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Abstract

Generating de novo molecules from textual
descriptions is challenging due to potential
issues with molecule validity in SMILES
representation and limitations of autoregressive
models. This work introduces Lang2Mol-Diff,
a diffusion-based language-to-molecule gener-
ative model using the SELFIES representation.
Specifically, Lang2Mol-Diff leverages the
strengths of two state-of-the-art molecular
generative models: BioT5 and TGM-DLM. By
employing BioT5 to tokenize the SELFIES
representation, Lang2Mol-Diff addresses the
validity issues associated with SMILES strings.
Additionally, it incorporates a text diffusion
mechanism from TGM-DLM to overcome
the limitations of autoregressive models in
this domain. To the best of our knowledge,
this is the first study to leverage the diffusion
mechanism for text-based de novo molecule
generation using the SELFIES molecular
string representation. Performance evaluation
on the L+M-24 benchmark dataset shows that
Lang2Mol-Diff outperforms all existing meth-
ods for molecule generation in terms of validity.
Our code and pre-processed data are available
at https://github.com/nhattruongpham/mol-
lang-bridge/tree/lang2mol/.

1 Introduction

Molecules, the elementary constituents of all mat-
ter, play a pivotal role in dictating the properties
and functionalities that govern our world. The im-
mense scale of chemical space, estimated to en-
compass around 1033 molecules (Polishchuk et al.,
2013), presents a significant challenge for tradi-
tional methods in finding new medicine, mate-
rials, and chemical processes. This has driven
the exploration of artificial intelligence models
for efficient molecule finding. A key advance-
ment lies in the confluence of natural language and
molecular representations such as SMILES (simpli-
fied molecular-input line-entry system) (Weininger,

1988) and SELFIES (SELF-referencIng Embedded
Strings) (Krenn et al., 2020). These representations
enable the seamless integration of natural language
descriptions with corresponding molecular struc-
tures. By leveraging pre-trained language mod-
els and fine-tuning them on different benchmark
datasets combining natural language and molecular
string representations, researchers have success-
fully developed numerous downstream models ca-
pable of generating novel molecule structures based
on textual descriptions outlining desired properties.
Besides, the success of diffusion models in im-
age generation has spurred their application to text
generation, and more recently, to the domain of
molecular representation.

In this research, we use the diffusion mechanism
to address the limitations of autoregressive models,
where errors from earlier predictions can propagate
and magnify throughout the sequence and lead to
inaccuracies, especially in long sequences. We also
want to deal with validity issues in generating new
molecules. The proposed method is a novel archi-
tecture that incorporates advancements in both the
backbone model and the molecular representation.
In essence, our key contributions are as follows:

• We employed SELFIES as the molecule pre-
sentation instead of SMILES for better valid-
ity in generating new molecules.

• This is the first study to leverage diffusion
mechanism for text-based molecule genera-
tion using SELFIES molecular strings.

2 Related Work

2.1 Language Model-Based Approaches
The availability of molecular string representa-
tions like SMILES (Weininger, 1988) and SELF-
IES (Krenn et al., 2020) has transformed de novo
molecule generation into a text-to-text task. Early
approaches leveraged recurrent neural network
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(RNN) architectures, such as those described
in (Segler et al., 2018; Grisoni et al., 2020),
achieving some success. However, the recent
emergence of the text-to-text transfer transformer
(T5) model (Raffel et al., 2020) as a powerful
text-to-text model compared to RNN has led to
the development of several successful models
for this task, including MolT5 (Edwards et al.,
2022a), Text+Chem T5 (Christofidellis et al., 2023),
BioT5 (Pei et al., 2023), and BioT5+ (Pei et al.,
2024). Additionally, transformer-based models like
generative pre-trained transformer (GPT) (Brown
et al., 2020) have been fine-tuned for this purpose,
with MolXPT (Liu et al., 2023) serving as an ex-
ample. Despite their advancements, autoregressive
models exhibited limitations when dealing with
long-term dependencies within the data. These
models processed information one element at a
time, leading to an inherent accumulation of errors.
Additionally, autoregressive models were restricted
by a fixed-size context window, limiting their abil-
ity to capture crucial relationships between ele-
ments that may reside far apart in the sequence.
Consequently, these limitations could hinder the
effectiveness of autoregressive models in tasks that
necessitate understanding long-range dependencies
within the data.

2.2 Diffusion Model-Based Approaches

The recent breakthroughs in image generation us-
ing diffusion models have paved the way for their
exploration of text generation tasks. Diffusion-
LM (Li et al., 2022) exemplified this exciting trend,
demonstrating the potential of diffusion models for
achieving controllable text generation. To address
the limitations of autoregressive models, TGM-
DLM (Gong et al., 2024) pioneered the application
of Diffusion-LM in SMILES-based molecule gen-
eration. This work introduced the first diffusion
language model for SMILES-guided molecule gen-
eration. However, due to its reliance on SMILES
strings, TGM-DLM required a two-phase approach:
an initial molecule generation phase followed by a
correction phase. The necessity of the latter phase
was questionable, as experimental results suggested
that the correction phase did not lead to significant
improvements in molecule validity.

3 Methodology

3.1 Overview of Lang2Mol-Diff

As discussed in Section 2, most existing language
model-based methods suffered from limitations im-
posed by autoregressive nature. Therefore, we
adopt a diffusion-based approach to address this
challenge, enabling iterative and holistic content
generation. To eliminate the need for a correc-
tion phase, a shortcoming identified in TGM-
DLM (Gong et al., 2024) when using SMILES
strings (Weininger, 1988), we leverage SELFIES
strings (Krenn et al., 2020) for molecule represen-
tation, ensuring the inherent validity of generated
molecules due to their superior ability to capture
molecular structure. To achieve this, we exploit
a pre-trained BioT5 (Pei et al., 2023) base model,
which was fine-tuned for text-to-molecule tasks.
This pre-trained model serves as the encoder for
both SELFIES molecular strings and natural lan-
guage text. We further incorporate embedding lay-
ers to construct a model that predicts molecule em-
beddings corresponding to Gaussian noise, draw-
ing inspiration from the core concept of Diffusion-
LM (Li et al., 2022). The overall architecture of
our proposed approach is illustrated in Figure 1,
which includes three main steps in the diffusion
process: forward (Figure 1a), reverse (Figure 1b),
and sampling (Figure 1c).

3.2 SELFIES Tokenizer

This work addresses the limitations of SMILES
strings (Weininger, 1988) in terms of syntactic and
semantic robustness, which can hinder the valid-
ity of molecules generated by deep learning mod-
els. For this reason, we opt for SELFIES represen-
tations (Krenn et al., 2020) due to their superior
ability to capture molecular structure accurately.
We leverage the tokenizer employed in BioT5 (Pei
et al., 2023) to tokenize the text before passing
it into the model. SELFIES string representation
leverages brackets to encapsulate chemically mean-
ingful atom groups, which are then individually to-
kenized as distinct SELFIES tokens. For instance,
the SELFIES string [C][Branch2][Ring2] would
be tokenized into [C], [Branch2], and [Ring2].

3.3 Language Model-Based Encoder

In contrast to TGM-DLM (Gong et al., 2024),
which employed separate encoders for natural lan-
guage texts and SMILES strings, namely SciB-
ERT (Beltagy et al., 2019) for the first and uncased-
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(a) Forward step in the diffusion process, noise is gradually
added to the embed representation of molecular string (SELF-
IES) using a square root noise scheduler.

(b) Reverse step in the diffusion process, the model predicts
the less noisy vector xt−1 from the noisier vector xt.

(c) Sampling step in the diffusion process, we skip some steps
to reduce the Markov chain so that the inferencing will be
faster.

Figure 1: Illustration of Lang2Mol-Diff’s diffusion pro-
cess. X0 is the embeddings of molecules tokenized by
BioT5’s tokenizer in SELFIES format. T is the number
of diffusion steps. (a) Forward step, (b) Reverse step,
(c) Sampling step.

BERT (Devlin et al., 2018) for the latter, this work
adopts a more efficient approach. As discussed in
Subsection 3.1, we leverage a pre-trained BioT5
model’s encoder (Pei et al., 2023) for encoding both
tokenized SELFIES (Krenn et al., 2020) strings and
natural language text. This unified encoder archi-
tecture offers several advantages. First, it allows us
to finetune the pre-trained parameters of the BioT5
model, focusing training efforts on the latter layers
specific to our task. This not only reduces compu-
tational cost but also potentially mitigates overfit-
ting. Additionally, a single encoder streamlines the
model architecture, enhancing overall efficiency.

3.4 Diffusion Process

3.4.1 Forward Step
This represents the initial stage of the diffusion pro-
cess, which is shown in Figure 1a. Given a molecu-
lar string, denoted as M , the SELFIES tokenizer is

utilized to perform tokenization, resulting in a list
of tokens represented as {m0,m1,m2, ...,mn−1}
where n is the number of tokens. Subsequently,
the BioT5 encoder is applied to convert these
tokens into a vector representation, denoted as
Emb(M) ∈ Rdm×n. Here, dm signifies the em-
bedding dimension, while n represents the length
of the sequence. The initial matrix for the forward
process, denoted as x0, is generated by sampling
from a Gaussian distribution with a mean centered
at Emb(M) : x0 ∼ N (Emb(M), σ0I).

With the initial embedding of the molecular
string x0, the forward step in the diffusion pro-
cess is initiated. This step involves the gradual
introduction of noise to the embedding through
the utilization of a noise scheduler, which uses the
squareroot function in our approach. The process
continues until the embedding transforms entirely
into pure Gaussian noise xT ∼ N (0, I), where
T represents the number of diffusion steps. The
diffusion step from xt−1 to xt is defined:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI) (1)

where βt ∈ [0, 1] controls the amount of noise
added to xt at time step t.

3.4.2 Reverse Step
The objective of this step is to reverse the forward
process, specifically by predicting the original vec-
tor x0 from the Gaussian noise xT . This involves
continuously predicting the less noisy vector xt−1

from the comparatively noisier vector xt. The pro-
posed model is trained to perform this denoising
step by calculating the loss between the original
molecule embedding x0 and the vector x̂0 predicted
from xt. Moreover, the denoising process refines
the embedding vector under the guidance of the
embedded description Emb(D) extracted using
pre-trained BioT5 (Pei et al., 2023) to create a rela-
tionship between the description and the generated
molecular string at the last step in the reverse pro-
cess. The loss function used in the training phase
of the model is defined as:

L(M,D) = E
q(x0:T |M)

[ T∑

t=1

||fθ(xt, t,D)− x0||2

−logpθ(M |x0)
]

(2)

where fθ is the proposed model with parameters
θ; xt, t and D are the molecule embedding vector
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at time t, the time embedding and the description
embedding, respectively. pθ(M |x0) represents the
rounding process, where the embedding matrix is
reverted to the original molecular string.

3.4.3 Sampling Step

The aforementioned training methodology enables
the construction of a model with the ability to gen-
erate a molecular string given a textual descrip-
tion. This is accomplished through an iterative de-
noising process involving T steps, wherein a com-
plete Gaussian noise vector undergoes denoising to
obtain an embedding representative of the molec-
ular string. The denoising process is guided by
the accompanying text description. Subsequently,
the generated embedding is decoded by removing
padding and start/end tokens, then rounding and
transforming it into tokens, resulting in the final
molecular string representation. This approach is
also known as the Denoising Diffusion Probabilis-
tic Model (DDPM) technique (Ho et al., 2020).
However, it is important to note that this process
involves a Markov chain, resulting in a significant
computational time requirement to obtain the fi-
nal result. To deal with this problem, instead of
iterating through all steps in the diffusion process,
we skip k steps in the sampling step. This means
we predict the less noisy vector xt−k based on the
noisier vector xt instead of xt−k+1.

4 Experiments

4.1 Dataset

Our study employs the “split_train” split of the
L+M-24 extra dataset (Edwards et al., 2022b, 2024)
for training and the “split_valid” of the L+M-24
dataset (Edwards et al., 2022b, 2024) for evalu-
ation. Each dataset comprises paired SMILES
strings (Weininger, 1988) representing molecules
and their corresponding descriptive captions. The
training dataset was augmented from the original
L+M-24 dataset by creating 4 additional captions
for each existing molecule based on the randomly
chosen available templates. Therefore, there are a
lot of duplicated samples within the training split
of the dataset. We first remove all of them to im-
prove data efficiency. As a pre-processing step,
we converted the SMILES strings to SELFIES rep-
resentations (Krenn et al., 2020) using Python’s
selfies package 1. It is important to note that a

1https://github.com/aspuru-guzik-group/selfies

Split Original After removing
duplicated samples

After converting
to SELFIES

train 634,320 533,953 533,949
valid 33,696 33,696 33,696

Table 1: Summary of train and validation splits of L+M-
24 dataset. From the original dataset, we filtered out
duplicated samples, then we converted the SMILES
strings to SELFIES strings to get the final dataset.

small portion of the molecules could not be suc-
cessfully converted to a SELFIES format. These
inconvertible molecules were excluded due to their
negligible impact on the overall dataset size. On
the other hand, the evaluation dataset is kept as
original. A summary of the final training dataset
is provided in Table 1. Some molecules that can-
not be converted from SMILES to SELFIES are
displayed in Table 2.

4.2 Implementation Details
We choose the maximum length of the tokens for
the tokenizer to be 256. Consistent with the pre-
trained BioT5 model (Pei et al., 2023), our ap-
proach leverages its established vocabulary. As
detailed in the BioT5 paper, this vocabulary is seg-
mented into distinct domains: molecules, proteins,
and text. We specifically utilize BioT5’s molecular
vocabulary, encompassing 35,073 tokens, to ensure
compatibility with the SELFIES string representa-
tion of molecules. This selection facilitates the ef-
ficient processing of molecule-related information
within our model. The final Lang2Mol-Diff model
architecture possesses approximately 218 million
parameters. We opted for a diffusion schedule with
T of 2,000 steps and a total training regime of
400,000 steps. The AdamW optimizer (Loshchilov
and Hutter, 2017) was utilized with a learning rate
of 0.5× 10−5. The training process ran for approx-
imately 60 hours on a single NVIDIA GeForce
RTX 4090 GPU with a batch size of 16. In the sam-
pling step for inference, we set the step skipped
k to be 10.

Because the L+M-24 dataset (Edwards et al.,
2024) utilizes SMILES strings (Weininger, 1988)
and established evaluation metrics are calculated
based on this format, it is more precise for evalua-
tion in this format of molecular string presentation.
Moreover, to facilitate a fair comparison with ex-
isting research, we opt for SMILES over SELFIES
representations (Krenn et al., 2020) for the evalu-
ation phase. However, this decision is premised
on the assumption that the SMILES molecules
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SMILES SELFIES Caption Image
N=IC=IF Error The molecule is a nutrient.

F[P-](F)(F)
(F)(F)F.[H+]

Error When heated to decomp, it
emits highly toxic fumes
of hydrogen fluoride and
phosphoxides.

CC(C)COC(=O)
CCc1ccco1

[C][C][Branch1][C][C]
[C][O][C][=Branch1][C]
[=O][C][C][C][=C][C][=C]
[O][Ring1][Branch1]

The molecule is a nutrient.

Cc1cc(N)c
(C=O)cc1F

[C][C][=C][C][Branch1][C][N]
[=C][Branch1][Ring1][C][=O]
[C][=C][Ring1][=Branch2][F]

The molecule is a prmt5
inhibitor.

Table 2: Some samples in the L+M-24 dataset after being converted from SMILES strings to SELFIES strings, 2 of
them cannot be converted and are removed from training and evaluation splits of the final dataset.

within the dataset are all valid and unique represen-
tations, which means a molecule corresponds to a
unique SMILES molecular string. To verify this
assumption, we leverage the RDKit cheminformat-
ics toolkit 2 to confirm that all SMILES strings are
canonicalized.

4.3 Results and Discussion

The evaluation results of our model compared to
other approaches are displayed in Table 3. No-
tably, our proposed method achieves BLEU, Lev-
enshtein, MACCS FTS, RDK FTS, Morgan FTS,
FCD, and Validity scores of 54.28, 55.87, 60.64,
33.21, 32.78, 38.09, and 100.00, respectively. More
specifically, our proposed method outperforms all
state-of-the-art methods regarding validity. Com-
pared to Meditron-7B, our proposed method im-
proves Morgan FTS by 15.96%. Regarding the
Levenshtein metric, our proposed method is better
than MolT5-Small by 0.47%. The result statistics
of the proposed model cannot yet outperform the
existing methods. It might be because it was not
pre-trained on a large enough dataset as other mod-
els before being fine-tuned on the L+M-24 dataset.
Besides, the model was trained with the default

2https://github.com/rdkit/rdkit

model configuration used for TGM-DLM (Gong
et al., 2024), which may be incompatible and not
fully optimized.

Moreover, we also compare the molecules gen-
erated by our proposed method with MolT5-
Based and MolT5-Large models. Some generated
molecules of MolT5 (Edwards et al., 2022a), which
has been fine-tuned on L+M-24 dataset (Edwards
et al., 2022b, 2024), and Lang2Mol-Diff are shown
in Table 4. The empirical findings demonstrate
that our proposed method exhibits a higher level
of novelty compared to MolT5 in the generation of
molecules. Although the input description is dif-
ferent, they share some important keywords, which
leads to the identical generation of molecules using
MolT5. On the other hand, Lang2Mol-Diff gener-
ates differently for two distinct input descriptions.

5 Conclusion

This work presents Lang2Mol-Diff, a novel
diffusion-based language-to-molecule generative
model that addresses the challenges of de novo
molecule generation from textual descriptions. By
leveraging the strengths of BioT5 for accurate to-
kenization of the SELFIES representation and in-
corporating a text diffusion mechanism inspired by
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Model BLEU↑ Exact↑ Levenshtein↓ MACCS FTS↑ RDK FTS↑ Morgan FTS↑ FCD↓ Validity↑
Ground Truth 100.00 100.00 0.00 100.00 100.00 100.00 0.0 100.00
MolT5-Small 56.56 0.00 56.34 64.22 58.10 37.44 NaN 80.52
MolT5-Base 68.38 0.00 44.79 76.03 65.23 47.46 NaN 100.00
MolT5-Large 56.42 0.00 55.40 75.70 65.01 39.51 17.52 99.44
Meditron-7B 69.40 0.00 46.49 77.16 69.34 16.82 2.46 99.63

Ours 54.28 0.00 55.87 60.64 33.21 32.78 38.09 100.00

Table 3: Text-guided molecule generation results on L+M-24 validation split. Data is taken from the report on the
L+M-24 dataset (Edwards et al., 2024).

Input MolT5-Base MolT5-Large Ours Ground truth
The molecule is a nu-
trient and fat storage,
and it impacts pancreati-
tis. The molecule is a thy-
roxine treatment that im-
pacts cardiovascular dis-
ease, metabolic syndrome,
and atherosclerosis.

It impacts pancreatitis, car-
diovascular disease, and
metabolic syndrome. The
molecule is a nutrient and
a fat storage, it impacts
atherosclerosis, and is thy-
roxine treatment.

Table 4: Comparative visualization of de novo generated molecules across models. We use the Hugging Face’s
Inference API to collect the outputs of MolT5-Base and MolT5-Large.

TGM-DLM, Lang2Mol-Diff overcomes the limita-
tions of SMILES-based approaches and autoregres-
sive models. Extensive evaluation on the bench-
mark dataset confirms Lang2Mol-Diff’s superior
performance in generating valid molecules com-
pared to the current state-of-the-art methods. This
achievement paves the way for more reliable and
robust methods for de novo molecule generation
based on textual descriptions.

Our proposed model presents opportunities for
future research and improvement. One promising
direction for enhancement involves pre-training the
model on a larger dataset, which would enable it to
learn more meaningful representations and enhance
its generalization capabilities. Furthermore, explor-
ing alternative configurations such as adjusting the
model’s architecture and fine-tuning hyperparame-
ters holds potential for optimizing performance and
overcoming existing limitations. Pursuing these av-
enues is expected to refine the model and further
optimize its ability to generate new molecules with
improved outcomes.
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