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Abstract

Identification of causal genes and pathways is
a critical step for understanding the genetic
underpinnings of rare diseases. We propose
novel approaches to gene prioritization and
pathway identification using DNA language
model, graph neural networks, and genetic
algorithm. Using HyenaDNA, a long-range
genomic foundation model, we generated dy-
namic gene embeddings that reflect changes
caused by deleterious variants. These gene
embeddings were then utilized to identify can-
didate genes and pathways. We validated our
method on a cohort of rare disease patients with
partially known genetic diagnosis, demonstrat-
ing the re-identification of known causal genes
and pathways and the detection of novel can-
didates. These findings have implications for
the prevention and treatment of rare diseases
by enabling targeted identification of new drug
targets and therapeutic pathways.

1 Introduction

The landscape of genomics research has under-
gone a profound transformation with the advent
of high-throughput sequencing technologies (Met-
zker, 2009). The generation of a vast amount of
genomics data offers unprecedented insights into
human genetic diversity (Auton et al., 2015; Chen
et al., 2023). However, this wealth of data brings
significant challenges in terms of data analysis and
interpretation. A main challenge in deciphering the
underlying mechanisms of diseases is establishing
a link between genotype and phenotype (Gallagher
and Chen-Plotkin, 2018). This task becomes even
harder in the context of rare diseases, where the
scarcity of data reduces statistical power (Seaby
and Ennis, 2020).

Traditional methods for finding disease-
associated genes/pathways have predominantly
relied on statistical approaches, such as correlating
specific genetic variants with disease occurrence

(Auer and Lettre, 2015; Uffelmann et al., 2021).
These approaches show decent performance if the
cohort size is large, which is often a big obstacle
in rare disease studies. Moreover, these methods
usually utilize basic variant statistics (such as
number of variant carriers), and might not take into
account the gene-specific impact of variants on the
gene sequence (MacArthur et al., 2014).

Another family of computational approaches for
gene/pathway prioritization rely on the concept
of guilt-by-association, where genes/pathways are
considered potentially relevant based on their sim-
ilarity to known disease genes (Lee et al., 2011;
Guala and Sonnhammer, 2017). These methods
work well in scenarios where some underlying
genetic factors of the phenotype are well-studied,
which is not the case for many diseases (Amberger
et al., 2018). Moreover, these methods might intro-
duce bias since they look for similar genes, thereby
missing novel disease-causing genes (Gillis and
Pavlidis, 2012).

Recent years have seen a remarkable rise in the
performance of language models, particularly in
the field of natural language processing (NLP) (De-
vlin et al., 2018; Radford et al., 2019). These mod-
els ‘learn’ language by processing vast amounts of
text data, enabling them to perform a wide range of
downstream tasks such as translation, summariza-
tion, and question-answering with unprecedented
accuracy and fluency (Zhao et al., 2023). Parallel
to this development, the concept of language mod-
els has been applied to genomics, giving rise to
DNA language models (DNA-LMs) (Zhou et al.,
2023; Dalla-Torre et al., 2023; Benegas et al., 2023;
Nguyen et al., 2023). Genomic sequences, much
like textual data, comprise long chains of infor-
mation, in this case nucleotides instead of words.
DNA-LMs apply the principles of NLP to interpret
and analyze these sequences, translating the ’lan-
guage’ of DNA into meaningful biological insights.
By learning from extensive genomic data, these
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models can provide new perspectives on down-
stream biological processes (Consens et al., 2023;
Marin et al., 2023).

HyenaDNA (Nguyen et al., 2023) is a long-
range genomic foundation model pre-trained on
the human reference genome at single nucleotide
resolution. It can process long-range DNA se-
quences and represent them as embeddings in a
high-dimensional space. For any genomic region
such as a gene, HyenaDNA generates embeddings
that capture the inherent information of the DNA
sequence. These embeddings dynamically change
in response to genetic variants, offering insights
into how genetic alterations impact biological pro-
cesses.

We hypothesize that variants with strong delete-
rious effects have a detectable impact on gene em-
beddings. We designed complementary methods to
identify genes and pathways that contain such dele-
terious variants and could therefore play a causal
role in the pathogenesis of rare diseases. For gene
prioritization, we propose two approaches (case-vs-
control and case-only) to quantitatively rank can-
didate genes (Figure 1a). For pathway identifica-
tion, we propose a method that combines DNA-LM,
interpretable graph neural networks (GNN) (Wu
et al., 2021; Ying et al., 2019) and Genetic Algo-
rithm (Katoch et al., 2020) (Figure 1b). We validate
our methods on a cohort of rare disease patients
with partially known genetic diagnosis, demonstrat-
ing the re-identification of known causal genes and
the detection of novel candidates.

2 Methods

2.1 Study participants

We selected two cohorts from our in-house
database of exome-sequenced individuals. The first
cohort consists of 120 previously healthy children
who were admitted to pediatric intensive care units
(PICUs) with respiratory failure due to a common
viral respiratory infection. This cohort serves as
the “rare disease” patient group for this study. As
control group, we selected a total of 172 healthy
individuals. The studies were approved by the rele-
vant ethics commissions and all study participants
provided a signed informed consent for research
including human genetic testing.

2.2 Short-read alignment and variant calling

Adapter sequences were trimmed from sequencing
reads using fastp (Chen et al., 2018) and the reads

(a) Gene prioritization workflow: DNA sequences of candidate
genes are passed to HyenaDNA for gene embedding gener-
ation. The embeddings are used to calculate a gene specific
score (F1 score for case-vs-control, distance score for case-
only), which is used to rank and select top candidate genes.

(b) Pathway identification workflow: for each individual, a
protein-protein interaction network is constructed with gene
embeddings as node features. A GNN is trained to classify
cases graphs from controls, and GNNExplainer is applied to
score the importance of nodes and edges for graph classifica-
tion. Afterwards, a Genetics Algorithm is used to find the most
explainable subnetwork, and a pathway enrichment analysis
is performed on that subnetowrk to find the over-represented
biological pathways.

Figure 1: Overall summary of of the methods. Figures
created with BioRender.com.

were subsequently aligned against the human ref-
erence genome (hg38) using the maximum exact
matches algorithm in Burrows-Wheeler Aligner
(Li and Durbin, 2009). The Genome Analysis
Software Kit (GATK4) best-practice pipeline was
used to call variants in the multi-sample mode (De-
Pristo et al., 2011). In summary, PCR duplicates
were removed and base quality scores were recali-
brated to correct for sequencing artifacts. We called
individual-level variants with GATK Haplotype-
Caller before combining single-sample callsets for
joint genotyping. To exclude low quality variants,
we applied variant quality score recalibration and
manual filtering (depth ≥ 20, genotype quality ≥
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20, and 0.2 ≤ heterozygous allele balance ≤ 0.8).

2.3 Variant annotation and filtering
To predict the potential impact of each variant,
we used Variant Effect Predictor (VEP) (McLaren
et al., 2016). To identify loss-of-function variants,
we used Loss-of-Function Transcript Effect Estima-
tor (LOFTEE) as a VEP plugin (Karczewski et al.,
2020).

To classify the variant into putative pathogenic-
ity groups, we implemented the ACMG/AMP
guidelines (Richards et al., 2015) in R (https:
//www.r-project.org) (see full description Ap-
pendix A). A probability of pathogenicity (PoP)
was assigned to each variant according to the
ACMG/AMP Bayesian classification framework
(Tavtigian et al., 2018). Variants with PoP ≥ 0.9
were considered as damaging. Genes with at least
one pathogenic variant were included in the down-
stream analysis.

2.4 Gene embedding calculation
For candidate gene selection, we kept the genes that
passed the following criteria: 1) At least one patient
carries ≥ 1 pathogenic variant in the gene. 2) The
length of the gene (including exons, introns, 3’-
UTR, and 5’-UTR) is less than 450,000 nucleotides,
which is the maximum input size of the medium-
size HyenaDNA.

For each candidate gene, we obtained the refer-
ence gene sequence using biomaRt (Kinsella et al.,
2011). Then for each study participant, we altered
the reference alleles based on the position of the
variants in the gene. The resulting DNA sequence
was then fed into the medium-size HyenaDNA to
get embeddings for each nucleotide. To construct
a gene embedding, we extracted the nucleotide
embeddings from positions of pathogenic variants,
then we averaged them. All the gene embeddings
were stored in a database to be used for the next
steps. For loading pre-trained weights, we used
the HuggingFace (Wolf et al., 2019) interface in
Python (https://www.python.org). For model
inference and embedding calculation, we used one
Nvidia A100 (40GB) GPU.

2.5 Case-vs-control analysis
To assess the impact of pathogenic variants on
the gene embeddings, we implemented a case-vs-
control approach. For each gene, we trained a lo-
gistic regression (with L1 and L2 regularization)
using the gene embeddings to classify patients from

healthy controls. We used scikit-learn (Pedregosa
et al., 2011) to train the model on 75% of the data
and evaluate it with the remaining 25% resulting in
a F1 score for each gene. We compared the gene-
specific F1 scores and ranked genes based on this
metric (Figure 1a).

For top candidate gene selection, we used
Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) (Ester et al., 1996) as an
outlier detector. We applied DBSCAN on the cal-
culated F1 scores to find outliers and selected cor-
responding genes as top candidates.

Finally, to validate the results, we implemented
a permutation test. We randomly shuffled the
labels (case or control) for N=1000 times. Then
we trained a logistic regression on 75% of the data
and calculated a F1 score on the other 25%. We
counted the number of times that the random F1

score was more than or equal than the observed
F1 score. We calculated a p-value as follow (with
ϵ = 0.001):

p = count(random F1≥Observed F1)+ϵ
N+ϵ

2.6 Case-only analysis

We also developed a case-only method to prioritize
candidate genes if healthy controls are not avail-
able. In this approach, for each gene we divided
the gene embeddings into mutant (if the patient
carried a pathogenic variant) and non-mutant (if
the patient was not a carrier). Then we calculated
a distance score as the average Euclidean distance
between mutant and non-mutant gene embeddings.
We utilized these gene-specific distance scores to
rank candidate genes (Figure 1a).

For top candidate gene selection, similar to the
case-vs-control approach, we applied DBSCAN on
the distance scores and selected outliers as the top
candidate genes.

To validate the results, we implemented a
statistical test as follow : For N=1000 times
we generated random reference and alternative
embeddings and calculated the distance score.
We counted the number of times that the random
distance score was more than or equal than the
observed distance score. We calculated a p-value
as follow (with ϵ = 0.001):

p = count(random distance score≥Observed distance score)+ϵ
N+ϵ
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2.7 Graph neural network training

To understand the underlying mechanism of the dis-
ease, we designed an explainable approach based
on graph neural network (GNN). A summary of
the method can be found in figure 1b. First, we cre-
ated a protein-protein interaction (PPI) network
that indicates interactions between genes carry-
ing pathogenic variants. We used the STRING
database (Szklarczyk et al., 2023) and included
interactions with confidence score ≥ 0.6.

Afterwards, we created individual-specific
graphs, which include gene embeddings as node
features. We trained a GNN to classify patients’
graphs from controls. GNN architecture consists
of two hidden graph convolution layers (Zhang
et al., 2019) with 16 nodes for message passing
and a global sort pooling (Zhang et al., 2018) for
node feature aggregation. Pooling is essential be-
cause the model is trained for graph classification,
therefore with pooling we can generate graph rep-
resentations from node features. We used AdamW
(Loshchilov and Hutter, 2019) optimizer with learn-
ing rate = 0.001 and weight decay = 0.001 for train-
ing. We used batch size = 32 and trained the model
for 1000 epochs. We used PyTorch geometric (Fey
and Lenssen, 2019) for implementing and training
the GNN.

2.8 Subnetwork identification and pathway
enrichment analysis

After training the GNN, we used GNNExplainer
(Ying et al., 2019) to assign an explainability score
to each node, showing how important they are for
graph classification . We applied GNNExplainer
for all the samples and averaged the explainability
scores for each node across samples.

After obtaining the explainability scores, we
used the Genetic Algorithm (GA) (Katoch et al.,
2020) to identify the “best” subnetwork with maxi-
mum fitness, defined as the average of explainabil-
ity scores of its nodes. GA is a bio-inspired algo-
rithm that mimics evolution by implementing natu-
ral selection, chromosomal crossover, and mutation.
Previous studies have successfully utilized GA for
subnetwork identification (Ulgen et al., 2019; Wu
et al., 2011). To summarize the GA, we start with a
population of random subnetworks, then we select
50% of subnetworks with probabilities proportional
to their fitness scores (roulette wheel selection). Af-
terwards, we create new subnetworks by mutating
them (adding or removing edges) and crossovering

them (connecting two subnetworks, if possible).
We started with an initial population of 100 subnet-
works and repeated the GA for 10 generations with
a mutation rate of 0.5. At the end, we chose the
“most fit” subnetwork at the last generation.

Finally, to gain biological insights into the se-
lected subnetwork, we performed pathway enrich-
ment analysis, a method for identifying biologi-
cal functions that are over-represented in a group
of genes (Chicco and Agapito, 2022). We used
the GSEApy package (Fang et al., 2022), which
uses Enrichr (Kuleshov et al., 2016) for over-
representation analysis and the Reactome database
(Milacic et al., 2023) as reference. We kept signifi-
cantly enriched pathways with false discovery rate
(FDR) ≤ 0.05.

3 Results

3.1 Study participants

As patient cohort (rare disease cases), we used ex-
ome data from 120 previously healthy children ad-
mitted to PICUs with respiratory failure due to a
common viral respiratory infection. Their median
age was 78 days, 50 (42%) were female, and 90
(78%) were of European ancestry. Respiratory Syn-
cytial Virus (RSV) and Human Rhinovirus (HRV)
were the most common detected pathogens, in 67
(56%) and 31 (26%) of the cases, respectively. As
controls, we selected 172 healthy individuals from
our in-house database of exome-sequenced individ-
uals, representing a random subset of the general
population. Since the phenotype we are studying is
rare, we assume that the controls are not enriched in
individuals with genetic risk factors for infectious
disease susceptibility.

3.2 Variant classification

In the patient group, 55,300 variants were mapped
to coding and splicing regions and were scored with
the ACMG/AMP Bayesian classification frame-
work. 48,875 variants had a PoP ≤ 0.1 and were
considered benign. 5,838 variants had an interme-
diate PoP (between 0.1 and 0.9), resulting in their
classification as variants of unknown significance
(VUS). 587 variants (in 508 genes) exceeded the
pathogenicity threshold (≥ 0.9) and were consid-
ered as damaging.

3.3 Gene prioritization

A total of 498 (98%) candidate genes passed the
selection criteria (Methods, Gene embedding cal-
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Figure 2: Gene prioritization results. (A) Genes ranked
according to their corresponding F1 score calculated
based on case-vs-control workflow. (B) Gene ranking
based on average distance of mutants and non-mutant
embeddings, computed according to the case-only work-
flow.

culation). For each candidate gene, we calculated
gene embeddings using the pre-trained HyenaDNA
for all 292 study participants (120 cases and 172
controls), resulting in gene-specific embeddings in
the embedding space. We then ranked candidate
genes using two approaches:

1) Case-vs-control: We trained a logistic regres-
sion for each gene and calculated a gene-specific F1

scores. We used these scores to rank the genes and
find top candidates by applying DBSCAN for out-
lier detection. The top candidate gene with the high-
est F1 score was IFIH1 (Figure 2.A). We performed
a permutation test which resulted in p-value=0.009
(Supplementary figure S1).

2) Case-only: in this scenario we used the gene-
specific distance score (calculated based on the
average Euclidean distance of mutant and non-
mutant embeddings) for gene prioritization and
top-candidate selection. IFIH1 ranked first and was
selected as an outlier using the DBSCAN method
(Figure 2.B) and was significantly different from
the expected distribution (p-value=10−6, Supple-
mentary figure S2).

3.4 PPI construction and graph neural
network training

We constructed a high-quality PPI based on the
interactions between the protein products of all
candidate genes, resulting in a PPI with 138 nodes
and 176 edges. For each participant, we initialized
the same PPI structure, but used their personal-
ized gene-embeddings as node features, resulting
in 292 (120 cases and 172 controls) unique graphs.
We used these graphs to train a GNN for classify-
ing cases from controls. GNN structure consisted
of 2 graph convolution layers with 16 nodes, and
global sort pooling to generate graph representa-
tions from node features. We trained the GNN for
1000 epochs.

3.5 Subnetwork identification and pathway
enrichment analysis

After training the GNN, we used GNNExplainer to
assign an explainability score to each node, show-
ing how important they are for graph classification.
We applied GNNExplainer for all the samples and
averaged the explainability scores for each node
across samples. Figure 3.A shows the PPI with
explainability scores reflected on the edges’ widths.
After obtaining the explainability scores, we used
the Genetic Algorithm to identify the “best” sub-
network with maximum fitness. The fitness of a
subnetwork was defined as the average of explain-
ability scores of its nodes . This resulted in a sub-
network with 10 genes including IFIH1, OAS1,
OAS3, MX1, IFNAR1, IL10RB, ZNFX1, NLRC5,
TRIM40, and ABCE1 (Figure 3.B). Finally, we per-
formed pathway enrichment analysis using the Re-
actome database as reference and kept significantly
enriched pathways with FDR ≤ 0.05. Top 10 re-
sulting pathways are shown in figure 4.

4 Discussion

In this study we aim to harness the potential of
DNA foundation models to translate the intricate
’language’ of DNA into meaningful and action-
able information. We propose a framework to uti-
lize DNA-LMs for gene prioritization and pathway
identification in rare disease studies. Based on the
hypothesis that variants with strong deleterious ef-
fects alter the gene embeddings significantly in the
embedding space, we demonstrate that it is possi-
ble to prioritize disease-associated genes/pathways
in a cohort of 120 children requiring intensive care
support because of a severe illness caused by a
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Figure 3: Subnetwork identification results. (A) PPI
of candidate genes scored using GNNExplainer. The
thickness of edges reflects the importance of nodes con-
nected to it. (B) Selected subnetwork with maximum
fitness, defined as the average nodes’ importance scores.
This subnetwork is identified via the Genetic Algorithm.

respiratory virus.

For gene prioritization, we propose two ap-
proaches to analyze the gene embeddings (Fig-
ure 1a): case-vs-control and case-only. The case-
only approach is particularly promising for rare
disease research, where finding a well-matched
control group is often challenging. The ability of
the method to differentiate between mutant and
non-mutant gene embeddings within the same pa-
tient cohort is a novel and practical solution to this
long-standing issue. By applying the gene prior-
itization workflow, we successfully re-identified
IFIH1 - which encodes an RIG-I-like receptor in-
volved in the sensing of viral RNA (Rehwinkel

Figure 4: Top 10 significantly enriched pathways using
the Reactome database. Genes in the selected subnet-
work were used as input.

and Gack, 2020) - as the top candidate gene in our
patient cohort.

For pathway identification, we propose an in-
tegrative method, combining DNA-LM with in-
terpretable GNN and Genetic Algorithm (Figure
1b). This approach takes into account various in-
formation such as PPI, number of variant carriers,
and context-specific impact of variants on gene se-
quences. By applying this method, we were able to
identify potentially relevant genes (IFIH1, OAS1,
OAS3, MX1, IFNAR1, IL10RB, ZNFX1, NLRC5,
TRIM40, and ABCE1) that can explain the disease
pathogenesis.

All the identified genes are coding for molecules
that play an important role in antiviral defense.
IFIH1 encodes MDA5, which is a cytoplasmic vi-
ral RNA sensor that recognizes single- or double-
strand RNA to launch a type 1 interferon response
(Rehwinkel and Gack, 2020). OAS1 and OAS3
encode enzymes that activate host RNase L to de-
grade viral RNA (Hornung et al., 2014). ABCE1
encodes a protein that is involved in the regula-
tion of OAS/RNase L pathway (Martinand et al.,
1998). MX1 encodes a guanosine-triphosphate-
metabolizing protein that antagonizes the replica-
tion process of viruses (Haller and Kochs, 2019).
IFNAR1 and IL10RB encode cytokine receptors
that mediate the antiviral immunity (Zanin et al.,
2021; Moore et al., 2001). ZNFX1 encodes a pro-
tein that binds to viral RNA and interacts with
mitochondrial antiviral signaling (MAVS) protein,
promoting the expression of interferon-stimulated
genes (Vavassori et al., 2021). NLRC5 and TRIM40
encode regulators of antiviral signaling pathways
(Kuenzel et al., 2010; Zhao et al., 2017). Deficien-
cies in some of these genes have been previously
studied and shown to impair immunity against spe-
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cific human viruses (Lamborn et al., 2017; Asgari
et al., 2017; Chen et al., 2021; Abolhassani et al.,
2022; Korol et al., 2023; Saadat et al., 2023; Lee
et al., 2023).

In this study we focused on DNA-LMs, although
protein language models (pLMs) such as ESM-1b
(Brandes et al., 2023) have demonstrated state-of-
the-art performance in scoring missense variants.
The reason we used a DNA-LM instead of pLM
is that DNA-LMs can model various variant types
(e.g., splicing, stop-gained, etc.) while pLMs fo-
cus only on missense variants. Moreover, by us-
ing DNA-LMs, our method can be extended to
other variant types such as those mapping to in-
trons, branchpoint motives, or untranslated regions
(UTRs).

While our method shows promise, there are in-
herent challenges and limitations. Our proposed
workflow identifies genes with significant changes
in their embeddings, yet a careful analysis is re-
quired to quantify the minimum embedding distor-
tion to be detectable by the model. Moreover, the
interpretation of gene embeddings requires care-
ful consideration, since not all genetic variations
captured in the embeddings might be clinically rel-
evant.

The potential for integrating DNA-LMs with
other techniques, such as multi-omics, could fur-
ther enhance our understanding of genetic diseases.
This has significant implications for the identifica-
tion of disease-causing genes/pathways, potentially
leading to more targeted and effective treatments
in personalized medicine. The demonstration that
DNA-LMs can accurately identify genes and path-
ways involved in rare diseases paves the way for
further research and application of artificial intelli-
gence in various genomics research domains.

Code Availability

The code for this study is available here.
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A Appendix

We used ACMG/AMP guidelines (Richards et al., 2015) to classify the variant into putative pathogenicity
groups, as described in our previous works (Saadat et al., 2023; Saadat and Fellay, 2024). In summary, we
gather all the available evidences for a variant. Table 1 summarizes all the ACMG/AMP criteria that we
used.

Table 1: the summary of ACMG/AMP criteria used for variant classification. MAF: minor allele frequency

To calculate the probability of pathogenicity (PoP), we use the Bayesian framework developed by
Tavtigian et al. (2018). For a given variant, the PoP is calculated as follow:

Px = number of pathogenic criteria applied at the level of x
x ∈ {Very strong,Strong,Moderate,Supporting}

By = number of benign criteria applied at the level of y
y ∈ {Strong,Supporting}

odds of pathogenicity (OP) = 350(
PVery strong

1
+

PStrong
2

+
PModerate

4
+

PSupporting
8

−BStrong
2

−BSupporting
8

)

probability of pathogenicity (PoP) = OP×0.1
((OP−1)×0.1+1)
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Supplementary Figure S1: Permutation test results for case-vs-control approach. Expected distribution of F1 scores
for IFIH1 is shown in blue. The red line indicates the observed F1 score.

Supplementary Figure S2: Statistical test results for the case-only approach. Expected distribution of distance scores
for IFIH1 is shown in blue. The red line indicates the observed distance score.
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