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Abstract

Generating as diverse molecules as possible
with desired properties is crucial for drug
discovery research, which invokes many ap-
proaches based on deep generative models
today. Despite recent advancements in these
models, particularly in variational autoen-
coders (VAEs), generative adversarial networks
(GANs), Transformers, and diffusion models,
a significant challenge known as the sample
bias problem remains. This problem occurs
when generated molecules targeting the same
protein tend to be structurally similar, reduc-
ing the diversity of generation. To address this,
we propose leveraging multi-hop relationships
among proteins and compounds. Our model,
Repurformer, integrates bi-directional pretrain-
ing with Fast Fourier Transform (FFT) and low-
pass filtering (LPF) to capture complex interac-
tions and generate diverse molecules. A series
of experiments on BindingDB dataset confirm
that Repurformer successfully creates substi-
tutes for anchor compounds that resemble posi-
tive compounds, increasing diversity between
the anchor and generated compounds.

1 Introduction

The design of valid and novel molecules with
desired biological properties, known as de novo
molecule generation, is vital to modern drug discov-
ery. Recent advancements in deep generative mod-
els, particularly variational autoencoders (VAEs)
(Kingma and Welling, 2022), generative adversar-
ial networks (GANs) (Goodfellow et al., 2014),
Transformers (Vaswani et al., 2017), and diffusion
models (Ho et al., 2020), have significantly en-
hanced our ability to generate chemically valid and
novel molecules. However, these models need to be
further refined to generate molecules that interact
with specific target proteins.

Target-specific molecule generation addresses
this challenge by producing drug-like molecules
that are more likely to bind with specific target

proteins (Grechishnikova, 2021; Qian et al., 2022;
Tan et al., 2022). Nonetheless, there remains a
significant issue known as the sample bias prob-
lem, where reliance on existing protein-compound
pairs results in the generation of structurally similar
molecules. This phenomenon limits the diversity
of generated molecules and hinders the discovery
of novel compounds.

To address this, we propose leveraging multi-hop
relationships among proteins and compounds to
expand the generative space and increase the diver-
sity of the generated molecules. Our method intro-
duces the concept of repurposing-aware molecule
generation, designed to identify and utilize latent
multi-hop relations within the protein-compound
interaction network.

In this paper, we present Repurformer, a novel
model that integrates bi-directional pretraining and
advanced signal processing techniques to overcome
the limitations of existing models. Repurformer
captures complex relationships between proteins
and compounds by pretraining encoders in both
protein-to-compound and compound-to-protein di-
rections and applying Fast Fourier Transform (FFT)
with low-pass filtering (LPF) to the latent space.
This approach allows the model to distinguish the
different scales of interactions. By focusing on low-
frequency components, which correspond to the
longer propagation through the multi-hop protein-
compound interaction network, Repurformer gener-
ates as diverse compounds as possible with desired
properties. In summary, the contributions of our
work are threefold:

• We introduce a framework for repurposing-
aware molecule generation to address the sam-
ple bias problem by leveraging multi-hop re-
lations between proteins and compounds.

• We develop Repurformer, a model that inte-
grates a bi-directional pretraining and an FFT-
based approach to capture and utilize latent
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multi-hop relations in an end-to-end manner.

• We demonstrate that Repurformer success-
fully generates valid and diverse molecules,
creating substitutes for anchor compounds
that resemble positive compounds.

2 Preliminaries

2.1 De novo Molecule Generation

De novo molecule generation is the process of ex-
ploring vast chemical space and producing novel
molecules with desired biological properties. With
the rapid advancement of artificial intelligence, re-
cent deep generative models have been widely used
in molecule generation tasks.

For example, several VAE variants have been
introduced thanks to its manipulable latent space,
such as charVAE (Gómez-Bombarelli et al., 2018),
SD-VAE (Dai et al., 2018), and JT-VAE (Jin
et al., 2018). GAN has been adopted due to their
capability to generate new molecules that are
highly similar in structure to existing ones, in-
cluding ORGAN (Guimaraes et al., 2018), OR-
GANIC (Sanchez-Lengeling et al., 2017), and Mol-
CycleGAN (Maziarka et al., 2020). More recently,
Transformers and diffusion models have been uti-
lized, based on their success in language model-
ing and image generation, respectively, such as
MolGPT (Bagal et al., 2022), MDM (Huang et al.,
2023), and GeoLDM (Xu et al., 2023).

2.2 Target-specific Molecule Generation

In drug discovery, identifying drug-target interac-
tions (DTI) is crucial for understanding the bioac-
tivity and therapeutic effects of drugs for specific
diseases. Although the deep generative models
have proved useful in generating novel and chem-
ically valid molecules, further screening is neces-
sary to evaluate their potential to bind with specific
protein targets. Building on this notion, several re-
searchers have developed target-specific molecule
generation models to produce novel, drug-like
molecules that are highly likely to interact with spe-
cific target proteins, including Transformer-based
generation (Grechishnikova, 2021), AlphaDrug
(Qian et al., 2022), SiamFlow (Tan et al., 2022)
and POLYGON (Munson et al., 2024).

2.3 Repurposing-Aware Molecule Generation

Drug repurposing is a strategy that identifies new
therapeutic uses for approved drugs beyond their

original indications. This approach offers signifi-
cant advantages over developing entirely new drug,
such as lower failure risk and development costs.
The concept of drug repurposing can be defined as
multi-hop relationships in the protein-compound in-
teraction network, which is not directly connected
but can be accessed through intermediaries. In
chemical spaces, proteins and compounds have
many-to-many relationships based on their struc-
tural coordination. This leads to the assumption
that if a compound can reach a specific protein
through another compound that shares a common
protein (i.e., in the multi-hop relationship), there is
potential for repurposing the focal compound.

The repurposability in chemical spaces can in-
troduce a new paradigm for molecule generation,
by serving as a key to expanding the generative
space and increasing molecular diversity. Previous
approaches for target-specific molecule generation
tend to generate structurally similar molecules for
a specific protein target due to their dependence on
known protein-compound interactions. While in-
corporating randomness in the generation process
can contribute to molecular diversity, it may neglect
structural coordination with targets, possibly result-
ing in a trade-off between diversity and binding
affinity. In this context, leveraging latent repurpos-
ability within the multi-hop relationships among
proteins and compounds can provide a reasonable
boundary for molecule generation, broadening the
generative space and enhancing molecular diversity
without sacrificing their drug potency.

3 Problem Statement

The discovery of new compounds often relies on ex-
isting protein-compound pairs. This results in that
the compounds targeting the same protein exhibit
similar structures. In other words, the generative
space of models tends to be bounded in limited
regions, reducing the diversity of the generation.
We refer to this as a sample bias problem.

To address this problem, we leverage multi-hop
relations among proteins and compounds. Specif-
ically, given a pair of protein p and compound
c that are known to interact, we assume that the
compound relates to p within a 3-hop relation,
i.e., a positive compound c+, has a potential in-
teraction with p. Definitions from 3.1 to 3.3 de-
scribe the key concepts of our approach, and Fig-
ure 1 visually represents the rationale. Note that
both protein and compound are represented by
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Figure 1: (a) illustrates a many-to-many relationship between proteins and compounds. The bold lines indicate
potential repurposing flows by which, given an anchor compound’s target protein p (P-45984), a positive compound
c+ (C-5280445) can be considered to replace the anchor compound ć (C-16046126). Red boxes in (b) and (c)
represent the parts of p (P-45984) to which ć (C-16046126) and c+ (C-5280445) attend, respectively. It is noteworthy
that attending regions are right next to each other, implying c+ may have a potential repurposability to p.

amino-acid and SMILES sequences, respectively:
p = [p1 , · · · , pTp

] and c = [c1 , · · · , cTc ] with Tp

and Tc being the fixed length of each sequence.

Definition 3.1 (Protein-Compound Graph). The
relations between proteins and compounds can
be represented as a bipartite graph G(P ∪ C, E),
where P and C denote the sets of protein and com-
pound nodes, respectively. Specifically, p(i) ∈ P
represents the i-th protein and c(j) ∈ C repre-
sents the j-th compound, for i = 1, · · · ,M and
j = 1, · · · , N .

Definition 3.2 (Protein-Compound Pair). A pair
of nodes in G is represented by an edge eij =
{(p(i), c(j))|p(i) ∈ P, c(j) ∈ C} ∈ E . The presence
of an edge eij indicates a link between the i-th
protein and the j-th compound, such that eij = 1
if they are linked and eij = 0 otherwise.

Definition 3.3 (Anchor/Positive Compounds).
Given a target protein p(i), a compound c(j) is de-
fined as an anchor compound ć if eij = 1. For
another protein p(k) where ekj = 1, any compound
c(l) (l ̸= j) that satisfies ekl = 1 is regarded as a
positive compound c+ for the target protein p(i).

4 Repurformer

In this section, we propose Repurformer, a novel
method designed to address the sample bias prob-
lem by leveraging multi-hop relations among pro-
teins and compounds. Figure 2 illustrates how Re-
purformer seamlessly integrates the concepts of
drug discovery and repurposing.

Bi-directional Pretraining To capture the many-
to-many relationships between proteins and com-
pounds, we employed bi-directional pretraining for

the protein and compound encoders. Specifically,
we built two Transformers with identical encoder-
decoder structures but opposite training directions:
one was trained in the protein-to-compound direc-
tion, and the other in the compound-to-protein di-
rection (see Figure 2a). By doing so, we expect the
protein encoder fp(c|p) and the compound encoder
fc(p|c) to extract latent relations, zp and zc, that en-
compass both cases where proteins and compounds
are the head and tail of an edge, and vice versa, i.e.,
fp : c|p → zp and fc : p|c → zc. For example,
given a pair of p(2) and c(1) as shown in Figure
2b, zp and zc will represent the edges from p(2) to
c(1) (i.e., p(2) → c(1)) and from c(1) to p(1) (i.e.,
c(1) → p(1)), respectively.

Transformer with Bi-directional Encoders The
pretrained bi-encoders are then used as feature ex-
tractors; they are frozen and followed by a new
compound decoder. The compound decoder π(·),
parameterized by θ, receives a sum of the encoding
vectors h = zp + zc and a positive compound c+

as inputs:

ĉ+t+1 = πθ(·|c+1:t, ht) where ht = zpt + zct .

Here, ht ∈ R|d| represents a |d|-dimensional la-

tent vector of 2-hop relation, e.g., p(2)
1-hop→ c(1) (=

ć)
2-hop→ p(1) (see Figure 2b), from a t-th token

perspective. Accordingly, feeding the compound
decoder with a positive compound as a label en-
ables it to learn potential repurposing relationships
that emerge from an additional third-hop edge, e.g.,

· · · 2-hop→ p(1)
3-hop→ c(2) (= c+). Putting it all to-
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(a) Bi-directioanl Compound-Protein Relations Embedding (b) Repurposing-Aware Molecule Generation

(c) Model Architecture

Figure 2: Overview of Repurformer

gether, the loss function is defined as follows:

lnπθ(c
+|p, c) = ln

Tc∏

t=1

πθ(c
+
t+1|c+1:t, p, ć)

=

Tc∑

t=1

lnπθ(c
+
t+1|c+1:t, p, ć)

Fast Fourier Transform (FFT) The Fourier
transform decomposes a function into its con-
stituent frequencies using complex exponentials
(sinusoids) as basis functions (Heckbert, 1995;
Lee-Thorp et al., 2021). Given a sequence
{x1, · · · , xT }, the discrete Fourier Transform
(DFT) is defined by the formula:

Xk =
T−1∑

t=0

xte
− 2πi

T
tk , 0 ≤ k ≤ T − 1

where Xk is the k-th frequency component, xt is
the t-th time-domain signal, and i is the imagi-
nary unit. Calculating the DFT directly has a com-
plexity of O(T 2), which can be inefficient for
large datasets. To address this, the Fast Fourier
Transform (FFT) algorithm was proposed, reducing
the complexity to O(T log T ) (Cooley and Tukey,
1965; Brigham, 1988). In this study, we apply the
FFT to h ∈ RT×|d| to construct eigenvectors along
which the 2-hop propagation occurs. To be specific,
the 2D DFT is utilized: one 1D DFT along the se-
quence dimension,Fseq, and another 1D DFT along

the feature dimension, Fdim, keeping real-valued
parts only as in Lee-Thorp et al. (2021):

H = R(Fseq(Fdim(h))) ∈ RT×|d| .

Note that T is set to the length of a longer sequence;
if Tp > Tc, then T is set as Tp and vice versa.

Low-Pass Filter (LPF) The Fourier-transformed
features H comprise low frequencies that repre-
sent a globally smoothed signal and high frequen-
cies that indicate a locally normalized signal. This
separation of frequency components allows for dis-
tinct interpretations at different scales. For example,
Tamkin et al. (2020) applied the discrete cosine
transform (DCT) (Rao and Yip, 2014), which is
closely related to the DFT, to separate latent in-
formation at different scales. They found that low
frequencies capture topic-scale context while high
frequencies capture word-scale context.

In our setting, a scale can be understood as the
number of hops. Specifically, the lower frequency
implies a longer propagation through multi-hop
relations while the higher one implies a shorter
propagation within a single-hop relation. From the
repurposing perspective, we need to leverage the
longer propagation so that only the multi-hop re-
lations are considered. To achieve this, we can ap-
ply the low-pass filtering (Pollack, 1948; Costen
et al., 1996), which removes the frequency compo-
nents above a certain cutoff parameter α by setting
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Hk,d ← 0 for all k, d > α. This filtering can be
easily implemented using a binary mask:

HLPF = H ⊙M

where M = {mt,d|mt,d ∈ {0, 1}, 1 ≤ t ≤ T, 1 ≤
d ≤ |d|} is an one-hot matrix, with mt,d = 1 for
low-frequency components and mt,d = 0 other-
wise. Lastly, we transformed HLPF back to the fea-
tures of an original domain using the inverse FFT
(IFFT), before passing it to the compound decoder:

h̃ = F−1
dim(F−1

seq (HLPF)) ∈ RT×|d| .

Implementation Details The structure of the Re-
purformer is essentially identical to that of pre-
trained transformers. It consists of encoder and de-
coder networks, each linearly stacked with 4 layers
of 256 dimensions, with each layer divided into 4
heads of 64 dimensions. To tokenize the protein and
compound sequences, we utilized existing vocabu-
laries from previous works—the protein vocabulary
from Rao et al. (2019) and the compound vocabu-
lary from Honda et al. (2019). For training, we set
the number of epochs, batch size, and learning rate
to 20, 64, and 5e-05, respectively.

5 Experiments

Experiment Setup We collected data from Bind-
ingDB (Gilson et al., 2016) which contains over 2.8
million measured binding affinities of interactions
between proteins and drug-like molecules. The col-
lected dataset was then preprocessed to filter out
missing values, duplicates, and proteins and com-
pounds with excessively long or short sequences.
In particular, given the many-to-many nature of
protein-compound relationships, we selected com-
pounds that interact with a reasonable number of
individual proteins between 10 and 100, to en-
able our model to learn various compound struc-
tures reacting with different proteins. The resulting
dataset comprised 60,719 protein-compound pairs
derived from 3,006 proteins and 7,803 compounds.
We split this dataset into train and test datasets
with 8:2 ratio, ensuring that the proteins interacting
with each compound did not overlap between the
two sets. Our model was then trained on protein-
compound pairs from the train set, representing pro-
teins with amino acid sequences and compounds
with canonicalized SMILES strings. We tokenized
individual characters from amino acid sequences
and SMILES strings, resulting in vocabularies con-
taining 30 characters for proteins and 46 characters
for compounds.

Evaluation Metrics To thoroughly assess the ef-
fectiveness and reliability of Repurformer, we em-
ployed several evaluation metrics, focusing on the
generative performance of the model and physic-
ochemical properties and drug-likeness of the
molecules it generated. In terms of generative per-
formance, we applied widely accepted metrics for
sequence generation tasks: BLEU (Papineni et al.,
2002), GLEU (Wu et al., 2016), and F1 score of
ROUGE (Lin, 2004). In particular, we used 1- and
2-gram units as the evaluation basis for these gen-
erative metrics. We utilized physicochemical prop-
erties, specifically molecular weights and log of
octanol-water partition coefficients (LogP) (Wild-
man and Crippen, 1999), to assess the feasibil-
ity of molecular structures as drugs. Furthermore,
we used other widely used drug-likeness metrics,
such as QED (Bickerton et al., 2012), SA (Ertl and
Schuffenhauer, 2009), and NP (Ertl et al., 2008), to
evaluate the potential effectiveness of the generated
molecules as drug-like compounds.

Configurations This study aims to analyze
whether the configuration of Repurformer is ef-
fective. Given that the distinguishing configuration
of Repurformer is the application of FFT with LPF
in the embedding space, we conducted comparative
experiments with different configuration options:

• SUM Only: This is the baseline configuration.
It directly passes h to the compound decoder.

• +FFT: This configuration transforms h to H
but does not revert it to h̃.

• +MLP: This configuration adds a single fully-
connected layer that mixes the values of h
feature-wise.

• +FFT+MLP: This configuration mixes the fre-
quencies of H .

• +FFT+MLP+IFFT w/ auxiliary losses: This
configuration mixes the frequencies of H and
reverts the mixed H to h̃. Note that L1, L2,
and Frobenius norm are added as auxiliary
losses to minimize the distance between the
MLP output and h̃.

6 Results

Main Results To evaluate Repurformer, we con-
ducted a comparative analysis of 11 configurations,
focusing on generative performance, physicochem-
ical properties, and drug-likeness.
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1-gram 2-gram
BLEU GLEU ROUGE BLEU GLEU ROUGE

anc ć pos c+ anc ć pos c+ anc ć pos c+ anc ć pos c+ anc ć pos c+ anc ć pos c+

Baseline (SUM Only) 0.615 0.664 0.618 0.668 0.381 0.398 0.534 0.580 0.543 0.589 0.120 0.127
+FFT 0.155 0.164 0.179 0.188 0.060 0.054 0.098 0.104 0.126 0.132 0.024 0.016
+MLP 0.646 0.692 0.651 0.700 0.399 0.422 0.564 0.604 0.575 0.618 0.133 0.139
+FFT+MLP 0.281 0.289 0.306 0.318 0.011 0.012 0.144 0.156 0.198 0.209 0.004 0.004
+FFT+MLP+IFFT (w/ L1 Loss) 0.583 0.636 0.585 0.640 0.366 0.388 0.511 0.556 0.518 0.565 0.113 0.113
+FFT+MLP+IFFT (w/ L2 Loss) 0.623 0.672 0.627 0.679 0.382 0.398 0.543 0.588 0.553 0.600 0.118 0.123
+FFT+MLP+IFFT (w/ Frobenius Loss) 0.629 0.670 0.635 0.679 0.359 0.367 0.544 0.579 0.556 0.594 0.101 0.104

α=2 0.620 0.660 0.626 0.670 0.331 0.348 0.512 0.548 0.528 0.567 0.102 0.112
α=4 0.662 0.690 0.670 0.703 0.385 0.400 0.571 0.598 0.585 0.616 0.147 0.149
α=6 0.583 0.630 0.587 0.635 0.386 0.406 0.513 0.553 0.521 0.563 0.142 0.150

+FFT+LPF+IFFT (Ours)

α=8 0.606 0.663 0.610 0.667 0.390 0.416 0.532 0.582 0.541 0.591 0.134 0.144

Table 1: Evaluation of Generative Performance. The numbers represent the average (n-gram-based) syntactic
similarity of the generated compounds ĉ+, which target specific proteins p, to both the anchor compounds ć and the
positive compounds c+. Note that α is a cutoff parameter.

MW
[0,∞]

LogP
[−∞,∞]

Baseline (SUM Only) 588.506 4.870
+FFT N/A N/A
+MLP 537.230 4.317
+FFT+MLP 533.193 11.559
+FFT+MLP+IFFT (w/ L1) 631.012 4.655
+FFT+MLP+IFFT (w/ L2) 554.490 4.892
+FFT+MLP+IFFT (w/ Frobenius) 572.882 6.092

α=2 475.473 6.005
α=4 479.357 3.888
α=6 584.083 7.442

+FFT+LPF+IFFT (Ours)

α=8 566.942 5.529

Table 2: Evaluation of Physicochemical Properties. The
numbers in the MW and LogP columns represent av-
erage molecular weights and octanol-water partition
coefficients, respectively. By Lipinski’s Rule of Five
(Lipinski et al., 2012), compounds with MW ≤ 500 and
LogP ≤ 5 have good absorption and permeation.

Table 1 shows the similarity of the generated
compounds ĉ+ to both the anchor ć and positive
c+ compounds, calculated using BLEU, GLEU,
and ROUGE scores. The results indicate that the
“+MLP” and “Repurformer with α = 4” exhibit
remarkable performance compared to other config-
urations. Notably, the Repurformer (α = 4) gener-
ated compounds with higher structural similarity
to the anchor compounds than those generated by
the +MLP configuration. This suggests that Repur-
former successfully generates compounds that are
potentially repurposable to the target proteins.

In Tables 2 and 3, we can compare the molec-
ular properties of the generated compounds from
different configurations. Table 2 shows that Repur-
former with α = 4 generates compounds that are
the most physicochemically desirable. On the other
hand, Table 3 shows that the Repurformer with
α = 4, with α = 2, and “+FFT+MLP” configu-

QED
[0, 1]

SA
[1, 10]

NP
[−5, 5]

Baseline (SUM Only) 0.320 4.033 -0.629
+FFT N/A N/A N/A
+MLP 0.332 3.479 -0.796
+FFT+MLP 0.164 2.086 0.154
+FFT+MLP+IFFT (w/ L1) 0.227 4.209 -0.564
+FFT+MLP+IFFT (w/ L2) 0.355 3.696 -0.659
+FFT+MLP+IFFT (w/ Frobenius) 0.250 4.046 -0.368

α=2 0.468 4.289 0.072
α=4 0.598 2.696 -0.682
α=6 0.254 3.067 -0.679

+FFT+LPF+IFFT(Ours)

α=8 0.352 3.404 -0.984

Table 3: Evaluation of Drug-Likeness. The numbers
represent how likely the generated compounds are to be
effective drugs. Note that QED, SA, and NP represent a
compound’s drug-likeness, synthetic accessibility, and
natural product-likeness.

rations had comparative advantages in QED, SA,
and NP, respectively. Given that QED is generally
considered the most important metric for measur-
ing drug similarity and efficacy, we can emphasize
that Repurformer (α = 4) excels in generating
compounds with the highest potential for effective
drug discovery. Figure 3 compares the generation
results of the ‘+MLP’ and ‘Repurformer (α = 4)’
configurations.

Performance Comparison To assess the ef-
fectiveness of Repurformer as a target-specific
molecule generation model, we compared its per-
formance with the existing protein-specific gen-
erative approaches as external baseline models,
including Transformer-based model (Grechish-
nikova, 2021) and AlphaDrug (Qian et al., 2022).
Transformer-based model utilized the vanilla Trans-
former architecture (Vaswani et al., 2017) to gen-
erate compounds based on target proteins. This
model viewed the target-specific molecule genera-

122



1-gram 2-gram
BLEU GLEU BLEU GLEU

Physicochemical
Properties

Drug-Likeness

anc ć pos c+ anc ć pos c+ anc ć pos c+ anc ć pos c+ MW LogP QED SA NP
Repurformer (α=4) 0.662 0.690 0.670 0.703 0.571 0.598 0.585 0.616 479.357 3.888 0.598 2.696 -0.682
Transformer 0.541 0.495 0.599 0.572 0.476 0.440 0.533 0.513 9651.296 187.126 0.119 9.037 -0.128
AlphaDrug 0.638 0.652 0.665 0.685 0.555 0.567 0.585 0.603 389.616 2.947 0.507 2.685 -0.842

Table 4: Evaluation of Comparative Performance. Parts of evaluation metrics in terms of generative performance,
physicochemical properties, and drug-likeness are used to compare the performance of Repurformer with the
existing target-specific molecule generative models, such as Transformer and AlphaDrug.

(a) Anchor ć (b) Positive c+ (c) Generated ĉ+ (+MLP) (d) Generated ĉ+ (α = 4)

Figure 3: Comparison of 2D Molecule Drawings. From left to right, the drawings represent the anchor ć, positive
c+, and generated compounds ĉ+, respectively. ĉ+ is expected to interact with the target protein to which ć interacts.

tion as a translational task, converting amino acid
sequence into SMILES strings. AlphaDrug mod-
ified the vanilla Transformer by introducing skip-
connections between its encoders and decoders,
facilitating the joint embedding of target proteins
and molecules. In addition, it employed a Monte
Carlo tree search algorithm for the conditioned gen-
eration of novel molecules based on specific target
proteins.

To ensure a fair comparison, we trained the ex-
ternal baseline models using our dataset using the
same experiment setup and evaluation metrics as
for Repurformer. Table 4 presents the performance
comparison between our best configuration (Re-
purformer with α = 4) and the external baseline
models. The comparison results demonstrate that
the Repurformer (α = 4) outperformed the existing
approaches on most evaluation metrics. In partic-
ular, our model generated compounds with high
structural similarity to both the anchor and pos-
itive compounds than those generated by the ex-
ternal baseline models. This suggests that Repur-
former can generate not only realistic but diverse
compounds with methodological considerations for

drug repurposability. Regarding drug-likeness, our
model achieved the highest performance only on
QED. Although the Transformer-based model ex-
celled in SA and NP, the feasibility of its generated
compounds is questionable due to its exceptionally
high scores in physicochemical properties, which
indicate the compounds might not be suitable as
medicines. This is further validated by the evalua-
tion of compound validity, as illustrated in Figure 8
in the Appendix. The compounds generated by the
Transformer-based model were significantly less
valid compared to those generated by Repurformer.

Mitigation of Sample Bias Figure 4a shows that
the distance distribution of the generated com-
pounds to the anchor compounds is similar to that
of the positive compounds. We calculated the dis-
tance over the fingerprint domain to consider the
patterns of molecular substructure. The result im-
plies that the generated and positive compounds
have different substructures from the anchor com-
pounds to the same extent. However, Figure 4a
compares “the relative distances” of the generated
and positive compounds to the anchor compounds
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Figure 4: (a) illustrates the distance distribution from the molecular fingerprint perspective. (b) describes the
estimated two-dimensional Gaussian distribution of anchor, positive, and generated compounds.

=2 =4 =6 =8
Configuration

0.0

0.2

0.4

0.6

0.8

1.0

Va
lue

0.35

0.90

0.42 0.40

0.22 0.18

0.69
0.79

Validity
Uniqueness

Figure 5: Validity-Uniqueness Trade-off at different val-
ues of α. Note that validity represents the quality of
generated samples, while uniqueness represents the di-
versity of generated samples.

“at the substructure level,” making it difficult to di-
rectly compare the absolute distances to each other
at the holistic level.

Figure 4b visualizes the overlapping representa-
tions among the anchor, positive, and generated
compounds, “directly comparing their absolute
distances at the holistic level.” To do this, we ex-
tracted SMILES word embeddings (e.g., C, N, F,
=, +, [, ], etc.) using Word2Vec (Mikolov et al.,
2013) and defined the holistic representation of
each molecule as the summation of these word em-
beddings. We then projected the holistic representa-
tion of each molecule into a 2-dimensional space by
t-SNE (Van der Maaten and Hinton, 2008). Since
t-SNE embeddings preserve pairwise similarities
of high-dimensional data as neighboring points in
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Figure 6: Internal Diversity per Compound Group.
log10Ld measures the syntactic difference of SMILES
strings, while MCS distance (1-MCS) measures the se-
mantic dissimilarity at the atomic level.

a low-dimension, it allows for direct comparison
of absolute distances between samples. Finally, we
applied Gaussian kernel density estimation (KDE)
to visualize the distribution of t-SNE embeddings.

The results from Figures 4a and 4b indicate that
the generated compounds are more similar to the
positive compounds than to the anchor compounds,
both relatively and absolutely, and at substructural
and holistic levels. This suggests that Repurformer
successfully addressed the sample bias problem,
creating substitutes for anchor compounds that re-
semble positive compounds.

Existence of Mode Collapse Mode collapse
refers to a phenomenon where the generative model
creates high-quality samples at the expense of in-
distribution diversity (Adiga et al., 2018). In this
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section, we demonstrate that Repurformer suffers
from mode collapse and thus the “internal” diver-
sity of generated compounds is relatively lower
than anchor and positive compounds.

Figure 5 illustrates the negative relationship be-
tween the validity and uniqueness of the generated
compounds by different values of α. Validity rep-
resents the ratio of samples that can be depicted as
2D molecular drawings by RDKit (i.e., the qual-
ity of generation), while uniqueness represents the
ratio of non-duplicated samples (i.e., the diversity
of generation). As α increases, we observe that
uniqueness increases but validity decreases. This is
an expected outcome given that the low-frequency
signals represent global structure whereas the high-
frequency signals represent local structure. For ex-
ample, low-frequency signals (i.e., lower α) fo-
cus on the most fundamental structures, increasing
the validity of generated compounds but reducing
their uniqueness. Conversely, high-frequency sig-
nals (i.e., higher α) focus on local details, increas-
ing the uniqueness of generated compounds but
reducing their structural validity. In short, Figure
5 demonstrates that Repurformer may be suscepti-
ble to the validity-uniqueness trade-off, i.e., mode
collapse, and thus α must be carefully selected.

Figure 6 describes the “internal” diversity of
valid compounds generated by Repurformer with
α = 4, along with anchor and positive compounds
that share the same target proteins with the gener-
ated ones. Following Pereira et al. (2021), we eval-
uated the internal diversity within each compound
group using two metrics: Levenshtein distance (Ld)
and maximum common substructure (MCS). The
Levenshtein distance (Levenshtein et al., 1966),
also known as edit distance, measures the differ-
ence between two SMILES strings by calculating
the minimum number of insertions, deletions, and
replacements needed to make the strings identical.
On the other hand, the MCS (Cao et al., 2008)
measures the ratio of the number of atoms in the
maximum common substructure of two compounds
to their total number of atoms. Since the MCS rep-
resents a similarity score normalized between 0
and 1, the MCS distance can be obtained by 1-
MCS, which captures the atom-level dissimilarities
of compounds. The diversity of each compound
group was computed by averaging the pairwise dis-
tances of all compounds. The result indicates that
the internal diversity of the generated compounds
is lower than that of the anchor and positive com-
pounds, suggesting mode collapse in Repurformer.

Note that the existence of mode collapse does
not contradict the mitigation of sample bias. Mode
collapse refers to less internal diversity among gen-
erated compounds, while mitigating sample bias
involves creating substitutes for anchor compounds
that resemble positive ones, thus increasing diver-
sity between the anchor and generated compounds.

7 Limitations

This study has some limitations. First, due to in-
consistencies between the tokens in our dataset
and those we borrowed from previous research,
some generated outputs contained <UNK> tokens,
which had to be excluded. Second, the study lacks
experiments on binding affinity, which are neces-
sary to evaluate how strongly the generated com-
pounds bind to proteins. These limitations must be
addressed in future research.

8 Concluding Remarks

In this study, we introduced Repurformer, a novel
model designed to address the sample bias prob-
lem in de novo molecule generation by leveraging
multi-hop relationships. Repurformer integrates bi-
directional pretraining with Fast Fourier Transform
and low-pass filtering, to capture complex interac-
tions between proteins and compounds. This ap-
proach focuses on low-frequency components, cor-
responding to longer propagation through multi-
hop protein-compound interactions. The results
show that Repurformer successfully generates valid
and diverse molecules.

Building on these positive results, there are sev-
eral promising directions for future improvement.
Enhancing the backbone architecture by incorpo-
rating advanced models like diffusion or graph neu-
ral networks and techniques such as contrastive
learning could further improve Repurformer’s abil-
ity to capture multi-hop protein-compound interac-
tions. The results from Figures 5 and 6 also suggest
promising directions to improve Repurformer such
as leveraging reinforcement learning to maximize
diversity rewards or introducing Wasserstein loss
to address mode collapse. Additionally, while our
current experiments have shown the potential of
Repurformer, it is critical to validate its applica-
bility in real-world scenarios. Therefore, we need
to verify the performance of Repurformer on ex-
isting drug repurposing cases. Considering these
aspects will strengthen the practical implications
and utilities of Repurformer.
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Figure 7: Comparison of Training Performance with Different Configurations. When embedding vectors from
protein and compound encoders are mapped to the frequency domain using Fourier Transform (FFT), training
performance does not improve unless they are transformed back to the original domain with an inverse Fourier
Transform (iFFT). This indicates that applying FFT in the latent space leads to alignment issues between the
encoders and the compound decoder.
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Figure 8: Comparison of Validity and Drug-Likeness Metrics. Validity, QED, SA, and NP scores were normalized
to the same scale. Although the Transformer-based model (Grechishnikova, 2021) showed relatively higher SA and
NP scores, its validity is extremely low. This indicates that the compounds generated by the Transformer-based
model are not of sufficient quality to be considered as drug candidates.
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