Speechcake: Version Control for Speech Corpora

Vlad Dumitru', Matthias Boehm?, Martin Hagmiiller', Barbara Schuppler!,
!Signal Processing and Speech Communication Laboratory,
Graz University of Technology, Inffeldgasse 16c, 8010 Graz, Austria
2Berlin Institute for the Foundations of Learning and Data,
Technische Universitidt Berlin, Ernst-Reuter-Platz 7, 10587 Berlin, Germany

Correspondence: Martin Hagmiiller hagmueller @tugraz.at

Abstract

While the audio recordings of a corpus repre-
sent the ground truth, transcriptions are — in the
case of manual annotations — subject to human
error, and subject to changes related to tech-
nology improvements underpinning automated
annotation methods. In order to facilitate the
dynamic extension of speech corpora, we intro-
duce Speechcake, a tool for centralized version
control for speech corpora, enabling the auto-
matic check-in and merging of annotations. It
considers typical workflows of phoneticians,
linguists and speech technologists, and enables
the development of dynamic, collaborative, and
perpetually-improving speech corpora.

1 Introduction

Speech corpora are generally distributed as static
artifacts: after the initial publication, few updated
versions are released as snapshots, if any at all. This
one-shot release mechanism has a negative impact
on (1) the organization publishing the corpus, and
(2) on the larger research community using the data
in question: (1) Collecting, annotating, and pack-
aging a corpus requires a significant investment in
terms of time and human effort. Releasing a corpus
as a static artifact is done only when the annotation
process is complete. A dynamic release mechanism
allows this effort to be spread over a larger window
of time. (2) A static corpus fails to acknowledge
that annotations might contain errors and annotator
idiosyncrasies. Rosenberg, 2012 highlights some
issues found in classical static corpora such as the
Penn Treebank (Marcus et al., 1993), Switchboard
(Godfrey et al., 1992), Hub-4 (Graff et al., 1997)
and Boston University Radio News Corpus (Osten-
dorf et al., 1995), proposing version control soft-
ware as a solution. The core problem to solve is re-
producibility. When researchers correct errors they
find in a given dataset, these changes are not propa-
gated back to the original artifact, thereby making

it impossible for other parties to reproduce stud-
ies resulting from this locally modified/corrected
corpus.

This paper presents Speechcake, a system to pro-
vide the necessary tools for creating, extending, and
distributing dynamic speech corpora. Currently,
Speechcake supports working with annotations in
the Praat TextGrid format', although the system
can be easily extended to other similar formats
(i.e., a collection of tiers made from sequences of
time-ordered items). Diverging changes that result
from multiple annotators working on the same set
of files are resolved through three-way merging,
the successful result of which contains the changes
introduced by two parent versions, relative to a
common ancestor.

In practice, our system requires minimal setup to
use, either through its built-in web interface, which
only requires a relatively modern web browser, or
programmatically through its HTTP APIL. Speech-
cake is built such that it integrates easily in typical
workflows of phoneticians and linguists (e.g., man-
ual annotation requiring spectrogram reading), but
also in workflows of speech technologists (e.g., au-
tomatic speech recognition — ASR — tasks). Over-
all, Speechcake helps to improve the quality and
consistency of annotations across several annota-
tion layers, and facilitates the working processes of
speech scientists and technologists.

The software package consists of a web server
for serving dynamic corpora and a tool for the lo-
cal administration of repositories. Our code is
open source, available at https://github.com/
SPSC-TUGraz/speechcake, under the terms and
conditions of the MIT license. Submitting issues
and feature requests is encouraged.

1https: //www.fon.hum.uva.nl/praat/manual/
TextGrid_file_formats.html

303

Proceedings of the 20th Conference on Natural Language Processing (KONVENS 2024), pages 303-308
September 10-13, 2024 ©2024 Association for Computational Linguistics

mailto:hagmueller@tugraz.at
https://github.com/SPSC-TUGraz/speechcake
https://github.com/SPSC-TUGraz/speechcake
https://www.fon.hum.uva.nl/praat/manual/TextGrid_file_formats.html
https://www.fon.hum.uva.nl/praat/manual/TextGrid_file_formats.html

[1 a
1 2.5 b
2573 ¢
3 4 d
] 1 a
4 5 e|-
1A S L
Ll
1a]_-"|23c| - L.fo1A 4 5 e\@ 1 a
b 12B| |5 & f 1 2 b
2 3 c
3c|~alo1al..-7|23C 3 514
128 45 s e
23C¢C 5 6 f

(a) (b)

«

[l

«

VR WN RS
oA WN e
e
“ 0 an oo

(©)

Figure 1: Example merges for common use cases: (a) changing labels of non-overlapping intervals; (b) changing
boundaries of non-overlapping intervals; (c¢) changing boundaries of non-overlapping intervals, with a unique
separator added at the separation point between modifications. Line-oriented version control systems, such as for
source code management, fail to obtain the merge results in (a) and (b).

2 Related Work

Source Code Version Control In the field of
software engineering, source code version control
systems make it possible for hundreds or even thou-
sands of collaborators to work on the same set
of files. Such systems are inadequate for storing
annotation data, since their merge semantics are
aimed at resolving conflicts between source code
files, as opposed to annotation data. The most
commonly used algorithm for merging text files
is Diff3, which requires diverging versions to con-
tain the same unique line, such that the modified
parts are separated by this common line (Khanna
et al., 2007). While not an issue for source code
files, since lines such as function definitions or dec-
larations are generally unique within a given file,
line-oriented algorithms are a bad fit for annotation
data, where a clear separation between modifica-
tions may not exist. See for example Figure 1,
which shows two scenarios in which line-oriented
algorithms cannot merge diverging versions, even
when the changed intervals are not overlapping.

Data Version Control As opposed to source
code, which can be merged using line-oriented al-
gorithms, data comes in various shapes and sizes,
and the merge semantics for one particular type of
data may not fit any other. Instead, version con-
trol systems focus on particular data formats where
merge semantics can be clearly defined. While
Speechcake is a narrow embodiment where the un-
derlying merge semantics are defined for TextGrid-
like annotation data, several other, more general-
purpose approaches exist:

Dolt? is a database management system that fol-

2https://github.com/dolthub/dolt

lows the principles of Git, but whereas Git tracks
files within a hierarchy, Dolt tracks tables within a
database. Dolt databases, much like Git reposito-
ries, and Speechcake tiers, can be forked, cloned,
and merged.

Irmin (Farinier et al., 2015) is an OCaml library
that provides the foundation to developing purely
functional data structures that can be persisted on
disk, merged and synchronized effectively. The
library operates on user-supplied data types, which
are required to be serializable (for instance, to and
from JSON) and mergeable. The merge operation
takes two diverging versions and their lowest com-
mon ancestor (to be used as the base for the merge).
Combinators are provided for typical containers of
data, allowing users to declaratively define both the
runtime representation of data as well as its merge
semantics. In contrast to Speechcake, which is a
complete solution for version control of annotation
data, Irmin is distributed as a library that serves as
a foundation for building distributed data stores.

Corpus Management Software Existing speech
corpus management systems are not built around
the idea of collaborative access. While storing the
database itself under version control using an exter-
nal tool is supported, and even integrated in some
of the available solutions, none of them offer auto-
matic reconciliation of diverging versions, which
comes as a necessity in the context of multiple
annotators working in parallel.

EXMARaLDA is a collection of data formats and
software tools for creating, analyzing, and dissemi-
nating speech corpora (Schmidt and Worner, 2009).
The software package includes tools for creating
and editing transcriptions (Partitur-Editor), creating
and managing corpora and their associated meta-

304

https://github.com/dolthub/dolt

data (CoMa), and querying and analysing corpora
(EXAKT). While transcriptions can be individually
created and modified by annotators, the software
package does not include tools for version control,
as Speechcake does.

Praaline is an integrated system for manag-
ing, annotating, visualising, and analysing speech
corpora (Christodoulides, 2018), supporting the
most common transcription formats, such as Praat
TextGrid, EXMARaLDA, ELAN, and Transcrib-
erAG. While the system can be used over the net-
work, also Praline, like the earlier mentioned EX-
MARaLDA, does not consider version control and
collaborative aspects.

EMU-SDMS is a software package for visualis-
ing, annotating, segmenting and querying speech
databases (Winkelmann et al., 2017). In Jochim,
2017, the author extends the system with automatic
revision control using Git in the background to
commit the current state for every modification
registered, in a corpus-wide, linear timeline. In
comparison, Speechcake uses (conceptually) multi-
ple repositories, one for each tier, and allows tiers
to be branched and merged individually, without
having to align the state of the entire corpus.

Polyglot and Speech Corpus Tools was devel-
oped for unified corpus analysis (McAuliffe et al.,
2017). The data model uses a graph database for
storing annotation graph structures, a relational
database for metadata, and a time-series database
for acoustic data, combining all three into a poly-
glot persistence solution (Duggan et al., 2015).
Speechcake, in contrast, covers version control as-
pects, leaving content-based queries to external
tools which can operate on whole snapshots.

3 Data Model of Speechcake

The architecture of Speechcake was modelled after
the data formats at the boundaries of the system: on
the external side, version-control-augmented Praat
TextGrid files are used to interact with the outside
world. Internally, the annotation structure is that
of a TextGrid tier augmented with metadata useful
in query processing. On disk, a Speechcake repos-
itory consists of a single database file containing
the entire history of the corpus, allowing for easy
backup and maintenance.

Metadata Stamp In a normal Speechcake work-
flow, users check out only a handful of related tiers
(annotations of the same primary media). There-
fore, in order to be able to trace their origins

upon later check-in, tiers need to be augmented
(stamped) with metadata stored in the names of the
tiers, as TextGrid files provide no other opportu-
nity for storing additional information. While this
approach preserves compatibility with tools and li-
braries which interact with TextGrid files, it places
a constraint on the users not to impair the integrity
of the metadata contained in the stamps.

Annotation Structure As external data model,
Speechcake uses the TextGrid format for interop-
erability with other tools. Internally, a Speechcake
document holds two additional pieces of metadata:
a path and a label set. The path (a logical loca-
tion) is analogous to the fully-qualified filename
where the tier would be stored on a file system (a
physical location), relative to the root of the cor-
pus. By decoupling the logical from the physical
location, move operations are replaced by simply
changing a property on a given tier, thereby offer-
ing better feedback for the user as to what changed
from one version to the next. The path property,
whose length is variable, allows users to organize
their corpora in deep, nested structures. The label
set can be used for query processing. These labels,
as defined by the user for a specific corpus, may
contain any kind of information (i.e., speaker IDs,
type of annotation, attributes about the recording).

Repository Structure The main purpose of a
Speechcake repository is to hold a collection of
versioned tiers, each identified by a UUID (Leach
et al., 2005) assigned upon the tier’s initial cre-
ation. Tiers can be referenced in two ways: either
by their UUIDs, or by their fully-qualified path,
which includes the tier name as the terminal com-
ponent. Note that the former addressing method
is immutable (a UUID will always point to the
same tier), whereas the latter is mutable. The on-
disk format of a Speechcake repository contains (1)
all past and present versions of tiers, whose con-
tents are split into content-addressable chunks as a
form of data de-duplication (Xia et al., 2020), (2)
a temporary storage space for tiers that have been
checked-in, but not yet submitted to the corpus, and
(3) a log of destructively overwriting operations,
such as altering the metadata of tiers.

4 Update Process

Check-In Users check in a set of locally modi-
fied tiers by uploading a TextGrid file via the web
interface. Once uploaded, Speechcake will first in-

305

spect the tiers’ metadata and verify that they are
part of the corpus. Unknown tiers are rejected, and
successfully identified ones go into a temporary
storage area, unique to each user. New tiers, identi-
fied as such for not having any stamp, can be added
to the TextGrid file, and they will be stored along-
side the rest of the tiers within the file (i.e., under
the same parent path).

Commit Committing a tier involves moving it
from the users’ temporary area into the corpus, with
an optional comment describing the modifications
performed. Speechcake will then attempt to mark
the new version as being the /atest, which can only
be accomplished if the new version has the current
latest version as a direct parent, meaning that no
other modification has been performed since the
user has checked out this particular version. If this
is not the case, then the newly-submitted version
has to be merged with the current latest version,
the successful result of which will then be added
as another version, and marked as being latest.

Three-Way Merge A merge operation takes two
diverging versions X and Y and their lowest com-
mon ancestor (or base version) B, and produces a
new version which incorporates all changes intro-
duced by both X and Y. This mechanism prevents
accidental overwriting of data (arising from e.g.,
two users simultaneously modifying a tier), which
may lead to information loss.

For two related tiers A and B, the changes intro-
duced by B on top of A can be described in terms
of a diff between the two, composed of three sets of
items: A\ B (items removed), B\ A (items added),
and A N B (items kepr). Since tiers are totally or-
dered sets, where the order operation is given by
comparing the lower temporal bound of the two
items, the diff operation only needs to iterate over
the longer of the two tiers in order to compute the
three sets, having an expected-time performance
of O (max (|A],|B])). In contrast, the default diff
algorithm used in Git has an expected-time perfor-
mance of O (N D), where N is the sum of lengths
of A and B, and D is the size of the minimum edit
script for A and B (Myers, 1986).

To merge X and Y relative to B, Speechcake
first computes the two diffs (X \ B, B\ X, X N B)
and (Y'\ B, B\'Y,Y N B). The common base C'is
computed as X N'Y N B, and represents the set of
items that were unaffected by either versions. Fi-
nally, the merged version is obtained by interspers-
ing (by means of set union) both "items added" sets

over the common base: (X \ B)U (Y \ B)UC.

Merge conflicts are detected in the interspersal
phase: the union can be computed by iterating over
the sets in parallel and moving the item with the
lowest lower bound into the output. The algorithm
keeps track of the upper bound of the last item
copied to the output set, and compares this upper
bound with the next incoming lower bound. If
the next lower bound comes before the last upper
bound, then the two items are in conflict, and the
operation is aborted.

In order to check whether a merge operation
will be successful, the intersection of the sets of
added items (either points or intervals) must be the
empty set, where equality is determined by both the
timing and the contents of the item. Otherwise, a
merge conflict in the form of a TextGrid file is gen-
erated, containing the two conflicting tiers merged
except for the conflicting intervals. The user then
has adapt the changes, leaving only one tier in the
TextGrid file, which upon checking back in is used
to resolve the conflict.

5 Conclusions

We introduced Speechcake, a version control sys-
tem for speech corpora, which allows for faster
development cycles and better collaboration be-
tween annotators and scientists. Our tool primarily
supports Praat TextGrid files, making it easy to inte-
grate in workflows which already make use of said
file format. Questions such as Where does this file
belong? or Is my file the latest version? are posed
and answered by the check-in process, whose role
is to minimize user input required to store or update
files in the corpus. We have shown the inadequa-
cies of line-oriented merge algorithms, and have
proposed a novel, semantics-aware solution. Our
tool is extendable through a public API through
which automated solutions can interact with the
repository. We believe our work inspires further
developments in domain-specific version control.

6 Acknowledgements

The work by B. Schuppler was partly funded by
an Elise Richter grant (V638 N33) and by grant
P-32700, both from the Austrian Science Fund.

References

George Christodoulides. 2018. Praaline: An open-
source system for managing, annotating, visualising

306

https://doi.org/10.18653/v1/P18-4019
https://doi.org/10.18653/v1/P18-4019

and analysing speech corpora. In Proceedings of the
Annual Meeting of the Association for Computational
Linguistics 2018.

Jennie Duggan, Aaron J. Elmore, Michael Stonebraker,
Magda Balazinska, Bill Howe, Jeremy Kepner, Sam
Madden, David Maier, Tim Mattson, and Stan
Zdonik. 2015. The BigDAWG polystore system.
SIGMOD Record, 44(2):11-16.

Benjamin Farinier, Thomas Gazagnaire, and Anil Mad-
havapeddy. 2015. Mergeable persistent data struc-
tures. In Proceedings of Journées Francophones des
Langages Applicatifs 2015, Le Val d’Ajol, France.

J.J. Godfrey, E.C. Holliman, and J. McDaniel. 1992.
Switchboard: telephone speech corpus for research
and development. In Proceedings of the Interna-
tional Conference on Acoustics, Speech, and Signal
Processing 1992, volume 1, pages 517-520 vol.1.

David Graff, Zhibiao Wu, Robert Maclntyre, and Mark
Liberman. 1997. The 1996 broadcast news speech
and language-model corpus. In Proceedings of the
DARPA Workshop on Spoken Language technology,
pages 11-14.

Markus Jochim. 2017. Extending the EMU Speech
Database Management System: Cloud hosting, team
collaboration, automatic revision control. In Pro-
ceedings of INTERSPEECH 2017, pages 813-814.

Sanjeev Khanna, Keshav Kunal, and Benjamin C Pierce.
2007. A formal investigation of diff3. In Proceed-
ings of the International Conference on Foundations
of Software Technology and Theoretical Computer
Science 2007, pages 485—-496. Springer.

Paul J. Leach, Michael Mealling, and Rich Salz.
2005. A Universally Unique IDentifier (UUID) URN
Namespace. RFC 4122, RFC Editor.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and Beat-
rice Santorini. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313-330.

Michael McAuliffe, Elias Stengel-Eskin, Michaela So-
colof, and Morgan Sonderegger. 2017. Polyglot and
Speech Corpus Tools: A system for representing,
integrating, and querying speech corpora. In Pro-
ceedings of INTERSPEECH 2017.

Eugene W. Myers. 1986. An O(ND) difference algo-
rithm and its variations. Algorithmica, 1:251-266.

Mari Ostendorf, Patti J Price, and Stefanie Shattuck-
Hufnagel. 1995. The Boston University radio news
corpus. Linguistic Data Consortium, pages 1-19.

Andrew Rosenberg. 2012. Rethinking the corpus: Mov-
ing towards dynamic linguistic resources. volume 2.

Thomas C. Schmidt and Kai Worner. 2009. EXMAR-
aLLDA - creating, analysing and sharing spoken lan-
guage corpora for pragmatic research. Pragmatics.

Quarterly Publication of the International Pragmat-
ics Association, 19:565-582.

Raphael Winkelmann, Jonathan Harrington, and Klaus
Jansch. 2017. EMU-SDMS: Advanced speech
database management and analysis in R. Computer
Speech & Language, 45:392—410.

Wen Xia, Xiangyu Zou, Hong Jiang, Yukun Zhou,
Chuanyi Liu, Dan Feng, Yu Hua, Yuchong Hu, and
Yucheng Zhang. 2020. The design of fast content-
defined chunking for data deduplication based stor-
age systems. IEEE Transactions on Parallel and
Distributed Systems, 31(9):2017-2031.

A Limitations

Annotation Format Speechcake currently only
supports Praat TextGrid files. We plan on extend-
ing our tool in subsequent versions to support other
annotation file formats. This can be done in one
of two ways — either the new format is a subset of
TextGrid, in which case Speechcake can convert
it without loss of information, or the new format
is a superset, in which case the three-way merg-
ing algorithm needs to be extended to support new
merge semantics. Potential users are encouraged to
contact us and describe their use cases.

Large File Storage Speechcake does not address
the storage of primary media (e.g., audio and/or
video recordings), as these are not subject to change
throughout the existence of the corpus, and support-
ing integration with large file storage tools would
significantly increase Speechcake’s implementation
complexity due to the need of supporting poten-
tially multiple protocols (e.g., HTTP, FTP, S3) and
authentication/authorization methods. Therefore,
the storage and distribution of primary media is left
to other tools and systems. In order to match the
primary media with their annotations, we suggest
using the primary media’s filename as a component
of the annotations’ path.

User Management Again for the purpose of lim-
iting the implementation complexity, Speechcake
has its own user management system, and updates
do not interface with protocols such as LDAP for
authentication and/or authorization. User-sensitive
information such as name, email, and affiliation are
kept in a separate database, and within the corpus
database, users are only identified by an opaque
UUID. This is done in order to comply with the
General Data Protection Regulation (GDPR), such
that user information can be removed or altered
at any time without impacting the history of the
corpus. Other tools such as Git include authorship
information (name and email) for every commit,

307

https://doi.org/10.18653/v1/P18-4019
https://doi.org/10.1145/2814710.2814713
https://hal.inria.fr/hal-01099136
https://hal.inria.fr/hal-01099136
https://doi.org/10.1109/ICASSP.1992.225858
https://doi.org/10.1109/ICASSP.1992.225858
http://www.rfc-editor.org/rfc/rfc4122.txt
http://www.rfc-editor.org/rfc/rfc4122.txt
https://doi.org/10.1016/j.csl.2017.01.002
https://doi.org/10.1016/j.csl.2017.01.002
https://doi.org/10.1109/TPDS.2020.2984632
https://doi.org/10.1109/TPDS.2020.2984632
https://doi.org/10.1109/TPDS.2020.2984632

making operations such as changing one’s name
require a full rewrite of the repository’s history.

Number of Concurrent Writers The storage
backend of Speechcake prohibits more than one
user from performing modifications on the corpus
at the same time. This limitation is not noticeable
in practice, since modifications take on the order
of milliseconds to complete, and does not affect
users who browse or download parts of the corpus
— Speechcake supports a virtually unlimited number
of read operations at any given time, even when
another user is performing modifications, in which
case readers will see the last valid snapshot of the
corpus.

B Ethical Considerations

The paper does not raise any ethical issues, as no
human participants were studied. The corpora used
for the development of the tool were datasets al-
ready published for academic research prior to this
work, and they were collected following the inter-
national ethical requirements as suggested by the
American Psychological Association.

308

