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Abstract

Unsupervised text classification, with its most
common form being sentiment analysis, used
to be performed by counting words in a text
that were stored in a lexicon, which assigns
each word to one class or as a neutral word.
In recent years, these lexicon-based methods
fell out of favor and were replaced by computa-
tionally demanding fine-tuning techniques for
encoder-only models such as BERT and zero-
shot classification using decoder-only models
such as GPT-4. In this paper, we propose an al-
ternative approach: Lex2Sent, which provides
improvement over classic lexicon methods but
does not require any GPU or external hardware.
To classify texts, we train embedding models to
determine the distances between document em-
beddings and the embeddings of the parts of a
suitable lexicon. We employ resampling, which
results in a bagging effect, boosting the perfor-
mance of the classification. We show that our
model outperforms lexica and provides a basis
for a high performing few-shot fine-tuning ap-
proach in the task of binary sentiment analysis.

1 Introduction

Most commonly, text classification is performed in
a supervised manner by using a previously labeled
data set to train a learning-based model to predict
the sentiment of unlabeled documents. When a
labeled data set is not available, an unsupervised
labeling approach is useful to provide valuable ini-
tial information for an active learning approach or
to label the texts right away, when a near-perfect
classification is not strictly necessary. However,
such unsupervised models often require financial
backing or a high performing GPU to use on a large
data set.

In this paper, we propose Lex2Sent, a model
mainly designed for sentiment analysis, that can
however be used for any binary text classification
problem, where external resources in the form of
lexica are available. We will thus define the model
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for any arbitrary binary classification. Lex2Sent
uses text embedding models to estimate the similar-
ity between a document and both halves of a given
binary lexicon. These distances are calculated for
multiple resampled corpora and are aggregated to
achieve a bagging-effect. As Doc2Vec models are
usually trained on the CPU, the method demon-
strated here can be fully realized in low hardware
resource environments that do not have access to
a GPU or the financial means to let commercial
models such as GPT label thousands of documents.
As the Lex2Sent’s architecture is not dependent on
the language of choice, it can also be used in other
languages than English, including low resource
languages for which no powerful language mod-
els are available. To demonstrate that the results
are generalizable, we compare them to the ones
of traditional lexicon methods on three data sets
with distinct characteristics. To assess the perfor-
mance to the modern unsupervised classification
state of the art, we compare Lex2Sent’s results to
GPT-3.5 on one data set. We also extend this ac-
tive learning approach by fine-tuning a RoBERTa
model on a sufficient subset of the labels predicted
by Lex2Sent. This can be seen as an initial starting
point for active learning approach.

The paper is structured as follows. In Section 2,
we discuss previous approaches to text classifica-
tion and research on resampling techniques for
texts. Section 3 introduces our classification model
by describing the Doc2Vec model, the unsuper-
vised labeling approach and the resampling proce-
dure used. The data sets and lexica used are spec-
ified in Section 4. In Section 5, the classification
rates of Lex2Sent are compared to lexicon methods
and the performance of Chat-GPT. We also show
that we can use the results of Lex2Sent for an ini-
tial fine-tuning of a pre-trained language model in
few-shot setting. In Section 6, we conclude and
give an outlook to further research.
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2 Related Work

When little to no labeled data is available, usu-
ally text classification is performed in one out of
three ways. That is, by using either traditional lex-
icon methods, decoder-only models like GPT or
parameter efficient fine-tuning methods to fine-tune
pre-trained language models.

Traditionally, researchers  used  lex-

ica/dictionaries that were meant to substitute the
missing supervised label information by external
information. For sentiment classification, such
lexica contain both a list of positive and negative
words, which could simply be counted within
a text. Commonly used lexica include VADER
(Hutto and Gilbert, 2014), Afinn (Nielsen, 2011),
Loughran-McDonald (Loughran and McDonald,
2010), the WKWSCI lexicon (Khoo and Johnkhan,
2018) and the Opinion lexicon (Hu and Liu,
2004). Even within a specific task such as binary
sentiment classification, these lexica are often
designed for a specific use case. For instance,
the Loughran-McDonald lexicon is designed for
economic text data, while VADER is designed
for social media data. Lange and Jentsch (2023)
perform a sentiment analysis of German political
speeches and use Lex2Sent with a lexicon base
specifically designed for German political text data
(Rauh, 2018).
This method is very resource-savvy, but yield
worse performance than the other two methods.
Nowadays, lexica are usually only used in low
hardware resource environments or by researchers
of social science disciplines, because they are
white-box algorithms that are easy to interpret.

Alternatively, GPT-4 (Brown et al., 2020) or any
other large language model (e.g. Llama 2 (Touvron
et al., 2023), Mixtral (Jiang et al., 2024) or Jamba
(Lieber et al., 2024)) can classify any document in a
zero-shot manner due to their language understand-
ing capabilities. Using GPT-4 or GPT-3.5 for large
corpora requires financial backing not everyone has
access to though and similarly, open source large
language models need a GPU with large vram.

Lastly, a pre-trained Transformer model like
BERT (Devlin et al., 2019) or RoBERTa (Liu et al.,
2019), that was additionally fine-tuned on the task
at hand, might help when a GPU is available, that
cannot handle a large language model. This how-
ever yields the downside of using classification
rules that are not based on the texts the model is
meant to be used on. Instead, the model might carry

a bias from a different subject over to the classifi-
cation: the sentiment of a text might be based on
completely different clues based on whether the
text is a political speech or a social media post.
This can be avoided by fine-tuning the model one-
self, which, in turn, needs labeled data. To reduce
the amount of data needed, active learning (Thar-
wat and Schenck, 2023) is increasingly being used
in combination with few-shot learning techniques.
Parameter-efficient fine-tuning (PEFT, Mangrulkar
et al., 2022) uses adapter methods such as Low
Rank Adaption (LoRA, Hu et al., 2021) to fine-
tune language models with fewer training param-
eters than usual, and is thus suited to fine-tune on
few-shot examples to achieve adequate results. Pat-
tern exploiting training (PET, Schick and Schiitze,
2021) uses the language understanding capabilities
of language models to its advantage by “explaining”
the task to the model. As Rieger et al. (2024) show,
such methods can even be effectively combined
into one.

Contrary to these approaches, we propose a fully
unsupervised approach that can be used in low hard-
ware resource environments, in which no access to
a GPU is available and where there is no financial
backing to let commercial models like GPT label
thousands of documents. We do this by employing
CPU-based embedding algorithms that leverage
external information using lexica and are further
improved by resampling, resulting in a bagging
effect. Improving embedding-based text classifi-
cation with the help of lexica has been explored
by Shin et al. (2017), Mathew et al. (2020a) and
Mathew et al. (2020b), but neither analyze a combi-
nation of embeddings and lexica for unsupervised
analysis.

Xie et al. (2020) use resampling to improve the
performance of supervised sentiment models by
resampling words with certain probabilities based
on their tf-idf-score or by translating the original
document into another language and then trans-
lating it back to the original language. Similar
augmentations can be performed with the nlpaug-
package (Ma, 2019). This allows the user to, for
instance, use embedding models, be it static mod-
els like Word2Vec (Mikolov et al., 2013) or contex-
tual masked language models like BERT (Devlin
et al., 2019). These types of data augmentation and
resampling are most often used as additional train-
ing data for the embedding models and supervised
methods. In this paper, instead of resizing the train-
ing set, we create multiple different training sets, on
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which one embedding model is trained each. Ag-
gregating the information from these models into
one combined classifier creates a bagging effect,
improving the classification rate. Furthermore, we
investigate the advantage of using such augmenta-
tion and resampling techniques in an unsupervised
setting.

The procedures used by Xie et al. (2020) and
Ma (2019) do however change the existing vo-
cabulary. They either change the vocabulary by
back-translation or resampling the document de-
pendently from other documents due to the tf-idf-
scoring or even introduce completely new words
that are not part of the corpus at all by changing
words based on similiar words in a given embed-
ding space. This might be counter-productive for
an unsupervised analysis, as the texts are not used
as a training data set, but are supposed to be evalu-
ated themselves. Changing the vocabulary might
introduce a bias and hinder the classification per-
formance, as the external information provided
to classify the texts is given by the lexica, which
are essentially word lists and thus more likely to
work accurately to work with unchanged vocabu-
lary. The resampling procedures in this paper are
instead based on those employed by Rieger et al.
(2020), who used resampling procedures to ana-
lyze the statistical uncertainty of the topic model-
ing method Latent Dirichlet Allocation. We chose
those procedures, as they augment or resample the
texts independently from another and do not add
new words to the vocabulary.

3 Lex2Sent

In this section we propose Lex2Sent, a bag-
ging model for unsupervised sentiment analysis.
Lex2Sent is published as a Python package. The
code can be found on GitHub'.

3.1 Lexica

To perform unsupervised text classification, lexica
can be used to interpret the words in a text without
the need for previously labeled documents of a sim-
ilar corpus, as they provide external information.
This information is provided in the form of key
words, which a lexicon assigns to a certain class.
For our analysis, we use binary lexica, that are
used to separate words between two disjoint classes
A and B. Such a lexicon assigns a value from an
interval [—s, s] with s € RT to all words, while

"https://github.com/K-RLange/Lex2Sent

assigning the value 0 to all neutral words. It assigns
positive values to all words it deems to belong to
class A and negative values to all words, it deems to
belong to class B. To enable some words to have a
larger weight during the classification process, lex-
ica might give words different values. For instance,
the word “fantastic” might receive a higher score
than the word “good” when using a sentiment anal-
ysis lexicon, as it conveys an even stronger positive
emotion. We modify such a binary lexicon to con-
sist of two halves, one for each of the two classes.
These halves are defined as lists of words in a way
that each word that belongs to either class A or
class B occurs exactly once in its respective half.
Only neutral words are not assigned to a half. This
enables the use of lexicon-based text embeddings.
As we use static embeddings, a key word’s em-
bedding is not changed, even if it is negated in a
document. To incorporate the concept of negations
into Lex2Sent, we merge negations with the fol-
lowing word during preprocessing. The term “not
bad” is thus changed to “negbad”. “negbad” is
then added to the opposite lexicon half of the word
“bad”, so that Lex2Sent can interpret it correctly.

3.2 Lexicon-based text embeddings

Instead of looking only at key words, text embed-
dings can be used to analyze semantic similarities
to other words. This enables us to identify the class
of a text using words that are not part of the lexicon.

Text embedding methods create an embedding
for each document, which represents the document
as a real vector of some fixed dimension g. They
are created using the word embeddings of all words
in the current document and can be interpreted as
an “average” word embedding. We thus interpret
the text embedding of a lexicon half as an average
embedding of a word of its respective class. Cal-
culating the distance between the embedding of a
document in the corpus and the embedding of a
lexicon half is used as a measure of how similar a
given document is to a theoretical document that is
the perfect representation of that class.

As an alternative to the approach mentioned
above, we also looked at the average distance of a
document’s text embedding to all word embeddings
of the sentiment words that appear in the document
itself, to analyze only its difference to the parts of
the lexicon that are part of the document. However,
this yielded a classification rate that is comparable
to the traditional lexicon classification itself and
does not provide substantial improvement over it.
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It will thus not be further reported in this paper.
The distance is calculated using the cosine dis-
tance
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for two vectors a = (a1,...,a,)T € R%and b =
(b1,...,by)T € RY (Li and Han, 2013).

For our purposes of classifying documents into
two classes, let A; be the cosine distance of a text
embedding of a document to the text embedding of
the positive half of a sentiment lexicon and B, be
the cosine distance to the negative half. Then, the
larger (smaller) the value

cosDist(a,b) =1 —

dl_ﬁd :Bd —Ad

is for a document d, the more confident the lexicon-
based text embedding method is, that this document
d in fact belongs to class A (B).

This method can be performed using any text
embedding model in combination with any lexicon
that enables a binary classification task. In this
analysis, we choose Doc2Vec (Le and Mikolov,
2014b) as the baseline text embedding model and
analyze texts for their sentiment.

3.3 Doc2Vec

Doc2Vec (Le and Mikolov, 2014a) is based on the
word embedding model Word2Vec (Mikolov et al.,
2013), which assigns similar vectors to semanti-
cally similar words by minimizing the distance of
a word to the words in its context.

Since word embeddings are not sufficient to clas-
sify entire documents, the model is extended to
text embeddings. A Doc2Vec model, using the Dis-
tributed Memory Model approach, uses a CBOW
architecture (Mikolov et al., 2013) in which a docu-
ment itself is considered a context element of each
word in the document. The distance of the docu-
ment vector to each word vector is minimized in
each iteration, resulting in a vector that can be in-
terpreted as a mean of each of its words. According
to Le and Mikolov (2014a), these text embeddings
outperform the arithmetic mean of word embed-
dings for classification tasks. In this paper, we use
the Doc2Vec implementation of the gensim pack-
age in Python (Rehiifek and Sojka, 2010).

Formally, we consider D documents and de-
note by N; the number of words in document
d € {1,...,D}. Further, fori € {1,..., N4},

let w; 4 be the i-th word in document d and wqqc
denote the document under consideration. To give
larger weight to words that follow up on another
than words that are far away from another, the win-
dow size is varied during training. For a Doc2Vec
model, we denote by K the maximum size of the
context window. For every word the effective size
is then sampled from {1, ..., K} and is denoted as
kp, 4. With these windows, the log-likelihood

Ny—K

Z In (p(wn,d‘wn—kn,d,d, .

n=K

» Wntk,y, q,d> wdoc))

is maximized for the documents d = 1, ..., D us-
ing stochastic gradient descent. p(+|-) is calculated
by the resulting probabilities from a hierarchical
softmax (Mikolov et al., 2013).

We also investigated, if the Lex2Sent method
would work when using a pre-trained language
model, in this case RoBERTa-large (Liu et al.,
2019), as the embedding-backend. For this, we
used the CLS-vectors of the lexicon halves and the
documents to create lexicon-based text embeddings
(similar to Mathew et al. (2020b)). These results
underperformed compared to Doc2Vec though, as
they showed a bias for one of the two classes.

3.4 Text resampling

Word and text embedding models analyze the orig-
inal text structure to create similar word embed-
dings for semantically similar words. We assume
that lexicon-based text embeddings need an “opti-
mal text structure” to identify the class of the text
in the most efficient manner. Suppose a text con-
tains a key word that is a strong indicatior for the
classification task at hand and contained within the
lexicon used. The location of such key words can
be biased by the type of text. For instance, when
analyzing reviews for their sentiment, most key
words are located in the last third of the text, as this
part draws the conclusion to the review. By resam-
pling the text, we relocate the key words evenly
within texts. In theory, this enables vocabulary that
occurs more often in texts of a specific sentiment
that is not part of any sentiment lexicon, such as
topic-specific vocabulary, to be used for labeling
texts more efficiently while training Doc2 Vec.

We leverage resampling procedures proposed by
Rieger et al. (2020), who used them to analyze the
uncertainty of the Latent Dirichlet Allocation. In-
stead of analyzing our methods uncertainty, we use
these procedures to create optimal text structures
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and create a bagging effect. For this, we interpret
the original text as a bag of words in which words
are drawn independently with replacement like ob-
servations when creating a bootstrap sample (Efron,
1979) or independently without replacement, result-
ing in a permutated text. We call these procedures
BW (Bootstrap for Words) and BWP (Bootstrap for
Word Permutation), respectively. We analyzed ad-
ditional procedures, such as resampling sentences
as a whole or resampling words only within sen-
tences and variations of those, but these generally
yielded lower classification rates than the procedure
described above.

3.5 Bagging

In this subsection, we describe a technique to ag-
gregate multiple text embeddings for the purpose
of unsupervised sentiment analysis. In combina-
tion with resampled texts, this can be seen as a
bagging method for unsupervised text classifica-
tion (Breiman, 1996). Every text structure has an
effect on the classification of lexicon-based text
embeddings, as differing syntax and vocabulary
change the resulting embeddings. However, identi-
fying whether the texts already have an “optimal”
structure is a difficult task, as this is an abstract
concept that is not trivial to formalize. Instead of
relying on the original texts’ structure, resampling
enables the possibility to create an arbitrary num-
ber of artificial texts. If we aggregate these text
embedding models, they do not have to label a
document correctly for one text structure (that is
the original text), but instead only have to label a
document correctly on average based on multiple
differently structured texts. This aggregation also
balances out the randomness of generating samples
and the negative effect of missing out on a crucial
word within documents in one resampling sample,
as it will probably appear in other samples.

The aggregation is performed by calculating an
average diff-vector using B resampling iterations.
Let diff Z be the d-th element of the diff-vector for
the b-th lexicon-based text embedding model with
d=1,...,D. Then

B
1
diff 3" == 5 > diff5
b=1

defines the d-th element of the averaged diff -vector.

3.6 Algorithm and Implementation

In training, the algorithm iterates over a grid, calcu-
lating models for different training epochs, context

window sizes and embedding dimensions. For our
application, we use a 3 x3 x4-grid, which turns out
to be sufficiently beneficial in application while re-
maining computationally feasible. The parameters
are chosen from an equidistant set over reasonable
parameter choices (see Algorithm 1 for the parame-
ter choices). The grid can be adjusted according to
the practitioner’s problem at hand. For instance, a
smaller grid is faster to train, but a larger grid will
lead to more robust results. In each iteration, the
parameter combination for the Doc2Vec model is
chosen from the grid and the corpus is resampled.
The resampled documents are sorted ascendingly
by their respective absolute lexicon score. Then
we train a Doc2Vec model and calculate the diff
vector for all iterations. The classification task is
performed by using the component-wise arithmetic
mean of all the 36 diff-vectors. The algorithm is
described as pseudocode in Algorithm 1.

Given a classifier v = (21,...,2p) € RY, the
document with the index d € {1, ..., D} is labeled

class A, zg—1t <0
label; = ¢ class B, rg—t>0, teR
atrandom, z4—t=20

for some threshold ¢ € R. This might be t = 0
or the empirical quantile ¢ = xz,), where p is the
estimated proportion of texts of class B based on
a-priori knowledge. In the analyses of this paper,
we assume to have no a-priori knowledge of the
distribution of class labels, so we use t = 0.

4 Data sets and lexica

In this section, the two sentiment lexica and three
data sets used to evaluate Lex2Sent are described.

4.1 Data sets

The three data sets considered in this paper are cho-
sen to cover texts with distinct features. The iMDb
data set consists of a large corpus with long docu-
ments and a strong sentiment compared to the other
two data sets. The Airline dataset is more than four
times smaller and the documents themselves are
also shorter. The Amazon data set represents an
intermediate case between these two data sets.
The texts are tokenized and stop words as well
as punctuation marks and numbers are removed.
Lemmatization is performed to generalize words
with the same word stem, if the original word from
the text does not already appear in the lexicon. The
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Algorithm 1 Lex2Sent

procedure LEX2SENT(TEXTS, THRESHOLD, LEXICON, RESAMPLING)

classifier < [0] * length(texts)

for (epoch, window, dim) in Grid = ({5, 10, 15}, {5, 10, 15}, {50, 100, 150, 200}) do

resampled_texts <— resampling(texts)

model <— Doc2Vec(sorted_resampled_texts, epoch, window, dim)
emb < lexicon_based_text_embeddings(model, resampled_texts)

for i in 1:length(emb) do

1:
2
3
4
5: sorted_resampled_texts <— sort(resampled_texts, lexicon)
6
7
8
9

classifier[i] + = emb[i]

10: return label_by_threshold(non_resampled_texts, classifier, threshold)

mentioned methods and stop word list are part of
the Python package nlitk (Bird et al., 2009).

iMDb data set The iMDb data set consists of
50,000 user reviews of movies from the web-
site iMDb . com, provided by Stanford Univer-
sity (Maas et al., 2011). These are split into
25,000 training and test documents, each contain-
ing 12, 500 positive and negative reviews. After
preprocessing, each document in the data set is
120.17 words long on average.

Amazon Review data set The Amazon data set
is formed from the part of the Amazon Review Data
which deals with industrial and scientific products
(He and McAuley, 2016). All reviews contain a rat-
ing between one and five stars. Reviews with four
or five stars are classified as positive and reviews
with one or two stars are classified as negative. We
removed reviews with a rating of three stars from
the data set because the underlying sentiment is nei-
ther predominantly negative nor positive. In addi-
tion, we filtered out reviews consisting of less than
500 characters. Out of the remaining documents,
52,000 documents are split into 26, 000 training
and 26, 000 test documents, which are formed from
13,000 positive and 13, 000 negative documents
each. The average length of all documents in the
training corpus is 85.51 words after preprocessing.

Airline data set The third data set consists of
11, 541 tweets regarding US airlines and was down-
loaded from Kaggle (Crowdflower, 2015). The
tweets are categorized into positive or negative
tweets — 3099 neutral tweets are deleted to be able
to use the data set for a two-label-case. We split this
data set in half into a training and test set. The train-
ing set ultimately contains 5570 documents. On
average, each document of the training set contains
10.60 words after preprocessing. In comparison to

the other two data sets, where the labels are evenly
split, in the Airline data set only 1386 and thus
24.02% of the documents are labeled positive.

4.2 Lexica

To demonstrate that the performance is not depen-
dent on the lexicon chosen as a base, we show the
performance for three lexica: The Opinion Lexi-
con (Hu and Liu, 2004) is used to represent as a
review-specific sentiment lexicon, while the WK-
WSCI lexicon (Khoo and Johnkhan, 2018) is cho-
sen as multiple-purpose lexicon. The Loughran-
McDonald (Loughran and McDonald, 2010) lexi-
con was designed for economic texts and not for
reviews, hence it represents the case in which a lex-
icon is used in a sub optimal domain. To make sure
that Lex2Sent not only outperforms these two lex-
ica, we also observed the classification rate when
using VADER (Hutto and Gilbert, 2014) or Afinn
(Nielsen, 2011) lexicon in the traditional way and
compare these results to the one of Lex2Sent in
Section 5.3.

We added four amplifiers and ten negations to
improve the classification. If an amplifier occurs
before a key word, its value is doubled and if a
negation occurs, it is multiplied by —0.5. For tradi-
tional lexicon methods, the classifier is created by
summing up the values of all words within a text.

5 Evaluation

The classification rates of Lex2Sent in this section
are determined by evaluating 50 executions to ob-
serve the method’s randomness and to get a metric
for the average performance.

Table 1 displays the average classification rates
of a WKWSClI-based Lex2Sent and the classifi-
cation rate of the best performing sentiment lex-
icon for each data set, split by the classification-
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Table 1: Average classification rate in percent of a WKWSCI-based Lex2Sent in comparison to the best lexicon
method (in brackets), split into whether the fixed or proportion threshold is used

WKWSClI-based Lex2Sent | Lexicon with the highest classification rate
threshold || by proportion 0 by proportion ‘ 0
iMDb 80.93 80.01 76.82 (TextBlob) | 73.32 (Opinion Lexicon)
Amazon 77.08 76.83 71.91 (VADER) | 69.28 (Opinion Lexicon)
Airline 79.11 72.42 82.05 (VADER) | 68.33 (Opinion Lexicon)

threshold used. The WKWSCl-lexicon is chosen
as a basis for Lex2Sent as it is a multiple-purpose
lexicon. Lex2Sent outperforms every of the 6 ob-
served lexica on all three data sets when using the
threshold 0, as it would usually be done in an fully
unsupervised setting without a-priori knowledge. It
also outperforms the lexica in two out of three cases
in which the exact proportion of positive to nega-
tive documents is assumed to be known. Here it is
only outperformed by VADER on the Airline data
set, which is likely because this data set consists of
short documents which do not give the Doc2Vec
models much context to train on per document.

While Lex2Sent outperforms these lexica, it does
not outperform Chat-GPT. Laskar et al. (2023)
report that GPT-3.5 (text-davinci-003)
reaches an 91.9% classification rate on the iMDb
data set. While it is not known, if GPT-3.5 has seen
this data set and its labels during training and it thus
might have an unfair advantage by knowing the cor-
rect results (Li and Flanigan, 2024), due to its gen-
erally high performance on unsupervised classifi-
cation tasks, we can assume that it will outperform
Lex2Sent, at least on most data sets. Lex2Sent
does yield the advantage of not requiring financial
backing to analyze large data sets though. Only a
CPU is needed.

5.1 Different resampling procedures

In this section, we investigate the effect of differ-
ent resampling procedures on the performance of
Lex2Sent. We examine the results of a WKWSCI-
based Lex2Sent using either one of the resampling
procedures defined in Section 3.4 or no resampling
at all for the iMDb data set. Additionally we inves-
tigate the classification rate when using texts sorted
by their absolute lexicon value (key words grouped
at the end of a text). This serves as an ablation anal-
ysis to distinguish the effects of resampled, natural
and sub optimal text structures (sorted texts).
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Figure 1: Results of the WKWSCI-based Lex2Sent on
the iMDb data set for different resampling procedures

In comparison to the classification rates dis-
played as boxplots in Figure 1, this subotimal text
structure results in a strongly decreased classifi-
cation rate of 71.00%, which is in line with our
interpretation of Section 3.4. The bagging-effect
is visible for both procedures, as using either re-
sults in higher classification rates for the iMDb data
set, with BW yielding the best performance. The
method’s stability is also increased, as the classi-
fication rates are more consistent, which can be
seen by comparing the size of the respective box
plots. Similar results (not reported) also occur for
the other two data sets. For the rest of this paper,
all further results are thus reported for Lex2Sent
using BW resampling.

5.2 Evaluation on smaller corpora

As Lex2Sent requires training to accurately repre-
sent words with embeddings, it is important to de-
termine how large a corpus needs to be for it to pro-
vide sufficient results. To analyze this, we evaluate
Lex2Sent for subsamples of each data set. These in-
clude 10%, 25% or 50% of the original documents.
The results of 50 repetitions are displayed in Ta-
ble 2. The classification rates decrease for smaller
corpora except for the Airline data set, in which it
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subsample size || 100% | 50% | 25% | 10% |

iMDb 80.01
Amazon 76.83
Airline 72.42

79.73 | 79.43 | 78.88
75.71 | 73.79 | 68.86
72.73 | 69.74 | 46.21

Table 2: Average classification rates in percent of a WKWSCI-based Lex2Sent on subsets of the original data sets
for the fixed threshold 0

Table 3: Average classification rates in percent of Lex2Sent with a WKWSCI-, Loughran McDonald- or Opinion
Lexicon-base for the fixed threshold 0, compared to the rates of the traditional lexicon method on the same lexicon

WKWSCI Opinion Lexicon | Loughran McDonald

Lex2Sent | lexicon | Lex2Sent | lexicon | Lex2Sent | lexicon
iMDb 80.01 70.10 78.43 73.37 70.73 61.22
Amazon 76.83 65.15 77.68 69.28 69.27 61.32
Airline 72.42 63.29 71.96 68.33 72.06 53.18

is slightly higher when examining only 50% of the
data set. On the iMDb data set, Lex2Sent outper-
forms all lexica, even when using just 10% of all
documents. On the Airline and Amazon data sets,
the classification rate of Lex2Sent decreases to a
larger extend for smaller subcorpora. This is likely
caused by the short documents in these data set and
indicates that it is meaningful to use Lex2Sent on
smaller data sets if the documents themselves are
long enough to train accurate embeddings.

5.3 Different lexicon-bases for Lex2Sent

So far, we focused on the WKWSCI-based
Lex2Sent. In this section, we evaluate, how sen-
sitive Lex2Sent is regarding its lexicon-base and
if it improves the classification rate of other lex-
ica as well. For this we compare it to Lex2Sent
models based on the Opinion lexicon as well as the
Loughran-McDonald lexicon. The average classi-
fication rates are displayed in Table 3. Lex2Sent
improves the rates of all three lexica on all data
sets. While WKWSCI is a general-purpose lexi-
con, the Opinion Lexicon is designed to analyze
customer reviews. This specialization also affects
Lex2Sent, as the Opinion Lexicon-based Lex2Sent
outperforms every lexicon on every data set as well
as the WKWSClI-based Lex2Sent on the Amazon
data set, which consists of product reviews. Sim-
ilarly, we see that Lex2Sent can improve the per-
formance of a lexicon designed for a different do-
main, as it increases the classficiation rate for the
Loughran-McDonald lexicon by at least 7.95 per-
centage points on all data sets. We recommend
to use a general-purpose lexicon like WKWSCI

or a lexicon with is domain-adapted to the data set
under consideration as a lexicon base for Lex2Sent.

5.4 Lex2Sent as an initial fit

While Lex2Sent is designed for a low hardware
resource environment without a GPU, it can still
be benefitial to use it in combination with larger,
pre-trained models like RoOBERTa. To demonstrate
this, we use Lex2Sent’s beneficial property of dis-
playing a degree of certainty in its results based
on how high or low the value of diffy*" is for
d=1,...,D. To create data set for our RoOBERTa
model to fine-tune on, we therefore only use 10% of
the data set: the 5% documents that have the high-
est and 5% that have the lowest values of our train-
ing data set. We fine-tune this version of ROBERTa
in 30 epochs using LoRA (Hu et al., 2021) with
r = 8 and thus 1,838,082 trainable parameters.

To evaluate this approach, we use the iMDb
data set, as it contains both a training data set for
Lex2Sent to train and RoBERTa to fine-tune on and
a test data set for out-of-sample observations that
can be classified by ROBERTa. We repeated this
procedure five times. On average, our fine-tuned
model classified 85.47% of all test documents cor-
rectly. While this does not match GPT’s classifi-
cation rate, it does yield the advantage of being
cost-efficient. This indicates that Lex2Sent can
make for a good initial fit for an active learning
approach. Starting from this classification rate,
a human-in-the-loop style annotation might take
place to improve the classification further.
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6 Conclusion

Text classification is commonly performed in a
supervised manner using a hand-labeled data set.
Unsupervised classification can help when there is
no such annotated data set available. This paper
proposes the Lex2Sent model, which steers an inter-
mediate course between learning-based and deter-
ministic approaches to create an unsupervised clas-
sification, which can be created in a low hardware
resource environment without access to a GPU. A
binary lexicon is used as a replacement for the miss-
ing information that is usually represented by the
annotations. The performance of this method is in-
creased by aggregating the results from resampled
data sets, which can be seen as a bagging effect.

Lex2Sent yields higher classification rates than
all six analyzed sentiment lexica on all three data
sets under study, no matter the lexicon-base. Our
findings indicate that this might be caused by clas-
sifying documents in a more balanced way com-
pared to traditional lexicon methods. Despite being
a learning-based approach, the Lex2Sent method
shows higher classification rates than traditional
lexica on smaller data sets.

Ethical Considerations

While our model requires calculating multiple
Doc2Vec models for a single analysis, we mod-
ified our model specifications and the number of
executions to keep the computational budget man-
ageable in the context of climate change (Strubell
et al., 2019). Hence, we perform 50 executions
in all of our experiments to ensure that the results
are not affected by outliers, but the computational
budget remains within reasonable boundaries. Our
choice of using the fixed grid with 36 parameter
combinations is also caused by this goal. Using
this grid, each model finished training in less than
two hours.

Limitations

While Lex2Sent improves the classification rate of
lexica, it is not capable of reaching the classifica-
tion rates of models like GPT, but should be seen
as a much less resource intensive alternative for the
specific task of binary text classification.
Lex2Sent’s architecture is independent of the
type of binary classification task at hand, so it
should work similarly well for other classification
tasks given suitable lexica. This is however a the-

oretical assumption, as we have tested Lex2Sent’s
capabilities for sentiment analysis specifically.

Lex2Sent has been designed for a two-label-case.
To use it in a ordinally scaled multi-label-case, we
would need to create multiple thresholds that de-
termines the predicted class, instead of just one.
This yields new challenges, as we can not heuris-
tically choose the threshold as 0 like in a binary
classification task.

While Lex2Sent’s architecture does not depend
on the language of the documents or the lexica,
it should theoretically perform just as well in low
resource languages without needing large training
data sets like sophisticated language models. We
have not tested this hypothesis though.
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