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Abstract

Solving a problem outside the training space,
i.e. extrapolation, has been a long problem in
the machine learning community. The current
success of large language models demonstrates
the LLM’s extrapolation ability to several un-
seen tasks. In line with these works, we evalu-
ate the LLM’s extrapolation ability in the chem-
ical domain. We construct a data set measuring
the material properties of epoxy polymers de-
pending on various raw materials and curing
processes. LLM should predict the material
property when novel raw material is introduced
utilizing its chemical knowledge. Through ex-
periments, LLM tends to choose the right di-
rection of adjustment but fails to determine the
exact degree, resulting in poor MAE on some
properties. But LLM can successfully adjust
the degree with only a one-shot example. The
results show that LLM can extrapolate to new
unseen material utilizing its chemical knowl-
edge learned through massive pre-training.

1 Introduction

Marcus (1998) depicted two aspects of the gen-
eralization: interpolation and extrapolation. The
interpolation targets a problem within the training
space, while the extrapolation targets the outside.
Despite the rapid development of machine learn-
ing technology, even a modern deep-learning-based
model struggles to extrapolate on some tasks that
humans find easy (Lake and Baroni, 2018, Barrett
et al., 2018 and Saxton et al., 2019).

Human reasoning involves the extrapolation abil-
ity (Webb et al., 2020), especially for knowledge
discovery. Mitchell et al. (2018) exemplified Hal-
ley’s prediction on the return of a comet: it was
possible thanks to Newton’s inverse square law of
gravity and would be difficult with pre-Newtonian
models. Newton found laws that went beyond sim-
ply maximizing the fit to the known set of planetary
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bodies (Mitchell et al., 2018), unlike usual machine
learning models.

The current success of large language models
(LLMs) shows hints of their extrapolation ability.
Conneau and Lample (2019) reported that fine-
tuning a multilingual language model on a mono-
lingual classification data set can result in a strong
multilingual classifier, which has never seen a mul-
tilingual classification data set. Wei et al. (2022)
introduced an instruction tuning framework: by
training LLM on multiple tasks to follow human
instructions, the LLM shows improved zero-shot
performance on several unseen tasks. These results
suggest an emergent extrapolation ability of LLM
utilizing its representation power learned through
massive pre-training.

In this paper, we explore the extrapolation abil-
ity of LLM in the chemical domain. Our main
research question is Can LLM perform the extrap-
olation utilizing its internal chemical knowledge?
To examine this question, we suggest a novel task
regressing material properties of epoxy polymers
when a novel raw material is introduced. LLM
should infer the effect of novel raw material on the
epoxy polymer from natural language descriptions
or SMILES.

2 Related Works

Several researchers adopted an LLM to the
chemical domain by training it on a chemistry-
related corpus. Fang et al. (2024) introduced a
data set for instruction tuning including various
molecule/protein-oriented tasks. Cao et al. (2023)
and Zhao et al. (2023) integrated the graph structure
of molecules into an LLM to improve its represen-
tation power. Ye et al. (2023) and Zhao et al. (2024)
trained a dialogue model on chemical domain. Our
goal is to verify the chemical ability of an existing
LLM, not suggesting a new foundation model.
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Guo et al. (2023) verified existing LLMs’ abil-
ity on eight chemical tasks from name prediction
to molecule captioning. They showed that GPT-4
(OpenAI, 2024) showed the best performance on
most tasks showing comparable performance with
SOTA, task-specific models. Our work is an exten-
sion of their work while differing on two points: (1)
Their work focused on molecule-level tasks, while
our work is compound-level. As more informa-
tion should be considered, compound-level tasks
require more complex reasoning than the molecule-
level. (2) Unlike classic tasks, we focus on the ex-
trapolation ability of an LLM, which is also more
challenging.

3 Problem Statement

Let (X ,Y) be a domain of independent and depen-
dent variables of train data. We have our train data
Dtrain = {(xi, yi)}Ntrain

i=1 , xi ∈ X , yi ∈ Y . Let X ′

be a domain of additional independent variables.
Set a domain of independent variables of test data
as X × X ′. Then we have our test data Dtest =
{(xi, x′i, yi)}Ntest

i=1 , xi ∈ X , x′i ∈ X ′, yi ∈ Y .
Let f : X × X ′ → Y be a model trained

on Dtrain with E(x,y)∼Dtrain
[L(f(x, ϕ), y)],

where L is a loss function. We mea-
sure an extrapolation ability of a model
f as E(x,x′,y)∼Dtest

[L(f(x, x′), y)], when
X

⋂
X ′ = ϕ.

A model should infer the relationship between
x′ and other variables to extrapolate successfully.
Our research hypothesis is Can we utilize LLM’s
internal chemical knowledge for extrapolation, by
providing additional information, e.g. SMILES of
an additional raw material? We test this hypothesis
through experiments in the next section.

4 Experiments

4.1 Experimental Setup
We collect 917 data points with lab experiments
measuring three dynamic mechanical analysis
(DMA) properties, glass transition temperature
(Tg), tan delta peak (δ), and cross-link density (vc).
Each data point contains 6 independent variables re-
garding raw materials (ratio between resin A: resin
B1: resin B2: resin B3: curing agent: catalyst)
and 4 regarding curing processes (first and second
curing temperature and time).

To evaluate the extrapolation ability of LLM, we
construct a regression task. Our goal is to predict
the DMA properties of test data given train data

from a different domain, e.g. different raw materi-
als. LLM should extrapolate the train data utilizing
its chemical knowledge.

We test two extrapolation setups: (1) Additional
epoxy resin. A model should infer the effect of a
new epoxy resin Bi mixed with the original resin
A. (2) Replaced epoxy resin. A model should infer
the effect of a new epoxy resin B2 replacing the
original resin A. In both settings, train data only
utilize the original resin A.

For LLM, we utilize gpt-4-turbo (OpenAI, 2024)
with 10-shot examples for in-context learning. We
select examples based on the cosine similarity of
the feature vector between the train set and each
test data point.

For baselines, we utilize four regression models,
linear regression (LR), ridge regression (RR), ran-
dom forest (RF, Ho, 1995), and XGBoost (XGB,
Chen and Guestrin, 2016). To perform extrapola-
tion with baseline regressors, we use the ratio of
all epoxy resins (A + B1 + B2 + B3) as a proxy
variable.

4.2 Additional Epoxy Resin

Here, we evaluate the extrapolation ability of LLM
for an additional raw material. Train and test data
consists of 4 curing process variables (first and
second curing temperature and time). Also, train
data consists of 3 raw material-related variables as
following:

• Resin A (DGEBA-based oligomer): a stan-
dard liquid bisphenol A epoxy resin with
SMILES CC(C)(C1=CC=C(C=C1)OCC2CO
2)C3=CC=C(C=C3)OCC4CO4

• Curing agent (Dicyandiamide): C(#N)N=C
(N)N

• Catalyst: CC1=C(C=C(C=C1)NC(=O)N(C)C)
NC(=O)N(C)C

However, test data contains one additional vari-
able, the ratio of resin Bi. Here is a brief explana-
tion of resin Bi:

• Resin B1: CTBN(Carboyl-Terminated Bu-
tadiene Acrylonitrile) modified epoxy
resin, where resin A is chemically
combined with CTBN, with SMILES
O=C(OCC(O)C)CC(C#N)C/C=C/CC(OCC(
O)C)=O
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Resin B1 Resin B2 Resin B3

Tg δ vc Tg δ vc Tg δ vc

LR 4.61 0.0667 0.000347 4.31 0.0539 0.000225 8.42 0.0536 0.000329
RR 4.58 0.0666 0.000349 4.20 0.0537 0.000228 8.42 0.0520 0.000336
RF 5.70 0.0730 0.000310 4.99 0.0760 0.000311 9.79 0.0572 0.000301

XGB 5.61 0.0718 0.000315 4.60 0.0761 0.000237 9.00 0.0559 0.000304

Ours 7.32 0.0859 0.000299 5.62 0.0816 0.000288 6.40 0.0778 0.000251

Table 1: Mean absolute error (MAE) on extrapolative regression results when additional epoxy resin is added.
Reported values are the average of MAE on 5 trials.

• Resin B2: MBS type core shell rubber (CSR)
modified epoxy resin, where resin A is physi-
cally combined with CSR with a ratio of 65:35
(resin A: CSR).

• Resin B3: Dimer acid modi-
fied epoxy resin with SMILES
OC(COC([R]C(OCC(O)COC1=CC=C(C(C)
(C)C2=CC=C(OCC3CO3)C=C2)C=C1)=O)
=O)COC(C=C4)=CC=C4C(C)(C)C5=CC=C
(OCC6CO6)C=C5

LLM’s goal is to predict the effect of additional
resin on DMA properties only with train data and
the chemical information provided above.

As a result, we obtain 385 train data with 7 inde-
pendent variables and 30 test data (for each i) with
8 independent variables. The example prompt is
on Appendix A. The results are on Table 1.

LLM shows superior extrapolation ability on vc
while failing on δ. Performance on Tg highly de-
pends on the type of resin Bi. However, LLM’s
error shows relatively low volatility (5.62 to 7.32),
unlike baseline regressors’ which show high volatil-
ity (4.20 to 9.79). The result suggests that LLM
can be a low-risk extrapolator, unlike utilizing re-
gression models with proxy variables.

By examining the LLM prediction, we find out
that LLM tends to adjust its prediction depending
on resin type and target value. To quantitatively
examine this phenomenon, we compute term fre-
quency adjusting its final prediction. We count the
number of tokens indicating its adjustment (‘in-
crease’, ‘increased’, ‘higher’, ‘addition’ for ↑ and

‘decrease’, ‘decreased’, ‘lower’, ‘reduction’ for ↓)
in sentences mentioning ‘resin B’. To verify the
validity of the adjustment direction, we also report
the average material property values of train and
test sets. The results are on Table 2.

Average Frequency

Train Test ↑ ↓

B1

Tg 161.3 ↓ 158.8 92 358
δ 0.68 ↑ 0.72 456 322
vc 0.0013 ↓ 0.0011 67 483

B2

Tg 161.3 ↓ 156.6 91 248
δ 0.68 ↑ 0.74 271 151
vc 0.0013 ↓ 0.0011 61 307

B3

Tg 161.3 ↓ 151.0 91 542
δ 0.68 ↑ 0.74 350 527
vc 0.0013 ↓ 0.0009 117 545

Table 2: Term frequency analysis when additional epoxy
resin is introduced. ‘Average’ column is the average
value of target material properties (e.g. Tg) for each data
set. Arrows between two columns represent the required
adjustment direction (increase/decrease) from the train
to the test set. ‘Frequency’ column is the term frequency
on each word group representing increase/decrease. We
mark the frequency in the right direction with bold.

Except for B3 - δ case, LLM tends to use words
mentioning right direction (↑ or ↓) more frequently.
In other words, LLM captures the right adjust-
ment direction. Though LLM chooses the right
direction, LLM tends to overestimate the degree of
adjustment and, as a result, shows higher MAEs.
Moreover, the ratio between words in the right and
wrong directions on δ is relatively low compared
to Tg and vc. These may suggest the reason why
LLM’s extrapolation ability on δ is relatively low.

An example answer is presented on Table 3.

4.3 Replaced Epoxy Resin

We present the extrapolation ability of an LLM
when replacing epoxy resin from A to B2. It is
more challenging as the material properties of a
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(...) CTBN is a rubbery polymer that is typically used to improve the toughness of epoxy resins. The
incorporation of CTBN into an epoxy resin generally results in a decrease in Tg because the CTBN
phase is softer and more flexible compared to the rigid epoxy network formed by DGEBA-based resins.
(...) The SMILES of Resin B indicates the presence of butadiene and acrylonitrile groups, which
contribute to the elastomeric properties of the resin. This further supports the expectation of a lower
Tg due to increased flexibility and reduced crosslink density. (...)

Table 3: An example answer from LLM for adding resin B1. LLM utilizes its chemical knowledge of CTBN and its
SMILES to extrapolate existing data and predict a decrease in Tg .

Tg δ vc

LR 12.87 0.1606 0.001094
RR 12.78 0.1573 0.001097
RF 12.62 0.1107 0.000718

XGB 13.35 0.1199 0.000779

Ours 21.17 0.1116 0.000467

Ours (1 shot) 12.14 0.1080 0.000389

Table 4: MAE on extrapolative regression result when
the epoxy resin A is replaced by B2. Reported values
are the average of MAE on 5 trials. The last line shows
LLM’s result with the 1 shot correction.

Average Frequency

Train Test ↑ ↓

B2

Tg 161.3 ↓ 146.26 18 151
δ 0.68 ↑ 0.71 176 106
vc 0.0013 ↓ 0.0007 13 230

Table 5: Term frequency analysis when epoxy resin A
is replaced by B2.

product on test data would be much more different
from train data. The experimental setting is almost
the same with Section 4.2, except that the ratio of
resin A is 0 in the test data. We obtain 385 train
data and 20 test data. The example prompt is on
Appendix A. The results are on Table 4. We also
perform the term frequency analysis on Table 5.

Similar to Section 4.2, LLM shows superior per-
formance on extrapolating vc. LLM also shows
the same pattern on term frequency as in Table 2.
The result suggests LLM chooses the right adjust-
ment direction utilizing its chemical knowledge.
However, MAE on Tg is high compared to baseline
regressors, suggesting a similar conclusion: the
direction is right, but the degree is wrong.

To check the correctability of the degree, we
supply one test data point (with ground truth an-

swer) and the previous LLM’s answer for the data
point back to LLM. The example prompt is on
Appendix A and the result is on the last line of
Table 4.

We can verify that LLM can successfully modify
its degree of adjustment. As a result, LLM shows
the best extrapolation ability with only one-shot
correction.

5 Conclusion

In this paper, we evaluate the extrapolation abil-
ity of LLM in the chemical domain. We focus on
regressing three material properties of epoxy com-
pound when a novel raw material is introduced.
We build a data set involving various raw mate-
rials and curing conditions from lab experiments.
Compared to baseline regressors, LLM shows su-
perior extrapolation ability in predicting cross-link
density (vc), while failing on tan δ peak. By exam-
ining the tokens used in LLM prediction, we find
out that LLM tends to capture the right adjustment
direction while failing to grasp the exact degree of
adjustment. We also show that LLM successfully
adjusts the degree with only 1-shot example. This
result shows the potential applicability of LLM’s
extrapolation ability in chemical knowledge discov-
ery.
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Prompt for Section 4.2

Predict the [PROPERTY] of an epoxy product with the following information. You should infer the effect of a new resin B.:
Epoxy resin A (DGEBA-based oligomer) is a standard liquid bisphenol A epoxy resin with SMILES
CC(C)(C1=CC=C(C=C1)OCC2CO2)C3=CC=C(C=C3)OCC4CO4.
Epoxy resin B is a CTBN(Carboyl-Terminated Butadiene Acrylonitrile) modified epoxy resin, where resin A is chemically
combined with CTBN, with SMILES O=C(OCC(O)C)CC(C#N)C/C=C/CC(OCC(O)C)=O.
SMILES of curing agent (Dicyandiamide) is C(#N)N=C(N)N.
SMILES of catalyst is CC1=C(C=C(C=C1)NC(=O)N(C)C)NC(=O)N(C)C.
The following is another data point measuring the [PROPERTY].
| Ratio ((resin A: resin B): curing agent: catalyst) | First curing condition | Second curing condition | [PROPERTY] |
| (93.02: 0.0): 6.05: 0.93 | 1.0 hour in 100.0°C | 0.5 hour in 130.0°C | [PROPERTY1] |
| (93.02: 0.0): 6.05: 0.93 | 1.0 hour in 100.0°C | 1.5 hour in 130.0°C | [PROPERTY2] |
(...)
Fill in the ’?’.
| (83.72: 9.3): 6.05: 0.93 | 1.5 hour in 100.0°C | 1.0 hour in 130.0°C | ? |

Prompt for Section 4.3

Predict the [PROPERTY] of an epoxy product with the following information. You should infer the effect of a new resin B.:
Epoxy resin A (DGEBA-based oligomer) is a standard liquid bisphenol A epoxy resin with SMILES
CC(C)(C1=CC=C(C=C1)OCC2CO2)C3=CC=C(C=C3)OCC4CO4.
Epoxy resin B is an MBS type core shell rubber (CSR) modified epoxy resin, where resin A is physically combined with
CSR with a ratio of 65:35 (resin A:CSR).
SMILES of curing agent (Dicyandiamide) is C(#N)N=C(N)N.
SMILES of catalyst is CC1=C(C=C(C=C1)NC(=O)N(C)C)NC(=O)N(C)C.
The following is another data point measuring the [PROPERTY].
| Ratio ((resin A: resin B): curing agent: catalyst) | First curing condition | Second curing condition | [PROPERTY] |
| (93.02: 0.0): 5.12: 1.86 | 1.0 hour in 100.0°C | 1.0 hour in 120.0°C | [PROPERTY1] |
| (93.02: 0.0): 5.12: 1.86 | 1.0 hour in 90.0°C | 1.0 hour in 130.0°C | [PROPERTY2] |
(...)
Fill in the ’?’.
| (0.0: 93.65): 4.35: 2.01 | 1.0 hour in 90.0°C | 1.5 hour in 120.0°C | ? |

Additional Prompt for 1-shot Correction

Note that for the data point: | (0.0: 93.65): 4.35: 2.01 | 1.0 hour in 90.0°C | 1.5 hour in 120.0°C |, your answer was
[PREVIOUS ANSWER].
But the true value was [PROPERTY3].

Table 6: Example prompts for experiments. [PROPERTY] can be a glass transition temperature (Tg), tan delta peak
(δ), or cross-link density (vc).
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