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Abstract

Vectorized language embeddings of raw au-
dio data improve tasks like language recogni-
tion, automatic speech recognition, and ma-
chine translation. Although embeddings ex-
hibit high effectiveness in their respective tasks,
unraveling explicit information or meaning en-
capsulated within the embeddings proves chal-
lenging. This study investigates a multilin-
gual model’s ability to capture features from
phonetic, articulatory, variety, and speaker cat-
egories from brief audio segments compris-
ing five consecutive phones spoken by Aus-
trian speakers. Within the employed model for
extraction, German serves as one of the pre-
trained languages used. However, the manner
in which the model processes Austrian vari-
eties presents an intriguing area for investiga-
tion. Using a k-nearest neighbor classifier, it is
tested whether the encoded features are promi-
nent in the embedding. While characteristics
like variety are effectively classified, the accu-
racy of phone classification is particularly high
for specific phones that are characteristic of the
respective dialect/sociolect.

1 Introduction

Language embeddings are high-dimensional vec-
tors in a continuous space that describe language-
specific features like word order, prosody, speed,
and accent. Embeddings can be obtained from
either an orthographic perspective (such as word
embeddings) or an acoustic perspective (represent-
ing spoken language). Utilizing these embeddings
enhances precision in various domains including
text classification, machine translation, automatic
speech recognition, accent detection, and Language
Identification (LID) (Hou et al., 2020). Trans-
former networks revolutionized these fields by us-
ing an attention mechanism that captures complex
relationships within the words of a sentence or the
audio features of utterances (Vaswani et al., 2017).
This study focuses on the acoustic embeddings of

spoken language, specifically those derived from
the output of the final layer of a deep learning LID
task. The objective of an LID system is to deter-
mine the language of a written text or an utterance.

Systems for LID can be adapted to identify ac-
cents and dialects within a language if labels are
available. In cases of low-resource languages, the
data itself is often not sufficient for training. Cross-
lingual transfer can help to increase performance
on tasks such as language modeling, translation, or
language identification (Conneau et al., 2020). A
pre-trained multilingual model can either be fine-
tuned on the unseen data or just used as is. The
amount of data enables generalization on unseen
data and extraction of language-specific content
from the embedding.

Standard Austrian German (SAG) is a special
case in this context, as it belongs to the same lan-
guage family as Standard German (SGG). The Aus-
trian dialect landscape is very rich, with notable dif-
ferences in vocabulary and pronunciation not only
between SGG and SAG but also between SAG and
other Austrian dialects (Elspaß and Kleiner, 2019;
Kleene et al., 2016). The primary objective of this
paper is to leverage a multilingual LID system, ini-
tially trained on 107 languages, without additional
fine-tuning specifically for Austrian varieties. The
aim is to assess the model’s ability to generalize
to unseen varieties and effectively map language
features within the latent space.

The contribution of this paper is:

• It demonstrates the usability of multilingual
models for low-resource languages without
fine-tuning.

• It reveals that characteristic phones of a vari-
ety are distinctly represented within the em-
beddings.

• It shows the spatial mapping of unseen vari-
eties of Austrian German and suggests that
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quinphones are effective for classifying these
varieties, contributing to better methods for
handling and classifying dialectal variations.

The paper is structured as follows: Section 2
delves into previous research where acoustic em-
beddings are scrutinized for their potential to en-
capsulate language-specific features. Section 3 out-
lines the extraction of embeddings and further pro-
cessing steps for experiments. Section 4 presents
a dataset description and the classification results
of four key feature groups: Phone classification,
variety classification, classification of articulatory
features and phone categories, and speaker classifi-
cation. Each section of the respective feature group
offers a presentation of the results, followed by an
analysis.

2 Related Work

Language embeddings are investigated for prop-
erties of phonology, morphology, and syntax in
(Bjerva and Augenstein, 2018) after fine-tuning lan-
guage embeddings on specific Natural Language
Processing tasks using text data. The method of fea-
ture probing through a k-Nearest Neighbor (kNN)
classifier yields the conclusion that information
pertaining to the investigated properties is encap-
sulated within the embeddings, exhibiting varying
degrees of efficacy in accordance with the task-
specific relevance of these properties. This con-
cept is further pursued in (Östling and Kurfalı,
2023) with respect to typological features, assert-
ing that multilingual language embeddings capture
linguistic information when trained on the correct
downstream tasks. The application of multilingual
transfer learning to utilize acoustic embeddings de-
rived from triphones, as described in (Kamper et al.,
2021), demonstrates the capacity for extraction of
phonetic content and language information for zero-
resource languages. Using acoustic embeddings
(Belinkov and Glass, 2017), an in-depth analysis
of an Automatic Speech Recognition model at the
frame level to incorporate phonetic features is con-
ducted. The investigation aims to ascertain the
layers within an end-to-end model where phones
and sound classes are prominent. In (English et al.,
2023) the wav2vec 2.0 model (Babu et al., 2022)
is probed to contain three broad phonetic classes
(voicing, frication, and nasals) within different lay-
ers of the model. (Linke et al., 2023) investigates
read and spontaneous speech from Austrian and
Hungarian varieties, showing evidence that parame-

ters of speaking style are encoded in the pre-trained
XLS-R model and that Austrian German is mapped
separately from German German. In (Gutscher
et al., 2023) the effectiveness of a pre-trained Lan-
guage Identification (LID) model in mapping Aus-
trian varieties within latent space is demonstrated.
The model successfully distinguishes these vari-
eties from SGG and other European languages. In
(Zuluaga-Gomez et al., 2023) the internal catego-
rization of the wav2vec 2.0 embeddings is analyzed
through t-Distributed Stochastic Neighbor Embed-
ding (t-SNE), and it is observed that there is a level
of clustering based on phonological similarity.

3 Methods

In typical settings, acoustic language embeddings
are extracted at the sentence or utterance level. In
this work, it is hypothesized that valuable language
information is not only present in sentence or utter-
ance embeddings but also in smaller units, specif-
ically in quinphones. Therefore, the dataset is di-
vided into chunks of audio consisting of five con-
secutive phones. Quinphones find frequent appli-
cation in Hidden Markov Models (HMMs) owing
to their capacity to encapsulate contextual depen-
dencies among phonetic units. HMMs of quin-
phones are capable of capturing the influence of
adjacent phones, thereby contributing to the pro-
nunciation of words. The language embedding is
extracted with a multilingual LID system1 for all
quinphones, as depicted in Figure 1, representing
each quinphone with a 2048-dimensional vector
(no further classification based on the embeddings
is done). The system employs the XLS-R model
(Conneau et al., 2021) which builds on the wav2vec
2.0 architecture and underwent fine-tuning using
the voxlingua107 dataset (Valk and Alumäe, 2021)
(107 languages). Wav2vec 2.0 is initially trained
on publicly available datasets encompassing 128
languages, providing substantial variability and en-
compassing a wide array of linguistic contexts. Uti-
lizing quinphones is advantageous because the mul-
tilingual LID system mentioned above, with its de-
fault settings, requires a minimum sample length
of 400 samples (25 ms) to extract embeddings due
to the minimum size of the kernel filters. If single
phones were used instead of quinphones, this mini-
mum length requirement would pose problems for
phones shorter than 25 ms.

1https://huggingface.co/TalTechNLP/
voxlingua107-xls-r-300m-wav2vec
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Figure 1: Process of extracting embeddings from quin-
phones

The goal of this paper is to test the model’s abil-
ity to classify segmental and phonetic features for
both seen and unseen Austrian varieties. Training
on low-resource data can lead to speaker embed-
dings instead of language embeddings due to the
limited number of speakers. To address this, a
pre-trained model was utilized. The effectiveness
of probing for features in language embeddings is
shown in (Singla et al., 2022; Hewitt and Manning,
2019).

To investigate the clustering of language vari-
eties, a sample set of 100 utterances per variety
is employed, and t-SNE is used to visualize the
potential clustering of the high-dimensional em-
bedding vectors. Two models are compared in this
analysis: the wav2vec 2.0 XLS-R and the Empha-
sized Channel Attention, Propagation, and Aggre-
gation in Time Delay Neural Networks (ECAPA-
TDNN) (Desplanques et al., 2020) model2 (both
fine-tuned on LID using the voxlingua107 dataset).
The ideal visual output would exhibit clear spa-
tial separation between the four language varieties.
As illustrated in Figure 2, the wav2vec 2.0 model
effectively disentangles speaker and variety infor-
mation, resulting in more generalized clusters com-
pared to the ECAPA-TDNN model. Conversely,
the ECAPA-TDNN model reveals a bias towards
encoding speaker-specific information, resulting in
smaller clusters primarily representing individual
speakers. Further analysis of the ECAPA-TDNN
model reveals an additional layer of gender-based
clustering. This model initially segregates the data
into two primary clusters based on gender, aligned
along a diagonal axis from the bottom left (Com-
ponent 1: -10, Component 2: -15) to the top right

2https://huggingface.co/TalTechNLP/
voxlingua107-epaca-tdnn

Figure 2: Visualization of four varieties of Austrian Ger-
man using t-SNE with wav2vec 2.0 (left) and ECAPA-
TDNN (right) LID models.

corner (Component 1: 5, Component 2: 10) of
the t-SNE plot. Within these primary gender clus-
ters, further subdivision into smaller clusters oc-
curs, each representing different speakers.

The process of data pre-processing involves the
following: For each audio chunk (quinphone), a
corresponding label file is created containing in-
formation about all five phone states. To avoid
overlapping quinphones in the training and test
sets, chunks of the same utterances are not split
between those groups. For each probing feature in
the datasets, binary targets are constructed, and an
approximate nearest neighbor classifier is trained
using the FAISS package (Douze et al., 2024). The
parameter for determining the number of nearest
neighbors is set to k=10, employing the Euclidean
distance as the distance metric. This choice of k
is designed to enhance the classification of infre-
quent instances, avoiding dependence solely on the
clustering of instances associated with identical
words. For each feature, the target is binary, which
means there are only two possibilities for building
the targets: (a) The feature is eminent in the current
quinphone, or (b) the feature is not eminent in the
current quinphone. The position of a feature within
a quinphone is not taken into account. Infrequently
observed features, occurring below the minimum
threshold of 200 instances in the training set, are
systematically excluded. The intrinsic operational
principle of the kNN algorithm leads to a statis-
tical bias concerning the classification accuracy
score between frequent and non-frequent features,
whereby the likelihood of accurate classification
increases when there is a greater abundance of data
points related to the feature in the training set. A
dummy classifier is employed to rectify this effect.
It randomly shuffles the binary target values, emu-
lating random guessing, but taking into account the
number of ones and zeros for these features. The
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output of the classification metric from the dummy
classifier is then subtracted from the metric of the
actual classifier. The impact of the dummy classi-
fier is particularly pronounced in categories where
the majority of targets are predicted to be positive
targets. The F1-score is employed for evaluation,
representing the harmonic mean between precision
and recall while considering both balanced and un-
balanced target sets. It characterizes a trade-off
between instances classified as false positives and
false negatives. The focal point of interest does
not reside solely in the absolute performance of the
classification of individual features, but rather in
discerning the degree to which certain features are
encoded more effectively than others.

4 Experiments

Building upon the methods described above, the
experiments aim to evaluate the performance of the
proposed approach in classifying phonetic and ar-
ticulatory features, along with variety and speaker
groups, across diverse Austrian varieties.

4.1 Data overview

Dataset. The dataset consists of 16 kHz WAV
recordings with corresponding labels in the format
of HTS (Zen et al., 2007) label files containing
detailed temporal-aligned phone annotations in ad-
dition to linguistic and prosodic information. The
dataset comprises four distinct varieties, each con-
tributing unique linguistic characteristics.

• The SAG variety utilizes data extracted from
the Wiener Corpus of Austrian Varieties for
Speech Synthesis (WASS) (Pucher et al.,
2015; Toman and Pucher, 2015).

• The Viennese (VD) variety draws from the
Viennese Sociolect and Dialect Synthesis
(VSDS) corpus (Pucher et al., 2010).

• Additionally, the dataset includes Innervill-
graten (IVG) and Bad Goisern (GOI) varieties,
both sourced from the Goisern and Innervill-
graten Dialect Speech (GIDS) corpus (Sch-
abus et al., 2014).

The dataset is reduced to achieve balance among
varieties, ensuring that each variety has an equal
number of data points and approximately the same
number of speakers (SAG: 5, VD: 3, IVG: 4, GOI:
4). Upon segmenting the utterances into labeled

Figure 3: Phone set overlaps for SAG, VD, IVG, and
GOI

units utilizing the provided time-codes from the an-
notations, the training set comprises 185,496 quin-
phones (90%), while the test set contains 20,610
quinphones (10%). To ensure a balanced evalua-
tion, the test set was further refined for each feature
to include an equal representation of 1-targets and
0-targets. The mean duration of a quinphone is 500
ms.
Variety description. All four varieties have shared
phones and (except for SAG) between 17 and 22
unique phones. The numbers of overlapping phone
sets are illustrated in Figure 3.

• SAG is the standard variety of German spoken
in Austria. In SGG, for example, the high
vowels [i] - [I], [y] - [Y], and [u] - [U] are
clearly differentiated by quality (Davis and
Mermelstein, 1990). This difference in quality
is rather small to non-existent in SAG, though
these phones still exist in SAG. A difference
in vowel quality between SAG and SGG is the
low vowel [A] in SAG, which is [a] in SGG. In
general, the transition between standard and
dialect can be described by different processes
that do not necessarily result in unique phones.
For our analysis on the phonetic level, we are
focusing on the different phones.

• The VD is an East Bavarian sociolect, nowa-
days mainly spoken by older, male, working
class German speakers in Vienna, and has
characteristic processes like monophthongiza-
tion, which result in unique phonetic differ-
ences. The Viennese monophthongization is a
form of assimilation, whereby one part of the
diphthong is assimilated to the other (Moos-
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müller, 2011).

1. <Haus> (Engl. “house"): [hAO
“
s] →

[h6:s]

2. <weit> (Engl. “wide"): [vAE
“
t] →

[væ:d
˚
]

• The GOI dialect is a Central Bavarian di-
alect spoken in the region of Bad Goisern
and has a significant number of diphthongs
that arise through diphthongization of vow-
els, as shown in Example 1 below for the
word <Schwester> (Engl. “sister"). An-
other source of new diphthongs is the vo-
calization of the lateral (/l/-Vocalization), as
shown in Example 2 for the word <bald>
(Engl. “soon"). This is a prominent feature
in the Central Bavarian varieties and accours
in word-medial and word-final positions. The
vocalization of the lateral is perceived as a
dialect feature and thus widely suppressed
by standard variety speakers, including those
who strive for a standard variety. Another
characteristic phone of GOI is the uvular trill
[ö].

1. <Schwester> (Engl. “sister"): [Svesda]
→ [SvEesda]

2. <bald> (Engl. “soon"): [bAld] →
[bOed]

3. <recht> (Engl. “right"): [reCd] →
[öEeCd]

• The IVG dialect is a South Bavarian dialect
spoken in East Tyrol and uses a fricativized
trill [ö] or the uvular fricative [X] as a charac-
teristic phone, transcribed as [öX] in our data.
Another distinctive phone of IVG is the palatal
approximant [L].

1. <warten> (Engl. “to wait"): [vA:dn] →
[vO:öXdn]

2. <Zahl> (Engl. “number"): tsAl] →
[tsO:L]

4.2 Phone classification

In the phone evaluation, positive classification tar-
gets in the dataset indicate the presence of at least
one phone within a quinphone instance. Follow-
ing the exclusion of exceedingly rare instances,
the evaluation yields a total count of 132 phones
from the initial pool (24 phones are excluded). The

computed average F1-score stands at 0.42 with a
standard deviation of ± 0.1. The phones with the
highest F1-scores, after subtraction of associated
dummy scores (denoted in brackets), are delineated
in Table 1. The characteristic [æ:] monophtongs
described in Section 4.1 achieve an F1-score of
0.63 (0.0), while [6:] achieves 0.1 (0.0). For a full
list of all phone classification results see Figure 6
in the appendix.

The phone category exhibits the second-best re-
sults, demonstrating significant variations among
different phones. Notably, the distinct [ö] and sev-
eral diphthongs from the GOI phone set attain a
commendable score. Within the IVG phone set, the
phones [öX] and [L] exemplify that phones incorpo-
rating language-specific features contribute to an
elevation in the classification score and are espe-
cially well classified. This phenomenon is similarly
observed for the VD monophthong [æ:]. The spe-
cific vowel quality [A] of SAG on the other hand, is
not well classified. Given that the dummy classifier
yields a score close to 0, these results demonstrate a
classification performance significantly surpassing
random chance for the dialect/sociolect varieties.

4.3 Classification of articulatory and phone
categories

Within the 54 articulatory and phone classes, the
average score is 0.23 with a standard deviation of ±
0.2. Only the categories retroflex (0.69), affricates
(0.66), aspirated (0.64), voiced fricative (0.6), syl-
labic (0.55), and U-vowel (0.52) achieve F1-scores
over 0.5, indicating moderate classification (see
Figure 4). Other categories, such as vowel types
(low, high, closed, etc.), consonant types (front, for-
tis, short, etc.), and fricative types (central, back,
front, unvoiced), consistently exhibit values below
0.5.

The group of articulatory and phone classes has
the lowest score, indicating that this category is
not well represented within the embedding in the
case of quinphones. Only six out of 54 categories
achieve F1-scores over 0.5. The other 48 categories
lack sufficient information for a reliable classifi-
cation in this quinphone setup. Compared to the
variety, phone, and speaker categories, the artic-
ulatory and phone categories achieve the lowest
average score over all features. It is proposed that
the task of Language Identification (LID) does not
effectively train models to represent these features
in a compound manner in quinphones. Moreover,
the setup of using quinphones is likely to contain
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Table 1: Phones with highest F1-scores

Phone F1-score (dummy) Phone F1-score (dummy)
[ö] 0.70 (0.0) [EA] 0.66 (0.0)
[L] 0.69 (0.0) [C] 0.66 (0.0)
[f] 0.67 (0.02) [öX] 0.66 (0.0)
[OE] 0.66 (0.0) [E] 0.66 (0.01)
[AE] 0.66 (0.0) [Oe] 0.65 (0.0)

Figure 4: F1-scores for classification of articulatory and phone categories

Table 2: F1-scores for Austrian varieties

Variety F1-score (dummy)
IVG 0.9 (0.04)
GOI 0.89 (0.03)
SAG 0.84 (0.05
VD 0.68 (0.04)

more features within one quinphone (for example,
consonants and vowels), making the training set
very unbalanced.

4.4 Variety classification

The variety category comprises four distinct vari-
eties, achieving an average score of 0.83 ± 0.1.
As illustrated in Table 2, IVG attains the highest
F1-score of 0.9 (0.03), followed by GOI with 0.89
(0.03), SAG with 0.84 (0.05), and VD with 0.68
(0.04).

The classification outcomes for quinphones
demonstrate significant language-related cues
within the variety category. While this phe-
nomenon was demonstrated at the utterance level

in Figure 2, it is noted that the representations of
utterance embeddings from IVG and GOI show
fewer outliers and less overlap compared to VD and
SAG. This distinctiveness potentially contributes
to improved classification results for IVG and GOI
at the quinphone level. The authors suggest that
the decreased performance of VD stems from the
proximity of small speech units to SAG, leading to
misclassifications in certain instances.

4.5 Speaker classification

The final group reflects speaker-related informa-
tion embedded in the quinphone audio data. The
average score is 0.36 with a standard deviation of
± 0.22. Notably, SPO (SAG) and HPO (VD) stand
out with the highest scores of 0.9 and 0.73, re-
spectively, while the remaining 14 speakers exhibit
scores ranging from 0.51 to 0.07 (see Figure 5).
The dummy classifier consistently yields a score of
0 in all cases.

The speaker classification achieves the second-
lowest accuracy, suggesting that the embedding
does not effectively capture information about the
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Figure 5: F1-scores for single speaker classification

speaker’s voice, which is expected for a model
trained on the task of LID. Speaker classification
only exceeds F1 values of 0.5 for the SPO (SAG),
HPO (VD), and JOE (VD) speakers. SPO and
HPO, both professional radio and TV speakers,
could potentially exhibit distinct speaking styles
due to their professional backgrounds. This diver-
gence in speaking style is likely manifested in the
embeddings, leading to a more pronounced sep-
aration between these two speakers compared to
others. JOE, as the singular youth voice in the cor-
pus, could impart a unique linguistic imprint to the
embeddings, potentially resulting in distinguish-
able language characteristics.

5 Conclusion

Understanding the intricacies of multilingual lan-
guage embeddings in capturing phonetic features
for unseen language varieties holds significant im-
portance in advancing the capabilities of automated
language processing systems. This study explores
the efficiency of multilingual language embeddings
derived from short audio segments (quinphones) in
capturing phonetic features for Austrian German
varieties. It shows that the multilingual wav2vec
2.0 model (fine-tuned on the task of LID) disentan-
gles speaker and language information for unseen
varieties of Austrian German. Furthermore, it indi-
cates that individual phones within a quinphone are
sufficient for the model to group or model specific
varieties. This supports the utilization of compre-
hensive multilingual language identification embed-
dings in diverse applications, including automatic
speech recognition, accent recognition, and lan-
guage identification. It is particularly relevant for
low-resource languages, where fine-tuning poses
challenges.

6 Limitations

In this study, we opted to split utterances into non-
overlapping segments to mitigate the potential is-
sue of similar embeddings arising from overlapping
segments. However, it is important to note that de-
spite this precaution, instances of repeated single
words between training and testing splits may still
arise, albeit infrequently. Furthermore, a notewor-
thy limitation of our methodology pertains to its
applicability to languages that lack closely related
counterparts in the pre-trained model, unlike Ger-
man and Austrian German. This discrepancy may
hinder the extension of our findings to languages
not adequately represented in the model’s training
data.

7 Ethical Considerations

No new data was recorded in this study. The
datasets utilized are anonymized, employing
pseudonyms and removing identifying informa-
tion to ensure the privacy and confidentiality of
the speakers. Explicit consent was obtained from
each individual speaker for the use of recordings for
research purposes. The findings do not marginalize
any dialects or reinforce any power dynamics. Fur-
thermore, the explainability of models that can be
achieved through an analysis on the phonetic level
contributes to making deep learning models more
transparent to the potential user.
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