in molecule property
prediction. This phenomenon is also mentioned
in the previous research work (Xu et al., 2022).
This has indicated some works to include the ge-
ometric properties such as 3D information and
rotation invariant parameters in message passing
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Model HIV (acc.) ↑ BACE (acc.) ↑ BBBP (acc.) ↑ ESOL (mae.) ↓
ChemBERTa 0.9776 ± 0.0021 0.8280± 0.0319 0.9105± 0.0153 0.5529± 0.0332
MPNN 0.9774 ± 0.0022 0.8080 ± 0.0256 0.8737 ± 0.0140 0.6252 ± 0.0072
ChemBERTa contra. MPNN (node) 0.9782 ± 0.0035 0.8280± 0.0271 0.9118 ± 0.0245 0.5326± 0.0534
ChemBERTa contra. MPNN (graph) 0.9774 ± 0.0022 0.8300± 0.0352 0.9131± 0.0307 0.5404± 0.0495
ChemBERTa + MPNN (graph) 0.9778 ± 0.0020 0.8320± 0.0331 0.9065 ± 0.0147 0.5002 ± 0.0339
ChemBERTa←MPNN 0.9773 ± 0.0022 0.8060 ± 0.0422 0.9053± 0.0099 0.4819± 0.0325
ChemBERTa→MPNN 0.9773 ± 0.0022 0.8380± 0.0366 0.9184± 0.0189 0.5561 ± 0.0461

Table 1: Performance of pretrained ChemBERTa on MoleculeNet datasets.

Model HIV (acc.) ↑ BACE (acc.) ↑ BBBP (acc.) ↑ ESOL (mae.) ↓
ChemBERTa-2 0.9792± 0.0018 0.8560± 0.0206 0.9171± 0.0136 0.4738 ± 0.0330
MPNN 0.9774 ± 0.0022 0.8010 ± 0.0392 0.8737 ± 0.0140 0.6252 ± 0.0072
ChemBERTa-2 contra. MPNN (node) 0.9791± 0.0011 0.8620 ± 0.0256 0.9290± 0.0128 0.4393 ± 0.0338
ChemBERTa-2 contra. MPNN (graph) 0.9800± 0.0017 0.8540 ± 0.0258 0.9197± 0.0163 0.4643 ± 0.0354
ChemBERTa-2 + MPNN (graph) 0.9791± 0.0012 0.8680± 0.0293 0.9263± 0.0113 0.4493± 0.0328
ChemBERTa-2←MPNN 0.9772± 0.0016 0.8400 ± 0.0374 0.8974± 0.0098 0.5012 ± 0.0335
ChemBERTa-2→MPNN 0.9789± 0.0012 0.8480± 0.0204 0.9224± 0.0141 0.4516± 0.0264

Table 2: Performance of improved pretrained ChemBERTa-2 on MoleculeNet datasets.

Name #graphs #nodes #features #classes
HIV 41,127 ∼25.5 9 1
BBBP 2,050 ∼23.9 9 1
BACE 1,513 ∼34.1 9 1
ESOL 1,128 ∼13.3 9 1
QM9 130,831 ∼18.0 11 19

Table 3: Descriptions of selected datasets from Molecu-
leNet

networks to reinforce its prediction and expres-
sive power. The explanation of this phenomenon
would be that 1) model size of either ChemBERTa-
1 or ChemBERTA-2 model is larger than the
size of message passing networks and 2) either
ChemBERTa-1 or ChemBERTA-2 model has been
pretrained on some more larger datasets for exam-
ple ZINC dataset, while message passing networks
do not follow the pretraining scheme of large lan-
guage models.

Observation 1: Integration on relatively small
graphs are more preferred. Using the pretraind
ChemBERTa-2, we found that both contrastive
learning and fusion methods outperform baseline
models in ESOL, BACE, and BBBP where they
are relatively small compared with QM9 and HIV
datasets. Especially, node level contrastive learning
performs the best and it seems to be robust among
all tasks, followed by late fusion methods and joint
fusion methods when injecting LLM to MPNNs.
In large dataset, the tuning strategy might influ-
ence the potential performance, where it splits the
dataset in a better way therefore we perform one
ablation regarding train test split (in section 6) to
avoid the difference that brought by dataset itself.

Observation 2: Integration w.r.t both regression
and classification are useful. In terms of train-
ing convergence, we observe that the accuracy or
mean absolute error converges quickly to a high or
low score respectively. For small graph datasets
BACE and BBBP on graph classification prob-
lem, an improvement of ≈1% on average accuracy
is observed with method MPNN2LM for pretrained
ChemBERTa. For version 2, 1.4% improvement is
observed with late fusion on BACE and 1.3% im-
provement is observed with node contrastive learn-
ing on BBBP . For small graph dataset ESOL on
regression problem, a great improvement is ob-
served where 12.8% improvement on mae with
MPNN2LM method with pretrained ChemBERTa,
and 7.3% improvement on mae with MPNN2LM
method with pretrained ChemBERTa-2. For HIV,
we observe a little improvement with node level
contrastive learning. Using a combination of LLM
representation and graph representation during the
training would make the prediction worse. For
QM9, most of the injection / fusion methods would
potentially improve the performance except for
MPNN2LM fusion. Using LM2MPNN would
potentially improve 8.6 %. We found that pure
MPNN’s performance is better than the perfor-
mance of a chemical LLM (table 4).

Observation 3: Pretrained language models are
important for downstream predictions. In com-
parison to ChemBERTa-2, ChemBERTa performs
worse when comparing each entry in table 1 and
table 2. Although we could always try to improve
those two baselines with different injection or fu-
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sion methods, the best of them are not the same.
For example, contrastive learning is much more
preferred to ChemBERTa-2 while fusion methods
are much more preferred to ChemBERTa model.
When it comes with a new pretrained large lan-
guage model, using our proposed method could tell
the similarity between tasks and the model’s pre-
training strategy. As there is no general conclusion
about how a chemical LLM and a MPNN could be
combined to predict the best, it is still a pioneer-
ing area that requires more pretrained models to
test its robustness. To select the most appropriate
pretrained language model for further training, re-
searchers should first integrate a list of pretrained
models, followed by an investigation with different
fusion / injection methods.

Observation 4: Joint Fusion to some extent helps
learn MPNN better but learn original Chemi-
cal LLM worse. We also focus on if such multi-
modal module (Fig. 2, Fig. 3) helps learn individ-
ual module (Fig. 1) better. It improves a lot for
single MPNN baseline if we consider its language
level information as augmented features. For ex-
ample, for BACE dataset, MPNN has an average
accuracy of 0.808 with ChemBERTa. With inject-
ing pretrained language information, an improve-
ment of 3.7% is observed (LM2MPNN). How-
ever, it might not work very well on the opposite
when we inject information from MPNN to LLM.
For simplicity we just examined with pretrained
ChemBERTa-2. For ESOL dataset, it decreased
from 0.4738 to 0.5012 (5.78%). For BBBP dataet,
it decreased from 0.9171 to 0.8974 (2.15%). We
further suggest that the researchers should not di-
rectly use the structural information from graphs
as additional input when they want to modify their
LLM models, but trying to leverage them as auxil-
iary ground-truth to finetune the token embeddings.

Model QM9 (target = 0)
ChemBERTa-2 baseline 0.4825 ± 0.0113
MPNN baseline 0.4669 ± 0.0065
ChemBERTa-2 contra. MPNN (node) 0.4613 ± 0.0065
ChemBERTa-2 contra. MPNN (graph) 0.4662 ± 0.0046
ChemBERTa-2 + MPNN (graph) 0.4596 ± 0.0078
ChemBERTa-2←MPNN 0.5231 ± 0.0083
ChemBERTa-2→MPNN 0.4409 ± 0.0048

Table 4: Performance of improved pretrained
ChemBERTa-2 on QM9 dataset.

6 Ablation Study

Effects of datasets. We choose another dataset
in MoleculeNet to certify that the proposed models
are still robust on this dataset. Take FreeSolv as an
example, we figure out that none of the injection or
contrastive learning methods is still robust on this
regression task. Even if late fusion performs the
best which has an average mae of 0.6568, which is
close to the result of pure chemical LLM training
(0.6420), there’s still a 2.3% decrease in perfor-
mance. Both LM2MPNN and MPNN2LM did not work
well, but it still commits to our fourth main obser-
vation, which is that injecting token embeddings
into message passing layers would still improve
the performance, but injecting structural informa-
tion into word embeddings would be a bad idea. A
potential reason is that FreeSolv is too small. We
suggest that researchers should be careful when
fine-tuning the individual language model with ad-
ditional structural features.

Model FreeSolv (mae.) ↓
ChemBERTa-2 baseline 0.6420 ± 0.0814
MPNN baseline 0.9904 ± 0.1375
ChemBERTa-2 contra. MPNN (node) 0.6642 ± 0.0600
ChemBERTa-2 contra. MPNN (graph) 0.6745± 0.0995
ChemBERTa-2 + MPNN (graph) 0.6568± 0.0658
ChemBERTa-2←MPNN 0.9188 ± 0.0686
ChemBERTa-2→MPNN 0.7475± 0.0805

Table 5: Performance of improved pretrained
ChemBERTa-2 on FreeSolv dataset

Effects of dataset split. We want to figure out
if different splits of training, validation and test
datasets lead to different performance. We run
on BBBP (classification) and ESOL (regression).
Four ratios are considered: 9:0.5:0.5, 8:1:1, 7:2:1,
and 6:2:2. Model prediction power is highest at a
ratio of 8:1:1 for ESOL while the prediction power
is reducing for BBBP when ratio of training sets is
decreasing.

Train test split BBBP (acc.) ↑ ESOL (mae.) ↓
9: 0.5 : 0.5 0.9500 ± 0.0174 0.4672 ± 0.0338
8 : 1 : 1 0.9290± 0.0128 0.4393 ± 0.0338
7 : 2 : 1 0.9211 ± 0.0110 0.4837 ± 0.0447
6 : 2 : 2 0.9152 ± 0.0032 0.4947 ± 0.0060

Table 6: Model (node level contrast.)

Effects of different fusion operations
⊕

We
first follow the default train valid test split of 8:1:1.
As mentioned, there are four fusion operations

⊕
,
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which are max, sum, concatenation and gate func-
tion. Our default fusion operation is sum function.
Surprisingly we found that concatenation and max
function are better fusion choice for both BBBP
and ESOL. We suggest that researchers could sim-
ply concatenate token embeddings and graph em-
beddings together.

Fusion Operation BBBP (acc.) ↑ ESOL (mae.) ↓
sum 0.9263± 0.0113 0.4493± 0.0328
max 0.9289 ± 0.0146 0.4281 ± 0.0339
concate 0.9289 ± 0.0241 0.4255 ± 0.0335
gate 0.9224 ± 0.0197 0.4363 ± 0.0354

Table 7: Model: Late Fusion

Effects of different graph neural networks As
mentioned in section 3, there are three types of
graph neural networks in mainstream GNN re-
search, which are graph convolution (GraphConv),
message passing neural networks (MPNN), and
graph attention networks. We substitute MPNN
with with a two-layer GraphConv model to see if
MPNN is much better than other types of GNN for
baselines. The results show that MPNN is more
preferred to BBBP but GraphConv is more pre-
ferred to ESOL. Overall the difference would not
be too large for a graph convolution network and
a neural message passing layer therefore we sug-
gest researchers try out both ways to improve the
results.

Fusion Operation BBBP (acc.) ↑ ESOL (mae.) ↓
MPNN 0.9289 ± 0.0146 0.4281 ± 0.0339

GraphConv 0.9237 ± 0.0148 0.4144 ± 0.0252

Table 8: Model: Late Fusion

7 Conclusion

In this paper, we delved into various information
integration approaches to assess whether the col-
laborative utilization of chemical large language
models (chemical LLMs) and message passing neu-
ral networks (MPNNs) surpasses the individual
efficacy of these models. We evaluated the integra-
tion approaches over different graph scales on both
classification and regression tasks. Our empirical
analysis has demonstrated that the integration ap-
proaches outperform the baselines on small-scale
graphs but do not yield improvements on datasets
of larger scales. Furthermore, we have found that
differences in dataset splitting strategies, and ag-
gregation choices in fusion have an impact on the

overall performance. We wish to extend our pro-
posed methods on large scale benchmark datasets
such as PCQM4Mv2 (Hu et al., 2020a).
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Abstract

The field of chemistry and Artificial Intelli-
gence (AI) intersection is an area of active re-
search that aims to accelerate scientific discov-
ery. The integration of large language models
(LLMs) with scientific modalities has shown
significant promise in this endeavour. How-
ever, challenges persist in effectively address-
ing training efficacy and the out-of-distribution
problem, particularly as existing approaches
rely on larger models and datasets. In this con-
text, we focus on machine language-molecule
translation and deploy a novel training ap-
proach called contrastive preference optimisa-
tion, which avoids generating translations that
are merely adequate but not perfect. To ensure
generalisability and mitigate memorisation ef-
fects, we conduct experiments using only 10%
of the data. Our results demonstrate that our
models achieve up to a 32% improvement com-
pared to counterpart models. Finally, we intro-
duce a fine-grained, domain-agnostic evalua-
tion method to assess hallucination in LLMs
and promote responsible use.

1 Introduction

The world is facing unprecedented complexity in
the form of global challenges such as climate
change, healthcare, and pandemics. Innovative
scientific solutions are urgently needed to address
these challenges. Chemistry has been at the fore-
front of developing such solutions, pioneering new
drugs (Ferguson and Gray, 2018), creating ad-
vanced materials (Kippelen and Brédas, 2009), or
enhancing chemical processes (Zhong et al., 2023).
However, these frontiers are vast and require the
involvement of Artificial Intelligence (AI) technol-
ogy to navigate them effectively.

Large language models (LLMs) have shown
promising potential for accelerating scientific dis-
covery across various domains, including chem-
istry, biology, and materials science (Zhang et al.,

2023; AI4Science and Quantum, 2023). Exist-
ing work has applied successful paradigms from
natural language processing (NLP) and multi-
modal representation learning to the chemistry do-
main. One common approach involves convert-
ing the inherent three-dimensional structures of
molecules into SMILES, which provide a map-
ping to symbolic character-level representations.
Subsequently, researchers have explored learning
language-molecule representations either in sepa-
rate yet coordinated spaces (Edwards et al., 2022,
2021; Liu et al., 2023a), in a joint space (Liu et al.,
2023b), or through hybrid approaches (Luo et al.,
2023; Christofidellis et al., 2023). In light of the re-
cent significant advancements in the field, none of
the above approaches effectively tackle the inherent
challenges in training such models. Instead, they
rely on sparse or noisy synthetic data, often neces-
sitating exponentially more data than is typically
used in NLP tasks (Edwards et al., 2024).

However, training on larger models and datasets
does not necessarily guarantee higher performance.
A successful paradigm that augments the capa-
bilities of LLMs across multiple NLP tasks is
Reinforcement Learning with Human Feedback
(RLHF) (Ouyang et al., 2022). Although initially
challenged by issues of slowness and instability,
recent research has addressed many of these chal-
lenges by shifting towards closed-form losses that
operate directly on offline preference data (Rafailov
et al., 2024). RLHF has demonstrated superior per-
formance compared to standard minimising cross-
entropy optimisation approaches.

In this context, we address challenges related to
effectively training robust language models when
integrated with scientific modalities. We deploy a
novel way of training LLMs for language-molecule
translation that avoids generating translations that
are only adequate but not perfect, called contrastive
preference optimisation (CTO) (Xu et al., 2024).
CTO is based on offline preferences instead of su-
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pervised fine-tuning, mimicking reference transla-
tions. To ensure that our models can effectively
generalise instead of memorising patterns, we con-
duct experiments using only 10% of the L+M-24
dataset (Edwards et al., 2024). Our contributions
have as follows:
• Our models achieve significant performance im-

provements across various evaluation metrics
compared to models trained on extensive in-
distribution and out-of-distribution data (§ 4.4).

• We showcase their robustness through experi-
ments comparing pivot and minor cross-modals.
Our empirical results demonstrate that our mod-
els consistently outperform the leading baseline,
Meditron, which is trained on the entire dataset,
even in agnostic cross-modal scenarios (§ 4.4).

• We propose a fine-grained evaluation method that
is domain-independent, assessing factual con-
sistency in generated captions using a question-
answering evaluation metric and measuring over-
laps of unigrams in generated molecules against
references (§ 3.3). Our analysis shows that our
models achieve improved factual consistency and
character-level unigram overlaps for caption and
molecule generation (§ 4.5).

2 Background

Reinforcement Learning with Human Feedback
(RLHF) optimisation (Ouyang et al., 2022) oper-
ates with a triple dataset D = {x, yw, yl}, where
yw and yl represent preferred and dis-preferred out-
puts, corresponding to input x, such that yw ≻ yl
for x. The probability of yw over yl in pair-
wise comparisons is typically computed using the
Bradley-Terry model (Bradley and Terry, 1952):

p∗(yw ≻ yl|x) = σ(r∗(x, yw)− r∗(x, yl)) (1)

where σ is the logistic function, and r∗ denotes the
reward function that underlies the preferences.

As obtaining the reward directly from a human
would be prohibitively expensive, a reward model
rϕ is trained to act as a surrogate by minimising
the negative log-likelihood of the preference data:

L(rϕ) = −E(x,yw,yl)∼D[log σ(rϕ(x, yw)−rϕ(x, yl))]
(2)

Additionally, the Kullback-Leibler (KL) divergence
between the outputs generated by πref and the pa-
rameterised πθ models serves as an additional re-
ward signal, ensuring that the generated responses
closely align with the reference model. Conse-

quently, an optimal model πθ is one that max-
imises:

E(x∈D,y∈πθ)[rϕ(x, y)]−βDKL(πθ(y|x)||πref(y|x))
(3)

where β is the temperature parameter typically ∈
[0.1, 0.5].

RLHF can present challenges due to its inherent
slowness and instability, especially in distributed
settings (Zheng et al., 2024). Recent work has
shifted towards closed-form losses to align LLMs
with human preferences. Here, we experiment with
contrastive preference optimisation that adopts a
closed-form loss for RLHF.

3 Methodology

3.1 Task Formulation
Let (x, y) be a pair of source and target sequences
mapped to X and Y spaces, respectively. We cast
the problem of language-molecule translation as a
cross-modal translation task that operates on offline
preference data D = {x(i), y(i)w , y

(i)
l }Ni=1, where x

is an input, yw are preferred (e.g. human gold
standard) and yl dis-preferred outputs (typically
synthetic, obtained from an appropriate translation
model), and N is the total number of pairs. The
goal is to learn an optimal function f : X ↔ Y
through a model πθ parameterised by θ. We coordi-
nate the two spaces through instructional modelling
to regulate the translation process in both directions.
Specifically, for LMolT, we use instructions for
language-to-molecule and molecule-to-language
translation (see Appx. A).

3.2 Contrastive Preference Optimisation
Contrastive preference optimisation (CTO) (Xu
et al., 2024) addresses challenges stemming from
the inherent limitation in RLHF, as discussed in § 2,
and from the necessity of high-quality data. CTO
is a general approximation of Eq. 3 using a uniform
reference model, which assumes equal likelihood
for all possible generated outputs:

L(πθ;U) = −E(x,yw,yl)∼D[
log σ

(
β log πθ(yw|x)− β log πθ(yl|x)

)]
(4)

where πθ is parameterised model by θ and β hyper-
parameter (please refer § 2). Eq. 4 implies that the
loss is calculated based on how well the generated
translations match this uniform distribution of pos-
sible translations, rather than being biased towards
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any particular translation. To maintain πθ close to
the preferred data distribution, a behaviour cloning
(BC) (Hejna et al., 2023) regulariser is introduced:

min
θ
L(πθ, U) s.t.

E(x,yw)∼D

[
KL(πw(yw|x)||πθ(yw|x))

]
< ϵ, (5)

Here, ϵ denotes a small positive constant, and KL
signifies the Kullback-Leibler divergence. The reg-
ulariser is enhanced with an additional SFT term
on the preferred data, bolstering the CPO loss as:

LCPO = min
θ
L(πθ, U)︸ ︷︷ ︸

Lprefer

−E(x,yw)∼D[ log πθ(yw|x)]︸ ︷︷ ︸
LNLL

(6)

3.3 Proposed Evaluation Methodology

Prior studies have utilised embedding represen-
tations, for assessing the semantics in chemical-
domain models (Jaeger et al., 2018; Edwards et al.,
2021; Christofidellis et al., 2023). However, these
approaches require domain adaptation for out-of-
distribution data (Edwards et al., 2024) and might
lead to opaque and arbitrary outcomes (Steck et al.,
2024). We address these limitations by introducing
a scalable fine-grained evaluation methodology for
assessing the presence of hallucinations1 in gener-
ated outputs.

Language Evaluation: For molecule-to-
language translation, we deploy the QAFactE-
val (Fabbri et al., 2022) metric to evaluate
the factual consistency of generated captions.
QAFactEval first selects noun phrases and named
entities (NER) from the generated outputs. A
question generation (QG) model then formulates
associated questions, which a question answering
(QA) model addresses based on the reference
text. QAFactEval measures the semantic overlap
between the QA model’s responses and the
selected answers to produce the final metric score.
An example is illustrated in Fig. 1. Here, we
report the semantic overlap, the f1 accuracy
between the QA model and the selected answer,
and answerability, which is the probability of the
question being answered by the reference caption.

1Hallucination in LLMs refers to a phenomenon where the
generated outputs are inaccurate, nonsensical, or contradictory
to the provided factual information.

Reference Caption
It belongs to the orexin receptor modulator class of molecules.

Generated Caption
The molecule is an antiviral.

Selected Answer 
an antiviral

Generated Question
What is the molecule?

QA Output
Orexin receptor modulator

Scores
Overlap: 0.5, f1: 0.0, Is answered: 0.5

Figure 1: A toy example illustrating a factual incon-
sistency between a generated and a reference caption.
The QAFactEval metric selects a noun-phrase answer
from the generated caption. A QG model then gener-
ates an associated question that a QA model answers
based on the reference caption. The scores measure the
semantic overlap between the QA model’s answer and
the selected answer from the generated caption

Molecule Evaluation: For language-to-molecule
translation, we employ the Chr-F metric, an F-score
statistic, to evaluate character n-gram matches be-
tween prediction-reference pairs (Popović, 2015).
This metric assesses the matches in generated
molecules against their references by averaging the
scores of unigram, bigram, and trigram matches. A
higher Chr-F score indicates better performance.

Bias Evaluation: We also calculate the charac-
ter and token length bias in generated-reference
pairs of molecules and captions, respectively, to
investigate potential length bias in the evaluated
LLMs.

4 Experiments

4.1 Data

We conduct experiments on the L+M-24 bench-
mark dataset, which encompasses both molecule
and linguistic modalities (Edwards et al., 2024). It
is divided into four categories, each with significant
applications in small-molecule domain; biomedi-
cal; light and electricity; human interaction and
organoleptics; and agriculture and industry. The
training and validation subsets consist of approxi-
mately 127k and 34k language-molecule pairs, re-
spectively. Here, we utilise 10% of these subsets
for training and validation. To operationalise CTO,
we recreate a triples dataset consisting of preferred
and dis-preferred outputs (see § 2), where the for-
mer are the golden references and the latter are
generated from MolT5 (Edwards et al., 2022). For
evaluation, we randomly selected 3k unseen pairs
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from a distinct dataset provided by the research
group of L+M-24.2

4.2 Bechmark Models
We compare our results with established language-
molecule models as captured in the literature:
• TxtChem-T5 (Christofidellis et al., 2023): A T5

model trained on both linguistic and molecule
modalities with a multi-task objective across vari-
ous datasets, including the CheBI-20 dataset (Ed-
wards et al., 2022), akin to L+M-24.

• Chem-LLM (Zhang et al., 2024): An InternLM2-
Base-7B model, trained on an extensive chem-
ical domain knowledge dataset, with the direct
preference optimisation objective (Rafailov et al.,
2024), achieves results comparable to GPT-4.

• Meditron (Chen et al., 2023): A Meditron-7B
model fine-tuned on the entire L+M-24 for unidi-
rectional language-molecule translation.

• SFT-Meditron: We fine-tune Meditron-7B on a
10% subset of L+M-24 for bi-directional machine
language-molecule translation.

4.3 Experimental Settings
Here, we train Meditron with CTO on a 10% sub-
set of L+M-24. We experiment with both language
and molecule weight initialisation obtained from
Meditron trained on the entire data (Edwards et al.,
2024). We refer to them as CTO-Meditron−−→

Lan.
and CTO-Meditron−−→

Mol.
, respectively. We train the

models with QLoRA (Dettmers et al., 2024). For
evaluation, we adopt established metrics in (Ed-
wards et al., 2022).

4.4 Experiment Results
Table 2 presents a summary of the molecule-
to-language results. We observed a significant
decrease in performance for benchmark models
trained on extensive data with SFT when tested
on out-of-distribution data. Among the baseline
models, Meditron demonstrated the highest per-
formance, likely due to its training on the entire
L+M-24 dataset utilised in our experiments. Train-
ing Meditron with SFT for bi-directional language-
molecule translation has demonstrated neither ef-
fectiveness (see Table 1) nor efficiency (refer to
Appx. B). This suggests that the performance in
our experiments is not dependent on memorised
patterns from Meditron trained on the entire dataset.
In contrast, our models trained with the CTO objec-
tive on only 10% of L+M-24 achieved a remarkable

2Sampling is conducted from a distinct subset.

improvement in performance across diverse eval-
uation metrics, up to 32% compared to Meditron
trained on the entire dataset. This improvement
is consistent, as our model consistently enhances
performance when initialised from agnostic cross-
modals, i.e., CTO-Meditron−−→

Lan
in Table 1.

We observed similar performance patterns for
language-to-molecule translation as reported in Ta-
ble 2. However, even though our model achieved
better performance compared to Meditron when
initialised from agnostic cross-modals, it struggled
to learn molecular patterns (see CTO-Meditron−−→

Mol.
in Table 2). This suggests that language plays a piv-
otal role in the molecule modality. In the future, we
aim to explore more advanced initialised methods
to address this challenge.

4.5 Evaluation Results

Fig. 2 illustrates the evaluation results on the fac-
tual consistency of generated captions against ref-
erences for the molecule-to-language task. CTO-
Meditron−−→

Mol.
, trained on 10% of the available data,

exhibited superior factual consistency, achieving a
semantic overlap of 2.08, f1 accuracy of 0.34, and
answerability of 0.68, compared to 1.34, 0.20, and
0.51, respectively, for Meditron trained on the en-
tire dataset. CTO-Meditron−−→

Lan.
also outperformed

Meditron but showed lower performance than CTO-
Meditron−−→

Mol.
. We attribute this to the model being

initialised by agnostic cross-modals.

Meditron CPO-Meditron-Lan CPO-Meditron-Mol

(A) Semantic overlap

(B) F1 accuracy

(C) Answerability 

Figure 2: Factual consistency in generated captions
against references, assessed through (A) semantic over-
lap, (B) F1 accuracy, and (C) answerability using
QAFactEval (§ 3.3) across various LLMs.
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Model Blue-2 ↑ Blue-4 ↑ Rouge-1 ↑ Rouge-2 ↑ Rouge-L ↑ METEOR ↑
TxtChem-T5 0.08 0.09 0.19 0.06 0.17 0.16
Chem-LLM 0.03 0.00 0.11 0.02 0.09 0.14

Meditron 0.42 0.30 0.63 0.47 0.49 0.54
SFT-Meditron 0.37 0.26 0.54 0.39 0.38 0.60

CTO-Meditron−−→
Lan

0.62 (+0.20) 0.45 (+0.15) 0.67 (+0.03) 0.50 (+0.03) 0.48 (-0.01) 0.62 (+0.08)
CTO-Meditron−−→

Mol
0.74 (+0.32) 0.53 (+0.23) 0.76 (+0.10) 0.56 (+0.09) 0.53 (+0.04) 0.71(+0.17)

Table 1: Molecule-to-language translation results. Arrows next to metrics indicate the higher value the better
performance. Numbers in parentheses show deviations from Meditron trained on the entire dataset.

Model BLEU ↑ Exact ↑ Levenshtein ↓ MACCS FTS ↑ RDK FTS ↑ Morgan FTS ↑ FCD ↓ Validity ↑
TxtChem-T5 0.18 0.00 133.29 0.21 0.10 0.03 37.67 0.58
Chem-LLM 0.04 0.00 732.74 0.00 0.00 0.00 59.44 0.19

Meditron 0.43 0.00 66.16 0.35 0.29 0.19 13.64 0.57
SFT-Meditron 0.30 0.00 186.99 0.70 0.62 0.41 11.14 0.98

CTO-Meditron−−→
Lan.

0.71 (+0.28) 0.00 42.65 (-23.51) 0.78 (+0.43) 0.70 (+0.41) 0.48 (+0.29) 4.19 (-9.45) 1.00 (+0.43)
CTO-Meditron−−→

Mol.
0.52 (+0.09) 0.00 76.95 (+10.43) 0.52 (+0.17) 0.49 (+0.20) 0.37 (+0.18) 27.39 (+13.75) 0.58 (+0.01)

Table 2: Language-to-molecule translation results. Arrows next to metrics indicate whether higher or lower values
denote better performance. Numbers in parentheses show deviations from Meditron trained on the entire dataset.

For the language-to-molecule task, we observed
that both Meditron−−→

Lan.
and Meditron−−→

Mol.
achieved

similar performance in terms of uni-, bi-, and
tri-gram overlaps between generated and refer-
ence pairs, outperforming Meditron (see Fig. 3).
However, when the model was initialized with
known cross-modal weights, i.e., Meditron−−→

Lan.
, it

achieved a slightly increased performance

Meditron CPO-Meditron-Lan CPO-Meditron-Mol

Char-F

Figure 3: Overlaps of n-gram matches between gener-
ated and reference molecules as captured by the char-F
(§ 3.3) score across various LLMs.

For the language-to-molecule task, we observed
that Meditron and Meditron−−→

Mol.
generated signifi-

cantly shorter and longer outputs, respectively (see
Fig. 4). In contrast, Meditron−−→

Lan.
did not exhibit

any length bias, producing outputs similar in length
to the actual ones. Conversely, for the molecule-
to-language task, our models did not show any
significant length bias, while Meditron, trained on
the entire dataset, generated significantly shorter
answers against references.

Meditron CPO-Meditron-Lan CPO-Meditron-Mol

(A) Character-level length deviation between generated and reference molecules.

(B) Token-level length deviation between generated and reference captions.

Figure 4: Length-bias across different LLMs.

5 Conclusion

This work address training efficacy and the out-
of-distribution problem for automatic language-
molecule translation. We train models using only
10% of available data and deploying contrastive
preference optimisation which avoids generating
translations that are merely adequate but not per-
fect. We achieve significant improvement in perfor-
mance when compared with models trained on ex-
tensive in and out-of-the-distribution data. Finally,
we propose a fine-grained, domain-agnostic evalu-
ation method to assess hallucination in LLMs. Our
models show superior factual consistency for cap-
tion generation and character-level unigram over-
laps for molecule generation.
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Maja Popović. 2015. chrf: character n-gram f-score for
automatic mt evaluation. In Proceedings of the tenth
workshop on statistical machine translation, pages
392–395.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Harald Steck, Chaitanya Ekanadham, and Nathan
Kallus. 2024. Is cosine-similarity of embed-
dings really about similarity? arXiv preprint
arXiv:2403.05440.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024. Contrastive prefer-
ence optimization: Pushing the boundaries of llm
performance in machine translation. arXiv preprint
arXiv:2401.08417.

Di Zhang, Wei Liu, Qian Tan, Jingdan Chen, Hang
Yan, Yuliang Yan, Jiatong Li, Weiran Huang, Xi-
angyu Yue, Dongzhan Zhou, et al. 2024. Chemllm:
A chemical large language model. arXiv preprint
arXiv:2402.06852.

X Zhang, L Wang, J Helwig, Y Luo, C Fu, Y Xie,
M Liu, Y Lin, Z Xu, K Yan, et al. 2023. Artifi-
cial intelligence for science in quantum, atomistic,
and continuum systems. arxiv 2023. arXiv preprint
arXiv:2307.08423.

27



Chen Zheng, Ke Sun, Hang Wu, Chenguang Xi, and
Xun Zhou. 2024. Balancing enhancement, harm-
lessness, and general capabilities: Enhancing con-
versational llms with direct rlhf. arXiv preprint
arXiv:2403.02513.

Ming Zhong, Siru Ouyang, Yizhu Jiao, Priyanka Kar-
gupta, Leo Luo, Yanzhen Shen, Bobby Zhou, Xi-
anrui Zhong, Xuan Liu, Hongxiang Li, et al. 2023.
Reaction miner: An integrated system for chemical
reaction extraction from textual data. In Proceedings
of the 2023 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 389–402.

A Language-molecule Translation
Instructions

Below is an instruction that describes a task, paired
with an input that provides further context.
Write a response that appropriately completes the
request.

### Instruction: You are a researcher. You
can come up captions based on your existing
knowledge.
Captions are given against the following input. You
should be as detailed as possible.

### Input: Molecule: {source molecule}
In that molecule, could you formulate a caption
about?

### Response:{target caption}

Figure 5: Instruction for molecule to language transla-
tion, i.e., M → L

Below is an instruction that describes a task, paired
with an input that provides further context.
Write a response that appropriately completes the
request.

### Instruction: You are a researcher. You
can come up molecule smile strings based on your
existing knowledge.
Molecule smile strings are given against the
following input. You should be as detailed as
possible.

### Input: Caption: {source caption}
In that caption, could you generate a molecule smile
string?

### Response: {target molecule}

Figure 6: Instruction for language to molecule transla-
tion, i.e., L→M

B Training Effectiveness and Efficiency

Figure 7: Training convergence

Figure 8: Training efficiency

Figure 9: Validation loss
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Abstract

Solving a problem outside the training space,
i.e. extrapolation, has been a long problem in
the machine learning community. The current
success of large language models demonstrates
the LLM’s extrapolation ability to several un-
seen tasks. In line with these works, we evalu-
ate the LLM’s extrapolation ability in the chem-
ical domain. We construct a data set measuring
the material properties of epoxy polymers de-
pending on various raw materials and curing
processes. LLM should predict the material
property when novel raw material is introduced
utilizing its chemical knowledge. Through ex-
periments, LLM tends to choose the right di-
rection of adjustment but fails to determine the
exact degree, resulting in poor MAE on some
properties. But LLM can successfully adjust
the degree with only a one-shot example. The
results show that LLM can extrapolate to new
unseen material utilizing its chemical knowl-
edge learned through massive pre-training.

1 Introduction

Marcus (1998) depicted two aspects of the gen-
eralization: interpolation and extrapolation. The
interpolation targets a problem within the training
space, while the extrapolation targets the outside.
Despite the rapid development of machine learn-
ing technology, even a modern deep-learning-based
model struggles to extrapolate on some tasks that
humans find easy (Lake and Baroni, 2018, Barrett
et al., 2018 and Saxton et al., 2019).

Human reasoning involves the extrapolation abil-
ity (Webb et al., 2020), especially for knowledge
discovery. Mitchell et al. (2018) exemplified Hal-
ley’s prediction on the return of a comet: it was
possible thanks to Newton’s inverse square law of
gravity and would be difficult with pre-Newtonian
models. Newton found laws that went beyond sim-
ply maximizing the fit to the known set of planetary

* corresponding author

bodies (Mitchell et al., 2018), unlike usual machine
learning models.

The current success of large language models
(LLMs) shows hints of their extrapolation ability.
Conneau and Lample (2019) reported that fine-
tuning a multilingual language model on a mono-
lingual classification data set can result in a strong
multilingual classifier, which has never seen a mul-
tilingual classification data set. Wei et al. (2022)
introduced an instruction tuning framework: by
training LLM on multiple tasks to follow human
instructions, the LLM shows improved zero-shot
performance on several unseen tasks. These results
suggest an emergent extrapolation ability of LLM
utilizing its representation power learned through
massive pre-training.

In this paper, we explore the extrapolation abil-
ity of LLM in the chemical domain. Our main
research question is Can LLM perform the extrap-
olation utilizing its internal chemical knowledge?
To examine this question, we suggest a novel task
regressing material properties of epoxy polymers
when a novel raw material is introduced. LLM
should infer the effect of novel raw material on the
epoxy polymer from natural language descriptions
or SMILES.

2 Related Works

Several researchers adopted an LLM to the
chemical domain by training it on a chemistry-
related corpus. Fang et al. (2024) introduced a
data set for instruction tuning including various
molecule/protein-oriented tasks. Cao et al. (2023)
and Zhao et al. (2023) integrated the graph structure
of molecules into an LLM to improve its represen-
tation power. Ye et al. (2023) and Zhao et al. (2024)
trained a dialogue model on chemical domain. Our
goal is to verify the chemical ability of an existing
LLM, not suggesting a new foundation model.
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Guo et al. (2023) verified existing LLMs’ abil-
ity on eight chemical tasks from name prediction
to molecule captioning. They showed that GPT-4
(OpenAI, 2024) showed the best performance on
most tasks showing comparable performance with
SOTA, task-specific models. Our work is an exten-
sion of their work while differing on two points: (1)
Their work focused on molecule-level tasks, while
our work is compound-level. As more informa-
tion should be considered, compound-level tasks
require more complex reasoning than the molecule-
level. (2) Unlike classic tasks, we focus on the ex-
trapolation ability of an LLM, which is also more
challenging.

3 Problem Statement

Let (X ,Y) be a domain of independent and depen-
dent variables of train data. We have our train data
Dtrain = {(xi, yi)}Ntrain

i=1 , xi ∈ X , yi ∈ Y . Let X ′

be a domain of additional independent variables.
Set a domain of independent variables of test data
as X × X ′. Then we have our test data Dtest =
{(xi, x′i, yi)}Ntest

i=1 , xi ∈ X , x′i ∈ X ′, yi ∈ Y .
Let f : X × X ′ → Y be a model trained

on Dtrain with E(x,y)∼Dtrain
[L(f(x, ϕ), y)],

where L is a loss function. We mea-
sure an extrapolation ability of a model
f as E(x,x′,y)∼Dtest

[L(f(x, x′), y)], when
X

⋂
X ′ = ϕ.

A model should infer the relationship between
x′ and other variables to extrapolate successfully.
Our research hypothesis is Can we utilize LLM’s
internal chemical knowledge for extrapolation, by
providing additional information, e.g. SMILES of
an additional raw material? We test this hypothesis
through experiments in the next section.

4 Experiments

4.1 Experimental Setup
We collect 917 data points with lab experiments
measuring three dynamic mechanical analysis
(DMA) properties, glass transition temperature
(Tg), tan delta peak (δ), and cross-link density (vc).
Each data point contains 6 independent variables re-
garding raw materials (ratio between resin A: resin
B1: resin B2: resin B3: curing agent: catalyst)
and 4 regarding curing processes (first and second
curing temperature and time).

To evaluate the extrapolation ability of LLM, we
construct a regression task. Our goal is to predict
the DMA properties of test data given train data

from a different domain, e.g. different raw materi-
als. LLM should extrapolate the train data utilizing
its chemical knowledge.

We test two extrapolation setups: (1) Additional
epoxy resin. A model should infer the effect of a
new epoxy resin Bi mixed with the original resin
A. (2) Replaced epoxy resin. A model should infer
the effect of a new epoxy resin B2 replacing the
original resin A. In both settings, train data only
utilize the original resin A.

For LLM, we utilize gpt-4-turbo (OpenAI, 2024)
with 10-shot examples for in-context learning. We
select examples based on the cosine similarity of
the feature vector between the train set and each
test data point.

For baselines, we utilize four regression models,
linear regression (LR), ridge regression (RR), ran-
dom forest (RF, Ho, 1995), and XGBoost (XGB,
Chen and Guestrin, 2016). To perform extrapola-
tion with baseline regressors, we use the ratio of
all epoxy resins (A + B1 + B2 + B3) as a proxy
variable.

4.2 Additional Epoxy Resin

Here, we evaluate the extrapolation ability of LLM
for an additional raw material. Train and test data
consists of 4 curing process variables (first and
second curing temperature and time). Also, train
data consists of 3 raw material-related variables as
following:

• Resin A (DGEBA-based oligomer): a stan-
dard liquid bisphenol A epoxy resin with
SMILES CC(C)(C1=CC=C(C=C1)OCC2CO
2)C3=CC=C(C=C3)OCC4CO4

• Curing agent (Dicyandiamide): C(#N)N=C
(N)N

• Catalyst: CC1=C(C=C(C=C1)NC(=O)N(C)C)
NC(=O)N(C)C

However, test data contains one additional vari-
able, the ratio of resin Bi. Here is a brief explana-
tion of resin Bi:

• Resin B1: CTBN(Carboyl-Terminated Bu-
tadiene Acrylonitrile) modified epoxy
resin, where resin A is chemically
combined with CTBN, with SMILES
O=C(OCC(O)C)CC(C#N)C/C=C/CC(OCC(
O)C)=O
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Resin B1 Resin B2 Resin B3

Tg δ vc Tg δ vc Tg δ vc

LR 4.61 0.0667 0.000347 4.31 0.0539 0.000225 8.42 0.0536 0.000329
RR 4.58 0.0666 0.000349 4.20 0.0537 0.000228 8.42 0.0520 0.000336
RF 5.70 0.0730 0.000310 4.99 0.0760 0.000311 9.79 0.0572 0.000301

XGB 5.61 0.0718 0.000315 4.60 0.0761 0.000237 9.00 0.0559 0.000304

Ours 7.32 0.0859 0.000299 5.62 0.0816 0.000288 6.40 0.0778 0.000251

Table 1: Mean absolute error (MAE) on extrapolative regression results when additional epoxy resin is added.
Reported values are the average of MAE on 5 trials.

• Resin B2: MBS type core shell rubber (CSR)
modified epoxy resin, where resin A is physi-
cally combined with CSR with a ratio of 65:35
(resin A: CSR).

• Resin B3: Dimer acid modi-
fied epoxy resin with SMILES
OC(COC([R]C(OCC(O)COC1=CC=C(C(C)
(C)C2=CC=C(OCC3CO3)C=C2)C=C1)=O)
=O)COC(C=C4)=CC=C4C(C)(C)C5=CC=C
(OCC6CO6)C=C5

LLM’s goal is to predict the effect of additional
resin on DMA properties only with train data and
the chemical information provided above.

As a result, we obtain 385 train data with 7 inde-
pendent variables and 30 test data (for each i) with
8 independent variables. The example prompt is
on Appendix A. The results are on Table 1.

LLM shows superior extrapolation ability on vc
while failing on δ. Performance on Tg highly de-
pends on the type of resin Bi. However, LLM’s
error shows relatively low volatility (5.62 to 7.32),
unlike baseline regressors’ which show high volatil-
ity (4.20 to 9.79). The result suggests that LLM
can be a low-risk extrapolator, unlike utilizing re-
gression models with proxy variables.

By examining the LLM prediction, we find out
that LLM tends to adjust its prediction depending
on resin type and target value. To quantitatively
examine this phenomenon, we compute term fre-
quency adjusting its final prediction. We count the
number of tokens indicating its adjustment (‘in-
crease’, ‘increased’, ‘higher’, ‘addition’ for ↑ and

‘decrease’, ‘decreased’, ‘lower’, ‘reduction’ for ↓)
in sentences mentioning ‘resin B’. To verify the
validity of the adjustment direction, we also report
the average material property values of train and
test sets. The results are on Table 2.

Average Frequency

Train Test ↑ ↓

B1

Tg 161.3 ↓ 158.8 92 358
δ 0.68 ↑ 0.72 456 322
vc 0.0013 ↓ 0.0011 67 483

B2

Tg 161.3 ↓ 156.6 91 248
δ 0.68 ↑ 0.74 271 151
vc 0.0013 ↓ 0.0011 61 307

B3

Tg 161.3 ↓ 151.0 91 542
δ 0.68 ↑ 0.74 350 527
vc 0.0013 ↓ 0.0009 117 545

Table 2: Term frequency analysis when additional epoxy
resin is introduced. ‘Average’ column is the average
value of target material properties (e.g. Tg) for each data
set. Arrows between two columns represent the required
adjustment direction (increase/decrease) from the train
to the test set. ‘Frequency’ column is the term frequency
on each word group representing increase/decrease. We
mark the frequency in the right direction with bold.

Except for B3 - δ case, LLM tends to use words
mentioning right direction (↑ or ↓) more frequently.
In other words, LLM captures the right adjust-
ment direction. Though LLM chooses the right
direction, LLM tends to overestimate the degree of
adjustment and, as a result, shows higher MAEs.
Moreover, the ratio between words in the right and
wrong directions on δ is relatively low compared
to Tg and vc. These may suggest the reason why
LLM’s extrapolation ability on δ is relatively low.

An example answer is presented on Table 3.

4.3 Replaced Epoxy Resin

We present the extrapolation ability of an LLM
when replacing epoxy resin from A to B2. It is
more challenging as the material properties of a

31



(...) CTBN is a rubbery polymer that is typically used to improve the toughness of epoxy resins. The
incorporation of CTBN into an epoxy resin generally results in a decrease in Tg because the CTBN
phase is softer and more flexible compared to the rigid epoxy network formed by DGEBA-based resins.
(...) The SMILES of Resin B indicates the presence of butadiene and acrylonitrile groups, which
contribute to the elastomeric properties of the resin. This further supports the expectation of a lower
Tg due to increased flexibility and reduced crosslink density. (...)

Table 3: An example answer from LLM for adding resin B1. LLM utilizes its chemical knowledge of CTBN and its
SMILES to extrapolate existing data and predict a decrease in Tg .

Tg δ vc

LR 12.87 0.1606 0.001094
RR 12.78 0.1573 0.001097
RF 12.62 0.1107 0.000718

XGB 13.35 0.1199 0.000779

Ours 21.17 0.1116 0.000467

Ours (1 shot) 12.14 0.1080 0.000389

Table 4: MAE on extrapolative regression result when
the epoxy resin A is replaced by B2. Reported values
are the average of MAE on 5 trials. The last line shows
LLM’s result with the 1 shot correction.

Average Frequency

Train Test ↑ ↓

B2

Tg 161.3 ↓ 146.26 18 151
δ 0.68 ↑ 0.71 176 106
vc 0.0013 ↓ 0.0007 13 230

Table 5: Term frequency analysis when epoxy resin A
is replaced by B2.

product on test data would be much more different
from train data. The experimental setting is almost
the same with Section 4.2, except that the ratio of
resin A is 0 in the test data. We obtain 385 train
data and 20 test data. The example prompt is on
Appendix A. The results are on Table 4. We also
perform the term frequency analysis on Table 5.

Similar to Section 4.2, LLM shows superior per-
formance on extrapolating vc. LLM also shows
the same pattern on term frequency as in Table 2.
The result suggests LLM chooses the right adjust-
ment direction utilizing its chemical knowledge.
However, MAE on Tg is high compared to baseline
regressors, suggesting a similar conclusion: the
direction is right, but the degree is wrong.

To check the correctability of the degree, we
supply one test data point (with ground truth an-

swer) and the previous LLM’s answer for the data
point back to LLM. The example prompt is on
Appendix A and the result is on the last line of
Table 4.

We can verify that LLM can successfully modify
its degree of adjustment. As a result, LLM shows
the best extrapolation ability with only one-shot
correction.

5 Conclusion

In this paper, we evaluate the extrapolation abil-
ity of LLM in the chemical domain. We focus on
regressing three material properties of epoxy com-
pound when a novel raw material is introduced.
We build a data set involving various raw mate-
rials and curing conditions from lab experiments.
Compared to baseline regressors, LLM shows su-
perior extrapolation ability in predicting cross-link
density (vc), while failing on tan δ peak. By exam-
ining the tokens used in LLM prediction, we find
out that LLM tends to capture the right adjustment
direction while failing to grasp the exact degree of
adjustment. We also show that LLM successfully
adjusts the degree with only 1-shot example. This
result shows the potential applicability of LLM’s
extrapolation ability in chemical knowledge discov-
ery.
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Prompt for Section 4.2

Predict the [PROPERTY] of an epoxy product with the following information. You should infer the effect of a new resin B.:
Epoxy resin A (DGEBA-based oligomer) is a standard liquid bisphenol A epoxy resin with SMILES
CC(C)(C1=CC=C(C=C1)OCC2CO2)C3=CC=C(C=C3)OCC4CO4.
Epoxy resin B is a CTBN(Carboyl-Terminated Butadiene Acrylonitrile) modified epoxy resin, where resin A is chemically
combined with CTBN, with SMILES O=C(OCC(O)C)CC(C#N)C/C=C/CC(OCC(O)C)=O.
SMILES of curing agent (Dicyandiamide) is C(#N)N=C(N)N.
SMILES of catalyst is CC1=C(C=C(C=C1)NC(=O)N(C)C)NC(=O)N(C)C.
The following is another data point measuring the [PROPERTY].
| Ratio ((resin A: resin B): curing agent: catalyst) | First curing condition | Second curing condition | [PROPERTY] |
| (93.02: 0.0): 6.05: 0.93 | 1.0 hour in 100.0°C | 0.5 hour in 130.0°C | [PROPERTY1] |
| (93.02: 0.0): 6.05: 0.93 | 1.0 hour in 100.0°C | 1.5 hour in 130.0°C | [PROPERTY2] |
(...)
Fill in the ’?’.
| (83.72: 9.3): 6.05: 0.93 | 1.5 hour in 100.0°C | 1.0 hour in 130.0°C | ? |

Prompt for Section 4.3

Predict the [PROPERTY] of an epoxy product with the following information. You should infer the effect of a new resin B.:
Epoxy resin A (DGEBA-based oligomer) is a standard liquid bisphenol A epoxy resin with SMILES
CC(C)(C1=CC=C(C=C1)OCC2CO2)C3=CC=C(C=C3)OCC4CO4.
Epoxy resin B is an MBS type core shell rubber (CSR) modified epoxy resin, where resin A is physically combined with
CSR with a ratio of 65:35 (resin A:CSR).
SMILES of curing agent (Dicyandiamide) is C(#N)N=C(N)N.
SMILES of catalyst is CC1=C(C=C(C=C1)NC(=O)N(C)C)NC(=O)N(C)C.
The following is another data point measuring the [PROPERTY].
| Ratio ((resin A: resin B): curing agent: catalyst) | First curing condition | Second curing condition | [PROPERTY] |
| (93.02: 0.0): 5.12: 1.86 | 1.0 hour in 100.0°C | 1.0 hour in 120.0°C | [PROPERTY1] |
| (93.02: 0.0): 5.12: 1.86 | 1.0 hour in 90.0°C | 1.0 hour in 130.0°C | [PROPERTY2] |
(...)
Fill in the ’?’.
| (0.0: 93.65): 4.35: 2.01 | 1.0 hour in 90.0°C | 1.5 hour in 120.0°C | ? |

Additional Prompt for 1-shot Correction

Note that for the data point: | (0.0: 93.65): 4.35: 2.01 | 1.0 hour in 90.0°C | 1.5 hour in 120.0°C |, your answer was
[PREVIOUS ANSWER].
But the true value was [PROPERTY3].

Table 6: Example prompts for experiments. [PROPERTY] can be a glass transition temperature (Tg), tan delta peak
(δ), or cross-link density (vc).
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Abstract

Pre-trained LLMs have demonstrated substan-
tial capabilities across a range of conven-
tional natural language processing (NLP) tasks,
such as summarization and entity recognition.
In this paper, we explore the application of
LLMs in the generation of high-quality pro-
tein sequences. Specifically, we adopt a suite
of pre-trained LLMs, including Mistral-7B1,
Llama-2-7B2, Llama-3-8B3, and gemma-7B4,
to produce valid protein sequences. All of these
models are publicly available.5 Unlike previ-
ous work in this field, our approach utilizes
a relatively small dataset comprising 42,000
distinct human protein sequences. We retrain
these models to process protein-related data,
ensuring the generation of biologically feasi-
ble protein structures. Our findings demon-
strate that even with limited data, the adapted
models exhibit efficiency comparable to estab-
lished protein-focused models such as ProGen
varieties, ProtGPT2, and ProLLaMA, which
were trained on millions of protein sequences.
To validate and quantify the performance of
our models, we conduct comparative analyses
employing standard metrics such as pLDDT,
RMSD, TM-score, and REU. Furthermore,
we commit to making the trained versions of
all four models publicly available, fostering
greater transparency and collaboration in the
field of computational biology.

1 Introduction

In recent years, the field of natural language pro-
cessing (NLP) has achieved remarkable progress,
particularly through the development and utiliza-
tion of large pre-trained language models. These
sophisticated models represent a significant leap

1huggingface.co/Kamyar-zeinalipour/P-Mistral-7B
2huggingface.co/Kamyar-zeinalipour/P-Llama2-7B
3https://huggingface.co/Kamyar-zeinalipour/P-Llama3-

8B
4huggingface.co/Kamyar-zeinalipour/P-gemma-7B
5github.com/KamyarZeinalipour/protein-design-LLMs

forward, primarily due to their ability to understand
and generate human-like text based on training
from extensive datasets. Typically, these models
are trained using unsupervised learning techniques,
where they learn to predict the next word or token
in a sequence by examining the tokens that precede
it. This method has propelled them to the forefront
of various NLP applications, including chatbots
(Wei et al., 2024), text summarization (Zhang et al.,
2024; Tang et al., 2023), and advanced information
extraction tasks (Dagdelen et al., 2024). Among
the intriguing avenues explored with these models
is their application in the field of bioinformatics,
specifically in protein generation (Madani et al.,
2020). Indeed, the protein alphabet is composed of
twenty common amino acids, each represented by a
single character. Regarding their primary structure,
proteins, which are vital biological molecules, are
made up of chains of amino acids, thus forming
sequences of letters and drawing a parallel to the
structure of natural languages. As in natural lan-
guages, protein sequences have directionality and
are typically composed of reused modular elements
that exhibit slight variations. Moreover, common
protein motifs and domains, which are the basic
building blocks of proteins, are similar to words,
phrases, and sentences in human language. This
similarity suggests that language models, which
excel in handling sequential data, could effectively
generate amino acid chains, or proteins.
The primary objective of our research lies in
advancing the understanding and application of
medium-sized language models, particularly those
in the 7 billion to 8 billion parameter range, includ-
ing Mistral-7B, Llama-2-7B, Llama-3-8B, and
gemma-7B, for the generation of high-quality pro-
tein sequences. Our hypothesis, backed by pre-
liminary studies, suggests that these models, even
when trained with considerably small datasets, can
produce accurate and viable protein sequences ef-
fectively.
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Furthermore, we extend our investigation to encom-
pass a comparative analysis utilizing established
protein-focused language models such as ProGen
(Nijkamp et al. (2023); Madani et al. (2020)), Prot-
GPT2 (Ferruz et al. (2022)), and ProLLaMA (Lv
et al. (2024)). By applying the same experimen-
tal conditions across different models, we aim to
provide quantitative and qualitative comparisons of
their performance and effectiveness.
Ultimately, this study seeks to validate the capabil-
ity of medium-sized models in protein design, em-
phasizing the potential of employing more compact,
cost-efficient language models as powerful tools in
bioinformatics research. This approach may sig-
nificantly expedite scientific research and practical
applications, spanning from drug design to preci-
sion medicine to other interdisciplinary fields.

This paper makes the following contributions:

• Exploration of Medium-sized LLMs – We
investigate the efficacy of medium-sized lan-
guage models, with 7-8 billion parameters,
in generating functionally viable protein se-
quences;

• Adaptation to Small Data Sets – We show
that these models can achieve high perfor-
mance even when trained with small datasets;

• Comparative Analysis – We provide a thor-
ough comparative analysis of the performance
of our models against established models in
the field under identical experimental condi-
tions;

• Accessibility of Trained Models – We com-
mit to making all four trained language mod-
els developed for this study available to the
scientific community to encourage further re-
search and development.

The layout of this document is as follows: Sec-
tion 2 reviews previous research. Our methods are
detailed in Section 3. Experimental results are dis-
cussed in Section 4, while conclusions and future
perspectives are collected in Section 5.

2 Related Works

The integration of natural language processing
(NLP) techniques, traditionally applied to human
languages, into bioinformatics, has transformative
potential, particularly in the analysis of biological
sequences such as DNA, RNA, and proteins. These

biological data, sharing similarities with linguis-
tic texts in their structured and functional build-
ing blocks, are highly amenable to computational
methodologies. The impactful success seen in NLP
through transformer-based models has led to break-
throughs in specialized models geared toward un-
derstanding the complexities of these biological
sequences. By utilizing extensive databases such
as UniProt (Consortium, 2019), ENSEMBL (Cun-
ningham et al., 2022), and GenBank (Benson et al.,
2012), these models harness rich data to enhance
both predictive and analytical capabilities in bioin-
formatics.
The realm of protein sequences has seen notable
advancements through the adoption of both super-
vised and unsupervised learning models. Language
models have been increasingly leveraged and em-
ployed in the domain of protein design (Ferruz and
Höcker, 2022). Supervised learning approaches
refine models by training them with labeled data,
which is invaluable for accurately predicting pro-
tein stability or identifying structural similarities
among sequences (Bepler and Berger, 2021; Al-
ley et al., 2019). On the other hand, the intro-
duction of transformer technology has been piv-
otal in popularizing unsupervised learning meth-
ods (Vaswani et al., 2017). These methods involve
the strategic corruption of input sequences which
are then used to train models to predict and recon-
struct the NATURAL sequence. Leading models
such as ESM (Rives et al., 2021), ProtTrans (Elnag-
gar et al., 2021), and ProteinBERT (Brandes et al.,
2022) demonstrate this approach, offering power-
ful embeddings that prove critical in supporting a
wide array of downstream biochemical tasks (Yang
et al., 2024; Rao et al., 2019). These tasks include,
but are not limited to, analyzing protein-protein
interactions, predicting molecular functions, and
identifying potential sites for drug binding. In ad-
dition to these developments, the adoption of au-
toregressive models — widely recognized for their
ability to generate coherent, long-form text in clas-
sical NLP settings — has been successfully applied
to the domain of protein sequencing. Prototypes
like ProGen (Nijkamp et al., 2023; Madani et al.,
2020), ProtGPT2 (Ferruz et al., 2022) and ProL-
LaMA (Lv et al., 2024) capitalize on this capability,
employing autoregressive algorithms to effectively
predict the future elements of protein sequences
from given contexts. This predictive ability is crit-
ical for sophisticated applications such as protein
design, where the generation of novel and function-
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ally effective proteins is required.
In this study, we employ some pre-trained language
models, which we further fine-tune for protein gen-
eration tasks, by retraining both the tokenizers and
the entire models. We then compare the results with
those from other large language models (LLMs)
currently available for protein generation tasks.

3 Methodology

In this section, we delineate the methodologies
employed to adapt pre-trained LLMs for the gen-
eration of protein sequences. Our approach in-
volved refining the tokenizer based on the Byte-
Pair Encoding (BPE) methodology, followed by
fine-tuning the entire pre-trained model using a des-
ignated dataset of protein sequences. Subsequently,
this fine-tuned model was utilized to generate new
protein sequences. It’s important to note that base
models such as LLMs, while powerful, are not in-
herently capable of designing novel proteins. Their
success in this domain is achieved through a spe-
cialized fine-tuning process, which involves not
only adapting the model to a specific task using a
smaller, task-specific dataset but also modifying the
tokenizer. This is because the tokens that LLMs
were initially trained on are natural language to-
kens, whereas our domain requires a different set
of tokens. Therefore, we also need to train the
tokenizer to handle this new domain effectively.
Verification of these sequences was carried out by
generating their respective PDB structures using
DeepMind’s AlphaFold (Jumper et al., 2021). We
assessed the quality of these structures using vari-
ous metrics such as pLDDT, RMSD, TM-Score and
REU. The performance of the models — namely
Mistral-7B (Jiang et al., 2023), Llama-2-7B (Tou-
vron et al., 2023), Llama-3-8B , and gemma-7B
(Team et al., 2024) — was then compared with
previous studies that employed language models
for protein sequence generation. We have also
evaluated the potential fitness of our generated se-
quences in comparison to natural and random se-
quences in the context of pLDDT, Rosetta-Relax
scores, RMSD and TM-Scores, thereby providing
a comparative analysis. Figure 1 illustrates this
methodology. Subsequently, we will provide a de-
tailed description of all these steps, focusing on the
training of the LLMs and their validation.

3.1 From LLMs to Proteins

Large language models, such as transformers, are
sophisticated algorithms trained on extensive tex-
tual datasets. These models utilize their predictive
capability primarily to determine the subsequent to-
ken based on the preceding ones. Given their train-
ing on a vast amount of text data, LLMs are highly
adaptable and can be finely tuned for specialized
tasks, including summarizing specific document
types like legal texts. An interesting application of
these models is in the domain of protein generation.
Proteins, being amino acid sequences, differ sig-
nificantly from standard text data. This difference
necessitates the retraining of tokenizers to achieve
more accurate tokenization for proteins, enhancing
the model ability to recognize and predict relevant
patterns in amino acid sequences. Following the re-
training, these adapted tokenizers are used to refine
the parameters of pre-trained LLMs. This fine-
tuning process tailors the LLMs to predict protein
sequences effectively by generating valid protein
structures. In subsequent sections, we will elab-
orate on the methodologies applied for tokenizer
retraining, describe the various LLMs utilized, and
discuss their specific fine-tuning.

Tokenizer retraining In situations where the cor-
pus significantly diverges from that utilized during
the initial training of a language model, it becomes
imperative to retrain the model from scratch. This
process necessitates adjusting the tokenizer to ac-
commodate the nuances of the new dataset. A
tokenizer serves the critical function of converting
textual data into numerical representations suitable
for computational processing by language models.
For the retraining of our tokenizer, we employed
the Byte-Pair Encoding (BPE) method. BPE is a
hybrid between a character-level and word-level
tokenizer. It starts with a base vocabulary of indi-
vidual characters and iteratively merges the most
frequently adjacent pairs of characters or character
sequences. Through this methodology, BPE effec-
tively manages the vocabulary size, allowing for
efficient handling of unknown words by breaking
them down into recognizable subwords. This is par-
ticularly beneficial in managing morphologically
rich languages or corpora with specialized jargon.
In our adaptation process, we retained the origi-
nal vocabulary size of the tokenizer used in prior
models to maintain consistency and optimize inte-
gration with the pre-trained configurations. This
approach ensures that the retrained models sustain
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Figure 1: A comprehensive overview of our methodology employed for training, evaluating, and validating the
protein sequence generation model. We initially retrained tokenizers for four distinct large language models —
Mistral-7B, Llama-2-7B, Llama-3-8B, and gemma-7B — using the UniRef50-Homo sapiens dataset employing
the Byte-Pair Encoding (BPE) technique. Subsequently, we fine-tuned these models on a filtered subset of the
UniRef50-Homo sapiens dataset, aiming to minimize the loss associated with predicting subsequent protein
sequences. For evaluation, model output was validated using AlphaFold 2 to construct 3D protein structures,
followed by assessments of the generated protein structural accuracy using metrics such as per-residue confidence
score (pLDDT) from AlphaFold 2, RMSD (Root Mean Square Deviation), and TM-Score to compare topological
similarities with known protein structures applied using FoldSeek. Additional evaluation included the use of Rosetta-
Relax for analyzing the energetic profiles of the generated proteins. Finally, protein structural comparisons within
each dataset were conducted using PyMOL to calculate the intra-dataset RMSD.

compatibility with existing frameworks while ben-
efiting from a tokenizer that is fine-tuned to the
specific features of the new dataset.

Fine-Tune Pre-trained LLMs In this research,
our objective was to assess the capabilities of
various pre-trained language models in the spe-
cialized task of protein generation. To this end,
we fine-tuned four distinct models: Mistral-7B,
Llama-2-7B, Llama-3-8B, and gemma-7B. Each
model is based on the transformer architecture,
which is renowned for its effectiveness in handling
sequence-to-sequence tasks and operates under a
causal framework conducive to generative tasks.
The four models were specifically chosen to repre-
sent a bandwidth of computational capacities pre-
dominantly ranging between 7 billion and 8 billion
parameters, enabling a focused analysis on how
parameter scale influences model performance in
biological sequence generation. Mistral-7B, de-
veloped by MistralAI, contains precisely 7 billion
parameters. In contrast, both Llama-2-7B and the
newer Llama-3-8B are products from Meta, fea-
turing 7 billion and 8 billion parameters, respec-
tively. The latter represents an advanced iteration
within the LLama series, potentially offering en-
hancements in learning efficiency and output refine-
ment. Finally, gemma-7B from Google, also with

7 billion parameters, extends our model diversity,
providing an additional perspective from another
leading tech giant’s approach to language model
development.
By employing these models, we aim to conduct
a thorough comparative analysis, examining not
just the quantitative outcomes in terms of accuracy
and efficiency in protein generation, but also quali-
tative aspects such as the fidelity and usability of
generated sequences. Given the similar parameter
size, any observed differences in performance can
be more directly attributed to architectural nuances
and training methodologies between the models.
This study not only advances our understanding of
the capabilities of high-capacity language models
in biosciences but also guides future developments
in computational biology and the deployment of
AI-driven tools for scientific discovery.
Firstly, we observe that each of these language
models employs variants of the cross-entropy loss
function. Throughout the fine-tuning process, the
objective is to minimize this loss, which effectively
maximizes the probability of predicting subsequent
tokens accurately, based on the context provided
by previous tokens. This optimization directly en-
hances the model ability to generate coherent and
contextually appropriate text.

38



Given a sequence of tokens, the cross-entropy
loss predicts the probability of each subsequent
token based on the previous context, i.e., given
x1, x2, ..., xn in training data, the model is able to
predict each subsequent token xt+1 based on pre-
vious tokens x1, ..., xt. The formula for the loss
across an entire sequence of length N is:

L = −
N∑

t=1

log(pmodel(xt+1 | x1, x2, ..., xt))

where pmodel(xt+1 | x1, ..., xt) is the probability
assigned by the model to the correct next token
xt+1, conditioned on the sequence x1, ..., xt.
This loss not only encourages the correct predic-
tion of the next token but also indirectly learns the
contextual dependencies among the tokens in the
sequence, which is crucial for the generation of
coherent and contextually appropriate outputs in
language models.

3.2 Evaluation
In this section, we describe each evaluation method
implemented in our study following the generation
of proteins. Initially, protein sequences generated
using tuned LLMs were structurally modeled using
AlphaFold26, which provided three-dimensional
structures along with per-residue confidence scores
(pLDDT). Subsequently, the topological similarity
of these structures to known protein configurations
was assessed using the TM-Score computed by
FoldSeek 7Additionally, Rosetta -Relax 8was em-
ployed to analyze the energetic profiles of the mod-
eled proteins, enhancing our understanding of their
stability and viability. For intra-dataset structural
comparisons, RMSD calculations were conducted
using PyMOL9 . Detailed descriptions and analy-
ses of these metrics are provided in the following
sections.

Alphafold2 (pLDDT) In the initial phase of the
evaluation, we utilized AlphaFold2 to predict the
structures of the generated proteins and compute
their predicted Local Distance Difference Test
(pLDDT) scores. AlphaFold2, developed by
DeepMind, represents a significant advancement
in protein structure prediction by leveraging
sophisticated deep learning methodologies. It
predicts protein structures from amino acid

6deepmind.google/technologies/alphafold/
7search.foldseek.com/
8www.rosettacommons.org/software
9pymol.org/

sequences, using extensive training datasets of
known protein structures and incorporating a
self-attention mechanism. Moreover, pLDDT
scores can be obtained, which provide valuable
insight into structural accuracy, with values below
50 indicative of disordered regions, scores between
50 and 90 suggesting regions with some order,
and scores above 90 denoting well-ordered regions.

Foldseek (TM-Score, Intra RMSD) To evalu-
ate the accuracy of predicted protein structures, we
utilized Foldseek, a robust tool designed for the
comparison and analysis of three-dimensional pro-
tein structures. Foldseek is a tool for searching
a set of query protein structures through a set of
target protein structures. It uses a fast and sensi-
tive k-mer and ungapped alignment prefilter from
MMseqs2 on the 3Di sequences of the query and
target structures to quickly identify candidate struc-
tures that are similar to the query. By submitting
our predicted protein models to Foldseek, we com-
puted two critical metrics: the TM-score and Root
Mean Square Deviation (RMSD). The TM-score,
ranging from 0 to 1, quantifies the global topologi-
cal similarity between two protein structures, with
higher scores indicating greater structural resem-
blance. Specifically, a TM-score above 0.5 gener-
ally indicates that the structures share the same fold,
while a score below 0.3 suggests random struc-
tural similarity. Conversely, RMSD is a widely
used metric in structural biology that assesses the
similarity between two protein structures by com-
paring the positional differences of corresponding
atoms, typically those in the backbone, after opti-
mal superimposition. This metric provides insight
into structural similarity from the perspective of
atomic distances. In this study, we refer to this mea-
sure as ’Intra RMSD,’ emphasizing the comparison
between each predicted model and its respective
known structure.A lower score is generally more
desirable
Figure 2 (a) illustrates an instance where the gen-
erated protein structure has limited similarity to
the protein structure matched by Foldseek, as indi-
cated by the green line in the figure. The protein
structure in Figure 2 (a) achieves a relatively low
TM-Score of 0.28, indicating a weak resemblance
to the matched protein structure. Furthermore, the
substantial RMSD of 26.2 Å highlights a significant
deviation and misalignment between the generated
and matched structures. In contrast, Figure 2 (b)
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showcases a successful example of protein struc-
ture generation, where the generated structure has
a high degree of similarity to the matched protein
structure. The generated protein structure attains a
high TM-Score of 0.90, signifying a strong struc-
tural similarity to the matched protein. Addition-
ally, the low RMSD of 1.55 Å suggests that the
generated structure has a high degree of precision
and alignment with the matched structure.

(a) (b)

Figure 2: Illustration of High TM-Score and low Intra
RMSD Compared to Low TM-Score and high Intra
RMSD

Rosetta-Relax (REU) To comprehensively as-
sess the quality of our predicted protein structures,
we initiated the process by relaxing the native tem-
plate. This initial relaxation ensures that the struc-
ture is energetically optimized from the outset, fa-
cilitating more accurate subsequent evaluations.
Following the relaxation of the native template,
we applied Rosetta-RelaxBB across all datasets.
Rosetta-RelaxBB employs a Monte Carlo optimiza-
tion approach that explores a range of backbone
and rotamer conformations to minimize the Rosetta
Energy function, which is based on biophysical
principles and constraints. During each design iter-
ation, amino acid side chains are substituted while
maintaining fixed carbon backbone torsions. En-
ergy minimization and relaxation are performed
after threading the amino acid sequence through
the known structure, allowing the backbone to tran-
sition into a potentially more stable energy state.
Conformers with lower Rosetta Energy values in-
dicate more relaxed and stable structures. The lat-
est Rosetta Energy Forcefield (REF2015) shows
a strong correlation with experimental parameters
such as heat capacity, density, and enthalpy, provid-
ing a robust scoring function indicative of the ther-
modynamic stability of protein conformations.For
a refined structure of this size, a score of -100 REU

to -300 REU is typical. The lower the score, the
more stable the structure is likely to be for a given
protein.

PyMOL (Inter RMSD) For the fourth phase of
our evaluation, we utilized PyMOL, a sophisti-
cated molecular visualization software equipped
with extensive tools for protein structure analysis
and comparison. PyMOL’s features facilitate de-
tailed examination of molecular structures and en-
able various quantitative assessments, such as cal-
culating the Root Mean Square Deviation (RMSD).
Specifically, we determined the Inter RMSD, which
quantifies the RMSD for each trajectory within our
datasets.As previously mentioned a lower score is
generally more desirable.

4 Experimental results

In this section, we delineate the experiments con-
ducted in this study, presenting an evaluation of
the results garnered from the protein sequences we
generated. Additionally, we discuss the regenera-
tion of proteins utilizing language-based models
specifically designed for protein generation tasks,
including ProGen in four distinct sizes, ProtGPT2,
and ProLLaMA.
Initially, we explore the dataset utilized in our ex-
periments, which is notably smaller than those used
in other models, followed by a detailed exposition
of our training setup. Finally, we present a com-
prehensive analysis of the evaluation results em-
ploying various metrics such as pLDDT, RMSD,
TM-Score and REU.

4.1 Dataset

In this study, the UniRef50 dataset, originating
from the UniProt databases, has been utilized. The
UniProt Reference Cluster (UniRef) databases sys-
tematically organize clustered sets of protein se-
quences from UniProtKB 10 and selected UniParc
records, aiming to reduce redundancy and provide
comprehensive coverage of sequence space. This is
achieved through varying levels of sequence iden-
tity across three datasets, facilitating faster similar-
ity searches among proteins.
Specific attention was given to the Homo sapiens
subset within UniRef50, which initially comprised
over 60,000 protein sequences. Given the con-
straints of computational resources and the criteria
of our intended language models, a sequence length

10https://www.uniprot.org
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filter was applied. Only sequences below 512 to-
kens, as determined by our pre-trained tokenizer,
were retained, narrowing the pool to 60,000 se-
quences.
For training and evaluation purposes, 42,000 se-
quences were allocated to the training set while the
remaining 1,480 were designated for testing.11

This careful selection and allocation of sequences
effectively optimized our computational resources
and facilitated robust training and validation of our
predictive models on protein sequences.

4.2 Training Setup
The training methodology employed in this study
involved training Language Models (LMs) specifi-
cally tailored for protein generation utilizing four
Nvidia A6000 GPUs. The training configuration
utilized a sequence length of 512, with a maximum
training step limit of 2000 and a batch size of 1,
coupled with a gradient accumulation step size of
16 for enhanced training efficiency. The learning
rate was set at 5e-5, and a cosine learning rate
scheduler was employed to adaptively adjust the
learning rate. Furthermore, a weight decay of 0.01
and a num warm-up step value of 150 were applied
to stabilize the training process. The utilization
of the bfloat16 data format contributed to faster
computation due to reduced precision, enhancing
overall training performance. We employed
DeepSpeed (Rasley et al., 2020), a deep learning
optimization library developed by Microsoft, to
facilitate efficient training and optimization of the
models. and also we applied FlashAttention 2
(Dao, 2023).
Four distinct LLMs models, namely Mistral-7B,
Llama-2-7B, Llama-3-8B, and gemma-7B were
trained using this meticulously tuned training
configuration. The selection of appropriate
hyperparameters and the utilization of multiple
GPUs facilitated efficient and timely training of
these models. The strategic incorporation of the
cosine learning rate scheduler and weight decay
mechanism bolstered the models’ convergence and
performance during training, ultimately leading to
the successful generation of protein sequences.

4.3 Results Evaluation
In this section, we randomly selected 250 proteins,
each with a length between 70 to 140 amino acids,

11huggingface.co/datasets/Kamyar-zeinalipour/UniRef50-
HumanProteins/settings

from each of the under-investigation models for
structure prediction and subsequent evaluation. In
order to initiate the protein generation process, we
input a special token, known as the beginning-of-
sequence (BOS) token. Once this token is fed
into the model, it begins to generate protein se-
quences, leveraging the patterns and knowledge
it has acquired during its training phase. These
proteins were submitted to AlphaFold2, which gen-
erated 3D structural models with corresponding
pLDDT scores for each protein. Examples of these
3D structures and corresponding pLDDT can be
seen in Figure 3. We proceeded to randomly select
20 3D structural proteins from each of the under-
investigated models for a more in-depth analysis.
The chosen proteins were then subjected to fur-
ther evaluations, including the calculation of Intra
RMSD, Inter RMSD, TM-Score, and REU with
selected proteins. This multi-faceted approach to
evaluation has allowed us to thoroughly assess the
performance of our models and the quality of our
3D protein structure predictions.
To evaluate the pLDDT score for each protein,
AlphaFold2 generates five 3D structural models
with corresponding pLDDT scores. We then cal-
culated the mean of the five pLDDT scores to ob-
tain a representative pLDDT score for each pro-
tein. We present the evaluation results using all
the metrics discussed in Section 4. Table 1 summa-
rizes the mean values of each evaluation metric for
each model. Notably, P-Mistral consistently out-
performs all other models across various metrics.
Detailed information on these metrics, as well as
corresponding plots and tables, are provided in the
Appendix A.
The most significant difference between the trained
models and randomly generated proteins We pro-
cedurally generated a set of proteins in a random
manner, with each of these proteins being com-
posed of a sequence of 20 amino acids, is observed
in the pLDDT metric, as depicted in Figure 4. Our
models,P-Llama2 and P-Llama3, exhibit a distri-
bution similar to the NATURAL data. Additionally,
we observed a significant disparity between ran-
domly generated proteins and other models when
evaluating the TM-score metric, as illustrated in
Figure 5. Other metrics, such as Inter and Intra
RMSD, are shown in Figures 8 and 6.
Furthermore, for the REU metric, we identified an
optimal range between -100 and -300. The ran-
domly generated proteins fall significantly outside
this interval, whereas the models we introduced
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P-Mistral 
pLDDT: 81.52 

P-Llama3 
pLDDT: 71.56

P-Llama2 
pLDDT: 76.08

P-gemma 
pLDDT: 84.34

Figure 3: Examples of the 3D structure of proteins generated by each introduced model

Model #param train pLDDT ↑ Intra↓ REU ↓ TM ↑ Inter ↓
size RMSD -Score RMSD

NATURAL – – 67.77 – -153.06 – 4.40
RANDOM – – 39.71 9.88 -197.22 0.41 6.81
P-Llama2 7B 42K 65.39 7.02 -153.31 0.63 4.76
P-Llama3 8B 42K 62.99 7.38 -132.50 0.65 4.30
P-Mistral 7B 42K 72.03 5.42 -197.40 0.68 4.70
P-gemma 7B 42K 62.24 5.80 -141.60 0.65 5.83
PROLLAMA 7B – 55.80 9.46 -126.65 0.47 5.66
PROTGPT2 774M 49.8M 64.50 6.52 -146.23 0.52 5.52
PROGENSMALL 151M 280M 58.35 11.46 -212.22 0.48 6.76
PROGENMEDIUM 764M 280M 58.98 11.64 -240.89 0.59 11.20
PROGENLARGE 2.7B 280M 61.78 7.65 -158.18 0.58 5.47
PROGENXLARGE 6.4B 280M 68.04 10.37 -251.37 0.54 6.05

Table 1: Mean of the analyzed Metrics for each model.

predominantly fall within the same range as the
NATURAL data, as seen in Figure 8. The most
intriguing finding of our study is that we were able
to achieve and even surpass the performance of
models trained on massive protein datasets, using
a significantly smaller dataset. This was demon-
strated across various evaluation metrics.

5 Conclusion

In this study, we introduced four novel models de-
signed to generate high-quality protein sequences
by leveraging pre-trained language models. This
research is motivated by the growing demand for
efficient and accurate tools that can assist in under-
standing and engineering protein structures, which
are pivotal in numerous biological and medical ap-
plications. Our approach involved a meticulous
design and training phase, followed by rigorous
testing and validation processes to assess the per-
formance of each model.
To provide a thorough evaluation, we conducted
comprehensive experiments comparing our models

with a range of existing models that also utilize
language models for protein sequence generation.
Comparative analyses were performed, which were
grounded on diverse criteria, including sequence
quality, diversity, and fidelity to biological func-
tions. These analyses also incorporated several
structural assessment metrics such as pLDDT (pre-
dicted Local Distance Difference), TM-Score (to
assess structural similarity), RMSD (Root Mean
Square Deviation), and REU (Rosetta Energy Unit).
Our findings revealed that some of our proposed
models, particularly P-Mistral, exhibited superior
performance compared to existing models, even
surpassing those trained on considerably larger
datasets. This remarkable performance underscores
the potential of our models to offer significant ad-
vancements in the field of protein sequence genera-
tion.
We are committed to the principles of open science
and reproducibility. Consequently, we will make
all four models publicly available to the research
community. This accessibility will empower other
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Figure 4: Violin plot of pLDDT

researchers to utilize and build upon our work, fos-
tering further advancements in the field of protein
sequence generation.
Moreover, We aim to extend the capabilities of
these models by incorporating instruction tuning
to generate proteins with specific constraints. This
will involve refining the models to adhere to cer-
tain criteria, such as ensuring the sequences have
particular structural or functional properties. Such
advancements could be pivotal in various applica-
tions, including drug design, synthetic biology, and
understanding protein interactions at a deeper level.
While our current implementation of LLMs for pro-
tein generation excels in unconditional generation,
there is a need to explore and develop methods for
generating conditional proteins. This would allow
us to guide the generation process toward specific
protein characteristics or functions, thereby enhanc-
ing the practical utility of our model.
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A Appendix

In this appendix, we have included violin plots and
descriptive statistics for all the evaluation metrics
utilized throughout this study. The violin plots offer
a visual representation of the distribution and den-
sity of the data, enabling an in-depth comparison
between different models or methods. Additionally,
the descriptive statistics provide a comprehensive
summary of the central tendency, dispersion, and
shape of the distribution of each metric, including
measures such as mean, median, standard devia-
tion, and interquartile range. These tools together
facilitate a thorough understanding of the perfor-
mance and variability of the metrics used, thereby
supporting a robust assessment of the study results.

pLDDT The violin plot of the mean pLLDDTs
of each model is shown in Figure 4, while its de-
scriptive statistics are collected in Table 2.

TM-Score The violin plot of the TM-Score of
each model is shown in Figure 5, while its descrip-
tive statistics are collected in Table 3.

Intra RMSD The violin plot of the Intra RMSD
of each model is shown in Figure 6, while its de-
scriptive statistics are collected in Table 4.

Inter RMSD The violin plot of the Inter RMSD
of each model is shown in Figure 7, while its de-
scriptive statistics are collected in Table 5.
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Model Q1 Q3 mean median min max
NATURAL 57.85 81.69 67.77 65.93 31.1 96.10
RANDOM 34.62 42.95 39.71 38.12 26.52 80.74
P-Llama2 54.55 78.15 65.39 62.95 33.58 95.26
P-Llama3 54.12 73 62.99 61.71 29.46 94.68
P-Mistral 62.82 80.83 72.03 75.22 35.06 96.98
P-gemma 54.76 72.26 62.24 61.17 29.1 96.00
PROLLAMA 42.3 66.68 55.80 54.7 29.52 93.34
PROTGPT2 52.73 75.45 64.50 63.72 34.02 97.46
PROGENSMALL 43.68 70.09 58.35 55.51 32.46 96.68
PROGENMEDIUM 45.27 71.71 58.98 54.96 32.56 95.20
PROGENLARGE 45.06 78.14 61.78 58.78 31.06 95.84
PROGENXLARGE 53.43 83.45 68.04 68.56 31.56 96.52

Table 2: Summary statistics for pLDDT
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Figure 5: Violin plot of TM-Score

REU The violin plot of the REU of each model
is shown in Figure 8, while its descriptive statistics
are collected in Table 6.
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Model Q1 Q3 mean median min max
RANDOM 0.33 0.44 0.41 0.37 0.27 0.71
P-Llama2 0.41 0.84 0.63 0.55 0.30 0.99
P-Llama3 0.46 0.86 0.65 0.66 0.32 0.94
P-Mistral 0.60 0.78 0.68 0.70 0.38 0.91
P-gemma 0.45 0.79 0.65 0.72 0.28 0.99
PROLLAMA 0.37 0.52 0.47 0.47 0.30 0.90
PROTGPT2 0.39 0.59 0.52 0.49 0.29 0.92
PROGENSMALL 0.37 0.58 0.48 0.44 0.29 0.80
PROGENMEDIUM 0.42 0.79 0.59 0.55 0.26 0.92
PROGENLARGE 0.37 0.75 0.58 0.56 0.30 0.98
PROGENXLARGE 0.32 0.69 0.54 0.50 0.30 0.96

Table 3: Summary statistics for TM-Score
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Figure 6: Violin plot of Intra RMSD

Model Q1 Q3 mean median min max
RANDOM 4.95 12.59 9.88 8.66 1.97 26.71
P-Llama2 2.01 11.43 7.02 4.98 0.39 21.88
P-Llama3 2.2 11.36 7.38 5.87 0.94 23.58
P-Mistral 2.28 6.42 5.42 3.79 1.55 14.20
P-gemma 1.73 6.74 5.80 3.45 0.11 26.20
PROLLAMA 5.74 12.78 9.46 9.21 1.07 20.59
PROTGPT2 3.35 8.29 6.52 5.31 0.69 15.65
PROGENSMALL 6.06 17.49 11.46 8.16 2.3 39.45
PROGENMEDIUM 2.68 10.62 11.64 5.69 1.42 14.46
PROGENLARGE 2.72 11.67 7.65 5.4 0.63 24.19
PROGENXLARGE 3.79 18.16 10.37 7.53 1.2 21.20

Table 4: Summary statistics for Intra RMSD
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Figure 7: Violin plot of Inter RMSD

Model Q1 Q3 Mean Median Min max
NATURAL 0.87 6.04 4.40 2.24 0.23 22.98
RANDOM 2.41 11.34 6.81 5.15 0.16 21.18
P-Llama2 0.92 6.41 4.76 2.46 0.02 34.70
P-Llama3 0.76 6.94 4.30 2.41 0.11 23.11
P-Mistral 0.55 8.08 4.70 2.61 0.18 27.59
P-gemma 0.63 8.15 5.83 3.09 0.05 32.91
PROLLAMA 0.64 6.45 5.66 1.99 0.08 36.26
PROTGPT2 0.67 6.00 5.52 1.32 0.20 39.84
PROGENSMALL 1.02 11.29 6.76 2.45 0.20 33.43
PROGENMEDIUM 3.85 14.27 11.20 7.49 0.23 58.57
PROGENLARGE 1.10 7.11 5.47 2.66 0.07 39.71
PROGENXLARGE 0.88 7.37 6.05 2.06 0.16 46.93

Table 5: Summary statistics for Inter RMSD
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Figure 8: Violin plot of REU
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Model Q1 Q3 mean median min max
NATURAL -233,48 -115,43 -153,06 -163,30 -310,23 31.00
RANDOM -193,85 -136,43 -197,22 -151,57 -434,25 -123.39
P-Llama2 -196,79 -105,67 -153,31 -156,82 -274,14 -30.49
P-Llama3 -205,03 -65,05 -132,50 -111,15 -331,44 45.39
P-Mistral -269,91 -138,11 -197,40 -209,21 -289,82 -9.69
P-gemma -204,11 -95,08 -141,60 -127,84 -333,33 27.28
PROLLAMA -169,56 -96,10 -126,65 -129,17 -255,91 6.38
PROTGPT2 -215,40 -34,31 -146,23 -173,36 -301,04 -12.90
PROGENSMALL -313,85 -101,59 -212,22 -249,00 -389,56 10.17
PROGENMEDIUM -334,72 -119,91 -240,89 -297,72 -380,75 -70.46
PROGENLARGE -286,13 -63,01 -158,18 -123,29 -391,96 115.96
PROGENXLARGE -318,06 -191,64 -251,37 -263,17 -403,92 10.98

Table 6: Summary statistics for REU
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Abstract

This paper presents our enhanced BioT5+
method for the Language + Molecules shared
task at the ACL 2024 Workshop. The task
involves “translating” between molecules and
natural language, including molecule caption-
ing and text-based molecule generation using
the L+M-24 dataset. Our method consists of
three stages. In the first stage, we distill data
from various models. In the second stage, com-
bined with extra version of the provided dataset,
we train diverse models for subsequent vot-
ing ensemble. We also adopt Transductive En-
semble Learning (TEL) to enhance these base
models. Lastly, all models are integrated us-
ing a voting ensemble method. Experimental
results demonstrate that BioT5+ achieves su-
perior performance on L+M-24 dataset. On
the final leaderboard1, our method (team name:
qizhipei) ranks first in the text-based molecule
generation task and second in the molecule
captioning task, highlighting its efficacy and ro-
bustness in translating between molecules and
natural language. The pre-trained BioT5+ mod-
els are available at https://github.com/Qiz
hiPei/BioT5.

1 Introduction

With the development of Large Language Models
(LLMs) (Touvron et al., 2023a,b; OpenAI, 2023;
Taori et al., 2023; Chowdhery et al., 2023), the in-
tegration of molecules with natural language has
garnered increasing attention in recent research
efforts (Edwards et al., 2021, 2022; Zeng et al.,
2022; Luo et al., 2023; Tang et al., 2023; Liu et al.,
2023b; Zhao et al., 2023; Liu et al., 2023a,d,c; Pei

* Corresponding authors: Lijun Wu (apeterswu@gmail.
com) and Rui Yan (ruiyan@ruc.edu.cn)

1https://language-plus-molecules.github.io/#
leaderboard

Table 1: Statistics of L+M-24 dataset. We use B to rep-
resent molecule-text paired datasets and D to represent
datasets only containing molecules or text.

Split Symbol mol2text text2mol

#Training B 126,864 126,864
#Training-extra B+ 533,953 533,953
#Validation Bvalid 33,696 33,696
#Test Dtest 21,942 21,805

et al., 2023, 2024a). Notably, two critical genera-
tive tasks have emerged: molecule captioning (i.e.,
mol2text) and text-based molecule generation (i.e.,
text2mol) (Edwards et al., 2022). These tasks are
pivotal for biologists and chemists, as they facil-
itate the interpretation and creation of molecular
structures through natural language descriptions.

To leverage the advantages of natural language
for molecular design and understanding (Zhang
et al., 2024; Liao et al., 2024; Pei et al., 2024b;
AI4Science and Quantum, 2023), Language +
Molecules Workshop at ACL 2024 has been or-
ganized. A shared molecule-text translation task
and the corresponding paired dataset are presented
to accelerate research in this field.

1.1 Dataset Description

In the provided L+M-24 dataset, each sample is a
molecule-text pair, with the molecule represented
by SMILES (Weininger, 1988; Weininger et al.,
1989) and the text generated from collected molec-
ular properties based on templates written by GPT-
4 (OpenAI, 2023). An extra version of L+M-24
is also available, with each molecule having five
additional captions. We use the training split of
this version (i.e., training-extra) and remove dupli-
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cates. The fundamental statistics of the L+M-24
are shown in Table 1, with more details about its
construction described in Edwards et al. (2024).

1.2 Task Description

Mol2text The goal of the mol2text task is to
generate a caption for a given molecule. Partic-
ipants are required to submit generated captions
for the test split of mol2text. Evaluation metrics
include widely used text generation metrics such as
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and METEOR (Banerjee and Lavie, 2005), in addi-
tion to the Text2Mol metric (Edwards et al., 2021,
2022). These metrics assess the similarity between
the generated molecular captions and the ground
truth. Classification metrics including Precision,
Recall, and F-1 value are also used to evaluate
property-specific mol2text results.

Text2mol The goal of the text2mol task is to
generate a molecule that fits a given descrip-
tion. Participants are required to submit the gen-
erated molecule SMILES for the test split of
text2mol. Evaluation metrics include BLEU (Pap-
ineni et al., 2002), exact match percentages, Leven-
shtein distance, fingerprints (FTS) similarity score
(MACCS (Durant et al., 2002), RDK (Landrum
et al., 2023), Morgan (Rogers and Hahn, 2010)),
FCD score (Preuer et al., 2018), Text2Mol (Ed-
wards et al., 2021, 2022) score, and validity. These
metrics evaluate the similarity between the gener-
ated molecule and the ground truth.

1.3 Overview of our Method

Our proposed method, enhanced version of
BioT5+, is designed to tackle the mol2text and
text2mol tasks using a comprehensive three-stage
approach. The first stage involves data distilla-
tion, where we generate synthetic datasets from
trained models to enrich the training data. In the
second stage, we perform diverse training by fine-
tuning various models on different combinations
of distilled and extra datasets. We also employ
Transductive Ensemble Learning (TEL) to further
enhance these models by leveraging unlabeled data.
In the final stage, we integrate these models us-
ing a voting ensemble method, which selects the
best predictions based on perplexity scores. This
multi-faceted strategy ensures that our models are
robust, diverse, and capable of achieving superior
performance across both tasks.

2 Methodology

In this section, we give a detailed introduction to
our three-stage methodology.

Notations. We use SELFIES (Krenn et al., 2020)
as the sequence representation of the molecule.
Compared to SMILES, SELFIES is a more robust
molecular representation, which is beneficial for
molecule generation tasks such as text2mol, as it
ensures the generation of 100% valid molecules.
The SMILES in the L+M-24 dataset are converted
to corresponding SELFIES using selfies toolkit2.
Let M and T denote molecular SELFIES and
text descriptions, respectively, andM and T de-
note the corresponding collection of all sequences.
Let B = {(mi, ti)}|B|i=1 represent the molecule-
text pairs from the training split of L+M-24, and
B+ = {(mi, ti)}|B+|

i=1 represent the molecule-text
pairs from training-extra split, where mi ∈ M,
ti ∈ T , and |B| and |B+| represent the size of
B and B+, respectively. Let Dm = {mj}|D

m|
j=1

denote the collection of molecules from the Pub-
Chem (Kim et al., 2019) database, where mj ∈M
and |Dm| = 800K represents the number of sam-
pled molecules. The text in T follows a specific
format, so we directly use Dt = {tj}|B+|

j=1 , where
the text tj ∈ B+.

Our goal is to develop a mol2text translation
model f : M 7→ T , which generates a caption
from T for a given molecule from M , and a re-
verse text2mol translation model g : T 7→ M. In
this paper, all models follow the T5 (Raffel et al.,
2020)-large architecture. Our method consists of
the following three stages:

Stage-1: Data Distillation. First, we train a
mol2text translation model f0 and a text2mol trans-
lation model g0 on B. Then, we use f0 and g0 to
build the synthetic dataset:

Bself = {(m, f0(m)) | m ∈ Dm}
∪ { (g0(t), t ) | t ∈ Dt } .

To further improve the diversity of the distilled
data, we also use the officially provided Meditron-
7B (Chen et al., 2023) mol2text model3 fmed to
build another synthetic dataset:

Bmed = {(m, fmed(m)) | m ∈ Dm} .
2https://github.com/aspuru-guzik-group/selfi

es
3https://huggingface.co/language-plus-molecul

es/Meditron7b-smiles2caption-LPM24
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Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol
Ground Truth 11.30
MolT5-Small 70.9 51.2 74.5 55.8 54.4 70.1 10.79
MolT5-Base 73.8 53.5 75.0 55.9 53.9 71.8 8.53
MolT5-Large 76.9 55.6 77.7 58.0 55.7 74.3 10.06
Meditron-7B 79.2 57.6 79.7 60.2 57.5 75.7 11.91
BioT5+ 79.8 57.9 81.2 61.7 58.4 77.7 11.36

Table 2: Results for mol2text task on the validation set of L+M-24.

Overall Biomedical Light+Electro Human Interaction Agr.+Industry Held-out Combos
Model P R F-1 P R F-1 P R F-1 P R F-1 P R F-1 P R F-1

MolT5-Small 29.83 3.48 3.12 15.13 4.18 4.29 12.42 4.85 3.27 46.77 0.57 0.56 45.00 4.32 4.36 0.00 0.00 0.00
MolT5-Base 35.36 5.18 4.69 14.58 4.84 4.97 16.08 5.82 3.36 63.94 5.01 5.18 46.85 5.05 5.27 0.00 0.00 0.00
MolT5-Large 33.32 7.72 6.95 15.27 7.94 7.82 16.96 10.90 7.39 62.77 5.99 6.27 38.29 6.06 6.31 0.00 0.00 0.00
Meditron-7B 25.27 11.56 16.8 23.86 14.91 35.00 26.51 16.48 17.49 29.54 7.52 7.07 21.18 7.35 7.40 12.35 0.29 0.56
BioT5+ 35.50 20.69 20.93 56.91 38.22 39.27 36.20 27.43 28.22 29.46 9.09 8.42 19.41 8.03 7.82 17.61 0.73 1.40

Table 3: Results for property-specific mol2text task on the validation set of L+M-24.

Model P R F-1 P R F-1 P R F-1 P R F-1 P R F-1 P R F-1
X-icides Toxins Light Electricity X-inhibitors anti-X

MolT5-Small 0.00 0.00 0.00 0.00 0.00 0.00 24.85 9.69 6.54 0.00 0.00 0.00 3.42 0.43 0.09 1.96 0.00 0.00
MolT5-Base 0.00 0.00 0.00 67.45 8.51 8.84 28.00 11.51 6.52 4.17 0.12 0.20 2.20 0.58 0.11 9.70 0.23 0.15
MolT5-Large 0.00 0.00 0.00 69.42 10.29 10.85 15.77 12.28 8.16 18.14 9.52 6.62 8.90 2.28 1.13 4.32 1.16 0.61
Meditron-7B 0.00 0.00 0.00 48.79 11.75 11.05 29.10 20.64 20.64 23.93 12.33 14.34 35.69 19.91 22.65 14.79 9.34 8.98
BioT5+ 0.00 0.00 0.00 47.93 13.42 12.55 38.29 30.32 30.68 34.12 24.53 25.76 48.00 31.05 32.58 33.96 13.04 15.34

X-modulator X-agonist X-antagonist X-treatment X-disease X cancer
MolT5-Small 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 55.49 1.99 1.70 87.44 50.08 49.94 71.86 21.03 24.27
MolT5-Base 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 58.90 2.25 1.80 94.61 55.16 59.18 45.06 25.49 24.54
MolT5-Large 21.30 0.58 0.88 5.91 1.96 1.23 14.30 0.58 0.42 14.27 2.67 2.22 97.18 81.07 81.86 65.76 52.06 51.56
Meditron-7B 42.43 21.24 24.98 39.19 23.23 26.35 34.22 18.98 21.15 28.75 11.35 15.13 97.34 81.11 82.02 79.80 68.65 72.62
BioT5+ 55.32 42.83 44.76 53.02 36.96 37.09 50.06 32.79 34.18 46.83 18.99 24.47 96.61 81.75 82.05 77.77 73.48 75.25

Table 4: Results for selected subproperty group-specific mol2text task on the validation set of L+M-24.

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
MolT5-Small 66.82 48.29 72.80 54.44 53.33 68.14
MolT5-Base 69.83 50.56 73.34 54.55 52.86 69.86
MolT5-Large 73.63 53.20 75.79 56.47 54.42 72.16
Meditron-7B 75.16 54.72 77.97 58.75 56.33 73.69
BioT5+ 75.58 54.77 79.41 59.89 57.46 75.43

Table 5: Results for mol2text task on the test set of L+M-24.

Table 6: Model combinations. B+ → B means the
model is first trained on B+ followed by B.

Model Dataset Initialization

f0, g0 B BioT5+

f1, g1 B ∪ B+ BioT5+
f2, g2 B ∪ Bself BioT5+
f3, g3 B ∪ Bmed BioT5+
f4, g4 B+ → B BioT5+

f∗
1 , g

∗
1 B∗ f1, g1

f∗
2 , g

∗
2 B∗ f2, g2

f∗
3 , g

∗
3 B∗ f3, g3

f∗
4 , g

∗
4 B∗ f4, g4

In summary, despite B, we have three additional
synthetic datasets: B+, Bself , and Bmed.

Stage-2: Diverse Training. Based on the
datasets mentioned above, we train various types of

mol2text and text2mol models on different combi-
nations of these datasets, as shown in Table 6. We
first train {fi}4i=1 based on the distilled datasets in
Stage-1. Then we adopt the Transductive Ensem-
ble Learning (TEL) method to get {f∗

i }4i=1, which
involves predicting labels for unlabeled data and
subsequently fine-tuning models on these predic-
tions to enhance performance (Wang et al., 2020).
Taking the mol2text models as an example (the
text2mol models follow a similar process), for each
fi in {fi}4i=1, we select τ top-performing check-
points {fij}τj=1 based on their validation BLEU
scores from its training trajectory. We use {fij}τj=1

to caption the molecules from Bvalid and Dtest, re-
sulting in two synthetic datasets:

Bvalid,i = {(m, fij(m)) | m ∈ Bvalid, 1 ≤ j ≤ τ} ,
Btest,i = {(m, fij(m)) | m ∈ Dtest, 1 ≤ j ≤ τ} .

Then we fine-tune model f∗
i on

B∗ = ∪4i=1{Bvalid,i ∪ Btest,i}, where f∗
i is

initialized from fi. f∗
i generally performs better
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Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Validity↑
Ground Truth 100.0 100.0 0.00 100.0 100.0 100.0 0.00 11.26 100.0
MolT5-Small 56.56 0.00 56.34 64.22 58.10 37.44 NaN 0.49 80.52
MolT5-Base 68.38 0.00 44.79 76.03 65.23 47.46 NaN 7.06 100.0
MolT5-Large 56.42 0.00 55.40 75.70 65.01 39.51 17.52 7.69 99.44
Meditron-7B 69.40 0.01 46.49 77.16 69.34 50.07 2.46 7.80 99.63
BioT5+* 73.97 0.01 40.87 77.69 70.51 51.58 3.22 13.83 100.0
BioT5+ 73.10 0.01 41.47 78.06 70.93 51.49 3.29 13.73 100.0

Table 7: Results for text2mol task on the validation set of L+M-24. * denotes model from TEL in Stage-2.

Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Text2Mol↑ Uniqueness↑ Validity↑
Ground Truth 100.0 100.0 0.00 100.0 100.0 100.0 0.0 23.05 100.0 100.0
MolT5-Small 22.80 0.00 54.14 8.99 5.19 3.48 NaN 5.79 10.14 39.79
MolT5-Base 29.51 0.00 48.91 38.78 19.73 14.21 NaN 21.60 5.13 100.0
MolT5-Large 24.37 0.00 63.44 41.56 24.23 15.71 NaN 23.77 12.72 97.82
Meditron-7B 28.04 0.00 53.44 40.90 27.42 16.82 3.91 22.46 74.81 98.58
BioT5+* 33.35 0.10 43.65 41.52 28.05 17.53 3.52 22.91 51.05 100.0
BioT5+ 31.89 0.10 46.14 42.57 29.50 18.01 3.88 23.77 48.22 100.0

Table 8: Results for text2mol task on the subset of held-out combinations from the validation set of L+M-24.
* denotes model from TEL in Stage-2.

Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Validity↑
MolT5-Small 55.44 0.0 57.21 63.06 56.83 36.69 nan 81.03
MolT5-Base 67.04 0.0 45.71 74.61 63.7 46.29 nan 99.89
MolT5-Large 55.31 0.0 56.47 74.14 63.4 38.54 17.63 99.12
Meditron 68.84 0.01 46.47 75.59 67.66 48.72 2.44 99.54
BioT5+ 73.17 0.01 41.05 76.05 68.70 50.05 3.13 100.0

Table 9: Results for text2mol task on the test set of L+M-24.

than fi as f∗
i due to its ability to leverage the

collective knowledge and complementary strengths
of ensemble learning, leading to improved
generalization and robustness. The comparison
between fi and f∗

i is shown in Table 10. In total,
as shown in Table 6, we obtain eight types of
models {fi}4i=1 and {f∗

i }4i=1 in Stage-2.

Stage-3: Voting Ensemble. In the final stage,
we combine the strengths of the models trained
in Stage-2 through a voting ensemble approach.
This method leverages multiple models to improve
the reliability and accuracy of the predictions. We
illustrate this process using the mol2text test dataset
as an example, but the same methodology applies
to text2mol and validation datasets.

Let F = {f̂j}|F|
j=1, where f̂j is derived from

the Stage-2 models in Table 6. Each f̂j generates
captions for the molecules in Dtest, resulting in a
corresponding set of datasets:

S =
{
Dtest,j =

{
(m, f̂j(m)) | m ∈ Dtest

}
| f̂j ∈ F

}
.

For each dataset in S, we compute the perplexity
(PPL) score of each caption using all models in F .
The perplexity of a model f̂j on a molecule-text

pair (m, t) is defined as:

PPLf̂j
(m, t) = exp

(
− 1

N

N∑

i=1

logPf̂j
(ti | t<i,m)

)
,

where N is the length of the caption t, and Pf̂ j(ti |
t<i,m) is the probability of the i-th token in
the caption given the preceding tokens and the
molecule m. Next, we average the PPL scores
across all models in F for each molecule-text pair
in each dataset in S. The average perplexity for
a given molecule-text pair (m, t) in the dataset
Dtest,j is calculated as:

PPL(m, t) =
1

|F|

|F|∑

k=1

PPLf̂k
(m, t).

Finally, for each molecule m in the test dataset
Dtest, we select the caption t̂(m) with the lowest
average PPL from each dataset in S as the final pre-
diction: t̂(m) = argmin(m,t)∈S PPL(m, t). This
selection process ensures that we leverage the most
reliable caption according to the ensemble’s evalu-
ation. By using this voting ensemble approach, we
improve the robustness and accuracy of the predic-
tions, leveraging the strengths of multiple models
trained in Stage-2.
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Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
BioT5+† 79.53 57.44 80.69 61.10 57.98 76.86
BioT5+* 79.63 57.70 80.95 61.18 58.11 77.06
BioT5+ 79.79 57.87 81.23 61.70 58.38 77.71

Table 10: Ablation results for mol2text task on the validation set of L+M-24. † denotes the model before TEL in
Stage-2. * denotes the model after TEL in Stage-2.

Model Configuration. Following Pei et al.
(2024a), we pre-train a large version of BioT5+
with 789M parameters, which is an enhanced ver-
sion of BioT5 (Pei et al., 2023) with improved
molecular understanding capabilities. As in Ta-
ble 6, model {fi}4i=0 are fine-tuned from this pre-
trained BioT5+ model, and model {f∗

i }4i=1 are fine-
tuned from {fi}4i=1. We employ a greedy decoding
strategy for all results, which selects the token with
the highest probability at each time step without
incorporating randomness or exploring multiple
hypotheses.

3 Experiments

In this section, we present our main results for
the mol2text and text2mol tasks. Baseline results
on the validation set are derived from Edwards
et al. (2024), and test set results are sourced from
the official leaderboard. An ablation study is also
conducted in Section 4 to demonstrate the efficacy
of our methodology.

Mol2text. Results on the validation set are shown
in Table 2, and results for the test set are shown
in Table 5. Our method achieves the best perfor-
mances on all metrics except for Text2Mol (Ed-
wards et al., 2021, 2022) metric, with a BLEU-2
of 79.80 on the validation set and 75.58 on the
test set. For the Text2Mol score on the valida-
tion set, both Meditron (Chen et al., 2023) and
our method exceed the ground truth score (11.30),
with our method slightly underperforming Med-
itron. The property-specific and selected subprop-
erty group-specific results on the validation set are
presented in Table 3 and Table 4, where our method
also outperforms the baselines in nearly all metrics.
These results show that the generated captions of
our method are highly accurate.

Text2mol. Unlike mol2text, our voting ensemble
in Stage 3 for the text2mol task does not improve all
metrics simultaneously. Therefore, we also report
the BioT5+* results which is the model from TEL
in Stage-2. Results on the validation and test sets
are presented in Table 7 and 9. Results on the sub-

set of held-out combinations from the validation set
are shown in Table 8. Our method achieves supe-
rior performances in most metrics, demonstrating
its efficacy and generalization ability.

4 Ablation Study

To validate the effectiveness of our TEL train-
ing and voting ensemble, we conduct an ablation
study for the mol2text task on the validation set of
L+M-24. The results, shown in Table 10, indicate
that the model after TEL (BioT5+*) yields better
results than model before TEL (BioT5+†). The
BioT5+ model, derived from voting ensemble in
Stage-3, achieves the best results overall.

5 Conclusion

In this paper, we introduce our enhanced BioT5+
model for the shared task of the Language +
Molecules Workshop at ACL 2024. We adopt
a three-stage approach: data distillation, diverse
training, and voting ensemble. Our method ef-
fectively leverages diverse datasets and advanced
ensemble techniques to enhance model perfor-
mance in both molecule captioning and text-based
molecule generation tasks. Experimental results
show that our approach achieves superior perfor-
mance across various evaluation metrics, highlight-
ing the potential of our enhanced BioT5+ model
for integrating molecules and text.
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Abstract

Large Language Models (LLMs) like ChatGPT
excel at diverse tasks when given explicit in-
structions, yet they often struggle with special-
ized domains such as molecular science, lack-
ing in-depth reasoning and sophisticated plan-
ning capabilities. To address these limitations,
we introduce ChatMol Copilot, a chatbot-like
agent specifically engineered for protein de-
sign and small molecule computations. Chat-
Mol Copilot employs a multi-level abstraction
framework to expand the LLM‘s capability. At
the basic level, it integrates external compu-
tational tools through function calls, thus of-
floading complex tasks and enabling a focus on
strategic decision-making. The second level is
data abstraction. Large data sets (such as a large
number of molecules created by a generative
model) are stored in Redis cache, and the redis
keys are referenced by LLMs for data sources
involved in computation. The third level of ab-
straction allows the LLM to orchestrate these
tools, either directly or via dynamically gen-
erated Python executables. Our evaluations
demonstrate that ChatMol Copilot can adeptly
manage molecular modeling tasks, effectively
utilizing a variety of tools as directed. By
simplifying access to sophisticated molecular
modeling resources, ChatMol Copilot stands
to significantly accelerate drug discovery and
biotechnological innovation, empowering bio-
chemists with advanced, user-friendly AI capa-
bilities. The open-sourced code is available at
https://github.com/ChatMol/ChatMol

1 Introduction

Large Language Models (LLMs) equipped with
specialized tools are catalyzing significant advance-
ments across various scientific fields. In chemistry
research, platforms like Coscientist (Boiko et al.,
2023) and Chemcrow (M. Bran et al., 2024) have
revolutionized lab automation and computational
tasks. Furthermore, the novel CodeAct approach,

which utilizes "Code as Action," leverages the cod-
ing prowess of LLMs to automate complex pro-
cesses (Wang et al., 2024). Similarly, tools such as
AlphaFold 3 (Abramson et al., 2024) have achieved
remarkable success in predicting protein interac-
tions and structures, underscoring the potential of
computational methods in molecular biology.

Despite these strides, significant challenges per-
sist in the molecular engineering field, particularly
regarding the execution of complex modeling tasks
and the interpretation of their outcomes (Greener
et al., 2022). These challenges stem from a need
for greater automation and a more intuitive inter-
action with computational tools. In response, we
introduce ChatMol Copilot, a dedicated platform
that enhances molecular modeling computations.
ChatMol Copilot is designed with a multi-level ab-
straction framework to maximize automation and
user-friendliness. At its foundation, it integrates
external computational tools via function calls, sim-
plifying the interface to show only inputs, outputs,
and functional descriptions, thereby isolating the
LLM from complex computational details. The ad-
vanced layer of this framework allows the LLM to
either orchestrate these tools directly or through dy-
namically generated Python executables. This pa-
per demonstrates how ChatMol Copilot effectively
manages molecular modeling tasks and delivers
precise, actionable responses to user inquiries, sig-
nificantly streamlining the computational workflow
in molecular science.

2 ChatMol Copilot Architecture

The ChatMol Copilot is designed around the capa-
bilities of Large Language Models (LLMs). The
system architecture aims to optimize workflow effi-
ciency and precision in molecular modeling tasks.

Workflow Overview (Figure 1): The process be-
gins with user instructions, which are interpreted
by the LLM. This interpretation step determines
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Figure 1: The general workflow of ChatMol Copilot.

whether the user’s request can be directly answered
or if it necessitates the use of specialized tools.
ChatMol Copilot supports a broad range of molec-
ular modeling applications, encompassing both
small molecules (such as pharmaceuticals) and
macromolecules (such as proteins and their inter-
actions). In addition to pre-defined tools, the sys-
tem can create new tools by writing and executing
Python code. This significantly expands its capa-
bilities beyond the predefined action space. Data
abstraction is employed to alleviate the burden of
data processing from LLMs. Besides internal data
usage, the system has access to significant biolog-
ical databases, enabling it to retrieve and utilize
publicly available data as needed. As conversations
progress, the integration of user demands with the
computational capabilities of ChatMol Copilot fa-
cilitates the completion of increasingly complex
tasks.

2.1 Equipped Tools

Numerous specialized neural networks have been
developed for various molecular property predic-
tion tasks (Wu et al., 2018). ChatMol Copilot in-
tegrates a range of tools to meet diverse computa-
tional needs, enabling comprehensive and efficient
analysis.

Neural Network-Based Tools: For tools that uti-
lize neural network inference, such as ESMFold
(Lin et al., 2023) and ProteinMPNN (Dauparas

et al., 2022), we have implemented publicly acces-
sible APIs. This ensures minimal hardware require-
ments for users.

Local Execution Tools: For faster, Python-based
tools, execution is handled locally on the user’s
computer. Examples include RDKit (Landrum
et al., 2013) and TM-align (Zhang and Skolnick,
2005). Table 1 lists the primary tools integrated
into the system for both small molecule and macro-
molecule analysis.

2.2 Integration with Microservices

Microservices are a staple in modern cloud comput-
ing architectures due to their scalability and mod-
ularity. Each microservice operates independently
with a well-defined API and service description.
In the ChatMol framework, we have developed a
generic method for integrating these microservices
into the ChatMol toolbox see Table 1.

For each microservice in our registry, Python
code is generated based on the input parameter
descriptions. This code is then wrapped into a stan-
dard function call, compiled on-the-fly, and added
to our function calling list. As new microservices
are registered, the function list is automatically up-
dated, greatly enhancing the toolbox’s capabilities
while simplifying ongoing maintenance.
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Figure 2: General protein design task. Text within purple boxes are instructions from users, and text within green
boxes are answers given by ChatMol Copilot. Texts colored blue with underlines are hyperlinks for download files.
The table and cartoon represented protein are real screen shots from the GUI of ChatMol Copilot.

2.3 Code as Actions and Redis Cache

Expanding the system’s capabilities can be
achieved through the automatic generation and ex-
ecution of code, known as CodeAct. In ChatMol
Copilot, we implemented a generic Python code
executor and a universal data object access mech-
anism using Redis cache. Code generation can be
based on task descriptions and knowledge from
documents. Redis cache and generic data object
read/write operations in code enabling the LLM
to manage tasks and data flow much simpler by
referencing data with their keys.

3 Use Cases of ChatMol Copilot for
Molecular Modeling

This section showcases four examples demonstrat-
ing the wide-ranging capabilities of ChatMol Copi-
lot in molecular modeling tasks. These use cases
illustrate how ChatMol Copilot adheres to user
instructions, utilizing appropriate tools from its
equipped toolkit and microservices to meet the de-
mands of biochemists, from protein modeling to
small molecule de novo synthesis.

3.1 General Protein Design Task

Proteins, essential macromolecules in cells, per-
form various biological functions, including DNA
duplication, metabolic reaction catalysis, and cell

cycle regulation. They are also pivotal in healthcare
as therapeutic agents like insulin and antibodies,
and in various industries as catalysts for cleaner
energy and chemicals (Huang et al., 2016).

A fundamental challenge in protein design is to
find a sequence that folds into a desired structure
(Dauparas et al., 2022). This task is complicated
by epistasis, where residue-residue interactions can
lead to misfolding and loss of function. To address
this, we utilized ProteinMPNN (Dauparas et al.,
2022) for sequence design and ESMFold (Lin et al.,
2023) to predict the fold of the designed sequences.
The effectiveness of the designs was validated by
comparing their structures to the initial templates,
with ChatMol Copilot presenting the results in a
well-organized table format. Key metrics such as
Root Mean Squared Error (RMSD) and TM-score
are highlighted to assess the structural integrity of
the designed sequences Figure 2.

3.2 Peptide/MHC-II Binding Affinity
Prediction

The prediction of binding affinity between peptides
and MHC-II complexes is critical for assessing
the immunogenic potential of newly designed pro-
teins (Jensen et al., 2018). In this use case, Chat-
Mol Copilot was tasked with mutating a peptide
sequence five times randomly, then calculating and
tabulating the binding affinities of these variants
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Figure 3: Protein ligand docking task.

with the HLA-DPA10103-DPB10201 allele. This
multi-step process, handled efficiently by a single
user prompt, showcases ChatMol Copilot’s abil-
ity to manage complex, multi-stage computational
tasks effectively Figure 4.

3.3 Molecular docking task
In both designing of drugs or enzymes, molecular
docking is commonly involved to determine the
intermolecular interactions (Meng et al., 2011). A
common molecular docking process requires input
of: (1) receptor structure, (2) ligand conformer, (3)
docking parameters including centre of box and
the size of the box. We show that ChatMol Copi-
lot will facilitate this multi-step task by using a
set of related tools. With the name of a ligand
provided, the copilot used the tool to search for
SMILES and another tool to generate a conformer.
After downloading the structure file of the receptor
from the RCSB PDB database, the docking param-
eters were automatically determined under the help
of the pocket prediction tool. Finally, the docked
complex will be presented to the user Figure 3.

3.4 Molecule generation and filtering with
generated Python code

Generating novel molecules with desired properties
and structures is very important in drug discovery.
A recently large molecule generation model SAFE
(Noutahi et al., 2024) is open-sourced. There are

6 different modes for molecule generation, each is
provided as an API service, and all the 6 APIs are
integrated into ChatMol. In the following example,
200 molecules are requested to be generated with a
common core. The molecules are stored in Redis
cache with key ’SuperStructure_smiles’. Figure 5.

Molecular properties were calculated using a
functional call, and the results were stored in Redis
cache. To apply filtering with Lipinski’s rule of 5
(Lipinski et al., 2012) to the generated molecules a
Python function is created by GPT-4o: Figure 6.

In this code, the generated molecules with their
properties were read from Redis, and the then Lip-
inski’s rule of 5 is applied to remove molecules
that violate the rules. The remaining molecules are
saved into Redis. At the end of the code, the total
number of the resulting molecules and the first 5
samples are returned.

4 Discussion and Conclusions

In this work, we present a practical solution how to
leverage large language models to assist molecular
design and computation, particularly for proteins.
We also propose the architecture with multi-level
abstraction so as to achieve a higher level of au-
tomation, which combines multiple steps in one
shot. The automatic code generation and execution
expands the systems capabilities beyond the prede-
fined action space. The data abstraction with Redis
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cache makes the "Code as Actions" (Wang et al.,
2024) more practical for molecular modeling and
computation. Similar to the basic concept of "Code
as Actions," we use LLMs to generate PyMOL
commands in ChatMol based on user instructions,
performing relatively complex molecular visual-
ization tasks. Closed-source commercial models
like GPT-4 and the Claude series can write PyMOL
commands with high accuracy based on user in-
structions. Smaller open-source models, when fine-
tuned with specific instructions, can also perform
this task. As the capabilities of relatively smaller
LLMs like phi-3 (Abdin et al., 2024) continue to
improve, we can expect future open-source, afford-
able models to replace current commercial models
for ChatMol Copilot needs, further democratizing
this field. Even though our current experiments are
primitive, we believe that the multi-level abstrac-
tion approach is a promising direction to achieve
even higher intelligent for molecular design and
computation.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Josh Abramson, Jonas Adler, Jack Dunger, Richard
Evans, Tim Green, Alexander Pritzel, Olaf Ron-
neberger, Lindsay Willmore, Andrew J Ballard,
Joshua Bambrick, et al. 2024. Accurate structure pre-
diction of biomolecular interactions with alphafold 3.
Nature, pages 1–3.

Daniil A Boiko, Robert MacKnight, Ben Kline, and
Gabe Gomes. 2023. Autonomous chemical research
with large language models. Nature, 624(7992):570–
578.

Justas Dauparas, Ivan Anishchenko, Nathaniel Ben-
nett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas,
Neville Bethel, et al. 2022. Robust deep learning–
based protein sequence design using proteinmpnn.
Science, 378(6615):49–56.

Warren L DeLano et al. 2002. Pymol: An open-source
molecular graphics tool. CCP4 Newsl. Protein Crys-
tallogr, 40(1):82–92.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley,
Oriol Vinyals, and George E Dahl. 2017. Neural mes-
sage passing for quantum chemistry. In International
conference on machine learning, pages 1263–1272.
PMLR.

Joe G Greener, Shaun M Kandathil, Lewis Moffat, and
David T Jones. 2022. A guide to machine learning
for biologists. Nature reviews Molecular cell biology,
23(1):40–55.

Po-Ssu Huang, Scott E Boyken, and David Baker. 2016.
The coming of age of de novo protein design. Nature,
537(7620):320–327.

Kamilla Kjaergaard Jensen, Massimo Andreatta, Paolo
Marcatili, Søren Buus, Jason A Greenbaum, Zhen
Yan, Alessandro Sette, Bjoern Peters, and Morten
Nielsen. 2018. Improved methods for predicting
peptide binding affinity to mhc class ii molecules.
Immunology, 154(3):394–406.

Greg Landrum et al. 2013. Rdkit: A software suite
for cheminformatics, computational chemistry, and
predictive modeling. Greg Landrum, 8(31.10):5281.

Jiabo Li, Tedman Ehlers, Jon Sutter, Shikha Varma-
O’Brien, and Johannes Kirchmair. 2007. Caesar: a
new conformer generation algorithm based on recur-
sive buildup and local rotational symmetry considera-
tion. Journal of chemical information and modeling,
47(5):1923–1932.

Jiabo Li and Roy McWeeny. 2002. Vb2000: Pushing
valence bond theory to new limits. International
journal of quantum chemistry, 89(4):208–216.

Zeming Lin, Halil Akin, Roshan Rao, Brian Hie,
Zhongkai Zhu, Wenting Lu, Nikita Smetanin, Robert
Verkuil, Ori Kabeli, Yaniv Shmueli, et al. 2023.
Evolutionary-scale prediction of atomic-level pro-
tein structure with a language model. Science,
379(6637):1123–1130.

Christopher A Lipinski, Franco Lombardo, Beryl W
Dominy, and Paul J Feeney. 2012. Experimental
and computational approaches to estimate solubility
and permeability in drug discovery and development
settings. Advanced drug delivery reviews, 64:4–17.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Bal-
dassari, Andrew D White, and Philippe Schwaller.
2024. Augmenting large language models with chem-
istry tools. Nature Machine Intelligence, pages 1–11.

Xuan-Yu Meng, Hong-Xing Zhang, Mihaly Mezei, and
Meng Cui. 2011. Molecular docking: a powerful
approach for structure-based drug discovery. Current
computer-aided drug design, 7(2):146–157.

Emmanuel Noutahi, Cristian Gabellini, Michael Craig,
Jonathan SC Lim, and Prudencio Tossou. 2024.
Gotta be safe: a new framework for molecular design.
Digital Discovery, 3(4):796–804.

Nicholas Rego and David Koes. 2015. 3dmol. js:
molecular visualization with webgl. Bioinformatics,
31(8):1322–1324.

David Sehnal, Sebastian Bittrich, Mandar Deshpande,
Radka Svobodová, Karel Berka, Václav Bazgier,
Sameer Velankar, Stephen K Burley, Jaroslav Koča,
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A Cases of using ChatMol Copilot

A.1 Protein stability engineering task

Enzyme stability engineering plays a crucial role in
various biotechnological applications by enhancing
the resilience of enzymes to environmental con-
ditions and enabling them to maintain their cat-
alytic activity over extended periods. This process
involves modifying specific amino acid residues
within the enzyme structure to improve its thermal
stability, pH tolerance, resistance to proteolytic
degradation, and overall performance under vary-
ing conditions.

In the process copilot performed, it searches the
RCSB PDB database for the LinB enzyme and
download it. Subsequently, stabilizing mutations
are recommended based on the energy values cal-
culated for each mutation in the provided protein
structure according users instructions. These muta-
tions represent amino acid substitutions that are pre-
dicted to increase the stability of the enzyme. By in-
troducing these mutations, the enzyme’s structural
integrity can be enhanced, leading to improved en-
zymatic activity and potential applications in bio-
catalysis, drug development, and other biotechno-
logical processes.

A.2 Generate a set of molecules, compute the
molecular properties and display the
results in a table

In this case, the de novo generation method is used
to create a set of molecules. A set of molecular
properties are computed for each molecule, and the
results are collected for all molecules and a table is
created. All these steps are accomplished with just
one prompt.

B All tools

B.1 Ligand binding pocket prediction

A message passing nerual network (Gilmer et al.,
2017) based pocket prediction tool was developed
named PocketMPNN. Although many pocket pre-
diction methods were available, a residue-level pre-
diction tool was still in the absence. However, it is
of significant importance to facilitate the molecular
docking process. Therefore, we developed a neural
network trained on the PDB-Bind database (Wang
et al., 2005) for pocket residue prediction and a pub-
licly available API was provided. We only took this
as a demonstration due to it not being computation
extensive and still having satisfactory accuracy.

B.2 Protein structure prediction

The public API provided by the ESM Metagenomic
Atlas was used for structure prediction. The ESM-
Fold is of good prediction accuracy and fast re-
sponse compared with MSA-based prediction such
AlphaFold2. Within the length of 400 aa, this API
usually responds within 20 seconds. Additionally,
ESMFold’s reliance on evolutionary information
enables it to handle diverse protein sequences and
structural motifs with high fidelity.

B.3 Mutation effect prediction

The public API of Pythia (Sun et al., 2023) was
used for mutation effect prediction. The Pythia
is a ultra fast mutation effect predictor with good
accuracy.

B.4 Protein structure visualisation

During the conversation, py3Dmol (Rego and Koes,
2015) is used to show a cartoon representation of a
protein. For more interactive and general visuali-
sation and interaction, the streamlit plugin of Mol*
(Sehnal et al., 2021) was used.

61



Figure 4: Using MHC binding affinity prediction tool

Figure 5: Using SAFE for molecular generation

62



B.5 Docking

The AutoDock Vina is a fast and widely applied
docking tool. We implemented a RESTful API to
make it adaptable in the form of a function calling
for LLM to use this tool.

B.6 Blind Docking

During the docking process, it is necessary for the
geometric centre of a pocket to be assigned. How-
ever, this inspection of a structure can be challeng-
ing without an experimentally determined protein-
ligand complex. Here, we combined the pocket
prediction with the Autodock Vina, using the geo-
metric centre of predicted pocket residues as a hint
for docking.

B.7 Protein sequence design

We use ProteinMPNN for protein sequence design.
It is a neural network based on the message pass-
ing neural network, trained on protein structure to
generate the native protein sequences and has been
experimentally verified to be a robust tool. We
also implemented a public accessible API for this
copilot.

C Other details of ChatMol Copilot

C.1 Visualisation Components (Mol*,
PyMOL and py3Dmol)

Visualisation is one of the most important com-
ponents for the interactions between a user and
ChatMol system. In ChatMol Copilot, three dif-
ferent visualisation components can be used. In
addition to traditional interactions via the mouse,
one important new way of using computers is to
communicate with human natural language. This
is made possible via LLMs, such as ChatGPT. The
advantages of the three visualisation components
are listed below:

PyMOL (DeLano et al., 2002) has high visual
quality, and widely adopted by science communi-
ties.

MolStar (Mol*) serves as a basis for the next-
generation data delivery and analysis tools for (not
only) macromolecular structure data.

py3Dmol is a python package can be integrated
easily in other python code.

We provide three options there so that users have
choices according to their personal preferences.

C.2 Registry for computational services

To improve the interoperability of various compu-
tational services, all backend services are wrapped
with FastAPI. For the convenience of usage and
management of these services, a simple registry
system for all FastAPI services is implemented.
The registry itself is also a FastAPI service, which
provides registration for new services, a map for
finding and query the services, and for load bal-
ancing and routing. Each registry record con-
tains a brief description of the service, the service
name, the endpoint URL and the description of
input/output parameters.

C.3 Function Calling and Agentic Approach

Agentic approach is the new trend of workflow
automation and more deeply the road map to arti-
ficial general intelligence (AGI) as pointed out by
Andrew Ng in his very recent talk at here.

As our initial approach in this new paradigm, we
have implemented tool use and self reflection in our
system design. In additional third party tools, all
our internal computational tools which are already
wrapped into FastAPI calls are further integrated
into ChatMol as function calling services that can
be orchestrated using LLMs, such as ChatGPT.

C.4 Registered Services

Registry This is the first service of the registry sys-
tem. The main function of this service is to register
other services. To register a server, the following in-
formation must be provided: service name, a brief
description of the service, the URL for the service
endpoint, a list of input parameter names, and the
description of the parameters. AlphaConf A super-
fast 3D conformation generation method developed
by ChemXAI. The input is a file of molecules in
SDF format, and the output is a file of generated
3D conformations. It takes less than 30 minutes to
generate conformations for all ChEMBL database
molecules on a 16-core linux machine. The con-
formation quality as measured by the coverage of
bioactive conformers is comparable or even bet-
ter than the best commercially available products,
such as Omega or ConfGenX. AlphaConf follows
a divide-n-conquer and build-up strategy similar
to CAESAR algorithm (Li et al., 2007). A highly
efficient 3D conformation storage technology is
used to compress storage by factor up to 3 orders
of magnitude. 100,000 conformations/second (16
core machine). 142M confs of ChEMBL storage:

63

https://www.youtube.com/watch?v=sal78ACtGTc


Figure 6: Python code generated for Lipinski’s rule of five
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Table 1: Integrated Tools in ChatMol Copilot

Macromolecules Description Small Molecules Description

PocketMPNN Ligand binding pocket
prediction

SAFE Molecule generation

ESM Atlas Protein structure predic-
tion

generate 3D conforma-
tion

3D conformation by
RDKit

Pythia Mutation effect predic-
tion

get smiles feature Calculate features of
molecules

py3Dmol, Mol* Visualizer predict logp from
smiles

Prediction logP for
molecules

Autodock Docking simulation smiles similarity Compare molecular
similarity

ProteinMPNN Protein sequence de-
sign

AlphaConf Fast conformation gen-
eration

BAPrediction Peptide-MHC-II bind-
ing affinity

AlphaShape Shape based virtual
screening

search rcsb, query
uniprot, fetch asked
pdb, get smiles from
name

Query databases VB2000 Ab initio valence bond
calculation

2.7GB.
AlphaShape Shape and pharmacophore based

virtual screening with GPU acceleration. 1000,000
molecule shape comparison/second on a 2-
RTX4090 GPU machine.

VB2000 3.0 This is a completely new implemen-
tation of early work VB2000 (Li and McWeeny,
2002). A modern ab initial valence bond calcu-
lation program. The first version was released in
year 2000, and the current version is 3.0. More
information of VB2000 from the official website at
here.

BAPrediction Binding affinity prediction of
peptide-MHC-II molecules. The prediction model
is trained with the latest data sets, which include
both binding affinity data (BA) and eluted ligand
binding data. A combination of XGBoost and a
novel feature engineering method has been used to
improve the prediction accuracy. It provides better
results than the published results in literature.

Molecule Generation SAFE is a very recently
released open-source molecular generation model
is used. The model has 87M parameters and is
trained with 1.1 billion compounds in SAFE rep-
resentations. The SAFE model provides 4 modes
for molecule generation: 1) DenovoGen (de novo
molecular generation). Random generation of

molecules with no constraints. The output is a
set of SMILES strings of the generated molecules.
The input parameter is the number of molecules to
be generated. 2) SuperStructure. In super structure
generation, new molecules are generated based on
a starting core. A smiles of the starting core need
to be provided. 3) MotifExtend. In motif exten-
sion, we are interested in generating a molecule
containing a given motif as a starting point. The
extension point of the motif need to be labelled.
4) LinkerGen. Linker generation for linking two
fragments. The smiles of two terminal fragments
need to be provided in the inputs.

C.5 ChatMol in PyMOL
As an example of "code as action" and the uti-
lization of open-source LLMs, we demonstrate a
case where LLMs are directly used to generate
PyMOL command lines and perform correspond-
ing molecular visualization tasks in PyMOL. This
case involves the use of two LLMs: GPT-4o and
a fine-tuned Llama-3-8B-instruct. Both models
correctly execute the commands "download 1pga"
and "remove waters." However, GPT-4o produced
an incorrect response Figure 7 when handling the
command "color it by secondary structures".
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Figure 7: Performing same task using GPT-4o and fine-tuned llama-3-8b instruct
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Abstract 

Large language models (LLMs) have made substantial 

strides, but their use in reliably tackling issues within 

specialized domains, particularly in interdisciplinary 

areas like pharmaceutical sciences, is hindered by data 

heterogeneity, knowledge complexity, unique objectives, 

and a spectrum of constraint conditions. In this area, 

diverse modalities such as nucleic acids, proteins, 

molecular structures, and natural language are often 

involved. We designed a specialized token set and 

introduced a new Mixture-of-Experts (MoEs) pre-

training and fine-tuning strategy to unify these 

modalities in one model. With this strategy, we've 

created a multi-modal mixture-of-experts foundational 

model for pharmaceutical sciences, named SciMind. 

This model has undergone extensive pre-training on 

publicly accessible datasets including nucleic acid 

sequences, protein sequences, molecular structure 

strings, and biomedical texts, and delivers good 

performance on biomedical text comprehension, 

promoter prediction, protein function prediction, 

molecular description, and molecular generation.   

1 Introduction 

Large language models (LLMs) have made 

substantial strides, providing a versatile, task-

agnostic base for a variety of applications[1], [2], 

[3]. However, their use in reliably tackling issues 

within specialized domains, particularly in 

interdisciplinary areas like pharmaceutical sciences, 

is hindered by several obstacles. These include data 

heterogeneity, knowledge complexity, unique 

objectives, and a spectrum of constraint conditions, 

which block the creation of groundbreaking 

applications[4], [5], [6]. This research aims to lay 

the groundwork for a large-scale model within the 

pharmaceutical sciences. In this area, four diverse 

modalities including nucleic acids, proteins, 

molecular structures, and natural language are 

involved. Of them, nucleic acids, proteins and 

molecular structures are the common modalities 

modeled by the pharmaceutical science community. 

Predicting the properties of a molecule or a 

protein[7], [8], [9], designing and optimizing for 

new ones[10], [11], [12], and understanding how 
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Figure 1: An overview of the four modalities in 

pharmaceutical sciences. The three traditional 

modalities, including nucleic acids (DNA/RNA), 

proteins, and small molecules, are typically 

modeled independently. Recent advancements 

have been made in the realm of cross-modal 

modeling, as indicated by the solid lines. However, 

there is a gap domain. In recent times, the natural 

language modality has surfaced as a highly 

promising method to describe nucleotide 

sequences, small molecules, and proteins, and it is 

swiftly garnering attention. 
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they interact with each other [13], [14], [15] are 

common tasks and have made great progress. For 

example, AlphaFold3 and RosettaFold All-Atom 

models can even predict all interactions among 

these modalities. 

However, a gap exists between these interactions 

and biological functions. While binding is common 

between proteins and molecules, the effects it may 

cause are rare and often expressed in natural 

language after experimentation, making 

standardization for modeling challenging. The 

effects a molecule can cause by binding to a protein 

are diverse, including competitive inhibition, non-

competitive inhibition, agonizing, antagonizing, 

allosteric regulation, covalent modification, 

transport, and chelation, among others[16]. These 

effects are interconnected yet distinct from one 

another. Modeling each effect separately requires 

standardization and a separate classification or 

regression model, often leading to a loss of 

semantic meaning in the labels. In contrast, natural 

language descriptions provide an abstract and 

meaningful form of labeling for data, capable of 

conveying rich information.  

Recent advancements in LLMs have propelled the 

development of cross-modal models between 

language and other modalities[4], [17], [17], [18], 

[19], [20]. These models, which include language-

molecule, language-protein, and language-nucleic 

acids modalities, extend our capabilities to predict 

molecule functions, generate or optimize 

molecules with flexible constraints, annotate 

protein functions, and create or optimize proteins. 

However, their modality fusion is limited to two 

modalities.  

In the field of pharmaceutical sciences, multiple 

modalities can be integrated, as depicted in Figure 

1. If a model capable of managing all these 

modalities exists, then all biomedical text 

knowledge could be stored in a richly informative 

format. To address this, we've developed a 

specialized token set designed to individually 

tokenize different modalities. We also introduce a 

novel pre-training and fine-tuning strategy that 

harnesses the benefits of large-parameter models 

while minimizing their costs. This strategy, based 

on previous work MoEfication[21], involves two 

key components: (1) splitting the parameters of 

Feed-Forward Networks (FFNs) into multiple 

functional partitions called experts, and (2) 

building expert routers to determine which experts 

will be used for each input. By adopting a selective 

unequal number of expert activation strategy on 

different tokens, this approach enables data from 

 

Figure 2: SciMind multi-modal model overview. A, there are four modalities in SciMind, and different modality 

was designated with different tokens to represent their sequences; B, based on llama-2-7B, 16 experts are split 

using restricted K-Means clustering according to the feedforward layer weights. A routing layer is added before 

the feedforward layer of the original model, and domain data is used to pretrain or fine-tune the routing layer to 

achieve the selection of different experts for different tokens. 
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different modalities to choose the most appropriate 

processing path. This approach not only results in a 

sparser model architecture, thereby reducing 

inference costs, but also circumvents modal 

alignment and potential performance decreases due 

to model size reduction. The main contributions of 

our work are as follows: 

1) We've created a multi-modal mixture-of-expert 

foundational large model for pharmaceutical 

sciences, named SciMind. This model has 

undergone extensive pre-training on publicly 

accessible datasets including nucleic acids, 

protein sequences, molecular structures strings, 

and biomedical texts, and could be fine-tuned 

for downstream tasks involving all modalities 

in pharmaceutical sciences.  

2) SciMind achieves state-of-the-art performance 

on benchmarks of molecular captioning and 

molecular generation by description. 

2 Related works 

In this section, we will provide a concise overview 

of the related work on cross-modal models in the 

field of pharmaceutical sciences. 

2.1 Cross Language-Molecule Modalities 

The pioneering work of MolT5 has paved the way 

for research in molecular captioning and generation 

by description, introducing the ChEBI benchmark 

dataset for this purpose[18]. Subsequent models 

such as MoSu[22], MolXPT[23], BioT5[24], and 

Mol-instruction[25] have expanded the scope of 

tasks to include numeric molecular property 

prediction. However, the scarcity of language-

molecule pair datasets remains a challenge. To 

address this, the PubchemSTM[19] and L+M-

24[26] datasets have been introduced, leading to 

improvements in molecular retrieval and editing 

constrained by language. 

2.2 Cross Language-Protein Modalities 

ProteinDT[27] and Mol-Instruction[25] are 

examples of multi-modal frameworks that leverage 

semantically related text for protein annotation and 

design. BioTranslator[28], a cross-modal model, is 

specifically designed for annotating biological 

entities such as gene expression vectors, protein 

networks, and protein sequences based on user-

provided text. Building on the blip2 framework, 

Mistral and ESM2 have been used to create 

FAPM[29], which has achieved state-of-the-art 

results in protein functional Go Terms prediction 

and demonstrates strong generalization to proteins 

with few homologs. 

3 SciMind 

In this section, we will detail the design and 

training of our multi-modal mixture-of-experts 

model, SciMind. The overview of the pre-training 

is illustrated in Figure 2. Unlike existing models, 

our focus is on integrating all modalities into a 

single model. To this end, we have designed 

specialized token sets for each modality. However, 

each modality has a different level of complexity 

and requires a different number of parameters to 

avoid overfitting. To leverage the many open-

source pretrained language models, we have 

chosen to construct a Mixture-of-Experts model by 

splitting the pretrained LLAMA-2-7B model into 

16 experts at each of the feedforward layers. 

3.1 Pre-training Corpus 

The pre-training corpus includes only single 

modality data, which are general text, nucleic acids 

sequences, protein amino acid sequences, and 

molecule SMILES (Simplified Molecular-Input 

Line-Entry System) strings. The details of the 

corpus are provided in Appendix A. 

3.2 Tokenization 

In previous work on cross-language modalities 

with nucleic acids, molecules, and proteins, the 

token set was often inherited from NLP methods 

such as SentencePiece[30]. However, given the 

different modalities and their unique next-token 

distributions, we have chosen to tokenize the 

sequences from nucleic acids, molecules, and 

proteins by characters, with different brackets used 

to distinguish characters in different modalities 

(Figure 2a). 

3.3 Mixture-of-Experts 

Based on the LLAMA-2-7B model, we have split 

16 experts using restricted K-Means clustering 

according to the feedforward layer weights (Figure 

2b). A routing layer has been added before the 

feedforward layer of the original model, and 

different modality data are fed to pretrain or fine-

tune the routing layer to achieve the selection of 

different experts for different tokens. Considering 

the propensity to overfit on nucleic acids, protein 

sequences, and molecule SMILES strings, and our 

desire to preserve the original language capabilities, 
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we adopted a selective expert activation strategy. 

For text tokens, we engaged 8 out of the 16 experts. 

Conversely, for tokens corresponding to other 

modalities, we restricted the activation to merely 2 

out of the 16 experts. 

3.4 Pretraining 

We employed the Huawei MindSpore training 

framework for pre-training purposes on Huawei 

Ascend 910 AI chips. Prior to inputting the 

processed data into the model, an extra step was 

taken to expedite the training process. This 

involved converting the data format into the 

MindRecord format. The Ascend AI framework 

offers a variety of parallel training modes, efficient 

memory reuse, and features like automatic mixed 

precision. These capabilities significantly enhance 

the training of large-scale models. For further 

acceleration, we utilized the MindFormer operator 

during the training process. 

4 Experiments and Results 

4.1 Domain Knowledge comprehension 

GPT3.5, when utilizing few-shot prompts, tends to 

struggle with understanding pharmaceutical 

domain knowledge, particularly in tasks such as 

name entity recognition and relation extraction. In 

light of previous research, we evaluated SciMind's 

performance on domain knowledge 

comprehension benchmarks. As illustrated in Table 

1, across ten tasks encompassing name entity 

recognition, relation extraction, and question 

answering, SciMind surpassed the previous state-

of-the-art model, BioLinkBert-Large, in eight tasks.  

4.2 DNA promoter prediction 

Predicting gene function is vital for comprehending 

intricate biological processes. This involves 

forecasting functional elements and interaction 

modalities in both coding regions and non-coding 

sequences that govern gene transcription. 

Promoters, integral elements in the non-coding 

regions of genes, regulate gene transcription by 

managing RNA polymerase binding and initiation. 

Therefore, the precise prediction of promoter sites 

is essential for understanding gene expression and 

genetic regulatory networks. 

We evaluated the performance of SciMind using 

the benchmark data set by DeePromoter. The 

results presented in Table 2 indicate that SciMind's 

Organism 
Method Precision Recall MCC 

Human TATA 
DeePromoter 0.93 0.95 0.88 

 
SciMind 0.92 0.91 0.84 

Human non-TATA 
DeePromoter 0.97 0.95 0.92 

 
SciMind 0.96 0.97 0.94 

Mouse TATA 
DeePromoter 0.92 0.95 0.87 

 
SciMind 0.90 0.96 0.83 

Mouse non-TATA 
DeePromoter 0.91 0.90 0.82 

 
SciMind 0.92 0.96 0.87 

Table 2: Performances on prompt DNA promoter 

prediction.  

 

Tasks Entitytype No.entities EvaluationMetrics 
BioLinkBERT 

-Large 

GPT3.5 

(few-shots) 
SciMind 

Name Entity Recognition      

BC5CDR Disease Disease 19,665 F1entity-level 0.940 0.603 0.957 

BC5CDR Chem Chemical 12,694 F1entity-level 0.864 0.518 0.881 

NCBI Disease Disease 6881 F1entity-level 0.888 0.505 0.855 

BC2GM Chemical 79,842 F1entity-level 0.852 0.375 0.898 

JNLPBA Gene 20,703 MicroF1 0.801 0.413 0.842 

Relation Extraction       

Chemprot Protein-chemical 10,031 MicroF1 0.800 0.342 0.861 

DDI Chemical-chemical 4,920 MicroF1 0.834 0.516 0.844 

GAD Gene-disease 5330 MicroF1 0.849 0.524 0.805 

Question Answering      

PubMedQA Yes/No/Maybe 1000 Accuracy 0.722 0.765 0.796 

BioASQ Summary 885 Accuracy 0.948 0.886 0.950 

Table 1: Performances on pharmaceutical sciences domain knowledge comprehension and extraction. The 

metrics of BioLinkBERT-Large and ChatGPT(few-shots) are taken from the original papers. 
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predictive performance is on par with DeePromoter 

in this task. Moreover, SciMind exhibits a slight 

edge in predicting data with non-TATA promoters. 

These promoters are more prevalent in certain 

organisms and types of genes, and they can be 

involved in more complex regulatory processes. 

4.3 Molecular captioning 

The objective of the molecule captioning task is to 

provide a structural or biological functional 

description for a given molecule. In our approach, 

we represent molecules using SMILES strings, 

thereby transforming the task into a seq2seq 

translation problem. This problem is well-suited for 

processing by large language models. We have two 

benchmark datasets with varying sizes. The ChEBI 

dataset is annotated by humans, while the L+M-24 

dataset is summarized by ChatGPT. A notable 

difference is that some ChEBI data includes 

descriptions identifying the core structures of 

molecules. 

As shown in Table 3, our Mixture-of-Experts-based 

SciMind model achieves state-of-the-art (SOTA) 

performance on most of the metrics in both 

benchmark datasets. 

4.4 Molecular generation 

Molecular generation is the reverse task of 

molecule captioning. Given a natural language 

description of the desired molecule, the goal is to 

generate a molecule that matches the description. 

The results in Table 4 demonstrate that our 

Mixture-of-Experts-based SciMind achieves state- 

SOTA performance on most metrics across both 

benchmarks. 

4.5 Protein-oriented prediction 

We leverage the protein-oriented instruction 

dataset from Mol-Instruction to fine-tune SciMind. 

Figure 3 shows the Rouge-L metrics of five 

methods across four tasks: protein function, general 

description, catalytic activity, and domain/motif 

Benchmark Model BLEU-2 ↑ BLEU-4 ↑ ROUGE-1 ↑  ROUGE-2 ↑ ROUGE-L ↑ METEOR ↑ 

ChEBI 

MolT5-Large* 0.594 0.508 0.654 0.510 0.594 0.614 

Mistral-7B 0.604 0.521 0.658 0.522 0.597 0.634 

SciMind 0.626 0.560 0.679 0.532 0.629 0.657 

L+M-24 

MolT5-Large# 0.736 0.532 0.758 0.564 0.544 0.722 

Mistral-7B# 0.749 0.543 0.771 0.574 0.555 0.729 

Meditron-7B# 0.752 0.547 0.780 0.588 0.563 0.737 

SciMind# 0.757 0.550 0.782 0.584 0.563 0.748 

Table 3: Performances on molecular captioning. The metrics value of methods annotated with * are taken from 

the original paper. And the metrics value of methods annotated with # are taken from the contest leaderboard 

(https://www.codabench.org/competitions/2914), where SciMind ranked No.1. Other metrics values are evaluated 

following the process of previous work. 

 

Benchmark Model BLEU ↑ Exact ↑ Levenshtein ↓ 
MACCS 

FTS ↑ 

RDK 

FTS ↑ 

Morgan 

FTS ↑ 
Validity ↑ 

ChEBI 

MolT5-large* 0.854 0.311 16.07 0.834 0.746 0.684 0.905 

Mistral-7B 0.850 0.380 18.00 0.896 0.818 0.757 0.935 

SciMind 0.863 0.383 15.99 0.885 0.813 0.762 0.992 

L+M-24 

MolT5-base# 0.664 0 46.51 0.746 0.637 0.463 0.999 

MolT5-large# 0.549 0 57.34 0.741 0.634 0.385 0.991 

Mistral-7B# 0.699 0 44.44 0.756 0.676 0.486 0.994 

Meditron-7B# 0.676 0.0001 48.03 0.756 0.677 0.487 0.995 

SciMind# 0.707 0.0001 43.48 0.756 0.677 0.488 0.997 

Table 4: Molecular generation based on description. The metrics value of methods annotated with * are taken from 

the original paper. And the metrics value of methods annotated with # are taken from the contest leaderboard 

(https://www.codabench.org/competitions/3014), where SciMind ranked No.1. Other metrics values are 

evaluated following the process of previous work. 
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prediction. Compared to other single-modal 

language models, SciMind achieves the best 

performance on Rouge-L metrics across all four 

tasks. 

5 Conclusions and discussion 

In this paper, we introduced SciMind, a unified pre-

training framework designed to include all the 

modalities in pharmaceutical sciences. we've 

designed a specialized token set and introduce a 

new pre-training and fine-tuning strategy that 

leverages the advantages of large-parameter 

models while minimizing their expenses. This 

strategy, supported by a prior expert allocation and 

selection mechanism, allows data of different 

modalities to choose the most suitable processing 

path. This method not only leads to a sparser model 

architecture, thus cutting down on inference costs, 

but also avoids modal alignment and the potential 

performance decrease due to model size reduction. 

We've created a multi-modal mixture-of-expert 

foundational large model for pharmaceutical 

sciences, named SciMind. This model has 

undergone extensive pre-training on publicly 

accessible datasets including nucleic acids, protein 

sequences, molecular structures strings, and 

biomedical texts, and could be fine-tuned for 

downstream tasks involving all modalities in 

pharmaceutical sciences. The experimental 

outcomes suggest that the SciMind model not only 

delivers outstanding performance but also shows 

high flexibility and interpretability in response to 

prompt words, offering a sturdy base for its use in 

pharmaceutical sciences. 

Due to the lack of well-aligned multimodal data, 

our model has not fully demonstrated its 

advantages. In addition to molecular captioning 

and generation by description, the inclusion of the 

protein modality will make the interaction between 

the language and small molecule modalities more 

explainable and useful. This approach helps 

accumulate more information and is a promising 

direction to explore.  
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A Pre-training Corpus 

DNA data 

Our pretraining data for nucleic acid sequences is 

derived from DNABERT_S, which includes a 

human genome dataset containing 2.75 billion 

nucleotide bases. The multi-species genome 

dataset includes genomes from 135 different 

species, distributed across 6 categories and 

containing a total of 32.49 billion nucleotide bases, 

which is 12 times the size of the human genome 

dataset. We use *| |* to separate the characters in 

the nucleic acids, as shown in Figure 2a. 

RNA data 

This dataset is a subset of the RNAcentral active 

fasta file, available at 

https://ftp.ebi.ac.uk/pub/databases/RNAcentral/rel

eases/24.0/sequences/rnacentral_active.fasta.gz, 

that has been converted to the parquet format. It 

represents approximately 10% of the overall 

dataset and contains 3,252,483 (3.2 million) 

sequences, comprising a total of 2,642,703,990 

(2.6 billion) bases. We use *| |* to separate the 

characters in the nucleic acids, as shown in Figure 

2a. 

Protein data 

Protein sequence databases, such as UniParc, 

contain a wide variety of sequences from different 

organisms. In our experiments, we follow the esm 

work and used the 250 million sequences from the 

UniParc database, which contains a total of 86 

billion amino acids. These datasets are similar in 

size to large text corpora that are commonly used 

to train high-capacity neural network models for 

natural language processing tasks. We use <| |> to 

separate the characters in the protein sequences, as 

shown in Figure 2a. 

Molecule data 

The molecular data is taken from 

https://huggingface.co/datasets/kjappelbaum/chem

nlp_iupac_smiles, which contains 30 million 

molecules' SMILES and their IUPAC names. We 

use {| |} to separate the characters in the molecule 

SMILES, as shown in Figure 2a. 

 

B Finetuning corpus 

All downstream tasks in this paper have been 

benchmarked against previous studies. 

Accordingly, we fine-tune and test our models 

using either the pre-split datasets or by splitting the 

data in the same manner as the original studies. 
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Abstract

Knowledge graphs (KGs) have emerged as a
powerful tool for organizing and integrating
complex information, making it a suitable for-
mat for scientific knowledge. However, trans-
lating scientific knowledge into KGs is chal-
lenging as a wide variety of styles and elements
to present data and ideas is used. Although ef-
forts for KG extraction (KGE) from scientific
documents exist, evaluation remains challeng-
ing and field-dependent; and existing bench-
marks do not focuse on scientific information.
Furthermore, establishing a general benchmark
for this task is challenging as not all scientific
knowledge has a ground-truth KG representa-
tion, making any benchmark prone to ambigu-
ity. Here we propose Graph of Organic Syn-
thesis Benchmark (GOSyBench), a benchmark
for KG extraction from scientific documents
in chemistry, that leverages the native KG-like
structure of synthetic routes in organic chem-
istry. We develop KG-extraction algorithms
based on LLMs (GPT-4, Claude, Mistral) and
VLMs (GPT-4o), the best of which reaches 73%
recovery accuracy and 59% precision, leaving
a lot of room for improvement. We expect
GOSyBench can serve as a valuable resource
for evaluating and advancing KGE methods
in the scientific domain, ultimately facilitating
better organization, integration, and discovery
of scientific knowledge.

Knowledge graphs (KGs) have emerged as a
powerful tool for representing and organizing com-
plex information, enabling efficient storage, re-
trieval, and analysis of data across various do-
mains (Hogan et al., 2021). The extraction of
knowledge graphs from unstructured data sources,
such as text documents, has gained significant at-
tention in recent years due to its potential to un-
lock valuable insights and facilitate knowledge
discovery. KGs have also recently been used in
Retrieval-Augmented Generation (RAG) pipelines
(Abu-Rasheed et al., 2024), as a strategy to ground

text generation from large language models (LLMs)
with domain-specific facts, thus improving perfor-
mance across tasks (Khattab et al., 2023; Khattab
and Zaharia, 2020).

0.1 Extraction of Knowledge Graphs
The field of Knowledge Graph Extraction (KGE)
has witnessed substantial progress, with numerous
approaches being developed to automatically con-
struct KGs from textual data. These methods range
from rule-based systems to machine learning-based
techniques, and more recently, LLM-driven extrac-
tion (Meyer et al., 2023; Shu et al., 2024). Several
benchmarks have been proposed to evaluate the
performance of KGE systems, from open-domain
ones like Open Graph Benchmark (Hu et al., 2020)
and Text2KGBbench (Mihindukulasooriya et al.,
2023), to more field specific ones like PharmaKG
for biomedical data mining (Zheng et al., 2020).
These benchmarks focus on evaluating algorithms
on the extraction of specific facts from short sen-
tences or paragraphs, while extraction from com-
plete documents, and specially scientific ones, re-
mains largely untested.

Scientific literature contains a wealth of knowl-
edge that can be represented in KGs, the extraction
of which would enable more efficient knowledge in-
tegration and facilitate discovery. Excellent efforts
have been made to extract specific types of scien-
tific information, such as entities and relations in
chemical literature (Lowe and Sayle, 2013; Swain
and Cole, 2016; Mavračić et al., 2021). While these
advances have enabled the extraction of influential
reaction datasets (Lowe, 2012), they are tailored
to patents, which have a more standardized format
and contain less scientific details as journal papers
do. Moreover, these methods focus on extracting
single reactions or short sequences, mostly ignor-
ing the underlying network of objects and concepts
originally expressed in the texts.

The lack of benchmarks specifically designed for
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Figure 1: Example Knowledge Graph and evaluation strategy. a. Shows the data representation used for the task,
where each node Si in the directed graph represents abstractly a substance, and each edge V (i → j) expresses that
substance Sj is used in a reaction that has substance Si as a product. The goal of the KG is to accurately represent
the information presented in the paper. b. Evaluation methodology followed in this work. c. Summary statistics
of the resulting dataset. These highlight aspects critical to graph complexity, like number of substances (nodes),
maximum path length, number of head nodes (indegree(Si) = 0), among others. d. Algorithm developed for KGE.

evaluating KGE in science poses a challenge, as
the diverse nature of scientific knowledge and the
absence of ground-truth KGs make it difficult to
establish a standardized evaluation framework. The
heterogeneity of scientific literature, with its wide
range of domains, writing styles, and presentation
formats, further complicates the development of a
comprehensive benchmark.

0.2 KGs in Organic Chemistry

A knowledge graph is defined generally as a graph
of data, intended to convey knowledge. Here, nodes
represent entities of interest and edges represent re-
lations between these entities (Hogan et al., 2021).
As such, synthetic sequences in Organic Chemistry
are susceptible of being represented under such a
structure.

Research in synthetic organic chemistry (OC)
focuses very generally on the synthesis of organic
compounds through a suitable sequence of reac-
tions. Under this conception, substances are con-
cepts that are connected through reactions as rela-
tionships. Each substance may serve as product or
reactant for a multitude of different reactions, lead-

ing to the natural definition of networks of chemical
reactions. This has previously been studied under
different models with different levels of depth (Fi-
alkowski et al., 2005). This bare abstraction defines
the backbone of a KG, and is this native KG-like
structure makes OC an ideal domain for exploring
KGE techniques.

But reactions –defined as an experimentally ex-
ecuted transformation that leads from one sub-
stance to another– are not the only type of rela-
tionships that may exist between substances. In re-
search works in OC, substances are synthesized not
only because they will be directly used as building
blocks for the synthetic targets, but some are syn-
thesized also to serve as model systems for more
complex and valuable structures, some are synthe-
sized but paths need to be abandoned due to unsuc-
cessful reactions, and sometimes even substances
are synthesized to facilitate structural elucidation of
their precursors. Indeed, many more relationships
are built on top of the reaction-graph backbone,
that are of interest for organic chemists: these go
beyond to inform about strategic aspects of syn-
thesis and multi-level chemistry-driven decision
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processes.
This work focuses mainly on the extraction of

the main backbone from research papers. These are
typically given in papers’ Supporting Information
(SI) files, and contain detailed descriptions of syn-
thetic routes and experimental procedures. These
documents exhibit a wide variety of representations,
designs, and conventions, making it challenging to
extract consistent and comprehensive KGs, see Ap-
pendix A for examples. Despite the heterogeneity
in the representation of OC knowledge, the under-
lying structure remains the same: a network of
chemical reactions and synthetic plans. This prop-
erty allows for the definition of a ground-truth KG,
making OC a suitable domain for developing and
evaluating KGE methods in science.

In this paper, we propose GOSyBench, a bench-
mark for KGE from scientific documents in the
domain of organic chemistry. By leveraging the na-
tive KG-like structure of synthetic routes, we aim
to provide a standardized evaluation framework for
assessing the performance of KGE algorithms in
extracting scientific knowledge. Our KG ontology
defines substances as entities, with reference_key
and substance_name as properties, that are con-
nected by reactions as relationships. Furthermore,
we develop novel KGE algorithms based on LLMs,
and conduct extensive experiments and ablation
studies to validate their effectiveness using our pro-
posed benchmark.

1 Methods

1.1 Guidance / structured output generation

Despite their usefulness in various domains, one
of the limitations of LLMs is their incapacity to
generate consistent and controllable outputs that fit
use-case specific guidelines. Recent research has
focused in steering LLM generation through the en-
forcement of grammars in the resulting generations
(Rebedea et al., 2023; Khattab et al., 2023). This
not only helps steer models towards non-harmful
outcomes, but also enables tool usage in agent-like
scenarios (Boiko et al., 2023; Bran et al., 2024) and
facilitates parsing of the results and integration in
existing software (Liu, 2024).

1.2 Benchmark dataset curation

The dataset curation pipeline used involved a com-
bination of automated knowledge extraction and
expert human labeling. Initially, 24 Supplementary
Information files (SIs) on total synthesis were man-

ually selected from the Journal of the American
Chemical Society (JACS), with the format and con-
tent of their SI used as a criterion. The SIs were
selected such that the obtained sample represents
a wide variety of text formatting, varying use of
visual elements, order and location of relevant sec-
tions, among others, see Appendix A for examples.

The SIs were then processed using the KGE
method presented in Section 1.3, resulting in a
collection of 24 knowledge graphs, where each
contains an approximation to the complete net-
work of chemical reactions expressed in the SI.
The process then continued with manual curation,
which generally involved node relabeling, node cre-
ation/removal, and edge creation/removal. The re-
sulting objects are directed graphs, with individual
substances as nodes, and reactions as edges. Some
statistics of the dataset are described in Figure 1,
which highlights the size and overall complexity of
the KGs being extracted.

1.3 KGE method
The Knowledge Graph Extraction method devel-
oped for this work has several steps, as shown in
Figure 1d. Initially, the SI PDF is pre-processed
to select the relevant sections describing the re-
action procedures, as explained in more detail in
Appendix B. This aims to lower the amount of text
that needs to be processed in the steps following,
and prevents errors by erroneous addition of spuri-
ous nodes to the graph. The PDF is then processed
into text and split into single text segments describ-
ing chemical reactions. Two methods were tested
for this: one based in rule-based text parsing from
PDF, and one based in Vision-Language Models
(VLMs), namely the recent GPT-4o by OpenAI.
The latter method was implemented in view of the
variability of representations and interleaved use
of visual elements observed in SIs, as shown in
Appendix A.

Resulting reaction blocks are then each pro-
cessed individually by an LLM-powered generation
pipeline, that detects and extracts all the substances
declared in the input reaction. Each of these sub-
stances is represented as a structured object con-
taining three main properties: reference_key, sub-
stance_name, and role_in_reaction. Each collec-
tion of substances is converted into a reaction_unit,
a structured object resembling a node in a tree,
where the head node is the product of the reaction
and the children are all the substances with a role
different than product.
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Finally, a graph is constructed by connecting
all the different reaction_unit objects, using each
substance’s reference_key as the node label.

The reported benchmark was used to perform
ablations on 3 of the design choices for the algo-
rithm, namely to test the effect of SI preprocessing
to select relevant sections, the use of rule-based or
vision-based PDF parsing, and the choice of LLM
used for structured object generation. The results
are shown in Figure 2.

1.4 PDF Parsing methods

Two parsing methods have been tested in this work.
One is a simple, rule-based algorithm that is based
on general observations from the structure of SIs in
organic chemistry papers, while the other is fully
driven by a Vision-Language Model (VLM), which
aims to recover information by directly processing
documents as humans would read it, without loss
of visual elements.

1.4.1 Rule-based — Text
This approach consists of parsing the input PDF file
using the PyMuPDF package (noa), which yields
the complete text from the PDF, including titles
and paragraphs, but also formatting details such as
bold letters. Unfortunately it also includes spurious
formatting details like page numbers and side notes
from journals. Using this information, the text
is split using "long sequences of bold letters" as
a splitting criteria, which leads to a list of text
segments. The idea behind this parsing is that most
authors state products in bold font with the name of
the product (IUPAC, or simply a reference name),
followed by a reference key, and then proceed with
the description of the reaction procedure in normal
font (see Appendix A). This pattern is somewhat
consistent and in some cases leads to very nicely
parsed documents.

1.4.2 Image-based — Vision
The effectiveness of the rule-based method above
is endangered by the variety of formats and repre-
sentation styles that authors decide to use in their
papers, as shown in the Appendix A. Understand-
ing of these documents is heavily dependent on
the reader’s ability to interpret the visuals and con-
trast them and connect them with the text, thus the
purely rule-based method falls short in some cases.

Leveraging the recent advances in VLM re-
search, we propose directly using one such model
for this task. In particular, we use the recently

released GPT-4o, one of the most powerful end-
to-end Large Multimodal Models (LMMs) from
OpenAI.

The pipeline starts with the conversion of the
input PDF into a suitable format, and for this we
simply convert each page from the PDF into a png
image using the pdf2image package (Belval, 2024).
The images are then processed into overlapping
batches of images, each batch in a single VLM call.
This process ensures that the VLM sees a more
global structure of the paper and thus has better
context to give an appropriate response.

The VLM is then queried with all the images
from a batch and a prompt with instructions (see
Appendix C). The expected output of this is a sum-
mary of the relevant information for each reaction
the VLM can identify in the image context; each
reaction separated by a given separator token.

1.5 Evaluation metrics

A wealth of methods exist to compare graphs, each
suitable for certain sets of use cases (Thompson
et al., 2022; Shimada et al., 2016; Hartle et al.,
2020). These include direct comparison of the node
or edge sets, subgraph matching, spectral analysis,
and the use of graph kernels, among others. In
this work, we take an approach based on subgraph
matching, that aims to capture the similarities rele-
vant to synthetic routes in organic chemistry.

Appealing to the specific structure of the types
of graphs used in this work, namely directed graphs
with mostly a tree-like structure, we use 3 metrics
based on the ratio of paths shared between the com-
pared graphs, as shown in Equation 1.

S(G,G′) =
1

|PS(G)|
∑

p∈PS(G)

∑

p′∈PS(G′)

1p=p′

(1)
Where PS(G) defines the set of all the linear

paths p in G, and the 1p = p′ operator is defined as
1 if the condition p = p′ is met, 0 otherwise. The
key difference between the methods used here is
the definition of the equivalence operator =, which
can take multiple forms depending on the property
of interest. In particular, two options are defined:
exact match and preservation of partial order. Exact
match directly compares the two paths based on
the exact sequence of nodes defined by each. This
method thus directly measures to what extent the
exact KG is reconstructed from documents.
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The second method aims to capture a more nu-
anced structure in the retrieved KGs, through a
slightly less strict comparison metric based on or-
dered sets. In this method, two paths are considered
equivalent if the order relationships defined by each
path are preserved in the other. Take for example
the following two paths

p0 = 6→ S2→ 7

p1 = 6→ 7

Where p0 defines the order 6 ≻ S2 ≻ 7. In
this example, p0 ̸= p1 under exact match, however
they are under the PO equivalence as the order
relationship 6 ≻ 7 exists in both paths. Such a less
strict definition is particularly relevant in our case
as it is typical in SIs to describe the formation of an
intermediate and continue using it "without further
purification". In these cases, the complete sequence
p0 with intermediate S2 may be reduced by the
extraction models to p1, which is not necessarily
incorrect however missing some information.

A last method is used, which uses exact match
as equivalence operator, but both G and G′ are
preprocessed to remove the leaves (nodes with
outdegree(n) = 0), thus only comparing the
backbone of the synthetic tree without consider-
ing reagents. Figure 1b shows such removed nodes
in yellow, and the nodes belonging to the backbone
in red.

2 Results

The proposed benchmark was used to perform abla-
tions on 3 of the components of the KGE algorithm
described in Section 1.3. Namely, we assess the ef-
fect of SI preprocessing (Appendix B), the parsing
of PDFs using a rule-based approach, or directly
through Vision-Language Models (VLMs), and the
choice of LLM for parsing of reaction descriptions
into formatted reaction units. In addition, we eval-
uate the performance of multiple LLMs from dif-
ferent providers on the latter task across multiple
metrics using a more specific benchmark, aimed at
selecting suitable LLMs for this task, without the
need to execute the whole extraction pipeline.

2.1 KGE Benchmark
The aim of these experiments is to determine the ef-
fectivity of a given system at extracting a KG in the
required format, not only at assessing the capabili-
ties of LLMs, hence 2 binary variables are ablated

that deal with document preprocessing, parsing
and chunking. The latter is the LLM used, however
here we have restricted ourselves to only testing
models provided by OpenAI, mainly due to rate
limit constraints from the other providers.

In Figure 2 we display the per-paper perfor-
mance for each variation of the system in Figure
1d, across six metrics, all different forms of accu-
racy (left column=) and precision (right column) of
synthetic path recovery. The upper row shows the
results on exact path reconstruction, middle row a
more relaxed version of this based on comparing
the orders defined by each path, and bottom row
compares the pruned graphs, assessing the similar-
ity between the tree backbones; see Section 1.5 for
details.

For each comparison method, S(GEX , GGT )
measures the system’s ability to reconstruct Ground
Truth paths — highly important for organic chem-
istry as it defines the specific sequence of reactions,
while S(GGT , GExtracted) measures the precision
or "purity" of the resulting graphs, thus also ac-
counting for erroneous introduction of nodes or
edges in the extraction process.

The results show that the overall performance
varies widely as a function of the paper, which is to
be expected given the high variability in styles and
formats used in these documents (see Appendix
A). A systematic difference is found between the
2 models tested, with a clear advantage for GPT-
4-turbo, the most advanced model, especially on
reconstruction accuracy. The gap is nevertheless
reduced in reconstruction precision which, as will
be shown in the next section, can be attributed to
the smaller model being better at detecting wrong
inputs, thus introducing less noise into the extracted
KG.

Interestingly, comparing the pruned graphs
demonstrates GPT-3.5’s poor performance on pre-
cision, with most values below 0.1, however the
corresponding accuracy is relatively high, even sur-
passing GPT-4 based methods on the same metric.
Such results imply that smaller models perform
poorly in general conditions, however the informa-
tion recovered by these is typically valid. More
advanced models seem not to have a strong filter
and generate valid structured outputs despite noisy
filters, which in turns generate accurate but noisy
KGs. These observations will be further elaborated
in the following section.

From the results presented here it seems that us-
ing vision models like GPT-4o (columns in Figure
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Figure 2: Results from Knowledge Graph Extraction
benchmark. System performance on GOSyBench for
multiple system ablations. The two main columns show
accuracy (left) and precision (right). Each sub column
shows the result for PDF parsing methods text-based
(left) and vision-based (right). Rows present different
metrics used for graph comparison, and the color distin-
guishes between SI pre-processing methods.

2), or preprocessing the document before to select
the most relevant parts of the SI (colors in Figure)
do not improve the system’s performance. Vision
only helps slightly improve the accuracy of the sys-
tem when a smaller model is used, however such
system still underperforms relative to the larger
GPT-4.

A more in-depth exploration of the results is
needed to determine how to best leverage vision
models for this task.

2.2 LLM Performance across tasks

To assess the effect of the choice of LLM in
the KGE method developed in this work, another
benchmark with a narrower scope was produced.
The benchmark aims to assess LLM’s abilities to

recover specific information from reaction descrip-
tion text samples. This involved the creation of
3 smaller datasets, each designed to test the mod-
els at specific tasks, namely ability to recognize
and retrieve the correct product and reactant sets,
ability to produce empty responses whenever a non-
reaction text is given, and the ability to correctly
retrieve the reference_key of substances.

All of these are elements of utmost importance
for the algorithm’s success at reconstructing a pa-
per’s KG, as failure to correctly perform these con-
taminates the resulting KG with spurious nodes
and edges, and leads to the loss of real nodes and
edges.

For the sake of completeness and ease of im-
plementation, we have tested LLMs from 3 API
providers, namely OpenAI, Anthropic and Mistral.
Moreover, the models tested span a wide range
of sizes and scores on standard benchmarks. As
shown in Figure 3, the top-performing model in
terms of product and reactants retrieval accuracy
is gpt-4-turbo, on of the most advanced models as
shown by benchmarks, in terms of reasoning capa-
bilities. Nevertheless, other models, some smaller
and far cheaper, perform almost on-par with gpt-4
on this metric (mistral small and medium, mixtral
8x7b, all claude models).

Surprisingly, the "smarter" models do not per-
form as good on other tasks, particularly "Wrong
inp" and "Key exact". Smaller, less poweful mod-
els, like mistral-small, mixtral-8x7b and gpt-3.5-
turbo do better in rejecting wrong inputs than their
more advanced counterparts despite their less de-
veloped reasoning capabilities. An important ob-
servation is that, when given a non-reaction text,
smaller models give an error as they fail to find the
requested information and fail to produce an an-
swer in the requested format, thus being caught as
exception during model validation. In counterpart,
larger models tend to give a response, despite the
input text not containing the desired information,
typically through hallucinations.

In spite of these observations, the ablations in
Section 2.1 have been performed only with OpenAI
models as we had higher rate limits, allowing us to
perform multiple experiments concurrently.

3 Conclusions

We have proposed a novel benchmark for knowl-
edge graph extraction in science from full papers.
We exploit the native KG-like structure of synthetic
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LLM Performance on individual tasks

Figure 3: Capability-specific benchmark for LLMs.
The performance of multiple LLM across multiple
scales and providers is shown. Models are evaluated on
4 metrics: Prod ret evaluates the accuracy of retriev-
ing the correct product name from an input paragraph
(which involves separating product name from its ref-
erence key), React ret evaluates the same, for retrieval
of reactants used in the described reaction, Wrong inp
assesses how good the models are at rejecting inputs
that do not describe a chemical reaction, and Key exact
evaluates the ability of models to output the exact refer-
ence key for products.

organic chemistry and propose a benchmark with
24 manually curated papers. This benchmark is
continuously growing to incorporate more high
quality samples of challenging papers. We de-
veloped an LLM-based algorithm for KGE and
evaluate each individual part using a small, hand-
crafted benchmark to test the capabilities of LLMs
for each specific task, and find that advanced mod-
els have better recall of input context, however
smaller models are advantageous to detect text that
can not be identified as a reaction, thus not con-
taminating the generated KG with spurious nodes.
Finally, we perform ablations on our algorithm and
show that the usage of Language-Vision Models
(LVMs) does not directly improve the system’s
performance, despite having empirical reasons to
believe so. Overall, there is still a lot of room for
improvement as our algorithms reach a maximum
of 73% average in accuracy, and 59.7% in preci-
sion. More work needs to go into desiging and
optimizing algorithms for this task, however we

believe the release of GOSyBench sets the field
into the right direction by providing a challenging,
diverse and high-quality dataset for benchmarking.

4 Future work and outlook

The efforts presented here deal with the extraction
and evaluation of the reaction networks from chem-
istry papers, which is only the backbone structure
of a much richer KG for organic chemistry. How-
ever as discussed in Section 0.2, additional rela-
tionship types between substances are implicitly
reported in papers, such as failed reactions and
abandoned synthetic plans, use of substances as
model systems, among others. All these are im-
portant details that describe not only a successful
route to a target substance, but encode also the dif-
ficulties, lessons, and other valuable insights that
are reported in chemistry papers. From early ex-
periments, we have found that extracting such new
connections is possible with LLMs thanks to their
summarizing and reasoning capabilities. Achiev-
ing such a milestone has the potential to unlock
promising advances in reaction search and chemi-
cal knowledge retrieval in general.

In addition to this, the currently presented ontol-
ogy can further be enhanced with additional sub-
stance properties reported in papers. Starting with
extraction of the SMILES strings for each molecule
(Mavračić et al., 2021; Rajan et al., 2021, 2023),
along with yields, scalability, and analytical results,
the resulting KGs can continuously be populated
with more substance-specific details to better rep-
resent the knowledge in papers.

Additionally, papers report multiple visualiza-
tions that display different views, or highlight
different aspects of the molecules and reactions
in question. The interplay between text and im-
age modalities is strong in papers, and leveraging
VLMs will be an essential step towards better KGE
in chemistry, as has been shown in this work.
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A Supplementary Information Files

A typical practice in organic chemistry publishing
is having Supplementary Information files (SIs)
where all information regarding experimental pro-
cedures, analytical results, and sometimes compu-
tational and theoretical predictions, are reported.
In these documents, which all share a general un-
derlying structure, reactions are described with ref-
erences to other substances in the same document,
with a notation shared between the SI and the main
manuscript. Hence, a numeration scheme exists
for the substances in each paper that can be fol-
lowed to find the experimental procedure for the
preparation of any compound synthesized as part
of the research work. Despite of this homogeneity,
large differences are noticeable, as is evident from
figures 4, 5 and 6.

As these examples show, representations and for-
mats are far from standardized. The SI displayed
in Figure 4 shows a common format: compound
name and reference in bold, accompanied by the
molecular structure of the product substance, and
followed by the reaction procedure. Notice how-
ever that a subsequent reaction is described directly
in the same paragraph, without announcing the next
product.

Figure 5 shows an SI with a heavier use of visual
elements, where colored marbles are used to refer-
ence individual steps in a short reaction sequence.
The marbles are then used throughout to refer to
specific intermediates, with no reference in text
to the products’ reference keys. Lastly, Figure 6
shows another example where the product is not
directly announced in the text, but rather a new
reaction procedure is presented after a graphical
depiction of the reaction in question, making it im-
possible for a text parser to grasp this information.

B SI Preprocessing

SIs in chemistry research papers contain many sec-
tions, however the one of interest for this work is
the part on Experimental Methods. For our pur-
poses, it may make sense to extract the most rele-
vant parts of the document and process only that,
however no naming convention or guidelines exist
for this, making it difficult to identify and isolate
the specific sections.

To address this, we develop a simple rule-based
method to identify the relevant sections, partially
inspired by Patiny and Godin (2023). For this, we
rely on the observation that reaction descriptions
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Figure 4: Example of an SI. Taken from https://
pubs.acs.org/doi/10.1021/ja074300t. This exam-
ple shows

typically follow the pattern "reaction setup →
workup → analytics", as the example below. As
can be seen, the analytics section has a higher ratio
of certain special and numeric characters relative
to other parts of the text.

Example of a typical synthesis paragraph ob-
tained from an SI file:

To a solution of alkene 5 (266 mg, 0.92
mmol, 1.0 equiv.) in DCM (30 mL) was
bubbled ozone (40% in air) at -78 °C un-
til the starting material disappeared (TLC
analysis, about 1 min), and the mixture
was purged with air at -78 °C followed
by addition of PPh3 (250 mg, 0.95 mmol,
1.0 equiv.). The mixture was warmed up
to room temperature slowly, and stirred
at the same temperature for 12 h. After
removal of the solvent, the residue was
purified by a flash column chromatog-
raphy on silica gel (hexane/EtOAc = 5
: 1 to 3 : 1) to give compound 6 as a
colorless oil (173 mg, 65%), which is an
inconsequential 1.05: 1 mixture.
Rf = 0.25 (hexane/EtOAc = 8:1, PMA);
[α]21
D = - 4.44 (c 1.31, CHCl3); 1H NMR
(400 MHz, CDCl3) δ 9.77 – 9.70 (m,
1.69H, overlap), 2.63 – 2.48 (m, 2.21H,

Figure 5: Example of an SI. Taken from https://pubs.
acs.org/doi/10.1021/jacs.1c01356. This example
shows

overlap), 2.42 – 2.18 (m, 9.27H, overlap),
2.18 – 2.06 (m, 3.58H, overlap), 2.00 –
1.82 (m, 5.93H, overlap), 1.82 – 1.72 (m,
4.72H, overlap), 1.71 – 1.60 (m, 3.95H,
overlap), 1.58 – 1.49

To leverage this, we split the complete document
into sentences, and then calculate the ratio of spe-
cial characters to normal letters for each. Plotting
the values of these ratio with the line index in the
x-axis, patterns like those in Figure 7 are apparent.
An alogrithm is also applied for smoothing and per-
forming selection by selecting the longest region
with a prominent signal as the "relevant" SI. We
find that this strategy generally leads to an accurate
selection of the relevant parts.

C Vision-Language Models

The following prompt was used as a template to
pass the images to GPT-4o for the vision-based
parsing method exposed in Figure 1.

These are some pages from the SI of
an organic chemistry paper. Describe
all the reactions shown there, if any.
Separate each reaction with {SEPARA-
TOR}, describe products and reactants
for each reaction. Ignore all characteri-
zation data. Consider work-up and pu-
rification as part of the same reaction.
Use the following format to represent
the products and main reactants: {SUB-
STANCE_FORMAT}. Do not rewrite
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Figure 6: Example of an SI. Taken from https://pubs.
acs.org/doi/10.1021/jacs.3c01991. This example
shows

the reaction procedures, just describe the
substances involved.

Figure 7: SIs were processed like this. Based on the fre-
quency of special characters etc. Based on the observa-
tion that, most commonly, text-summaries of analytical
data are given after the end of each reaction, giving a
distinctive signal to each line in the document, produc-
ing more or less a spectrum that can then be analysed
and processed.

85



Proceedings of the 1st Workshop on Language + Molecules (L+M 2024), pages 86–91
August 15, 2024 ©2024 Association for Computational Linguistics

NLPeople at L+M-24 Shared Task: An Ensembled Approach for Molecule
Captioning from SMILES

Shinnosuke Tanaka1, Carol Mak1, Flaviu Cipcigan1, James Barry1,
Mohab Elkaref1, Movina Moses2, Vishnudev Kuruvanthodi1, Geeth De Mel1

IBM Research Europe1 and IBM Research2

{shinnosuke.tanaka, carol.mak, flaviu.cipcigan, vishnudev.k, james.barry,
mohab.elkaref, movina.moses, vishnudev.k }@ibm.com, geeth.demel@uk.ibm.com

Abstract

This paper presents our approach submitted
to the Language + Molecules 2024 (L+M-24)
Shared Task in the Molecular Captioning track.
The task involves generating captions that de-
scribe the properties of molecules that are pro-
vided in SMILES format. We propose a method
for the task that decomposes the challenge of
generating captions from SMILES into a clas-
sification problem, where we first predict the
molecule’s properties. The molecules whose
properties can be predicted with high accuracy
show high translation metric scores in the cap-
tion generation by LLMs, while others produce
low scores. Then we use the predicted proper-
ties to select the captions generated by different
types of LLMs, and use that prediction as the
final output. Our submission achieved an over-
all increase score of 15.21 on the dev set and
12.30 on the evaluation set, based on translation
metrics and property metrics from the baseline.

1 Introduction

Molecular design is the process of devising
molecules with desired properties and functions.
While this is widely practiced in fields such as drug
discovery, new materials, and chemical processes,
predicting the properties of designed molecules
remains a challenging problem. To tackle this prob-
lem, language models trained on molecular infor-
mation have gained attention (Ahmad et al., 2022).
The L+M-24 shared task (Edwards et al., 2024)
involves translation between SMILES (Weininger,
1988), a string-encoded molecular format, and de-
scriptive captions of the molecule’s properties. The
dataset covers four high-impact areas of molecular
science: Biomedical, Human Interaction, Light and
Electricity, and Agriculture and Industry, providing
pairs of molecules and their corresponding captions
for these properties.

An example of the data is shown in Figure 1. In
this sample, specific diseases and protein properties

Figure 1: A sample molecule depicted using RDKit
(Landrum et al., 2024) and its caption from the training
data. Caption: The molecule is a jak inhibitor, im-
munomodulator, protein tyrosine kinase inhibitor, pro-
tein kinase inhibitor and belongs to the autoimmune
disease treatment class of molecules.

are described, yet the ways of describing molec-
ular properties are highly diverse. For instance,
while drug discovery seeks to generate specific in-
formation related to diseases, industrial chemistry
researchers prefer to include functions of molecules
such as absorption wavelengths of light. Given this
variability in the desired captions, the task of gen-
erating desired captions is highly challenging.

In this paper, we describe our submission to the
Molecular Captioning track. We first address the
properties of SMILES as a multi-label classifica-
tion problem. Predicting properties is essential for
molecule captioning and offers the following ad-
vantage: a lightweight model can be built that pre-
dicts the properties of the molecules compared to
fine-tuning existing large transformer-based mod-
els. Such an approach can get classification accu-
racy of 80% against experimental measurements
with as little as 100 datapoints (McDonagh et al.,
2024, 2023).

We also fine-tune LlaSMolMistral and Multitask
Text Chemistry T5 (Christofidellis et al., 2023)
models for the end-to-end molecular captioning.
We obtain the system’s output by selecting the gen-
erated captions from these models based on the pre-
dicted properties. We achieve an overall increase
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Figure 2: Overview of the submission system

score from the MolT5-Small1 baseline of 15.21 on
the dev set and 12.30 on the eval set. In the next
section, we discuss some related work that inspired
our contributions to this shared task.

2 Related Work

Text2Mol (Edwards et al., 2021) stands out as a
pioneering study integrating modalities between
text and molecules. This task involves retrieving
molecules using natural language descriptions as
queries. They employ the SciBERT (Beltagy et al.,
2019) model to encode the text information and a
Graph Convolutional Network for the molecular
information. The model is based on a cross-modal
attention structure and successfully integrates the
two modalities.

MolT5 (Edwards et al., 2022) is a T5 (Raf-
fel et al., 2020) based model that enables both
molecule captioning and molecule generation,
which generates SMILES from natural language.
The model is first trained using an objective that
replaces corrupted spans. This task is performed
on general text data in the form of the C4 Cor-
pus (Colossal Clean Crawled Corpus) as well as on
SMILES from the ZINC-15 dataset (Sterling and Ir-
win, 2015). This pre-training procedure encourages
the model to learn textual and chemical informa-
tion. The model is then fine-tuned for molecule
captioning and molecule generation using ChEBI-
20 (Edwards et al., 2021), which comprises approx-
imately 33k text-molecule pairs.

Another T5 based model, Text+Chem T5
(Christofidellis et al., 2023), aims at improving
multitasking and multi-domain capabilities. This
model is trained not only on SMILES and cap-
tion pairs such as ChEBI-20 but also on reaction-
products pairs such as Pistachio dataset used in

1https://huggingface.co/
language-plus-molecules/
molt5-small-smiles2caption-LPM24

(Toniato et al., 2021), and experimental procedures
dataset (Vaucher et al., 2019) for chemical synthe-
sis actions. It can perform multiple tasks beyond
text2molecule and molecule2text translation, in-
cluding mol2mol and text2text tasks. The mol2mol
tasks contain forward reaction prediction, which
predicts products from given reactants, and retro-
synthesis, which predicts the necessary substances
for synthesis from a given chemical compound.
The text2text task consists of paragraph to action,
which generates sequential steps to execute a de-
scribed chemical reaction. A notable aspect of this
model is its ability to perform all these tasks with-
out additional fine-tuning, using a single model
instead of individual specialised models for each
task. This eliminates the need to develop tailored
models for each domain, achieving a unified repre-
sentation of the chemical domain with one model.

3 System Description

Figure 2 shows an overview of the submission sys-
tem. First, we develop a classifier to predict prop-
erties from a given SMILES string. The molecular
properties are extracted using the evaluation script
for the property metrics2 by determining whether a
predefined string is included in the tokenised cap-
tions using scibert_scivocab_uncased3. Based
on our analysis of the extracted properties, there
are 1,084 unique properties present in the train-
ing data. Since properties are extracted using
string-matching, some occur together. Some
co-occurances are correct biochemically, like
“Biomedical disease – Heart disease” and “Biomed-
ical disease – Diabetic heart disease”. Others
are not, like “Biomedical disease – Non-alcoholic

2https://github.com/language-plus-molecules/
LPM-24-Dataset/blob/main/evaluation/text_
property_metrics.py

3https://huggingface.co/allenai/scibert_
scivocab_uncased
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Molecule Type Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

Has Predicted Props. Multitask T5 82.15 59.49 91.64 69.74 60.20 87.05
LlaSMolMistral 82.66 59.81 92.27 69.53 60.54 87.70

No Props. Predicted Multitask T5 43.12 30.58 52.35 38.51 50.67 51.87
LlaSMolMistral 35.24 24.27 48.99 35.45 47.95 45.50

Table 1: Translation metrics by molecular type on dev set.

fatty liver disease” and “Human Interaction and
Organoleptics – organoleptic effect relations –
fatty”. This leads to chemically incorrect labelling
for some molecules. A molecule whose descrip-
tion is “This molecule impacts non-alcoholic fatty
liver disease” is not necessarily fatty in the sense
of organoleptic effects, yet it is always labelled as
so.

3.1 Property Classification

We build multi-label classifiers for each molecu-
lar property in the dataset. The SMILES string is
converted to a binary fingerprint using the finger-
printer in RDKit 2023.9.6 (Landrum et al., 2024)
with a minimum path length of 1, maximum path
length of 7 and 2048 bits. SMILES strings are also
provided to the encoder part of MolT5-Small, and
the embedding representation is obtained by mean
pooling the last hidden layer. The obtained finger-
print and embedding are concatenated and passed
through a classifier consisting of three linear layers
to predict the classes.

We only train the classifier on labels with over
1,500 positive examples. Because of this limitation,
the predictable subset of the labels contains 53
properties. The classifier outputs multiple labels
for each molecule that exceeds a threshold based on
the Sigmoid function of the activation layer. Labels
not meeting the threshold are not output; hence,
some molecules may have no predicted properties.

3.2 LLMs for Caption Generation

Following the classification task, we use the
SMILES string as inputs to experiment with the
following methods.

Fine-Tuning LLMs We also utilise models
that predict the captions directly using only the
SMILES as input. In initial experiments, we found
that included properties harmed performance for
the Multitask T5 model4 and as a result we did not
include them. For the LlaSMolMistral model, we

4https://huggingface.co/GT4SD/
multitask-text-and-chemistry-t5-base-augm

loaded pretrained LoRA modules into the model
and followed the prompt pattern in their work,
which did not include properties.

Multitask T5 model is trained with a learning
rate of 5e-4 and a batch size of 8 for 10 epochs on
the extra training set provided by the task organ-
iser. For fine-tuning and caption generation, we
use a prompt template in Appendix A.1 Table 5,
which is presented in (Christofidellis et al., 2023).
LlaSMolMistral is a Mistral-7b model trained on the
SMolInstruct dataset by Yu et al. (2024), which
covers 14 chemistry tasks including a molecular
captioning task derived from the ChEBI-20 dataset.
Here, the base model is frozen and additional mod-
ules are trained using LoRA (Hu et al., 2022).
The LoRA component only comprises 0.58% of
the full model parameters. We further fine-tuned
LlaSMolMistral on the L+M-24 dataset. The prompt
used is shown in Appendix A.1 Table 6. First we
trained on the concatenation of train and the ex-
tra training data for 3 epochs. We then further
finetuned the LoRA modules for 10 epochs on the
training set.

3.3 Ensembling

We perform an ensemble by selecting generated
captions from Multitask T5 and LlaSMolMistral
based on the result of the property classification
model. If the model predicts at least one label for
the target SMILES, we choose the caption from the
LlaSMolMistral model; otherwise, we choose from
the Multitask T5 model.

4 Results and Discussion

In this section, we present the results of our classi-
fication models and generated captions using Mul-
titask T5 and LlaSMolMistral.

4.1 Property Classification

When evaluated on the dev set using only the
predictable subset, an F1 score of 97.86% was
achieved. Thus, on the predictable subset, we have
classifiers with a high percentage of true positives
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Model Overall
Increase

Translation
Metric Increase BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR

baselines
MolT5-Small 0.00 0.00 70.90 51.20 74.50 55.80 54.40 70.10
Meditron-7b 13.15 5.50 79.20 57.60 79.70 60.20 57.50 75.70
ours
Multitask T5 15.31 5.23 78.22 56.73 57.28 60.17 57.28 76.27
LlaSMolMistral 10.59 4.68 78.84 57.17 78.82 58.79 56.50 74.87
Ensembled 15.21 5.52 78.70 57.04 80.04 60.03 57.51 76.72

Table 2: Overall increase from MolT5-Small baseline and translation metrics results on dev set.

Model Prop. Metric
Increase

Overall
Prop. F1 Biomedical Human

Interaction
Agr.

+ Industry
Light

+ Electro X-icides Toxins Light Electricity

baselines
MolT5-Small 0.00 7.88 23.33 0.56 4.36 3.27 0.00 0.00 6.54 0.00
Meditron-7b 15.70 8.93 11.94 6.51 3.04 14.22 0.00 11.05 14.10 14.34
ours
Multitask T5 18.67 19.10 36.97 7.27 7.40 24.76 0.00 11.36 25.26 24.26
LlaSMolMistral 12.56 15.35 32.28 7.30 6.58 15.22 0.00 11.20 18.69 11.77
Ensembled 18.44 19.09 36.75 7.73 7.65 24.24 0.00 12.28 25.21 23.28

Model Inhibitors anti-X Modulators Antagonists Treatments Agonists Cancer Disease Combos

baselines
MolT5-Small 0.09 0.00 0.00 0.00 1.70 0.00 24.27 49.94 0.00
Meditron-7b 22.65 8.98 24.98 21.15 15.13 26.35 72.62 82.02 0.56
ours
Multitask T5 26.04 10.35 31.11 26.54 19.37 31.71 73.59 81.89 0.93
LlaSMolMistral 14.57 5.33 15.69 12.95 9.11 19.06 70.76 81.76 0.38
Ensembled 25.86 10.11 30.81 26.80 19.14 31.69 70.42 81.87 0.93

Table 3: Property metric increase from MolT5-Small baseline and F1 scores of each property on dev set.

and a low percentage of false positives. When con-
sidering all properties in the dev set, at least one
property was predicted for 69% in dev set, while no
properties were predicted for the remaining 31%.

4.2 Caption Generation

Table 1 shows the translation metrics for each
model, both when the classifier predicts at least one
property (Has Predicted Props.) and when it does
not (No Props. Predicted). When at least one prop-
erty was predicted, LlaSMolMistral model exceeded
Multitask T5 model in 5 out of 6 metrics, excluding
ROUGE-2. Conversely, when no properties were
predicted, Multitask T5 significantly outperformed
the LlaSMolMistral. Hence, based on these results,
we adopted an ensemble approach where we used
the captions generated by the LlaSMolMistral model
when at least one property was predicted, and those
generated by Multitask T5 model when no proper-
ties were predicted.

Table 2 shows the overall increase, translation
metric Increase and the scores of each transla-
tion metric on dev set of the two baseline models,
LlaSMolMistral, Multitask T5 and ensembled model
of LlaSMolMistral and Multitask T5. Table 3 shows
the property metric increase and F1 scores of each
property metric. Each Increase is calculated as the
average improvement from the baseline results of
MolT5-Small. In the translation metrics, the En-

sembled model achieved the best performance in
four metrics, including the translation metric in-
crease, indicating it has the highest performance
among all models. On the other hand, in the prop-
erty metrics, the Multitask T5 model showed the
best performance in 13 metrics, including the prop-
erty metric increase. Despite the baseline Meditron-
7b model exhibiting the highest BLEU-2 score of
79.2%, our models outperformed the baseline for
the property-specific F1 score. As a result, the
Overall Increase was highest for the Multitask T5
model, with a score of 15.31.

Even though these predictions show higher F1
scores, the BLEU-2 score remains lower because
there are numerous ways to describe molecules
in natural language. This points to some features
of the description which are not features of the
molecule but features of the particular distribution
of the dataset:

1. The order of words or phrases in a sentence,
which is not essentially important, can still
significantly influence these translation metric
scores.

2. The scibert_scivocab_uncased tokeniser
includes punctuation, thus mis-predicting the
location of a comma or a full stop will break
a correct bigram and lead to a lower BLEU
score.
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Team Overall
Increase

Translation
Metric Increase

Prop. Metric
Increase BLEU-2 BLEU-4 Overall

Prop. F1 Rank

avaliev 27.08 6.37 33.99 73.81 53.04 26.99 1
qizhipei 14.66 6.45 17.39 75.58 54.77 13.76 2
protonunfold 12.39 5.77 14.60 75.66 54.98 11.51 3
NLPeople (ours) 12.30 5.68 14.50 75.54 54.83 11.63 4
langmolecules† 10.34 5.47 11.96 75.16 54.72 9.70 8
langmolecules‡ 0.00 0.00 0.00 66.82 48.29 3.23 18

Table 4: Top four results and two baseline results on the eval set. † represents the results from the baseline model,
Meditron-7b, and ‡ represents the results from MolT5-Small respectively. Best results are in Bold, and second-best
results are underlined.

3. Mis-predicting the number of properties will
also reduce the BLEU score. Some of
these properties are very general, such as the
organoleptics, and may be correctly predicted
for a molecule even if they do not exist in the
ground truth caption. For example, molecules
with long carbon tails will all likely taste fatty,
but only the subset of those who were actually
tasted by humans have the fatty caption.

Given all these features of the data, it would be
interesting to create realistic performance bounds
for a molecule to text model evaluated using BLEU
scores, similar to the ones Crusius et al. (2024)
used for regression and classification datasets by
randomising over the features of the caption that
cannot be predicted from a molecule. For example
in our testing, using the ground truth labels in a
zero-shot prompted Meditron-7b gave a BLEU-2
score of 76.36. Thus, our intuition is that we are
close to saturating this benchmark, with some mod-
els achieving performance higher than this value.

Finally, Table 4 shows the results of the evalua-
tion set. It includes the increases in overall, transla-
tion, and property metrics, as well as BLEU scores
and property F1 scores, from the official leader-
board. Our team NLPeople’s submission results
from ensembling Multitask T5 and LlaSMolMistral.
Based on the results of the property classification,
out of 21,942 data points, approximately 35% used
cations generated by Multitask T5, while the re-
maining 65% are from LlaSMolMistral.The team
avaliev significantly outperformed other teams in
the property metric, resulting in the highest overall
score of 27.08. Our submission showed an increase
of 12.30 overall from the MolT5-Small baseline,
ranking fourth and achieving the second-highest
BLEU-4 score of 54.83 among all teams.

5 Conclusion

In this work, we present our approach to the molec-
ular captioning task. We propose combining a prop-
erty classification model, LLMs for caption gener-
ation, and an ensemble method. Our results show
that molecules distinguished by property classifi-
cation exhibit varying strengths and weaknesses
depending on the model used. This approach
achieved a translation increase score of 5.52 on
the dev set and 5.68 on the eval set. For property
metrics, we recorded an increase score of 18.44 on
the dev set and 14.50 on the eval set. The overall
increase score was 15.21 on the dev set and 12.30
on the eval set, ranking 4th in this shared task.
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A Appendix

A.1 Prompt Templates
We present the prompt templates in Tables 5 and 6.

Caption the following SMILES: {SMILES}

Table 5: Multitask Text+Chem T5 Prompt with
Molecule

Query: Describe this molecule: <SMILES> {SMILES}
</SMILES>

Response: The molecule is an imidazole derivative
with short-acting sedative, hypnotic, and general
anesthetic properties. Etomidate appears to
have gamma-aminobutyric acid (GABA) like effects,
mediated through GABA-A receptor. The action
enhances the inhibitory effect of GABA on
the central nervous system by causing chloride
channel opening events which leads to membrane
hyperpolarization.

Table 6: Prompt with SMILES and Caption for the
Mistral-7b LlaSMol model.
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Abstract
This paper presents our submission to the L+M-
24 shared task, focused on translating molec-
ular structures into natural language descrip-
tions, known as the molecule captioning task.
We selected a small language model (SLM),
Phi-3-mini-4k, to evaluate the impact of con-
tinued pretraining and instruction tuning for
domain-specific chemical knowledge. The Phi-
3 model was continued pretrained with 90M
chemistry textbooks and abstracts, followed
by instruction tuning on 150K question an-
swering sets of SMILES and general chem-
istry knowledge. Despite the continued pre-
training phase not including direct exposure
to SMILES representations, it significantly en-
hanced the Phi-3 model’s performance, a 300%
increase for the BLEU scores, in the molecule
captioning task. The code and model are re-
leased at https://github.com/bluesky333/
Phi3KnowChem to facilitate research in chemi-
cal small language modeling.

1 Introduction

The intersection of natural language processing
(NLP) and chemistry began with drug discovery
and biochemistry but recently moved to the other
fields of chemistry such as electrochemistry for bat-
tery and rheology for chemical property prediction
(Krallinger et al., 2015; Li et al., 2016; Huang and
Cole, 2022; Kim et al., 2023). With the recent ad-
vancement of large language models (LLMs), the
language model for chemistry domain knowledge
started to cover molecule representation such as
the simplified molecular-input line-entry system
(SMILES) and 3D structure of molecules (Edwards
et al., 2022; Taylor et al., 2022; Fang et al., 2023;
Zhang et al., 2024a,b). As the research in LLMs
has been facilitated by the benchmark datasets for
evaluating the model’s understanding of domain
knowledge, there has been a pressing need for a
benchmark specifically for molecule and language
models (Hendrycks et al., 2020).

To address this gap, the L+M-24 shared task was
introduced as one of the first competitions focused
on translating between language and molecule
representations (Edwards et al., 2024). This
task involves generating captions based on input
molecules represented in SMILES, pushing the
boundaries of molecule captioning by leveraging
language models. The task covers four key appli-
cations within chemical knowledge: biochemistry,
electrochemistry, organoleptics, and agricultural
chemistry. Progress in these specific is essential for
building foundational models applicable to small
molecule applications.

Traditionally, models designed for such tasks
require extensive domain-specific pretraining and
fine-tuning with molecule representation to under-
stand and generate chemistry-related text effec-
tively (Edwards et al., 2022; Taylor et al., 2022;
Fang et al., 2023; Zhang et al., 2024a). This pro-
cess is often resource-intensive and requires large,
specialized datasets.

In this work, we explore the efficacy of contin-
ued pretraining and instruction tuning on a small
language model (SLM), specifically the 3.8B pa-
rameter model, Phi-3-mini-4k, for the molecule
captioning task.

Our approach involves two primary stages:

1. Continued Pretraining: We further pretrain
the Phi-3-mini-4k model using a corpus of
90 million chemistry textbooks and abstracts.
This step aimed to infuse the model with a
broad and deep understanding of chemical
language and concepts.

2. Instruction Tuning: We further refined the
model with 150,000 instruction tuning tasks
focused on SMILES question answering and
general chemistry knowledge question an-
swering. This step was designed to enhance
the model’s ability to handle SMILES repre-
sentation and chemical queries.
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The resulting models underwent fine-tuning with
the shared task’s training data for 1 epoch, and our
best-performing model surpassed the performance
of the MolT5-base model, which was trained with
100 million SMILES strings (Edwards et al., 2022).

The contributions of this paper are as follows:

1. Pretraining without molecule still helps.
Our study demonstrates that continued pre-
training using a chemical text corpus signifi-
cantly enhances performance in molecule cap-
tioning tasks, even without direct exposure
to molecular representations. We saw an al-
most 300% increase for BLEU scores, about
a 67% increase for the ROUGE score, and a
19% increase for Meteor with the continued
pretraining.

2. Phi-3KnowChem model. We introduce the
Phi-3KnowChem model, a small language
model (SLM) based on the Phi-3 architec-
ture, pretrained with a chemical corpus and
instruction-tuning datasets. To the best of our
knowledge, this is the first Phi-3 model specif-
ically trained for the chemical domain.

3. Open source. To foster research in chemical
small language modeling, we will release the
model weights and codes to prompote repro-
ducibility and collaboration in the field.

2 Methods

2.1 Language Model

Phi-3 (Abdin et al., 2024) We use Phi-3-mini-4K
model, which we refer to as Phi-3 model through-
out our paper. Phi-3 has 3.8B parameters and is
trained on an augmented textbook corpus and high-
quality web data consisting of 3.3 trillion tokens.
While specific training details are not disclosed,
Phi-3 building blocks are reported to be a simi-
lar structure to the Llama-2 model (Touvron et al.,
2023). Phi-3 showed an outstanding performance
in MMLU which includes high school chemistry
and college chemistry subjects (Hendrycks et al.,
2020).

2.2 Pretrain Data

The pretraining corpus comprised 8 million tokens
sourced from chemistry textbooks and an addi-
tional 82 million tokens extracted from chemical
journal abstracts published by the Royal Society
of Chemistry (Chen et al., 2020). The textbook

data was acquired from the HuggingFace reposi-
tory 1. This diverse corpus provides a rich source
of chemical language and concepts, enabling the
model to develop a comprehensive understanding
of the domain. Examples of the pretraining corpus
are provided in Table 1.

Textbook
To discuss the electronic states of atoms we
need a system of notation for multi-electron
wavefunctions. As we saw in Chapter 8, the
assignment of electrons to orbitals is called
the electron configuration of the atom. One
creates an electronic configuration represent-
ing the electronic structure of a multi-electron
atom or ion in its ground or lowest-energy state
as follows.
RSC Abstract
Rhenium, the non - noble metal with an accept-
able price, was found to be a good additive that
largely improved Pt / WO3 / ZrO2 catalysis for
glycerol hydrogenolysis. Compared with con-
ventionally employed Pt / WO3 / ZrO2, the Re
- promoted catalyst led to almost quantitative
glycerol conversion (> 99% vs. 57.7%), giving
useful C3 alcohols in excellent total selectiv-
ity (> 95%) under reduced reaction pressure
(2.5 MPa). The addition of Re led to such
an impressive enhancement of the catalyst ac-
tivity that even the reaction performed under
atmospheric H2 pressure (0.1 MPa) afforded
96.8% glycerol conversion and a good selectiv-
ity of C3 compounds at 95.2%. Further XRD,
Raman, BET, CO chemisorption, TEM, H2-
TPR, XPS, NH3-TPD, 1H MAS NMR and
Py-IR studies indicated that introduction of
Re greatly improved the dispersion of Pt and
catalyst acidity, and resulted in this largely en-
hanced catalyst activity.

Table 1: Examples of Pretrain Corpus.

2.3 Instruction Tuning Data

The instruction tuning phase utilized two primary
datasets:

1. SMILES Question Answering Pairs: Con-
sisting of 129,699 question-answer pairs from
ChEMBL, this dataset contains 3,892 unique

1Hack90/libre_chem_textbooks
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SMILES representations. The dataset was ac-
quired from the HuggingFace repository. 2

Each pair involves a question related to the
chemical properties of the molecule, along
with the corresponding answer.

2. CAMEL-AI Chemistry Dataset: Chemistry
instruction tuning dataset which was gener-
ated using GPT-4 was used to cover a broad
range of chemical queries and tasks (Li et al.,
2024). The dataset is made up of 20,000 in-
struction pairs in 25 topics and 25 subtopics
for each topic. By incorporating this diverse
dataset into the instruction tuning process, we
aimed to further refine the model’s ability to
comprehend and respond to various chemical
queries beyond SMILES representation.

The examples of the instruction tuning data are
shown in Table 2.

SMILES QA
SMILES: CC(=O)/N=c1/sc(S(N)(=O)=O)nn1C
Question: How many rotatable bonds does this
compound have?
Answer: 1
CAMEL-AI Chemistry QA
What are the expected products of the reaction
between sodium chloride (NaCl) and silver
nitrate (AgNO3)? Provide the balanced chem-
ical equation and identify the type of reaction
that occurs.
Answer: When sodium chloride (NaCl) re-
acts with silver nitrate (AgNO3), a double dis-
placement reaction occurs, also known as a
metathesis reaction. The expected products
of this reaction are silver chloride (AgCl) and
sodium nitrate (NaNO3). The balanced chemi-
cal equation for this reaction is:
NaCl (aq) + AgNO3 (aq) → AgCl (s) +
NaNO3 (aq)
In this reaction, the sodium (Na) and silver
(Ag) ions switch places, forming new com-
pounds. Silver chloride (AgCl) is an insoluble
solid that precipitates out of the solution, while
sodium nitrate (NaNO3) remains dissolved in
the solution.

Table 2: Examples of instruction tuning dataset.

2alxfgh/ChEMBL_Drug_Instruction_Tuning

3 Experiment and Results

3.1 SLM Training
We conducted continued pretraining and instruc-
tion tuning using 8 A6000 GPUs, each with 48 GB
GPU memory. We used LLaMaFactory3 and used
Deep3 for efficient training (Rasley et al., 2020).
Continued pretraining was done with an epoch of
3 and a learning rate of 1e-5. The instruction tun-
ing was done with the same learning rate as the
continued pretraining but only for 1 epoch. The
total training took less than a day. We named the
resulting model as Phi-3-KnowChem.

For the shared task fine-tuning, we used a differ-
ent computational resource, 2 A5000 GPUs with
a total GPU memory of 48 GB. The finetuning for
the shared task was done using low-rank adaptation
(LoRA) and deepSpeed zero redundancy optimizer
to reduce the GPU memory requirement (Rasley
et al., 2020; Hu et al., 2021). We trained the model
for the captioning task with a learning rate of 1e-
3 and epoch 1. Hyperparameters for LoRA were
as follows: rank - 128, alpha 256, and projector
learning rate 2e-5. We used a simple prompt for
the training and the evaluation: ‘Describe the input
molecule represented in SMILES. SMILES string’.
The whole train dataset for the task was used for
the fine-tuning.

3.2 Evaluation
For the evaluation, we used 1 A5000 GPU and used
temperature of 1. For the baseline performance, we
used the greedy search as the decoding strategy.
We change this strategy with the beam search using
multinomial sampling. The number of beams was
3. For the evaluation metrics scoring, we submitted
the text output to the codabench. The evaluation
metrics used include BLEU-2, BLEU-4, Meteor,
ROUGE-1, ROUGE-2, and ROUGE-L.

3.3 Evaluation Results
The results in Table 3 for the chemical language
training provide several notable trends. Firstly, the
baseline Phi-3 model perform very poorly on the
task even after 1 epoch of finetuning. This sug-
gests that the model has a limited understanding of
chemistry-specific language, as indicated by lowest
scores across all metrics (Meteor: 0.5582, ROUGE-
1: 0.4225, ROUGE-2: 0.3186, ROUGE-L: 0.3016).
These baseline scores highlight the challenges of
molecule captioning when using a general language

3https://github.com/hiyouga/LLaMA-Factory
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Model BLEU-2 BLEU-4 Meteor ROUGE-1 ROUGE-2 ROUGE-L
Phi-3 0.2299 0.1678 0.5582 0.4225 0.3186 0.3016

Phi-3+PT 0.6804 0.4922 0.6644 0.7074 0.5308 0.5142
Phi-3+PT+IT 0.6959 0.5023 0.6750 0.7232 0.5373 0.5193

Phi-3+PT+IT+Beam 0.7056 0.5083 0.6901 0.7261 0.5361 0.5201

Table 3: Molecule Captioning Evaluation Results. The result is sorted by the ROUGE-L. PT stands for continued
pretrained model. IT stands for instruction-tuned model. Beam stands for the beam search decoding strategy.

Prompt
Describe the input molecule represented in SMILES.
CSc1ccc(C(C)N(C)C)cn1
Phi-3
The molecule is a anti viral. The molecule is a hiv inhibitor and is anti viral compound.
The molecule is a hiv integrase inhibitor and is anti viral agent. The molecule is a hiv replication
inhibitor and is anti viral agent compound. The molecule is a hiv protease inhibitor and
is anti viral agent, belonging to the anti viral class of molecules. The molecule is
a hiv treatment and is anti viral compound, anti viral activity, and anti viral. The molecule is
a hiv integrase inhibitor and is anti viral compound, anti viral activity, and anti viral.
The molecule is a hiv inhibitor and aids treatment, belonging to the anti viral compound class of
molecules. The molecule is a hiv treatment and aids treatment, impacting both hiv treatment and aids.
The molecule is a hiv inhibitor and aids treatment, impacting both hiv replication and cancer
Phi-3+PT
The molecule is a anti inflammatory.
Phi-3+PT+IT
The molecule is a anti inflammatory.
Phi-3+PT+IT+Beam
The molecule is a anti viral and belongs to the anti viral agent class of molecules, with the
characteristic of being anti viral.

Table 4: Response comparison between baseline Phi-3 and trained models. The example was randomly sampled.

model that lacks specialized training in the chemi-
cal domain.

Additionally, the effect of continued training is
observed. Continued pretraining (PT) on a large
corpus of chemistry texts resulted in significant
improvements across all evaluation metrics. The
continued pretraining effectively infused the model
with domain-specific knowledge, enhancing its per-
formance by a substantial margin even without ex-
posure to SMILES string. The performance boost
with the continued pretraining was almost 300%
increase for BLEU scores, about 67% increase for
the ROUGE score, and 19% increase for Meteor.
Adding an instruction tuning (IT) phase which con-
tained about 4K unique SMILES representations
further improved the model’s performance in the
molecule captioning task for all the evaluation met-
rics. This shows that prior exposure to SMILES
representation can improve the performance of the

related downstream task.

Beam search with multinomial sampling also
increased the performance in all the evaluation met-
rics except ROUGE-2. This suggests that while
continued pretraining and instruction tuning lay
a strong foundation for chemical language under-
standing, advanced decoding techniques like beam
search can further refine the output quality.

The model responses were compared as shown
in Table 4. Rather than giving the right caption for
the molecule, the Phi-3 model repeated sentences
describing an anti-viral agent. Also, we see gram-
matical mistakes, using ‘a’ instead of ‘an’. The
continued pretrained model and instruction-tuned
model both gave the same response, while the beam
search strategy yielded a different response that was
slightly longer than the other two models.
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4 Conclusion

In this paper, we have presented our approach and
findings from experimenting with the Phi-3-mini-
4k model on the molecule captioning task as part of
the L+M-24 shared task. Our experiment focused
on evaluating the efficacy of continued pretraining
and instruction tuning for enhancing the model’s
domain-specific chemical knowledge and its ability
to generate accurate molecular descriptions.

The results demonstrated that both continued pre-
training and instruction tuning play critical roles
in enhancing the performance of the Phi-3 model
on molecule captioning tasks. Continued pretrain-
ing with a chemistry-specific corpus provides a
substantial boost by enriching the model’s knowl-
edge base, while instruction tuning with targeted
question-answer pairs refines its ability to handle
specific queries related to chemical structures. The
addition of beam search decoding, though provid-
ing marginal gains, contributes to producing higher-
quality and more accurate descriptions. These find-
ings highlight the importance of domain-specific
training and advanced decoding strategies in im-
proving the capabilities of language models for
specialized tasks like molecule captioning. In fact,
on the leaderboard, our Phi-3-KnowChem outper-
formed the MolT5-base model.

Nevertheless, while these findings provide valu-
able insights, further in-depth analysis is warranted
to explore the nuances of model performance in the
chemical domain fully. The exploration of other
tasks such as chemical property prediction can con-
tribute to more accurate and comprehensive assess-
ments of LM performance in real-world chemical
applications.

Limitation

The computational constraints restricted the size
and complexity of the models that could be feasibly
trained and evaluated. There are larger versions of
the Phi-3 model, 7B, and 14B models which can
potentially perform much better than the version
we used in this study.

Broader Impacts and Ethics Statement

Our work does not raise any major ethical con-
cerns regarding the usage of the Phi-3 model as
it was used for research purposes only. However,
our Phi-3-KnowChem is not rigorously tested for
use in real-world chemical applications or scenar-

ios. Thus, they may not be suitable for use in the
decision-making process for the chemical industry.
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Abstract

This paper introduces Mol2Lang-VLM, an
enhanced method for refining generative
pre-trained language models for molecule
captioning using multimodal features to
achieve more accurate caption generation. Our
approach leverages the encoder and decoder
blocks of the Transformer-based architecture
by introducing third sub-layers into both.
Specifically, we insert sub-layers in the
encoder to fuse features from SELFIES strings
and molecular images, while the decoder
fuses features from SMILES strings and their
corresponding descriptions. Moreover, cross
multi-head attention is employed instead of
common multi-head attention to enable the
decoder to attend to the encoder’s output,
thereby integrating the encoded contextual
information for better and more accurate
caption generation. Performance evaluation on
the CheBI-20 and L+M-24 benchmark datasets
demonstrates Mol2Lang-VLM’s superiority,
achieving higher accuracy and quality in cap-
tion generation compared to existing methods.
Our code and pre-processed data are available
at https://github.com/nhattruongpham/mol-
lang-bridge/tree/mol2lang/.

1 Introduction

In the field of cheminformatics, molecule caption-
ing plays a crucial role in helping researchers by au-
tomatically generating captions for molecular struc-
tures. The accuracy and quality of these captions
are vital as they directly impact the understanding
of chemical information and scientific discoveries.
Traditional techniques primarily rely on unimodal
data, often focusing only on textual representations
like SMILES (Simplified Molecular Input Line En-
try System) (Weininger, 1988) strings or SELFIES
(Self-referencing Embedded Strings) (Krenn et al.,
2020) strings. Although these methods have shown
satisfactory results, their dependence on a single
modality limits the richness and accuracy of the

generated captions.
The rise of multimodal data, which uses infor-

mation from different sources, presents an opportu-
nity for significant advancements in molecule cap-
tioning. Multimodal approaches integrate various
forms of molecule, enabling a more comprehensive
understanding of molecular characteristics. How-
ever, effectively utilizing multimodal data in gener-
ative models is challenging and requires advanced
techniques to integrate and improve the models
effectively.

In this paper, we introduce an enhanced method-
ology, named Mol2Lang-VLM, to improve gen-
erative models in molecule captioning by utiliz-
ing multimodal features. Our approach integrates
SELFIES strings and high-level features from
molecular images in the encoder, while incorpo-
rating SMILES features and corresponding descrip-
tions in the decoder. This multimodal integration
allows the model to have a deeper understanding
of chemical structures within the generative model,
which is further refined during the decoder stage.

2 Related Work

2.1 Unimodal Language Models

MolT5 (Edwards et al., 2022) involves translat-
ing molecular structures into natural language us-
ing a text-to-text transfer transformer (T5) (Raffel
et al., 2020) model. This model leverages the ro-
bust linguistic capabilities of T5 to understand and
generate descriptions of molecular structures accu-
rately. BioT5 (Pei et al., 2023) extends the capa-
bilities of T5 to integrate chemical knowledge and
natural language associations into biological con-
texts. BioT5 employs SELFIES for representing
small molecules, as it offers considerable advan-
tages over SMILES. Specifically, SELFIES ensures
a more reliable and error-resistant molecular repre-
sentation, thereby avoiding the problem of invalid
structures that frequently occur with SMILES. This
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model improves the cross-modal understanding be-
tween biological texts and chemical data. While
MolT5 and BioT5 are encoder-decoder language
models, MolXPT (Liu et al., 2023) utilizes a gen-
erative pre-trained Transformer (GPT) (Radford
and Narasimhan, 2018) which is a decoder-only
language model by introducing a generative pre-
training approach by wrapping molecular struc-
tures within descriptive texts. MolXPT leverages
both text and SMILES sequences for molecular
modeling. It wraps SMILES sequences with text,
allowing them to influence each other. Specifically,
it detects molecule names in text sequences and
replaces them with corresponding SMILES rep-
resentations. ChemBERTa (Chithrananda et al.,
2020) is an encoder-only language model that uti-
lizes the RoBERTa (Liu et al., 2019) model that
focuses on molecular representation learning and
property prediction.

SwinOCSR (Xu et al., 2022) uses Swin Trans-
former (Liu et al., 2021) architecture for end-to-end
optical chemical structure recognition of molecular
images. This model can effectively recognize and
describe chemical structures from images, provid-
ing a significant improvement in the accuracy of
vision-language tasks in cheminformatics.

While the aforementioned models have made
significant contributions to molecule captioning,
their reliance on unimodal data restricts their po-
tential for advancements. By not harnessing the
power of multimodal data, these models encounter
limitations in terms of information richness, com-
pleteness, contextual understanding, generalization,
and interpretability.

2.2 Multimodal Language Models
GIT-Mol (Liu et al., 2024) introduces a multimodal
large language model that integrates graph, im-
age, and text data to enhance molecular science
applications. This model leverages the strengths
of different data modalities to provide comprehen-
sive and accurate molecular descriptions. Besides
that, MoMu (Su et al., 2022) associates molecu-
lar graphs with natural language, providing a so-
phisticated multimodal foundation model. This
model enhances the interpretability and accuracy of
molecular captions by integrating graph representa-
tions of molecules with their textual descriptions.

While the use of multimodal data is feasible, the
aforementioned models face certain issues. These
models necessitate significant computational re-
sources and large dataset training. Additionally,

scaling up multimodal models can pose challenges.

3 Methodology

3.1 Generative Language Model

We use the T5 (Raffel et al., 2020) architecture as
our generative language model. The process begins
with the tokenization of the SELFIES string, re-
sulting in token embeddings Xt ∈ RLenc×dt . Here,
Lenc represents the length of the encoder input,
while dt denotes the dimensionality of the feature
vectors. The encoder comprises a sequence of N
encoding layers, with each layer consisting of a
Multi-head Self-Attention (MSA) (Vaswani et al.,
2017) mechanism (Eq. 1) and a Feed-Forward Net-
work (FFN) (Eq. 2). Following each sub-layer,
there is a residual connection that precedes layer
normalization (LN). Unlike the original Trans-
former (Vaswani et al., 2017), T5 incorporates rela-
tive position embeddings (Shaw et al., 2018), which
are added to the respective logits during the com-
putation of attention weights and shared across all
layers in the model.

Zenc′
l = LN(MSA(Zenc

l−1) + Zenc
l−1) (1)

Zenc
l = LN(FFN(Zenc′

l ) + Zenc′
l ) (2)

In parallel with the encoder, the decoder similarly
consists of N layers. It exhibits three distinctive
aspects compared to the encoder: First, target se-
quences, which are molecular captions, are tok-
enized into embeddings Yt ∈ RLdec×dt , where Ldec
is the length of the target sequence. They are
shifted right by one token to ensure that the ground-
truth token is used as the input to predict the next to-
ken. Second, a Masked Multi-head Self-Attention
(MMSA) (Vaswani et al., 2017) is utilized to ensure
auto-regressive generation, maintaining a strict left-
to-right processing order (Eq. 3). Third, a Cross
Multi-head Attention (CMA) (Vaswani et al., 2017)
layer is employed, which enables the decoder to
attend to the encoder’s output, thereby integrating
the encoded contextual information (Eq. 4). Analo-
gous to the encoder, the decoder includes a FFN in
each layer (Eq. 5).

Zdec′
l = LN(MMSA(Zdec

l−1) + Zdec
l−1) (3)

Zdec′′
l = LN(CMA(Zdec′

l , Zenc
N , Zenc

N ) + Zdec′
l )

(4)
Zdec
l = LN(FFN(Zdec′′

l ) + Zdec′′
l ) (5)

99



Figure 1: Overview of Mol2Lang-VLM’s architecture. The green areas represent the two inserted sub-layers used to
fuse the features. The T5 architecture uses relative position embeddings, which are integrated into the Multi-head
Attention mechanism and, therefore, are not shown in the figure. Additionally, Cross Multi-head Attention is
employed in the decoder instead of Multi-head Attention.

3.2 Vision- and Text-Guided Fusion
Inspired by VG-GPLMs (Yu et al., 2021), we in-
tegrate a third sub-layer into both the encoder and
decoder of the language model. In the encoder, we
insert text-vision fusion at the end of the encoder
to learn the cross-modality between the SELFIES
string and the molecular image. In the decoder, we
replace the last FFN with text-text fusion to capture
the relationship between the corresponding caption
and the SMILES string. In both fusion processes,
we utilize the CMA mechanism to learn the correla-
tion between the two sets of features. The overview
of the architecture is exhibited in Figure 1.

In the fusion process of the encoder, the embed-
dings of SELFIES, denoted as Zenc

t , are linearly
projected to the query Qenc (Eq. 6), while the em-
beddings of the image, denoted as Zenc

v , are linearly
projected to the key Kenc (Eq. 7) and the value
V enc (Eq. 8). These projections are performed be-
fore feeding them to the CMA mechanism, which
generates the output Oenc (Eq. 9).

Qenc = Zenc
t W enc

q (6)

Kenc = Zenc
v W enc

k (7)

V enc = Zenc
v W enc

v (8)

Oenc = CMA(Qenc,Kenc, V enc) (9)

The fusion process of the decoder occurs after the
CMA between the decoder’s embeddings and the

output embeddings of the encoder, resulting in Zdec
t .

In this fusion process, Zdec
t are linearly projected

to the query Qdec (Eq. 10), while the embeddings
of SMILES, denoted as Zdec

s , are also projected to
the key Kdec (Eq. 11) and the value V dec (Eq. 12).
Subsequently, CMA is applied to generate Odec

(Eq. 13). The features of SMILES help enhance
the overall effectiveness of the features, enabling
more effective generation of the desired output.

Qdec = Zdec
t W dec

q (10)

Kdec = Zdec
s W dec

k (11)

V dec = Zdec
s W dec

v (12)

Odec = CMA(Qdec,Kdec, V dec) (13)

At each fusion, the output is concatenated with the
initial embeddings to produce Zenc′

t and Zdec′
t (Eq.

14 and 15).

Zenc′
t = (Zenc

t ⊕Oenc)W enc
c (14)

Zdec′
t = (Zdec

t ⊕Odec)W dec
c (15)

Finally, forget gates, denoted as F enc and F dec, are
applied to filter out noisy and redundant informa-
tion introduced during the interactions (Eq. 16 and
17), then point-wise multiplication is applied on
Oenc and Odec to produce Oenc′ and Odec′ (Eq. 18).

F enc = σ((Zenc
t ⊕Oenc)W enc

f ) (16)
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F dec = σ((Zdec
t ⊕Odec)W dec

f ) (17)

Oenc′ = F enc ⊗Oenc, Odec′ = F dec ⊗Odec (18)

4 Implementation Details

4.1 Architectures

We employ BioT5 (Pei et al., 2023) as our genera-
tive language model, which uses the T5-base ver-
sion. The model consists of 252 million parameters
and has a configuration that includes an embedding
dimensionality of 768. It is composed of 12 layers
in both the encoder and decoder. The input tokens
and output tokens are limited to a maximum length
of 512.

To extract visual features from molecular im-
ages, we utilize the encoder of SwinOCSR (Xu
et al., 2022) which employs the Swin Transformer
(Liu et al., 2021) architecture, uses Swin-L version.
The encoder has a total of 194 million parameters.
By inputting images with the size of 224 × 224,
the encoder generates feature embeddings with a
length of 49 and a hidden dimensionality of 1536.

To extract features from SMILES representa-
tions, we use ChemBERTa (Chithrananda et al.,
2020), which is built upon the RoBERTa-base ar-
chitecture with a total of 44 million parameters.
The input tokens for ChemBERTa are also limited
to a length of 512.

To compute the cross-modality attention in text-
vision fusion of the encoder, as well as text-text
fusion of the decoder, all features are linearly pro-
jected to a gated dimensionality of 256. The text-
vision fusion is then integrated at the last two layers
of the encoder (the 11th and 12th layers). Con-
currently, text-text fusion is incorporated into the
initial two layers of the decoder (the 1st and 2nd
layers).

4.2 Datasets

L+M-24: The L+M-24 dataset, first introduced
from Language + Molecules Workshop @ ACL
2024 (Edwards et al., 2024), is designed to high-
light three key benefits of natural language in
molecule design: compositionality, functionality,
and abstraction. It contains over 160, 560 molecule-
description pairs, which are divided into 80%/20%
for train/validation splits.

CheBI-20: The CheBI-20 dataset is widely used
in molecular description tasks. It was first in-
troduced in the Text2Mol (Edwards et al., 2021).
This dataset contains 33, 010 molecule-description

pairs, which are split into 80%/10%/10% for
train/validation/test sets.

Since the aforementioned datasets currently lack
SELFIES strings and molecular images, we em-
ploy selfies 1 and RDKit 2 package to generate this
additional data. We use the prompting template of
the molecule captioning task from BioT5 (Pei et al.,
2023) to fine-tune the model.

4.3 Configurations

Training: During the training process, we utilize
a batch size of 64. To optimize the model, we
employ the AdamW (Loshchilov and Hutter, 2019)
optimizer. The learning rate scheduler follows a
cosine annealing strategy, with a base learning rate
of 3e− 5. The warming-up steps for the learning
rate scheduler are set to 1 epoch to gradually adjust
the learning rate.

Inference: To ensure a fair comparison when
evaluating the model, we employ greedy decod-
ing for generating molecular captions by setting
the number of beam search to 1, with the decoder
starting token as <pad>, and the end of sentence
token as </s>. Furthermore, post-processing is
also applied to skip all special tokens.

5 Results and Discussion

Table 1 presents the performance comparison of
Mol2Lang-VLM with all baseline models, such
as MolT5-Small, MolT5-Base, MolT5-Large, and
BioT5 on the L+M-24 dataset. We used several
performance evaluation metrics to evaluate these
models, including BLEU-2, BLEU-4, ROUGE-1,
ROUGE-2, ROUGE-L, and METEOR. Notably,
Mol2Lang-VLM outperforms all three baseline
models in almost all metrics, with BLEU-2, BLEU-
4, ROUGE-1, ROUGE-2, ROUGE-L, and ME-
TEOR values of 77.7, 56.3, 78.6, 59.1, 56.5, and
74.1, respectively. Although Mol2Lang-VLM
achieves a lower METEOR of 0.2 compared to
MolT5-Large, its number of parameters is approx-
imately 1.5 times lower than MolT5-Large, indi-
cating that the model can learn more efficiently.
Compared to BioT5, Mol2Lang-VLM achieves
better performance in terms of BLEU-2, BLEU-
4, ROUGE-1, and METEOR, with slightly lower
scores in ROUGE-2 and ROUGE-L, demonstrating
that it generally outperforms BioT5.

We also evaluate our proposed method, along

1https://github.com/aspuru-guzik-group/selfies
2https://github.com/rdkit/rdkit
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Model #Params BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
MolT5-Small 77M 70.9 51.2 74.5 55.8 54.4 70.1
MolT5-Base 248M 73.8 53.5 75.0 55.9 53.9 71.8
MolT5-Large 783M 76.9 55.6 77.7 58.0 55.7 74.3
BioT5 252M 74.6 54.1 78.5 59.3 56.9 72.7
Ours 496M 77.7 56.3 78.6 59.1 56.5 74.1

Table 1: Molecule captioning results on the validation split of L+M-24 dataset (Best, Second Best). The baseline
results are derived from Language + Molecules Workshop @ ACL 2024 (Edwards et al., 2024). The Text2Mol
metric is excluded from the table because Text2Mol is trained on a different distribution of data compared to the
L+M-24 dataset.

Model #Params BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR Text2Mol
MolT5-Small 77M 51.9 43.6 62.0 46.9 56.3 55.1 54.0
MolT5-Base 248M 54.0 45.7 63.4 48.5 57.8 56.9 54.7
MolT5-Large 783M 59.4 50.8 65.4 51.0 59.4 61.4 58.2
BioT5 252M 63.5 55.6 69.2 55.9 63.3 65.6 60.3
Ours 496M 61.2 52.7 67.4 53.2 61.4 63.3 59.8

Table 2: Molecule captioning results on the test split of CheBI-20 dataset (Best, Second Best). The baseline results
are derived from MolT5 (Edwards et al., 2022) and BioT5 (Pei et al., 2023).

Model BLEU-2 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L METEOR
Our model w/o forget gate 75.7 54.7 78.7 59.0 56.7 73.0
Our model w/ forget gate 77.7 56.3 78.6 59.1 56.5 74.1

Table 3: Molecule captioning results on the validation split of the L+M-24 dataset to compare between the model
with and without a forget gate (Best, Second Best).

with all three baseline models and BioT5, on the
CheBI-20 dataset. Table 2 displays the perfor-
mance comparison in terms of BLEU-2, BLEU-
4, ROUGE-1, ROUGE-2, ROUGE-L, METEOR,
and Text2Mol metrics. Interestingly, Mol2Lang-
VLM achieves the second-best performance in all
metrics, while BioT5 excels on this dataset. This
might be acceptable because, in some cases, the
fused information may not provide significant addi-
tional context or may even introduce noise, making
it challenging for the model to effectively utilize
the fused embeddings.

Moreover, we conduct an ablation analysis to
evaluate Mol2Lang-VLM with and without em-
ploying the forget gate. Table 3 compares the
performance of these two strategies. Mol2Lang-
VLM with the forget gate outperforms the version
without it across most metrics, including BLEU-2,
BLEU-4, ROUGE-2, and METEOR. The presence
of the forget gate mechanism contributes to en-
hanced caption quality in terms of accuracy and
relevance, showcasing the effectiveness of incorpo-
rating this mechanism in the model architecture for
improved captioning outcomes.

6 Conclusion

This paper introduced Mol2Lang-VLM, a vision-
and text-guided generative pre-trained language
model designed to enhance molecule captioning
performance through multimodal fusion. Our
proposed approach achieved comparative results
in terms of BLEU, ROUGE, METEOR, and
Text2Mol metrics, demonstrating its effectiveness
in generating accurate and meaningful captions for
molecular structures. The findings highlight the po-
tential of Mol2Lang-VLM in advancing molecule
captioning tasks. Future research can explore alter-
native fusion methods, fine-tuning strategies, and
the generalization of the model to other tasks. Ad-
ditionally, integrating Mol2Lang-VLM with down-
stream applications and enhancing interpretability
can further enhance its practical utility in the field
of cheminformatics.

Acknowledgements

This work was supported by the National Research
Foundation of Korea (NRF) funded by the Ministry
of Science and ICT (RS-2024-00344752). This
research was supported by the Department of In-
tegrative Biotechnology, Sungkyunkwan Univer-

102



sity (SKKU) and the BK21 FOUR Project. This
work was supported by the Korea Bio Data Sta-
tion (K-BDS) with computing resources including
technical support.

References
Seyone Chithrananda, Gabriel Grand, and Bharath

Ramsundar. 2020. Chemberta: Large-scale self-
supervised pretraining for molecular property pre-
diction. ArXiv, abs/2010.09885.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke,
Kyunghyun Cho, and Heng Ji. 2022. Translation
between molecules and natural language. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 375–413,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Carl Edwards, Qingyun Wang, Lawrence Zhao, and
Heng Ji. 2024. L+M-24: Building a dataset for Lan-
guage + Molecules @ ACL 2024. arXiv preprint
arXiv:2403.00791.

Carl Edwards, ChengXiang Zhai, and Heng Ji. 2021.
Text2Mol: Cross-modal molecule retrieval with nat-
ural language queries. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 595–607, Online and Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pas-
cal Friederich, and Alan Aspuru-Guzik. 2020. Self-
referencing embedded strings (selfies): A 100% ro-
bust molecular string representation. Machine Learn-
ing: Science and Technology, 1(4):045024.

Pengfei Liu, Yiming Ren, Jun Tao, and Zhixiang Ren.
2024. Git-mol: A multi-modal large language model
for molecular science with graph, image, and text.
Computers in Biology and Medicine, page 108073.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. 2021.
Swin transformer: Hierarchical vision transformer
using shifted windows. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (ICCV).

Zequn Liu, Wei Zhang, Yingce Xia, Lijun Wu, Shufang
Xie, Tao Qin, Ming Zhang, and Tie-Yan Liu. 2023.
MolXPT: Wrapping molecules with text for genera-
tive pre-training. In Proceedings of the 61st Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 1606–1616,
Toronto, Canada. Association for Computational Lin-
guistics.

Ilya Loshchilov and Frank Hutter. 2019. De-
coupled weight decay regularization. Preprint,
arXiv:1711.05101.

Qizhi Pei, Wei Zhang, Jinhua Zhu, Kehan Wu, Kaiyuan
Gao, Lijun Wu, Yingce Xia, and Rui Yan. 2023.
BioT5: Enriching cross-modal integration in biol-
ogy with chemical knowledge and natural language
associations. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1102–1123, Singapore. Association for
Computational Linguistics.

Alec Radford and Karthik Narasimhan. 2018. Im-
proving language understanding by generative pre-
training.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou, Jiang-
meng Li, Anyi Rao, Hao Sun, Zhiwu Lu, and Ji-
Rong Wen. 2022. A molecular multimodal founda-
tion model associating molecule graphs with natural
language. Preprint, arXiv:2209.05481.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

David Weininger. 1988. Smiles, a chemical language
and information system. 1. introduction to methodol-
ogy and encoding rules. Journal of chemical infor-
mation and computer sciences, 28(1):31–36.

Zhanpeng Xu, Jianhua Li, Zhaopeng Yang, Shiliang
Li, and Honglin Li. 2022. Swinocsr: end-to-end
optical chemical structure recognition using a swin
transformer. Journal of Cheminformatics, 14(1):41.

Tiezheng Yu, Wenliang Dai, Zihan Liu, and Pascale
Fung. 2021. Vision guided generative pre-trained
language models for multimodal abstractive summa-
rization. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 3995–4007, Online and Punta Cana, Domini-
can Republic. Association for Computational Lin-
guistics.

103

https://api.semanticscholar.org/CorpusID:224803102
https://api.semanticscholar.org/CorpusID:224803102
https://api.semanticscholar.org/CorpusID:224803102
https://doi.org/10.18653/v1/2022.emnlp-main.26
https://doi.org/10.18653/v1/2022.emnlp-main.26
https://doi.org/10.18653/v1/2021.emnlp-main.47
https://doi.org/10.18653/v1/2021.emnlp-main.47
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1088/2632-2153/aba947
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2023.acl-short.138
https://doi.org/10.18653/v1/2023.acl-short.138
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://doi.org/10.18653/v1/2023.emnlp-main.70
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
https://api.semanticscholar.org/CorpusID:49313245
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://doi.org/10.18653/v1/N18-2074
https://arxiv.org/abs/2209.05481
https://arxiv.org/abs/2209.05481
https://arxiv.org/abs/2209.05481
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2021.emnlp-main.326
https://doi.org/10.18653/v1/2021.emnlp-main.326
https://doi.org/10.18653/v1/2021.emnlp-main.326


Proceedings of the 1st Workshop on Language + Molecules (L+M 2024), pages 104–116
August 15, 2024 ©2024 Association for Computational Linguistics

DNA Language Model and Interpretable Graph Neural Network Identify
Genes and Pathways Involved in Rare Diseases

Ali Saadat, Jacques Fellay
School of Life Sciences

Ecole Polytechnique Fédérale de Lausanne
Lausanne, Switzerland

{ali.saadat, jacques.fellay}@epfl.ch

Abstract

Identification of causal genes and pathways is
a critical step for understanding the genetic
underpinnings of rare diseases. We propose
novel approaches to gene prioritization and
pathway identification using DNA language
model, graph neural networks, and genetic
algorithm. Using HyenaDNA, a long-range
genomic foundation model, we generated dy-
namic gene embeddings that reflect changes
caused by deleterious variants. These gene
embeddings were then utilized to identify can-
didate genes and pathways. We validated our
method on a cohort of rare disease patients with
partially known genetic diagnosis, demonstrat-
ing the re-identification of known causal genes
and pathways and the detection of novel can-
didates. These findings have implications for
the prevention and treatment of rare diseases
by enabling targeted identification of new drug
targets and therapeutic pathways.

1 Introduction

The landscape of genomics research has under-
gone a profound transformation with the advent
of high-throughput sequencing technologies (Met-
zker, 2009). The generation of a vast amount of
genomics data offers unprecedented insights into
human genetic diversity (Auton et al., 2015; Chen
et al., 2023). However, this wealth of data brings
significant challenges in terms of data analysis and
interpretation. A main challenge in deciphering the
underlying mechanisms of diseases is establishing
a link between genotype and phenotype (Gallagher
and Chen-Plotkin, 2018). This task becomes even
harder in the context of rare diseases, where the
scarcity of data reduces statistical power (Seaby
and Ennis, 2020).

Traditional methods for finding disease-
associated genes/pathways have predominantly
relied on statistical approaches, such as correlating
specific genetic variants with disease occurrence

(Auer and Lettre, 2015; Uffelmann et al., 2021).
These approaches show decent performance if the
cohort size is large, which is often a big obstacle
in rare disease studies. Moreover, these methods
usually utilize basic variant statistics (such as
number of variant carriers), and might not take into
account the gene-specific impact of variants on the
gene sequence (MacArthur et al., 2014).

Another family of computational approaches for
gene/pathway prioritization rely on the concept
of guilt-by-association, where genes/pathways are
considered potentially relevant based on their sim-
ilarity to known disease genes (Lee et al., 2011;
Guala and Sonnhammer, 2017). These methods
work well in scenarios where some underlying
genetic factors of the phenotype are well-studied,
which is not the case for many diseases (Amberger
et al., 2018). Moreover, these methods might intro-
duce bias since they look for similar genes, thereby
missing novel disease-causing genes (Gillis and
Pavlidis, 2012).

Recent years have seen a remarkable rise in the
performance of language models, particularly in
the field of natural language processing (NLP) (De-
vlin et al., 2018; Radford et al., 2019). These mod-
els ‘learn’ language by processing vast amounts of
text data, enabling them to perform a wide range of
downstream tasks such as translation, summariza-
tion, and question-answering with unprecedented
accuracy and fluency (Zhao et al., 2023). Parallel
to this development, the concept of language mod-
els has been applied to genomics, giving rise to
DNA language models (DNA-LMs) (Zhou et al.,
2023; Dalla-Torre et al., 2023; Benegas et al., 2023;
Nguyen et al., 2023). Genomic sequences, much
like textual data, comprise long chains of infor-
mation, in this case nucleotides instead of words.
DNA-LMs apply the principles of NLP to interpret
and analyze these sequences, translating the ’lan-
guage’ of DNA into meaningful biological insights.
By learning from extensive genomic data, these
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models can provide new perspectives on down-
stream biological processes (Consens et al., 2023;
Marin et al., 2023).

HyenaDNA (Nguyen et al., 2023) is a long-
range genomic foundation model pre-trained on
the human reference genome at single nucleotide
resolution. It can process long-range DNA se-
quences and represent them as embeddings in a
high-dimensional space. For any genomic region
such as a gene, HyenaDNA generates embeddings
that capture the inherent information of the DNA
sequence. These embeddings dynamically change
in response to genetic variants, offering insights
into how genetic alterations impact biological pro-
cesses.

We hypothesize that variants with strong delete-
rious effects have a detectable impact on gene em-
beddings. We designed complementary methods to
identify genes and pathways that contain such dele-
terious variants and could therefore play a causal
role in the pathogenesis of rare diseases. For gene
prioritization, we propose two approaches (case-vs-
control and case-only) to quantitatively rank can-
didate genes (Figure 1a). For pathway identifica-
tion, we propose a method that combines DNA-LM,
interpretable graph neural networks (GNN) (Wu
et al., 2021; Ying et al., 2019) and Genetic Algo-
rithm (Katoch et al., 2020) (Figure 1b). We validate
our methods on a cohort of rare disease patients
with partially known genetic diagnosis, demonstrat-
ing the re-identification of known causal genes and
the detection of novel candidates.

2 Methods

2.1 Study participants

We selected two cohorts from our in-house
database of exome-sequenced individuals. The first
cohort consists of 120 previously healthy children
who were admitted to pediatric intensive care units
(PICUs) with respiratory failure due to a common
viral respiratory infection. This cohort serves as
the “rare disease” patient group for this study. As
control group, we selected a total of 172 healthy
individuals. The studies were approved by the rele-
vant ethics commissions and all study participants
provided a signed informed consent for research
including human genetic testing.

2.2 Short-read alignment and variant calling

Adapter sequences were trimmed from sequencing
reads using fastp (Chen et al., 2018) and the reads

(a) Gene prioritization workflow: DNA sequences of candidate
genes are passed to HyenaDNA for gene embedding gener-
ation. The embeddings are used to calculate a gene specific
score (F1 score for case-vs-control, distance score for case-
only), which is used to rank and select top candidate genes.

(b) Pathway identification workflow: for each individual, a
protein-protein interaction network is constructed with gene
embeddings as node features. A GNN is trained to classify
cases graphs from controls, and GNNExplainer is applied to
score the importance of nodes and edges for graph classifica-
tion. Afterwards, a Genetics Algorithm is used to find the most
explainable subnetwork, and a pathway enrichment analysis
is performed on that subnetowrk to find the over-represented
biological pathways.

Figure 1: Overall summary of of the methods. Figures
created with BioRender.com.

were subsequently aligned against the human ref-
erence genome (hg38) using the maximum exact
matches algorithm in Burrows-Wheeler Aligner
(Li and Durbin, 2009). The Genome Analysis
Software Kit (GATK4) best-practice pipeline was
used to call variants in the multi-sample mode (De-
Pristo et al., 2011). In summary, PCR duplicates
were removed and base quality scores were recali-
brated to correct for sequencing artifacts. We called
individual-level variants with GATK Haplotype-
Caller before combining single-sample callsets for
joint genotyping. To exclude low quality variants,
we applied variant quality score recalibration and
manual filtering (depth ≥ 20, genotype quality ≥
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20, and 0.2 ≤ heterozygous allele balance ≤ 0.8).

2.3 Variant annotation and filtering
To predict the potential impact of each variant,
we used Variant Effect Predictor (VEP) (McLaren
et al., 2016). To identify loss-of-function variants,
we used Loss-of-Function Transcript Effect Estima-
tor (LOFTEE) as a VEP plugin (Karczewski et al.,
2020).

To classify the variant into putative pathogenic-
ity groups, we implemented the ACMG/AMP
guidelines (Richards et al., 2015) in R (https:
//www.r-project.org) (see full description Ap-
pendix A). A probability of pathogenicity (PoP)
was assigned to each variant according to the
ACMG/AMP Bayesian classification framework
(Tavtigian et al., 2018). Variants with PoP ≥ 0.9
were considered as damaging. Genes with at least
one pathogenic variant were included in the down-
stream analysis.

2.4 Gene embedding calculation
For candidate gene selection, we kept the genes that
passed the following criteria: 1) At least one patient
carries ≥ 1 pathogenic variant in the gene. 2) The
length of the gene (including exons, introns, 3’-
UTR, and 5’-UTR) is less than 450,000 nucleotides,
which is the maximum input size of the medium-
size HyenaDNA.

For each candidate gene, we obtained the refer-
ence gene sequence using biomaRt (Kinsella et al.,
2011). Then for each study participant, we altered
the reference alleles based on the position of the
variants in the gene. The resulting DNA sequence
was then fed into the medium-size HyenaDNA to
get embeddings for each nucleotide. To construct
a gene embedding, we extracted the nucleotide
embeddings from positions of pathogenic variants,
then we averaged them. All the gene embeddings
were stored in a database to be used for the next
steps. For loading pre-trained weights, we used
the HuggingFace (Wolf et al., 2019) interface in
Python (https://www.python.org). For model
inference and embedding calculation, we used one
Nvidia A100 (40GB) GPU.

2.5 Case-vs-control analysis
To assess the impact of pathogenic variants on
the gene embeddings, we implemented a case-vs-
control approach. For each gene, we trained a lo-
gistic regression (with L1 and L2 regularization)
using the gene embeddings to classify patients from

healthy controls. We used scikit-learn (Pedregosa
et al., 2011) to train the model on 75% of the data
and evaluate it with the remaining 25% resulting in
a F1 score for each gene. We compared the gene-
specific F1 scores and ranked genes based on this
metric (Figure 1a).

For top candidate gene selection, we used
Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) (Ester et al., 1996) as an
outlier detector. We applied DBSCAN on the cal-
culated F1 scores to find outliers and selected cor-
responding genes as top candidates.

Finally, to validate the results, we implemented
a permutation test. We randomly shuffled the
labels (case or control) for N=1000 times. Then
we trained a logistic regression on 75% of the data
and calculated a F1 score on the other 25%. We
counted the number of times that the random F1

score was more than or equal than the observed
F1 score. We calculated a p-value as follow (with
ϵ = 0.001):

p = count(random F1≥Observed F1)+ϵ
N+ϵ

2.6 Case-only analysis

We also developed a case-only method to prioritize
candidate genes if healthy controls are not avail-
able. In this approach, for each gene we divided
the gene embeddings into mutant (if the patient
carried a pathogenic variant) and non-mutant (if
the patient was not a carrier). Then we calculated
a distance score as the average Euclidean distance
between mutant and non-mutant gene embeddings.
We utilized these gene-specific distance scores to
rank candidate genes (Figure 1a).

For top candidate gene selection, similar to the
case-vs-control approach, we applied DBSCAN on
the distance scores and selected outliers as the top
candidate genes.

To validate the results, we implemented a
statistical test as follow : For N=1000 times
we generated random reference and alternative
embeddings and calculated the distance score.
We counted the number of times that the random
distance score was more than or equal than the
observed distance score. We calculated a p-value
as follow (with ϵ = 0.001):

p = count(random distance score≥Observed distance score)+ϵ
N+ϵ
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2.7 Graph neural network training

To understand the underlying mechanism of the dis-
ease, we designed an explainable approach based
on graph neural network (GNN). A summary of
the method can be found in figure 1b. First, we cre-
ated a protein-protein interaction (PPI) network
that indicates interactions between genes carry-
ing pathogenic variants. We used the STRING
database (Szklarczyk et al., 2023) and included
interactions with confidence score ≥ 0.6.

Afterwards, we created individual-specific
graphs, which include gene embeddings as node
features. We trained a GNN to classify patients’
graphs from controls. GNN architecture consists
of two hidden graph convolution layers (Zhang
et al., 2019) with 16 nodes for message passing
and a global sort pooling (Zhang et al., 2018) for
node feature aggregation. Pooling is essential be-
cause the model is trained for graph classification,
therefore with pooling we can generate graph rep-
resentations from node features. We used AdamW
(Loshchilov and Hutter, 2019) optimizer with learn-
ing rate = 0.001 and weight decay = 0.001 for train-
ing. We used batch size = 32 and trained the model
for 1000 epochs. We used PyTorch geometric (Fey
and Lenssen, 2019) for implementing and training
the GNN.

2.8 Subnetwork identification and pathway
enrichment analysis

After training the GNN, we used GNNExplainer
(Ying et al., 2019) to assign an explainability score
to each node, showing how important they are for
graph classification . We applied GNNExplainer
for all the samples and averaged the explainability
scores for each node across samples.

After obtaining the explainability scores, we
used the Genetic Algorithm (GA) (Katoch et al.,
2020) to identify the “best” subnetwork with maxi-
mum fitness, defined as the average of explainabil-
ity scores of its nodes. GA is a bio-inspired algo-
rithm that mimics evolution by implementing natu-
ral selection, chromosomal crossover, and mutation.
Previous studies have successfully utilized GA for
subnetwork identification (Ulgen et al., 2019; Wu
et al., 2011). To summarize the GA, we start with a
population of random subnetworks, then we select
50% of subnetworks with probabilities proportional
to their fitness scores (roulette wheel selection). Af-
terwards, we create new subnetworks by mutating
them (adding or removing edges) and crossovering

them (connecting two subnetworks, if possible).
We started with an initial population of 100 subnet-
works and repeated the GA for 10 generations with
a mutation rate of 0.5. At the end, we chose the
“most fit” subnetwork at the last generation.

Finally, to gain biological insights into the se-
lected subnetwork, we performed pathway enrich-
ment analysis, a method for identifying biologi-
cal functions that are over-represented in a group
of genes (Chicco and Agapito, 2022). We used
the GSEApy package (Fang et al., 2022), which
uses Enrichr (Kuleshov et al., 2016) for over-
representation analysis and the Reactome database
(Milacic et al., 2023) as reference. We kept signifi-
cantly enriched pathways with false discovery rate
(FDR) ≤ 0.05.

3 Results

3.1 Study participants

As patient cohort (rare disease cases), we used ex-
ome data from 120 previously healthy children ad-
mitted to PICUs with respiratory failure due to a
common viral respiratory infection. Their median
age was 78 days, 50 (42%) were female, and 90
(78%) were of European ancestry. Respiratory Syn-
cytial Virus (RSV) and Human Rhinovirus (HRV)
were the most common detected pathogens, in 67
(56%) and 31 (26%) of the cases, respectively. As
controls, we selected 172 healthy individuals from
our in-house database of exome-sequenced individ-
uals, representing a random subset of the general
population. Since the phenotype we are studying is
rare, we assume that the controls are not enriched in
individuals with genetic risk factors for infectious
disease susceptibility.

3.2 Variant classification

In the patient group, 55,300 variants were mapped
to coding and splicing regions and were scored with
the ACMG/AMP Bayesian classification frame-
work. 48,875 variants had a PoP ≤ 0.1 and were
considered benign. 5,838 variants had an interme-
diate PoP (between 0.1 and 0.9), resulting in their
classification as variants of unknown significance
(VUS). 587 variants (in 508 genes) exceeded the
pathogenicity threshold (≥ 0.9) and were consid-
ered as damaging.

3.3 Gene prioritization

A total of 498 (98%) candidate genes passed the
selection criteria (Methods, Gene embedding cal-
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Figure 2: Gene prioritization results. (A) Genes ranked
according to their corresponding F1 score calculated
based on case-vs-control workflow. (B) Gene ranking
based on average distance of mutants and non-mutant
embeddings, computed according to the case-only work-
flow.

culation). For each candidate gene, we calculated
gene embeddings using the pre-trained HyenaDNA
for all 292 study participants (120 cases and 172
controls), resulting in gene-specific embeddings in
the embedding space. We then ranked candidate
genes using two approaches:

1) Case-vs-control: We trained a logistic regres-
sion for each gene and calculated a gene-specific F1

scores. We used these scores to rank the genes and
find top candidates by applying DBSCAN for out-
lier detection. The top candidate gene with the high-
est F1 score was IFIH1 (Figure 2.A). We performed
a permutation test which resulted in p-value=0.009
(Supplementary figure S1).

2) Case-only: in this scenario we used the gene-
specific distance score (calculated based on the
average Euclidean distance of mutant and non-
mutant embeddings) for gene prioritization and
top-candidate selection. IFIH1 ranked first and was
selected as an outlier using the DBSCAN method
(Figure 2.B) and was significantly different from
the expected distribution (p-value=10−6, Supple-
mentary figure S2).

3.4 PPI construction and graph neural
network training

We constructed a high-quality PPI based on the
interactions between the protein products of all
candidate genes, resulting in a PPI with 138 nodes
and 176 edges. For each participant, we initialized
the same PPI structure, but used their personal-
ized gene-embeddings as node features, resulting
in 292 (120 cases and 172 controls) unique graphs.
We used these graphs to train a GNN for classify-
ing cases from controls. GNN structure consisted
of 2 graph convolution layers with 16 nodes, and
global sort pooling to generate graph representa-
tions from node features. We trained the GNN for
1000 epochs.

3.5 Subnetwork identification and pathway
enrichment analysis

After training the GNN, we used GNNExplainer to
assign an explainability score to each node, show-
ing how important they are for graph classification.
We applied GNNExplainer for all the samples and
averaged the explainability scores for each node
across samples. Figure 3.A shows the PPI with
explainability scores reflected on the edges’ widths.
After obtaining the explainability scores, we used
the Genetic Algorithm to identify the “best” sub-
network with maximum fitness. The fitness of a
subnetwork was defined as the average of explain-
ability scores of its nodes . This resulted in a sub-
network with 10 genes including IFIH1, OAS1,
OAS3, MX1, IFNAR1, IL10RB, ZNFX1, NLRC5,
TRIM40, and ABCE1 (Figure 3.B). Finally, we per-
formed pathway enrichment analysis using the Re-
actome database as reference and kept significantly
enriched pathways with FDR ≤ 0.05. Top 10 re-
sulting pathways are shown in figure 4.

4 Discussion

In this study we aim to harness the potential of
DNA foundation models to translate the intricate
’language’ of DNA into meaningful and action-
able information. We propose a framework to uti-
lize DNA-LMs for gene prioritization and pathway
identification in rare disease studies. Based on the
hypothesis that variants with strong deleterious ef-
fects alter the gene embeddings significantly in the
embedding space, we demonstrate that it is possi-
ble to prioritize disease-associated genes/pathways
in a cohort of 120 children requiring intensive care
support because of a severe illness caused by a
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Figure 3: Subnetwork identification results. (A) PPI
of candidate genes scored using GNNExplainer. The
thickness of edges reflects the importance of nodes con-
nected to it. (B) Selected subnetwork with maximum
fitness, defined as the average nodes’ importance scores.
This subnetwork is identified via the Genetic Algorithm.

respiratory virus.

For gene prioritization, we propose two ap-
proaches to analyze the gene embeddings (Fig-
ure 1a): case-vs-control and case-only. The case-
only approach is particularly promising for rare
disease research, where finding a well-matched
control group is often challenging. The ability of
the method to differentiate between mutant and
non-mutant gene embeddings within the same pa-
tient cohort is a novel and practical solution to this
long-standing issue. By applying the gene prior-
itization workflow, we successfully re-identified
IFIH1 - which encodes an RIG-I-like receptor in-
volved in the sensing of viral RNA (Rehwinkel

Figure 4: Top 10 significantly enriched pathways using
the Reactome database. Genes in the selected subnet-
work were used as input.

and Gack, 2020) - as the top candidate gene in our
patient cohort.

For pathway identification, we propose an in-
tegrative method, combining DNA-LM with in-
terpretable GNN and Genetic Algorithm (Figure
1b). This approach takes into account various in-
formation such as PPI, number of variant carriers,
and context-specific impact of variants on gene se-
quences. By applying this method, we were able to
identify potentially relevant genes (IFIH1, OAS1,
OAS3, MX1, IFNAR1, IL10RB, ZNFX1, NLRC5,
TRIM40, and ABCE1) that can explain the disease
pathogenesis.

All the identified genes are coding for molecules
that play an important role in antiviral defense.
IFIH1 encodes MDA5, which is a cytoplasmic vi-
ral RNA sensor that recognizes single- or double-
strand RNA to launch a type 1 interferon response
(Rehwinkel and Gack, 2020). OAS1 and OAS3
encode enzymes that activate host RNase L to de-
grade viral RNA (Hornung et al., 2014). ABCE1
encodes a protein that is involved in the regula-
tion of OAS/RNase L pathway (Martinand et al.,
1998). MX1 encodes a guanosine-triphosphate-
metabolizing protein that antagonizes the replica-
tion process of viruses (Haller and Kochs, 2019).
IFNAR1 and IL10RB encode cytokine receptors
that mediate the antiviral immunity (Zanin et al.,
2021; Moore et al., 2001). ZNFX1 encodes a pro-
tein that binds to viral RNA and interacts with
mitochondrial antiviral signaling (MAVS) protein,
promoting the expression of interferon-stimulated
genes (Vavassori et al., 2021). NLRC5 and TRIM40
encode regulators of antiviral signaling pathways
(Kuenzel et al., 2010; Zhao et al., 2017). Deficien-
cies in some of these genes have been previously
studied and shown to impair immunity against spe-
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cific human viruses (Lamborn et al., 2017; Asgari
et al., 2017; Chen et al., 2021; Abolhassani et al.,
2022; Korol et al., 2023; Saadat et al., 2023; Lee
et al., 2023).

In this study we focused on DNA-LMs, although
protein language models (pLMs) such as ESM-1b
(Brandes et al., 2023) have demonstrated state-of-
the-art performance in scoring missense variants.
The reason we used a DNA-LM instead of pLM
is that DNA-LMs can model various variant types
(e.g., splicing, stop-gained, etc.) while pLMs fo-
cus only on missense variants. Moreover, by us-
ing DNA-LMs, our method can be extended to
other variant types such as those mapping to in-
trons, branchpoint motives, or untranslated regions
(UTRs).

While our method shows promise, there are in-
herent challenges and limitations. Our proposed
workflow identifies genes with significant changes
in their embeddings, yet a careful analysis is re-
quired to quantify the minimum embedding distor-
tion to be detectable by the model. Moreover, the
interpretation of gene embeddings requires care-
ful consideration, since not all genetic variations
captured in the embeddings might be clinically rel-
evant.

The potential for integrating DNA-LMs with
other techniques, such as multi-omics, could fur-
ther enhance our understanding of genetic diseases.
This has significant implications for the identifica-
tion of disease-causing genes/pathways, potentially
leading to more targeted and effective treatments
in personalized medicine. The demonstration that
DNA-LMs can accurately identify genes and path-
ways involved in rare diseases paves the way for
further research and application of artificial intelli-
gence in various genomics research domains.

Code Availability

The code for this study is available here.
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A Appendix

We used ACMG/AMP guidelines (Richards et al., 2015) to classify the variant into putative pathogenicity
groups, as described in our previous works (Saadat et al., 2023; Saadat and Fellay, 2024). In summary, we
gather all the available evidences for a variant. Table 1 summarizes all the ACMG/AMP criteria that we
used.

Table 1: the summary of ACMG/AMP criteria used for variant classification. MAF: minor allele frequency

To calculate the probability of pathogenicity (PoP), we use the Bayesian framework developed by
Tavtigian et al. (2018). For a given variant, the PoP is calculated as follow:

Px = number of pathogenic criteria applied at the level of x
x ∈ {Very strong,Strong,Moderate,Supporting}

By = number of benign criteria applied at the level of y
y ∈ {Strong,Supporting}

odds of pathogenicity (OP) = 350(
PVery strong

1
+

PStrong
2

+
PModerate

4
+

PSupporting
8

−BStrong
2

−BSupporting
8

)

probability of pathogenicity (PoP) = OP×0.1
((OP−1)×0.1+1)
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Supplementary Figure S1: Permutation test results for case-vs-control approach. Expected distribution of F1 scores
for IFIH1 is shown in blue. The red line indicates the observed F1 score.

Supplementary Figure S2: Statistical test results for the case-only approach. Expected distribution of distance scores
for IFIH1 is shown in blue. The red line indicates the observed distance score.
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Abstract

Generating as diverse molecules as possible
with desired properties is crucial for drug
discovery research, which invokes many ap-
proaches based on deep generative models
today. Despite recent advancements in these
models, particularly in variational autoen-
coders (VAEs), generative adversarial networks
(GANs), Transformers, and diffusion models,
a significant challenge known as the sample
bias problem remains. This problem occurs
when generated molecules targeting the same
protein tend to be structurally similar, reduc-
ing the diversity of generation. To address this,
we propose leveraging multi-hop relationships
among proteins and compounds. Our model,
Repurformer, integrates bi-directional pretrain-
ing with Fast Fourier Transform (FFT) and low-
pass filtering (LPF) to capture complex interac-
tions and generate diverse molecules. A series
of experiments on BindingDB dataset confirm
that Repurformer successfully creates substi-
tutes for anchor compounds that resemble posi-
tive compounds, increasing diversity between
the anchor and generated compounds.

1 Introduction

The design of valid and novel molecules with
desired biological properties, known as de novo
molecule generation, is vital to modern drug discov-
ery. Recent advancements in deep generative mod-
els, particularly variational autoencoders (VAEs)
(Kingma and Welling, 2022), generative adversar-
ial networks (GANs) (Goodfellow et al., 2014),
Transformers (Vaswani et al., 2017), and diffusion
models (Ho et al., 2020), have significantly en-
hanced our ability to generate chemically valid and
novel molecules. However, these models need to be
further refined to generate molecules that interact
with specific target proteins.

Target-specific molecule generation addresses
this challenge by producing drug-like molecules
that are more likely to bind with specific target

proteins (Grechishnikova, 2021; Qian et al., 2022;
Tan et al., 2022). Nonetheless, there remains a
significant issue known as the sample bias prob-
lem, where reliance on existing protein-compound
pairs results in the generation of structurally similar
molecules. This phenomenon limits the diversity
of generated molecules and hinders the discovery
of novel compounds.

To address this, we propose leveraging multi-hop
relationships among proteins and compounds to
expand the generative space and increase the diver-
sity of the generated molecules. Our method intro-
duces the concept of repurposing-aware molecule
generation, designed to identify and utilize latent
multi-hop relations within the protein-compound
interaction network.

In this paper, we present Repurformer, a novel
model that integrates bi-directional pretraining and
advanced signal processing techniques to overcome
the limitations of existing models. Repurformer
captures complex relationships between proteins
and compounds by pretraining encoders in both
protein-to-compound and compound-to-protein di-
rections and applying Fast Fourier Transform (FFT)
with low-pass filtering (LPF) to the latent space.
This approach allows the model to distinguish the
different scales of interactions. By focusing on low-
frequency components, which correspond to the
longer propagation through the multi-hop protein-
compound interaction network, Repurformer gener-
ates as diverse compounds as possible with desired
properties. In summary, the contributions of our
work are threefold:

• We introduce a framework for repurposing-
aware molecule generation to address the sam-
ple bias problem by leveraging multi-hop re-
lations between proteins and compounds.

• We develop Repurformer, a model that inte-
grates a bi-directional pretraining and an FFT-
based approach to capture and utilize latent
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multi-hop relations in an end-to-end manner.

• We demonstrate that Repurformer success-
fully generates valid and diverse molecules,
creating substitutes for anchor compounds
that resemble positive compounds.

2 Preliminaries

2.1 De novo Molecule Generation

De novo molecule generation is the process of ex-
ploring vast chemical space and producing novel
molecules with desired biological properties. With
the rapid advancement of artificial intelligence, re-
cent deep generative models have been widely used
in molecule generation tasks.

For example, several VAE variants have been
introduced thanks to its manipulable latent space,
such as charVAE (Gómez-Bombarelli et al., 2018),
SD-VAE (Dai et al., 2018), and JT-VAE (Jin
et al., 2018). GAN has been adopted due to their
capability to generate new molecules that are
highly similar in structure to existing ones, in-
cluding ORGAN (Guimaraes et al., 2018), OR-
GANIC (Sanchez-Lengeling et al., 2017), and Mol-
CycleGAN (Maziarka et al., 2020). More recently,
Transformers and diffusion models have been uti-
lized, based on their success in language model-
ing and image generation, respectively, such as
MolGPT (Bagal et al., 2022), MDM (Huang et al.,
2023), and GeoLDM (Xu et al., 2023).

2.2 Target-specific Molecule Generation

In drug discovery, identifying drug-target interac-
tions (DTI) is crucial for understanding the bioac-
tivity and therapeutic effects of drugs for specific
diseases. Although the deep generative models
have proved useful in generating novel and chem-
ically valid molecules, further screening is neces-
sary to evaluate their potential to bind with specific
protein targets. Building on this notion, several re-
searchers have developed target-specific molecule
generation models to produce novel, drug-like
molecules that are highly likely to interact with spe-
cific target proteins, including Transformer-based
generation (Grechishnikova, 2021), AlphaDrug
(Qian et al., 2022), SiamFlow (Tan et al., 2022)
and POLYGON (Munson et al., 2024).

2.3 Repurposing-Aware Molecule Generation

Drug repurposing is a strategy that identifies new
therapeutic uses for approved drugs beyond their

original indications. This approach offers signifi-
cant advantages over developing entirely new drug,
such as lower failure risk and development costs.
The concept of drug repurposing can be defined as
multi-hop relationships in the protein-compound in-
teraction network, which is not directly connected
but can be accessed through intermediaries. In
chemical spaces, proteins and compounds have
many-to-many relationships based on their struc-
tural coordination. This leads to the assumption
that if a compound can reach a specific protein
through another compound that shares a common
protein (i.e., in the multi-hop relationship), there is
potential for repurposing the focal compound.

The repurposability in chemical spaces can in-
troduce a new paradigm for molecule generation,
by serving as a key to expanding the generative
space and increasing molecular diversity. Previous
approaches for target-specific molecule generation
tend to generate structurally similar molecules for
a specific protein target due to their dependence on
known protein-compound interactions. While in-
corporating randomness in the generation process
can contribute to molecular diversity, it may neglect
structural coordination with targets, possibly result-
ing in a trade-off between diversity and binding
affinity. In this context, leveraging latent repurpos-
ability within the multi-hop relationships among
proteins and compounds can provide a reasonable
boundary for molecule generation, broadening the
generative space and enhancing molecular diversity
without sacrificing their drug potency.

3 Problem Statement

The discovery of new compounds often relies on ex-
isting protein-compound pairs. This results in that
the compounds targeting the same protein exhibit
similar structures. In other words, the generative
space of models tends to be bounded in limited
regions, reducing the diversity of the generation.
We refer to this as a sample bias problem.

To address this problem, we leverage multi-hop
relations among proteins and compounds. Specif-
ically, given a pair of protein p and compound
c that are known to interact, we assume that the
compound relates to p within a 3-hop relation,
i.e., a positive compound c+, has a potential in-
teraction with p. Definitions from 3.1 to 3.3 de-
scribe the key concepts of our approach, and Fig-
ure 1 visually represents the rationale. Note that
both protein and compound are represented by
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Figure 1: (a) illustrates a many-to-many relationship between proteins and compounds. The bold lines indicate
potential repurposing flows by which, given an anchor compound’s target protein p (P-45984), a positive compound
c+ (C-5280445) can be considered to replace the anchor compound ć (C-16046126). Red boxes in (b) and (c)
represent the parts of p (P-45984) to which ć (C-16046126) and c+ (C-5280445) attend, respectively. It is noteworthy
that attending regions are right next to each other, implying c+ may have a potential repurposability to p.

amino-acid and SMILES sequences, respectively:
p = [p1 , · · · , pTp

] and c = [c1 , · · · , cTc ] with Tp

and Tc being the fixed length of each sequence.

Definition 3.1 (Protein-Compound Graph). The
relations between proteins and compounds can
be represented as a bipartite graph G(P ∪ C, E),
where P and C denote the sets of protein and com-
pound nodes, respectively. Specifically, p(i) ∈ P
represents the i-th protein and c(j) ∈ C repre-
sents the j-th compound, for i = 1, · · · ,M and
j = 1, · · · , N .

Definition 3.2 (Protein-Compound Pair). A pair
of nodes in G is represented by an edge eij =
{(p(i), c(j))|p(i) ∈ P, c(j) ∈ C} ∈ E . The presence
of an edge eij indicates a link between the i-th
protein and the j-th compound, such that eij = 1
if they are linked and eij = 0 otherwise.

Definition 3.3 (Anchor/Positive Compounds).
Given a target protein p(i), a compound c(j) is de-
fined as an anchor compound ć if eij = 1. For
another protein p(k) where ekj = 1, any compound
c(l) (l ̸= j) that satisfies ekl = 1 is regarded as a
positive compound c+ for the target protein p(i).

4 Repurformer

In this section, we propose Repurformer, a novel
method designed to address the sample bias prob-
lem by leveraging multi-hop relations among pro-
teins and compounds. Figure 2 illustrates how Re-
purformer seamlessly integrates the concepts of
drug discovery and repurposing.

Bi-directional Pretraining To capture the many-
to-many relationships between proteins and com-
pounds, we employed bi-directional pretraining for

the protein and compound encoders. Specifically,
we built two Transformers with identical encoder-
decoder structures but opposite training directions:
one was trained in the protein-to-compound direc-
tion, and the other in the compound-to-protein di-
rection (see Figure 2a). By doing so, we expect the
protein encoder fp(c|p) and the compound encoder
fc(p|c) to extract latent relations, zp and zc, that en-
compass both cases where proteins and compounds
are the head and tail of an edge, and vice versa, i.e.,
fp : c|p → zp and fc : p|c → zc. For example,
given a pair of p(2) and c(1) as shown in Figure
2b, zp and zc will represent the edges from p(2) to
c(1) (i.e., p(2) → c(1)) and from c(1) to p(1) (i.e.,
c(1) → p(1)), respectively.

Transformer with Bi-directional Encoders The
pretrained bi-encoders are then used as feature ex-
tractors; they are frozen and followed by a new
compound decoder. The compound decoder π(·),
parameterized by θ, receives a sum of the encoding
vectors h = zp + zc and a positive compound c+

as inputs:

ĉ+t+1 = πθ(·|c+1:t, ht) where ht = zpt + zct .

Here, ht ∈ R|d| represents a |d|-dimensional la-

tent vector of 2-hop relation, e.g., p(2)
1-hop→ c(1) (=

ć)
2-hop→ p(1) (see Figure 2b), from a t-th token

perspective. Accordingly, feeding the compound
decoder with a positive compound as a label en-
ables it to learn potential repurposing relationships
that emerge from an additional third-hop edge, e.g.,

· · · 2-hop→ p(1)
3-hop→ c(2) (= c+). Putting it all to-
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(c) Model Architecture

Figure 2: Overview of Repurformer

gether, the loss function is defined as follows:

lnπθ(c
+|p, c) = ln

Tc∏

t=1

πθ(c
+
t+1|c+1:t, p, ć)

=

Tc∑

t=1

lnπθ(c
+
t+1|c+1:t, p, ć)

Fast Fourier Transform (FFT) The Fourier
transform decomposes a function into its con-
stituent frequencies using complex exponentials
(sinusoids) as basis functions (Heckbert, 1995;
Lee-Thorp et al., 2021). Given a sequence
{x1, · · · , xT }, the discrete Fourier Transform
(DFT) is defined by the formula:

Xk =
T−1∑

t=0

xte
− 2πi

T
tk , 0 ≤ k ≤ T − 1

where Xk is the k-th frequency component, xt is
the t-th time-domain signal, and i is the imagi-
nary unit. Calculating the DFT directly has a com-
plexity of O(T 2), which can be inefficient for
large datasets. To address this, the Fast Fourier
Transform (FFT) algorithm was proposed, reducing
the complexity to O(T log T ) (Cooley and Tukey,
1965; Brigham, 1988). In this study, we apply the
FFT to h ∈ RT×|d| to construct eigenvectors along
which the 2-hop propagation occurs. To be specific,
the 2D DFT is utilized: one 1D DFT along the se-
quence dimension,Fseq, and another 1D DFT along

the feature dimension, Fdim, keeping real-valued
parts only as in Lee-Thorp et al. (2021):

H = R(Fseq(Fdim(h))) ∈ RT×|d| .

Note that T is set to the length of a longer sequence;
if Tp > Tc, then T is set as Tp and vice versa.

Low-Pass Filter (LPF) The Fourier-transformed
features H comprise low frequencies that repre-
sent a globally smoothed signal and high frequen-
cies that indicate a locally normalized signal. This
separation of frequency components allows for dis-
tinct interpretations at different scales. For example,
Tamkin et al. (2020) applied the discrete cosine
transform (DCT) (Rao and Yip, 2014), which is
closely related to the DFT, to separate latent in-
formation at different scales. They found that low
frequencies capture topic-scale context while high
frequencies capture word-scale context.

In our setting, a scale can be understood as the
number of hops. Specifically, the lower frequency
implies a longer propagation through multi-hop
relations while the higher one implies a shorter
propagation within a single-hop relation. From the
repurposing perspective, we need to leverage the
longer propagation so that only the multi-hop re-
lations are considered. To achieve this, we can ap-
ply the low-pass filtering (Pollack, 1948; Costen
et al., 1996), which removes the frequency compo-
nents above a certain cutoff parameter α by setting
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Hk,d ← 0 for all k, d > α. This filtering can be
easily implemented using a binary mask:

HLPF = H ⊙M

where M = {mt,d|mt,d ∈ {0, 1}, 1 ≤ t ≤ T, 1 ≤
d ≤ |d|} is an one-hot matrix, with mt,d = 1 for
low-frequency components and mt,d = 0 other-
wise. Lastly, we transformed HLPF back to the fea-
tures of an original domain using the inverse FFT
(IFFT), before passing it to the compound decoder:

h̃ = F−1
dim(F−1

seq (HLPF)) ∈ RT×|d| .

Implementation Details The structure of the Re-
purformer is essentially identical to that of pre-
trained transformers. It consists of encoder and de-
coder networks, each linearly stacked with 4 layers
of 256 dimensions, with each layer divided into 4
heads of 64 dimensions. To tokenize the protein and
compound sequences, we utilized existing vocabu-
laries from previous works—the protein vocabulary
from Rao et al. (2019) and the compound vocabu-
lary from Honda et al. (2019). For training, we set
the number of epochs, batch size, and learning rate
to 20, 64, and 5e-05, respectively.

5 Experiments

Experiment Setup We collected data from Bind-
ingDB (Gilson et al., 2016) which contains over 2.8
million measured binding affinities of interactions
between proteins and drug-like molecules. The col-
lected dataset was then preprocessed to filter out
missing values, duplicates, and proteins and com-
pounds with excessively long or short sequences.
In particular, given the many-to-many nature of
protein-compound relationships, we selected com-
pounds that interact with a reasonable number of
individual proteins between 10 and 100, to en-
able our model to learn various compound struc-
tures reacting with different proteins. The resulting
dataset comprised 60,719 protein-compound pairs
derived from 3,006 proteins and 7,803 compounds.
We split this dataset into train and test datasets
with 8:2 ratio, ensuring that the proteins interacting
with each compound did not overlap between the
two sets. Our model was then trained on protein-
compound pairs from the train set, representing pro-
teins with amino acid sequences and compounds
with canonicalized SMILES strings. We tokenized
individual characters from amino acid sequences
and SMILES strings, resulting in vocabularies con-
taining 30 characters for proteins and 46 characters
for compounds.

Evaluation Metrics To thoroughly assess the ef-
fectiveness and reliability of Repurformer, we em-
ployed several evaluation metrics, focusing on the
generative performance of the model and physic-
ochemical properties and drug-likeness of the
molecules it generated. In terms of generative per-
formance, we applied widely accepted metrics for
sequence generation tasks: BLEU (Papineni et al.,
2002), GLEU (Wu et al., 2016), and F1 score of
ROUGE (Lin, 2004). In particular, we used 1- and
2-gram units as the evaluation basis for these gen-
erative metrics. We utilized physicochemical prop-
erties, specifically molecular weights and log of
octanol-water partition coefficients (LogP) (Wild-
man and Crippen, 1999), to assess the feasibil-
ity of molecular structures as drugs. Furthermore,
we used other widely used drug-likeness metrics,
such as QED (Bickerton et al., 2012), SA (Ertl and
Schuffenhauer, 2009), and NP (Ertl et al., 2008), to
evaluate the potential effectiveness of the generated
molecules as drug-like compounds.

Configurations This study aims to analyze
whether the configuration of Repurformer is ef-
fective. Given that the distinguishing configuration
of Repurformer is the application of FFT with LPF
in the embedding space, we conducted comparative
experiments with different configuration options:

• SUM Only: This is the baseline configuration.
It directly passes h to the compound decoder.

• +FFT: This configuration transforms h to H
but does not revert it to h̃.

• +MLP: This configuration adds a single fully-
connected layer that mixes the values of h
feature-wise.

• +FFT+MLP: This configuration mixes the fre-
quencies of H .

• +FFT+MLP+IFFT w/ auxiliary losses: This
configuration mixes the frequencies of H and
reverts the mixed H to h̃. Note that L1, L2,
and Frobenius norm are added as auxiliary
losses to minimize the distance between the
MLP output and h̃.

6 Results

Main Results To evaluate Repurformer, we con-
ducted a comparative analysis of 11 configurations,
focusing on generative performance, physicochem-
ical properties, and drug-likeness.
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1-gram 2-gram
BLEU GLEU ROUGE BLEU GLEU ROUGE

anc ć pos c+ anc ć pos c+ anc ć pos c+ anc ć pos c+ anc ć pos c+ anc ć pos c+

Baseline (SUM Only) 0.615 0.664 0.618 0.668 0.381 0.398 0.534 0.580 0.543 0.589 0.120 0.127
+FFT 0.155 0.164 0.179 0.188 0.060 0.054 0.098 0.104 0.126 0.132 0.024 0.016
+MLP 0.646 0.692 0.651 0.700 0.399 0.422 0.564 0.604 0.575 0.618 0.133 0.139
+FFT+MLP 0.281 0.289 0.306 0.318 0.011 0.012 0.144 0.156 0.198 0.209 0.004 0.004
+FFT+MLP+IFFT (w/ L1 Loss) 0.583 0.636 0.585 0.640 0.366 0.388 0.511 0.556 0.518 0.565 0.113 0.113
+FFT+MLP+IFFT (w/ L2 Loss) 0.623 0.672 0.627 0.679 0.382 0.398 0.543 0.588 0.553 0.600 0.118 0.123
+FFT+MLP+IFFT (w/ Frobenius Loss) 0.629 0.670 0.635 0.679 0.359 0.367 0.544 0.579 0.556 0.594 0.101 0.104

α=2 0.620 0.660 0.626 0.670 0.331 0.348 0.512 0.548 0.528 0.567 0.102 0.112
α=4 0.662 0.690 0.670 0.703 0.385 0.400 0.571 0.598 0.585 0.616 0.147 0.149
α=6 0.583 0.630 0.587 0.635 0.386 0.406 0.513 0.553 0.521 0.563 0.142 0.150

+FFT+LPF+IFFT (Ours)

α=8 0.606 0.663 0.610 0.667 0.390 0.416 0.532 0.582 0.541 0.591 0.134 0.144

Table 1: Evaluation of Generative Performance. The numbers represent the average (n-gram-based) syntactic
similarity of the generated compounds ĉ+, which target specific proteins p, to both the anchor compounds ć and the
positive compounds c+. Note that α is a cutoff parameter.

MW
[0,∞]

LogP
[−∞,∞]

Baseline (SUM Only) 588.506 4.870
+FFT N/A N/A
+MLP 537.230 4.317
+FFT+MLP 533.193 11.559
+FFT+MLP+IFFT (w/ L1) 631.012 4.655
+FFT+MLP+IFFT (w/ L2) 554.490 4.892
+FFT+MLP+IFFT (w/ Frobenius) 572.882 6.092

α=2 475.473 6.005
α=4 479.357 3.888
α=6 584.083 7.442

+FFT+LPF+IFFT (Ours)

α=8 566.942 5.529

Table 2: Evaluation of Physicochemical Properties. The
numbers in the MW and LogP columns represent av-
erage molecular weights and octanol-water partition
coefficients, respectively. By Lipinski’s Rule of Five
(Lipinski et al., 2012), compounds with MW ≤ 500 and
LogP ≤ 5 have good absorption and permeation.

Table 1 shows the similarity of the generated
compounds ĉ+ to both the anchor ć and positive
c+ compounds, calculated using BLEU, GLEU,
and ROUGE scores. The results indicate that the
“+MLP” and “Repurformer with α = 4” exhibit
remarkable performance compared to other config-
urations. Notably, the Repurformer (α = 4) gener-
ated compounds with higher structural similarity
to the anchor compounds than those generated by
the +MLP configuration. This suggests that Repur-
former successfully generates compounds that are
potentially repurposable to the target proteins.

In Tables 2 and 3, we can compare the molec-
ular properties of the generated compounds from
different configurations. Table 2 shows that Repur-
former with α = 4 generates compounds that are
the most physicochemically desirable. On the other
hand, Table 3 shows that the Repurformer with
α = 4, with α = 2, and “+FFT+MLP” configu-

QED
[0, 1]

SA
[1, 10]

NP
[−5, 5]

Baseline (SUM Only) 0.320 4.033 -0.629
+FFT N/A N/A N/A
+MLP 0.332 3.479 -0.796
+FFT+MLP 0.164 2.086 0.154
+FFT+MLP+IFFT (w/ L1) 0.227 4.209 -0.564
+FFT+MLP+IFFT (w/ L2) 0.355 3.696 -0.659
+FFT+MLP+IFFT (w/ Frobenius) 0.250 4.046 -0.368

α=2 0.468 4.289 0.072
α=4 0.598 2.696 -0.682
α=6 0.254 3.067 -0.679

+FFT+LPF+IFFT(Ours)

α=8 0.352 3.404 -0.984

Table 3: Evaluation of Drug-Likeness. The numbers
represent how likely the generated compounds are to be
effective drugs. Note that QED, SA, and NP represent a
compound’s drug-likeness, synthetic accessibility, and
natural product-likeness.

rations had comparative advantages in QED, SA,
and NP, respectively. Given that QED is generally
considered the most important metric for measur-
ing drug similarity and efficacy, we can emphasize
that Repurformer (α = 4) excels in generating
compounds with the highest potential for effective
drug discovery. Figure 3 compares the generation
results of the ‘+MLP’ and ‘Repurformer (α = 4)’
configurations.

Performance Comparison To assess the ef-
fectiveness of Repurformer as a target-specific
molecule generation model, we compared its per-
formance with the existing protein-specific gen-
erative approaches as external baseline models,
including Transformer-based model (Grechish-
nikova, 2021) and AlphaDrug (Qian et al., 2022).
Transformer-based model utilized the vanilla Trans-
former architecture (Vaswani et al., 2017) to gen-
erate compounds based on target proteins. This
model viewed the target-specific molecule genera-
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1-gram 2-gram
BLEU GLEU BLEU GLEU

Physicochemical
Properties

Drug-Likeness

anc ć pos c+ anc ć pos c+ anc ć pos c+ anc ć pos c+ MW LogP QED SA NP
Repurformer (α=4) 0.662 0.690 0.670 0.703 0.571 0.598 0.585 0.616 479.357 3.888 0.598 2.696 -0.682
Transformer 0.541 0.495 0.599 0.572 0.476 0.440 0.533 0.513 9651.296 187.126 0.119 9.037 -0.128
AlphaDrug 0.638 0.652 0.665 0.685 0.555 0.567 0.585 0.603 389.616 2.947 0.507 2.685 -0.842

Table 4: Evaluation of Comparative Performance. Parts of evaluation metrics in terms of generative performance,
physicochemical properties, and drug-likeness are used to compare the performance of Repurformer with the
existing target-specific molecule generative models, such as Transformer and AlphaDrug.

(a) Anchor ć (b) Positive c+ (c) Generated ĉ+ (+MLP) (d) Generated ĉ+ (α = 4)

Figure 3: Comparison of 2D Molecule Drawings. From left to right, the drawings represent the anchor ć, positive
c+, and generated compounds ĉ+, respectively. ĉ+ is expected to interact with the target protein to which ć interacts.

tion as a translational task, converting amino acid
sequence into SMILES strings. AlphaDrug mod-
ified the vanilla Transformer by introducing skip-
connections between its encoders and decoders,
facilitating the joint embedding of target proteins
and molecules. In addition, it employed a Monte
Carlo tree search algorithm for the conditioned gen-
eration of novel molecules based on specific target
proteins.

To ensure a fair comparison, we trained the ex-
ternal baseline models using our dataset using the
same experiment setup and evaluation metrics as
for Repurformer. Table 4 presents the performance
comparison between our best configuration (Re-
purformer with α = 4) and the external baseline
models. The comparison results demonstrate that
the Repurformer (α = 4) outperformed the existing
approaches on most evaluation metrics. In partic-
ular, our model generated compounds with high
structural similarity to both the anchor and pos-
itive compounds than those generated by the ex-
ternal baseline models. This suggests that Repur-
former can generate not only realistic but diverse
compounds with methodological considerations for

drug repurposability. Regarding drug-likeness, our
model achieved the highest performance only on
QED. Although the Transformer-based model ex-
celled in SA and NP, the feasibility of its generated
compounds is questionable due to its exceptionally
high scores in physicochemical properties, which
indicate the compounds might not be suitable as
medicines. This is further validated by the evalua-
tion of compound validity, as illustrated in Figure 8
in the Appendix. The compounds generated by the
Transformer-based model were significantly less
valid compared to those generated by Repurformer.

Mitigation of Sample Bias Figure 4a shows that
the distance distribution of the generated com-
pounds to the anchor compounds is similar to that
of the positive compounds. We calculated the dis-
tance over the fingerprint domain to consider the
patterns of molecular substructure. The result im-
plies that the generated and positive compounds
have different substructures from the anchor com-
pounds to the same extent. However, Figure 4a
compares “the relative distances” of the generated
and positive compounds to the anchor compounds
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(a) Distribution of Pairwise Tanimoto Distances: Generated
vs. Anchor and Positive vs. Anchor. The distance was defined
over the molecular fingerprints domain.
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(b) 2D Gaussian KDE plots for the anchor, positive, and gener-
ated compounds. Before employing KDE, each compound was
converted to an embedding vector using successive applications
of Word2Vec and t-SNE embeddings.

Figure 4: (a) illustrates the distance distribution from the molecular fingerprint perspective. (b) describes the
estimated two-dimensional Gaussian distribution of anchor, positive, and generated compounds.
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Figure 5: Validity-Uniqueness Trade-off at different val-
ues of α. Note that validity represents the quality of
generated samples, while uniqueness represents the di-
versity of generated samples.

“at the substructure level,” making it difficult to di-
rectly compare the absolute distances to each other
at the holistic level.

Figure 4b visualizes the overlapping representa-
tions among the anchor, positive, and generated
compounds, “directly comparing their absolute
distances at the holistic level.” To do this, we ex-
tracted SMILES word embeddings (e.g., C, N, F,
=, +, [, ], etc.) using Word2Vec (Mikolov et al.,
2013) and defined the holistic representation of
each molecule as the summation of these word em-
beddings. We then projected the holistic representa-
tion of each molecule into a 2-dimensional space by
t-SNE (Van der Maaten and Hinton, 2008). Since
t-SNE embeddings preserve pairwise similarities
of high-dimensional data as neighboring points in

anchor positive generated
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Figure 6: Internal Diversity per Compound Group.
log10Ld measures the syntactic difference of SMILES
strings, while MCS distance (1-MCS) measures the se-
mantic dissimilarity at the atomic level.

a low-dimension, it allows for direct comparison
of absolute distances between samples. Finally, we
applied Gaussian kernel density estimation (KDE)
to visualize the distribution of t-SNE embeddings.

The results from Figures 4a and 4b indicate that
the generated compounds are more similar to the
positive compounds than to the anchor compounds,
both relatively and absolutely, and at substructural
and holistic levels. This suggests that Repurformer
successfully addressed the sample bias problem,
creating substitutes for anchor compounds that re-
semble positive compounds.

Existence of Mode Collapse Mode collapse
refers to a phenomenon where the generative model
creates high-quality samples at the expense of in-
distribution diversity (Adiga et al., 2018). In this
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section, we demonstrate that Repurformer suffers
from mode collapse and thus the “internal” diver-
sity of generated compounds is relatively lower
than anchor and positive compounds.

Figure 5 illustrates the negative relationship be-
tween the validity and uniqueness of the generated
compounds by different values of α. Validity rep-
resents the ratio of samples that can be depicted as
2D molecular drawings by RDKit (i.e., the qual-
ity of generation), while uniqueness represents the
ratio of non-duplicated samples (i.e., the diversity
of generation). As α increases, we observe that
uniqueness increases but validity decreases. This is
an expected outcome given that the low-frequency
signals represent global structure whereas the high-
frequency signals represent local structure. For ex-
ample, low-frequency signals (i.e., lower α) fo-
cus on the most fundamental structures, increasing
the validity of generated compounds but reducing
their uniqueness. Conversely, high-frequency sig-
nals (i.e., higher α) focus on local details, increas-
ing the uniqueness of generated compounds but
reducing their structural validity. In short, Figure
5 demonstrates that Repurformer may be suscepti-
ble to the validity-uniqueness trade-off, i.e., mode
collapse, and thus α must be carefully selected.

Figure 6 describes the “internal” diversity of
valid compounds generated by Repurformer with
α = 4, along with anchor and positive compounds
that share the same target proteins with the gener-
ated ones. Following Pereira et al. (2021), we eval-
uated the internal diversity within each compound
group using two metrics: Levenshtein distance (Ld)
and maximum common substructure (MCS). The
Levenshtein distance (Levenshtein et al., 1966),
also known as edit distance, measures the differ-
ence between two SMILES strings by calculating
the minimum number of insertions, deletions, and
replacements needed to make the strings identical.
On the other hand, the MCS (Cao et al., 2008)
measures the ratio of the number of atoms in the
maximum common substructure of two compounds
to their total number of atoms. Since the MCS rep-
resents a similarity score normalized between 0
and 1, the MCS distance can be obtained by 1-
MCS, which captures the atom-level dissimilarities
of compounds. The diversity of each compound
group was computed by averaging the pairwise dis-
tances of all compounds. The result indicates that
the internal diversity of the generated compounds
is lower than that of the anchor and positive com-
pounds, suggesting mode collapse in Repurformer.

Note that the existence of mode collapse does
not contradict the mitigation of sample bias. Mode
collapse refers to less internal diversity among gen-
erated compounds, while mitigating sample bias
involves creating substitutes for anchor compounds
that resemble positive ones, thus increasing diver-
sity between the anchor and generated compounds.

7 Limitations

This study has some limitations. First, due to in-
consistencies between the tokens in our dataset
and those we borrowed from previous research,
some generated outputs contained <UNK> tokens,
which had to be excluded. Second, the study lacks
experiments on binding affinity, which are neces-
sary to evaluate how strongly the generated com-
pounds bind to proteins. These limitations must be
addressed in future research.

8 Concluding Remarks

In this study, we introduced Repurformer, a novel
model designed to address the sample bias prob-
lem in de novo molecule generation by leveraging
multi-hop relationships. Repurformer integrates bi-
directional pretraining with Fast Fourier Transform
and low-pass filtering, to capture complex interac-
tions between proteins and compounds. This ap-
proach focuses on low-frequency components, cor-
responding to longer propagation through multi-
hop protein-compound interactions. The results
show that Repurformer successfully generates valid
and diverse molecules.

Building on these positive results, there are sev-
eral promising directions for future improvement.
Enhancing the backbone architecture by incorpo-
rating advanced models like diffusion or graph neu-
ral networks and techniques such as contrastive
learning could further improve Repurformer’s abil-
ity to capture multi-hop protein-compound interac-
tions. The results from Figures 5 and 6 also suggest
promising directions to improve Repurformer such
as leveraging reinforcement learning to maximize
diversity rewards or introducing Wasserstein loss
to address mode collapse. Additionally, while our
current experiments have shown the potential of
Repurformer, it is critical to validate its applica-
bility in real-world scenarios. Therefore, we need
to verify the performance of Repurformer on ex-
isting drug repurposing cases. Considering these
aspects will strengthen the practical implications
and utilities of Repurformer.
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Figure 7: Comparison of Training Performance with Different Configurations. When embedding vectors from
protein and compound encoders are mapped to the frequency domain using Fourier Transform (FFT), training
performance does not improve unless they are transformed back to the original domain with an inverse Fourier
Transform (iFFT). This indicates that applying FFT in the latent space leads to alignment issues between the
encoders and the compound decoder.
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Figure 8: Comparison of Validity and Drug-Likeness Metrics. Validity, QED, SA, and NP scores were normalized
to the same scale. Although the Transformer-based model (Grechishnikova, 2021) showed relatively higher SA and
NP scores, its validity is extremely low. This indicates that the compounds generated by the Transformer-based
model are not of sufficient quality to be considered as drug candidates.
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Abstract

Generating de novo molecules from textual
descriptions is challenging due to potential
issues with molecule validity in SMILES
representation and limitations of autoregressive
models. This work introduces Lang2Mol-Diff,
a diffusion-based language-to-molecule gener-
ative model using the SELFIES representation.
Specifically, Lang2Mol-Diff leverages the
strengths of two state-of-the-art molecular
generative models: BioT5 and TGM-DLM. By
employing BioT5 to tokenize the SELFIES
representation, Lang2Mol-Diff addresses the
validity issues associated with SMILES strings.
Additionally, it incorporates a text diffusion
mechanism from TGM-DLM to overcome
the limitations of autoregressive models in
this domain. To the best of our knowledge,
this is the first study to leverage the diffusion
mechanism for text-based de novo molecule
generation using the SELFIES molecular
string representation. Performance evaluation
on the L+M-24 benchmark dataset shows that
Lang2Mol-Diff outperforms all existing meth-
ods for molecule generation in terms of validity.
Our code and pre-processed data are available
at https://github.com/nhattruongpham/mol-
lang-bridge/tree/lang2mol/.

1 Introduction

Molecules, the elementary constituents of all mat-
ter, play a pivotal role in dictating the properties
and functionalities that govern our world. The im-
mense scale of chemical space, estimated to en-
compass around 1033 molecules (Polishchuk et al.,
2013), presents a significant challenge for tradi-
tional methods in finding new medicine, mate-
rials, and chemical processes. This has driven
the exploration of artificial intelligence models
for efficient molecule finding. A key advance-
ment lies in the confluence of natural language and
molecular representations such as SMILES (simpli-
fied molecular-input line-entry system) (Weininger,

1988) and SELFIES (SELF-referencIng Embedded
Strings) (Krenn et al., 2020). These representations
enable the seamless integration of natural language
descriptions with corresponding molecular struc-
tures. By leveraging pre-trained language mod-
els and fine-tuning them on different benchmark
datasets combining natural language and molecular
string representations, researchers have success-
fully developed numerous downstream models ca-
pable of generating novel molecule structures based
on textual descriptions outlining desired properties.
Besides, the success of diffusion models in im-
age generation has spurred their application to text
generation, and more recently, to the domain of
molecular representation.

In this research, we use the diffusion mechanism
to address the limitations of autoregressive models,
where errors from earlier predictions can propagate
and magnify throughout the sequence and lead to
inaccuracies, especially in long sequences. We also
want to deal with validity issues in generating new
molecules. The proposed method is a novel archi-
tecture that incorporates advancements in both the
backbone model and the molecular representation.
In essence, our key contributions are as follows:

• We employed SELFIES as the molecule pre-
sentation instead of SMILES for better valid-
ity in generating new molecules.

• This is the first study to leverage diffusion
mechanism for text-based molecule genera-
tion using SELFIES molecular strings.

2 Related Work

2.1 Language Model-Based Approaches
The availability of molecular string representa-
tions like SMILES (Weininger, 1988) and SELF-
IES (Krenn et al., 2020) has transformed de novo
molecule generation into a text-to-text task. Early
approaches leveraged recurrent neural network
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(RNN) architectures, such as those described
in (Segler et al., 2018; Grisoni et al., 2020),
achieving some success. However, the recent
emergence of the text-to-text transfer transformer
(T5) model (Raffel et al., 2020) as a powerful
text-to-text model compared to RNN has led to
the development of several successful models
for this task, including MolT5 (Edwards et al.,
2022a), Text+Chem T5 (Christofidellis et al., 2023),
BioT5 (Pei et al., 2023), and BioT5+ (Pei et al.,
2024). Additionally, transformer-based models like
generative pre-trained transformer (GPT) (Brown
et al., 2020) have been fine-tuned for this purpose,
with MolXPT (Liu et al., 2023) serving as an ex-
ample. Despite their advancements, autoregressive
models exhibited limitations when dealing with
long-term dependencies within the data. These
models processed information one element at a
time, leading to an inherent accumulation of errors.
Additionally, autoregressive models were restricted
by a fixed-size context window, limiting their abil-
ity to capture crucial relationships between ele-
ments that may reside far apart in the sequence.
Consequently, these limitations could hinder the
effectiveness of autoregressive models in tasks that
necessitate understanding long-range dependencies
within the data.

2.2 Diffusion Model-Based Approaches

The recent breakthroughs in image generation us-
ing diffusion models have paved the way for their
exploration of text generation tasks. Diffusion-
LM (Li et al., 2022) exemplified this exciting trend,
demonstrating the potential of diffusion models for
achieving controllable text generation. To address
the limitations of autoregressive models, TGM-
DLM (Gong et al., 2024) pioneered the application
of Diffusion-LM in SMILES-based molecule gen-
eration. This work introduced the first diffusion
language model for SMILES-guided molecule gen-
eration. However, due to its reliance on SMILES
strings, TGM-DLM required a two-phase approach:
an initial molecule generation phase followed by a
correction phase. The necessity of the latter phase
was questionable, as experimental results suggested
that the correction phase did not lead to significant
improvements in molecule validity.

3 Methodology

3.1 Overview of Lang2Mol-Diff

As discussed in Section 2, most existing language
model-based methods suffered from limitations im-
posed by autoregressive nature. Therefore, we
adopt a diffusion-based approach to address this
challenge, enabling iterative and holistic content
generation. To eliminate the need for a correc-
tion phase, a shortcoming identified in TGM-
DLM (Gong et al., 2024) when using SMILES
strings (Weininger, 1988), we leverage SELFIES
strings (Krenn et al., 2020) for molecule represen-
tation, ensuring the inherent validity of generated
molecules due to their superior ability to capture
molecular structure. To achieve this, we exploit
a pre-trained BioT5 (Pei et al., 2023) base model,
which was fine-tuned for text-to-molecule tasks.
This pre-trained model serves as the encoder for
both SELFIES molecular strings and natural lan-
guage text. We further incorporate embedding lay-
ers to construct a model that predicts molecule em-
beddings corresponding to Gaussian noise, draw-
ing inspiration from the core concept of Diffusion-
LM (Li et al., 2022). The overall architecture of
our proposed approach is illustrated in Figure 1,
which includes three main steps in the diffusion
process: forward (Figure 1a), reverse (Figure 1b),
and sampling (Figure 1c).

3.2 SELFIES Tokenizer

This work addresses the limitations of SMILES
strings (Weininger, 1988) in terms of syntactic and
semantic robustness, which can hinder the valid-
ity of molecules generated by deep learning mod-
els. For this reason, we opt for SELFIES represen-
tations (Krenn et al., 2020) due to their superior
ability to capture molecular structure accurately.
We leverage the tokenizer employed in BioT5 (Pei
et al., 2023) to tokenize the text before passing
it into the model. SELFIES string representation
leverages brackets to encapsulate chemically mean-
ingful atom groups, which are then individually to-
kenized as distinct SELFIES tokens. For instance,
the SELFIES string [C][Branch2][Ring2] would
be tokenized into [C], [Branch2], and [Ring2].

3.3 Language Model-Based Encoder

In contrast to TGM-DLM (Gong et al., 2024),
which employed separate encoders for natural lan-
guage texts and SMILES strings, namely SciB-
ERT (Beltagy et al., 2019) for the first and uncased-
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(a) Forward step in the diffusion process, noise is gradually
added to the embed representation of molecular string (SELF-
IES) using a square root noise scheduler.

(b) Reverse step in the diffusion process, the model predicts
the less noisy vector xt−1 from the noisier vector xt.

(c) Sampling step in the diffusion process, we skip some steps
to reduce the Markov chain so that the inferencing will be
faster.

Figure 1: Illustration of Lang2Mol-Diff’s diffusion pro-
cess. X0 is the embeddings of molecules tokenized by
BioT5’s tokenizer in SELFIES format. T is the number
of diffusion steps. (a) Forward step, (b) Reverse step,
(c) Sampling step.

BERT (Devlin et al., 2018) for the latter, this work
adopts a more efficient approach. As discussed in
Subsection 3.1, we leverage a pre-trained BioT5
model’s encoder (Pei et al., 2023) for encoding both
tokenized SELFIES (Krenn et al., 2020) strings and
natural language text. This unified encoder archi-
tecture offers several advantages. First, it allows us
to finetune the pre-trained parameters of the BioT5
model, focusing training efforts on the latter layers
specific to our task. This not only reduces compu-
tational cost but also potentially mitigates overfit-
ting. Additionally, a single encoder streamlines the
model architecture, enhancing overall efficiency.

3.4 Diffusion Process

3.4.1 Forward Step
This represents the initial stage of the diffusion pro-
cess, which is shown in Figure 1a. Given a molecu-
lar string, denoted as M , the SELFIES tokenizer is

utilized to perform tokenization, resulting in a list
of tokens represented as {m0,m1,m2, ...,mn−1}
where n is the number of tokens. Subsequently,
the BioT5 encoder is applied to convert these
tokens into a vector representation, denoted as
Emb(M) ∈ Rdm×n. Here, dm signifies the em-
bedding dimension, while n represents the length
of the sequence. The initial matrix for the forward
process, denoted as x0, is generated by sampling
from a Gaussian distribution with a mean centered
at Emb(M) : x0 ∼ N (Emb(M), σ0I).

With the initial embedding of the molecular
string x0, the forward step in the diffusion pro-
cess is initiated. This step involves the gradual
introduction of noise to the embedding through
the utilization of a noise scheduler, which uses the
squareroot function in our approach. The process
continues until the embedding transforms entirely
into pure Gaussian noise xT ∼ N (0, I), where
T represents the number of diffusion steps. The
diffusion step from xt−1 to xt is defined:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt ∈ [0, 1] controls the amount of noise
added to xt at time step t.

3.4.2 Reverse Step
The objective of this step is to reverse the forward
process, specifically by predicting the original vec-
tor x0 from the Gaussian noise xT . This involves
continuously predicting the less noisy vector xt−1

from the comparatively noisier vector xt. The pro-
posed model is trained to perform this denoising
step by calculating the loss between the original
molecule embedding x0 and the vector x̂0 predicted
from xt. Moreover, the denoising process refines
the embedding vector under the guidance of the
embedded description Emb(D) extracted using
pre-trained BioT5 (Pei et al., 2023) to create a rela-
tionship between the description and the generated
molecular string at the last step in the reverse pro-
cess. The loss function used in the training phase
of the model is defined as:

L(M,D) = E
q(x0:T |M)

[ T∑

t=1

||fθ(xt, t,D)− x0||2

−logpθ(M |x0)
]

(2)

where fθ is the proposed model with parameters
θ; xt, t and D are the molecule embedding vector
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at time t, the time embedding and the description
embedding, respectively. pθ(M |x0) represents the
rounding process, where the embedding matrix is
reverted to the original molecular string.

3.4.3 Sampling Step

The aforementioned training methodology enables
the construction of a model with the ability to gen-
erate a molecular string given a textual descrip-
tion. This is accomplished through an iterative de-
noising process involving T steps, wherein a com-
plete Gaussian noise vector undergoes denoising to
obtain an embedding representative of the molec-
ular string. The denoising process is guided by
the accompanying text description. Subsequently,
the generated embedding is decoded by removing
padding and start/end tokens, then rounding and
transforming it into tokens, resulting in the final
molecular string representation. This approach is
also known as the Denoising Diffusion Probabilis-
tic Model (DDPM) technique (Ho et al., 2020).
However, it is important to note that this process
involves a Markov chain, resulting in a significant
computational time requirement to obtain the fi-
nal result. To deal with this problem, instead of
iterating through all steps in the diffusion process,
we skip k steps in the sampling step. This means
we predict the less noisy vector xt−k based on the
noisier vector xt instead of xt−k+1.

4 Experiments

4.1 Dataset

Our study employs the “split_train” split of the
L+M-24 extra dataset (Edwards et al., 2022b, 2024)
for training and the “split_valid” of the L+M-24
dataset (Edwards et al., 2022b, 2024) for evalu-
ation. Each dataset comprises paired SMILES
strings (Weininger, 1988) representing molecules
and their corresponding descriptive captions. The
training dataset was augmented from the original
L+M-24 dataset by creating 4 additional captions
for each existing molecule based on the randomly
chosen available templates. Therefore, there are a
lot of duplicated samples within the training split
of the dataset. We first remove all of them to im-
prove data efficiency. As a pre-processing step,
we converted the SMILES strings to SELFIES rep-
resentations (Krenn et al., 2020) using Python’s
selfies package 1. It is important to note that a

1https://github.com/aspuru-guzik-group/selfies

Split Original After removing
duplicated samples

After converting
to SELFIES

train 634,320 533,953 533,949
valid 33,696 33,696 33,696

Table 1: Summary of train and validation splits of L+M-
24 dataset. From the original dataset, we filtered out
duplicated samples, then we converted the SMILES
strings to SELFIES strings to get the final dataset.

small portion of the molecules could not be suc-
cessfully converted to a SELFIES format. These
inconvertible molecules were excluded due to their
negligible impact on the overall dataset size. On
the other hand, the evaluation dataset is kept as
original. A summary of the final training dataset
is provided in Table 1. Some molecules that can-
not be converted from SMILES to SELFIES are
displayed in Table 2.

4.2 Implementation Details
We choose the maximum length of the tokens for
the tokenizer to be 256. Consistent with the pre-
trained BioT5 model (Pei et al., 2023), our ap-
proach leverages its established vocabulary. As
detailed in the BioT5 paper, this vocabulary is seg-
mented into distinct domains: molecules, proteins,
and text. We specifically utilize BioT5’s molecular
vocabulary, encompassing 35,073 tokens, to ensure
compatibility with the SELFIES string representa-
tion of molecules. This selection facilitates the ef-
ficient processing of molecule-related information
within our model. The final Lang2Mol-Diff model
architecture possesses approximately 218 million
parameters. We opted for a diffusion schedule with
T of 2,000 steps and a total training regime of
400,000 steps. The AdamW optimizer (Loshchilov
and Hutter, 2017) was utilized with a learning rate
of 0.5× 10−5. The training process ran for approx-
imately 60 hours on a single NVIDIA GeForce
RTX 4090 GPU with a batch size of 16. In the sam-
pling step for inference, we set the step skipped
k to be 10.

Because the L+M-24 dataset (Edwards et al.,
2024) utilizes SMILES strings (Weininger, 1988)
and established evaluation metrics are calculated
based on this format, it is more precise for evalua-
tion in this format of molecular string presentation.
Moreover, to facilitate a fair comparison with ex-
isting research, we opt for SMILES over SELFIES
representations (Krenn et al., 2020) for the evalu-
ation phase. However, this decision is premised
on the assumption that the SMILES molecules
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SMILES SELFIES Caption Image
N=IC=IF Error The molecule is a nutrient.

F[P-](F)(F)
(F)(F)F.[H+]

Error When heated to decomp, it
emits highly toxic fumes
of hydrogen fluoride and
phosphoxides.

CC(C)COC(=O)
CCc1ccco1

[C][C][Branch1][C][C]
[C][O][C][=Branch1][C]
[=O][C][C][C][=C][C][=C]
[O][Ring1][Branch1]

The molecule is a nutrient.

Cc1cc(N)c
(C=O)cc1F

[C][C][=C][C][Branch1][C][N]
[=C][Branch1][Ring1][C][=O]
[C][=C][Ring1][=Branch2][F]

The molecule is a prmt5
inhibitor.

Table 2: Some samples in the L+M-24 dataset after being converted from SMILES strings to SELFIES strings, 2 of
them cannot be converted and are removed from training and evaluation splits of the final dataset.

within the dataset are all valid and unique represen-
tations, which means a molecule corresponds to a
unique SMILES molecular string. To verify this
assumption, we leverage the RDKit cheminformat-
ics toolkit 2 to confirm that all SMILES strings are
canonicalized.

4.3 Results and Discussion

The evaluation results of our model compared to
other approaches are displayed in Table 3. No-
tably, our proposed method achieves BLEU, Lev-
enshtein, MACCS FTS, RDK FTS, Morgan FTS,
FCD, and Validity scores of 54.28, 55.87, 60.64,
33.21, 32.78, 38.09, and 100.00, respectively. More
specifically, our proposed method outperforms all
state-of-the-art methods regarding validity. Com-
pared to Meditron-7B, our proposed method im-
proves Morgan FTS by 15.96%. Regarding the
Levenshtein metric, our proposed method is better
than MolT5-Small by 0.47%. The result statistics
of the proposed model cannot yet outperform the
existing methods. It might be because it was not
pre-trained on a large enough dataset as other mod-
els before being fine-tuned on the L+M-24 dataset.
Besides, the model was trained with the default

2https://github.com/rdkit/rdkit

model configuration used for TGM-DLM (Gong
et al., 2024), which may be incompatible and not
fully optimized.

Moreover, we also compare the molecules gen-
erated by our proposed method with MolT5-
Based and MolT5-Large models. Some generated
molecules of MolT5 (Edwards et al., 2022a), which
has been fine-tuned on L+M-24 dataset (Edwards
et al., 2022b, 2024), and Lang2Mol-Diff are shown
in Table 4. The empirical findings demonstrate
that our proposed method exhibits a higher level
of novelty compared to MolT5 in the generation of
molecules. Although the input description is dif-
ferent, they share some important keywords, which
leads to the identical generation of molecules using
MolT5. On the other hand, Lang2Mol-Diff gener-
ates differently for two distinct input descriptions.

5 Conclusion

This work presents Lang2Mol-Diff, a novel
diffusion-based language-to-molecule generative
model that addresses the challenges of de novo
molecule generation from textual descriptions. By
leveraging the strengths of BioT5 for accurate to-
kenization of the SELFIES representation and in-
corporating a text diffusion mechanism inspired by
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Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Validity↑
Ground Truth 100.00 100.00 0.00 100.00 100.00 100.00 0.0 100.00
MolT5-Small 56.56 0.00 56.34 64.22 58.10 37.44 NaN 80.52
MolT5-Base 68.38 0.00 44.79 76.03 65.23 47.46 NaN 100.00
MolT5-Large 56.42 0.00 55.40 75.70 65.01 39.51 17.52 99.44
Meditron-7B 69.40 0.00 46.49 77.16 69.34 16.82 2.46 99.63

Ours 54.28 0.00 55.87 60.64 33.21 32.78 38.09 100.00

Table 3: Text-guided molecule generation results on L+M-24 validation split. Data is taken from the report on the
L+M-24 dataset (Edwards et al., 2024).

Input MolT5-Base MolT5-Large Ours Ground truth
The molecule is a nu-
trient and fat storage,
and it impacts pancreati-
tis. The molecule is a thy-
roxine treatment that im-
pacts cardiovascular dis-
ease, metabolic syndrome,
and atherosclerosis.

It impacts pancreatitis, car-
diovascular disease, and
metabolic syndrome. The
molecule is a nutrient and
a fat storage, it impacts
atherosclerosis, and is thy-
roxine treatment.

Table 4: Comparative visualization of de novo generated molecules across models. We use the Hugging Face’s
Inference API to collect the outputs of MolT5-Base and MolT5-Large.

TGM-DLM, Lang2Mol-Diff overcomes the limita-
tions of SMILES-based approaches and autoregres-
sive models. Extensive evaluation on the bench-
mark dataset confirms Lang2Mol-Diff’s superior
performance in generating valid molecules com-
pared to the current state-of-the-art methods. This
achievement paves the way for more reliable and
robust methods for de novo molecule generation
based on textual descriptions.

Our proposed model presents opportunities for
future research and improvement. One promising
direction for enhancement involves pre-training the
model on a larger dataset, which would enable it to
learn more meaningful representations and enhance
its generalization capabilities. Furthermore, explor-
ing alternative configurations such as adjusting the
model’s architecture and fine-tuning hyperparame-
ters holds potential for optimizing performance and
overcoming existing limitations. Pursuing these av-
enues is expected to refine the model and further
optimize its ability to generate new molecules with
improved outcomes.
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