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Abstract

A successful response to Office Action is cru-
cial for an invention to obtain a patent. While
previous attempts have applied generalised
LLMs, such as GPT-4, in the response pro-
cess, there remains significant room for im-
provement in generating faithful, unbiased, and
practically valuable responses. To address this
issue, we propose the Patent Response System
Optimised for Faithfulness (PRO). PRO explic-
itly incorporates procedural knowledge used
by patent agents during drafting arguments in
response. This framework comprises several
key components: (1) Our proposed PRLLM
is a LLM tailored for patent responses, de-
signed to have comprehensive patent domain-
specific knowledge. (2) Our proposed PPNet
encodes legal interpretations and relationships
between technical components from judicial
sources through a knowledge graph. (3) The
augmented generation processes retrieve rele-
vant information from both the patent text and
PPNet to augment the PRLLM’s input and gen-
erate faithful responses. Results show that PRO
significantly reduces unfaithfulness across six
error types compared to several settings. For in-
stance, PRO outperforms GPT-4 by an average
of 39% in terms of faithfulness. This demon-
strates the effectiveness of our domain-specific
approach in improving the quality of automated
patent responses.

1 Introduction

Large Language Models (LLMs), such as GPT-
4 (OpenAl, 2023) and LLaMa?2 (Touvron et al.,
2023), are deemed generalised and not domain-
specific, posing challenges in the patent field. In
the intellectual property field, patents filed with
the United States Patent and Trademark Office
(USPTO) are continuously evolving and growing,
with new technologies and legal terms requiring
complex analysis (USPTO, 2023). Recently, re-
search has focused on developing or applying lan-
guage models (LMs) and LLMs tailored for patent

language to address tasks such as patent drafting
(Lee and Hsiang, 2020), prior art search (Lo et al.,
2024), and semantic analysis (Chu et al., 2024).

Although these efforts have been made, LLMs
have not significantly improved the Office Action
(OA; e.g., rejection) and response (e.g., argument
or amendment) process. This process involves de-
tailed communication and extensive exchanges of
technical and legal knowledge between examiners
and patent agents to ensure the inventions’ nov-
elty and non-obviousness. Chu et al. (2024) have
started investigating the use of LMs/LLMs and rec-
ommender systems to automate patent responses.
However, due to the concern of privacy, the dis-
tinctive nature of patent language, the uniqueness
of each invention, and the intricacy of formulat-
ing responses, considerable improvements are still
needed in patent response systems.

This leads us to our first research question: can
we develop a domain-specific patent response
LLM (PRLLM)? To investigate this, we con-
structed a dataset comprising patents and their cor-
responding OA-response histories over 10 years.
This dataset also includes a wide range of types,
domains, and tasks, ensuring comprehensive cov-
erage. Incorporating previous data during training
helps retain knowledge from earlier training phases,
thus preventing the forgetting issue (Ibrahim et al.,
2024). For the model, we selected LLaMa2 as
the base model for continual pretraining among
open-source LLMs. For supervised fine-tuning
(SFT), we used paired OA-responses. The zero-
shot results showed that while the model performs
well in terms of formatting responses, identifying
key legal and technical terms, it struggles with
analysing examiners’ rejections (e.g., novelty or
non-obviousness analysis), even when additional
information is provided (see section 2.1 and sec-
tion 5).

This raises another question: how can we en-
hance the faithfulness of PRLLM in developing
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Figure 1: Architecture Overview. Left: Paradigm without patent response procedural knowledge, using only our

PRLLM. Right: PRO framework.

arguments? Empirically, patent agents utilise a
series of procedural knowledge during response
analysis. Upon receiving an OA, they first identify
the points of contention (e.g., rejections). From
there, they follow dual paths. The first path in-
volves finding the core inventive concept related to
the point of contention, which could be reflected
in the patent and/or independent claims. This in-
cludes identifying the patent’s key features and its
problem-solution. Agents then search for relevant
past precedents to support their arguments (Garrod,
2010). The second path addresses rejections that
the invention is similar to prior art. Agents analyse
the relevant paragraphs in the patent that relate to
the prior art, using them as the basis for their ar-
guments. Combining these foundations, agents de-
velop arguments and/or amendments to address the
deficiency in the examiner’s Broadest Reasonable
Interpretation (BRI) and/or in the patent’s claim.
This type of procedural knowledge is not present
in the previous LLMs, as it is implicit knowledge
that agents use during the response process.

Hence, we propose a novel framework: Patent
Response System Optimized for Faithfulness
(PRO). This framework aims to explicitly incorpo-
rate procedural knowledge into the model. Specifi-
cally, the framework includes a patent precedents
KG (PPNet) that represents the external precedents
patent agents might refer to during developing ar-

guments. This KG characterises the relationships
between invention technologies, not only in com-
mon or dictionary definitions but with legal inter-
pretations that include judicial logic and specificity.

Additionally, the framework involves multiple
Retrieval-Augmented Generation (RAG) processes,
where retrievers use points of contention or prior art
to retrieve relevant information in the patent, and
the generator uses PPNet/PRLLM-retrieved results
to produce key features, problem-solution state-
ments, and the resulting response. Experimental re-
sults demonstrate that this framework significantly
reduces unfaithfulness compared to baselines.

We make several key contributions:

* We pioneered the development of a domain-
specific patent response LLM (PRLLM).

e We are the first to introduce PPNet, a KG
of patent precedents. The KG serves as the
foundation for retrieving relations between
entities and is used in subsequent reasoning
processes.

* We propose the framework PRO, which em-
bodies the procedural knowledge used by
patent agents in the response process. This
framework combines PPNet and RAG with
proposed PRLLM. This integration effectively
enhances the faithfulness in PRLLM results.
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2 Architecture Overview

Considering the domain-specific nature of patent
responses, we first developed the patent response
LLM. This model is designed to run locally for se-
curity reasons and is well-versed in patent language,
various technical terms, relevant legal terminology,
and the structure, format, and analysis required for
responses. This LLM forms the core foundation
of our entire technical architecture and can func-
tion as both a generator and a retriever within our
framework (see section 3 for its training details).

2.1 Paradigm without Procedural Knowledge

As shown on the left side of fig. 1, the most in-
tuitive way to use PRLLM is through zero-shot
application. When a patent agent encounters an
OA, they can directly use PRLLM to generate the
response content. This represents the simplest form
of application.

A slightly more complex approach (see fig. 1
(z)) involves breaking down the information in the
OA and identifying relevant details to add to the
model input. Specifically, this involves extracting
the examiner’s rejections, relevant prior art and
patent paragraphs, and the key claims under dispute.
Given the model’s window size limitations, these
extracted details are token-optimised before being
provided as input to PRLLM, resulting in a more
precise response compared to the zero-shot method.

Both of these methods are direct applications,
which we refer to as the paradigm without proce-
dural knowledge. While this paradigm is simple,
it lacks the integration of procedural knowledge
crucial to the patent response process, potentially
limiting its effectiveness.

2.2 Paradigm with Procedural Knowledge
(PRO)

As shown on the right side of fig. 1, our PRO frame-
work explicitly incorporates the procedural knowl-
edge used by patent agents into the system. It
consists of dual paths: PPNet path and prior art
retrieval path.

For PPNet path (see fig. 1 (a)), we first use
regular expressions to extract points of contention
and the corresponding independent claims from the
OA. Using this information, we perform RAG to
identify key features and problem solutions. Specif-
ically, we retrieve relevant texts in the patent using
cosine similarities of dense vector representations
derived from the PRLLM. During the generation

phase, our generator takes this textual information
to output key features, including the relevant com-
ponents (entities) and their relationships (relations),
as well as the problem-solution of the patent.

We then use these extracted components and re-
lationships to query our constructed PPNet. This
KG helps to retrieve the legal implications of tech-
nical details within the patent. For example, if one
queries "what is a gate above?" it might answer
"a gate is above a layer" and "above means nei-
ther “directly above’ nor simply ’at a higher place
than’", providing precise legal interpretations.

For prior art retrieval path (see fig. 1 (b)), the
objective is to utilise the examiner’s cited prior art
paragraphs (which challenge the novelty and non-
obviousness of the invention) to retrieve relevant
paragraphs of the current patent application. Since
examiners typically specify the locations and con-
tent of these prior art paragraphs, we can extract
this information using regular expressions. After
extracting the relevant prior art content, we apply
the retrieval method identical to the first path, using
PRLLM to identify similar paragraphs in the cur-
rent patent application. These retrieved paragraphs
are then re-ranked based on their importance, with
the examiner’s most critical paragraph prioritised,
followed by other similar passages.

This approach reflects one fact: While examiners
often indicate the specific locations of contentious
parts in the patent, our method not only relies on
these key passages for argumentation but also un-
covers additional details in the invention that the
examiner may have overlooked. These overlooked
details can be used to supplement and strengthen
our response analysis.

Finally, the results from the two paths—the com-
ponents and judicial rationales retrieved from PP-
Net, the problem-solution of the patent, and the
key independent claims, along with the relevant
passages from the invention—are combined with
the relevant content in the OA to form the input for
PRLLM.

Before this input is fed into the LLM, we per-
form a CoT process. This process is designed to
determine the priority and functionality of each in-
put and use reasoning prompting. Different inputs
hold different levels of importance in constructing
arguments and analyses. It is crucial for the LLM
to understand the functionality and priority of these
inputs to create a coherent and logical response. By
structuring the inputs in this way and using reason-
ing prompts, PRLLM can generate responses with
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Model Params Vocabs LR Context Length
PRLLM-13B 13B 32K 3.0x 1074 16K
PRLLM-70B 70B 32K 20x107° 16K

Table 1: The information and attributes of PRLLM models.

higher faithfulness and accuracy.

3 PRLLM Training Details

We followed the approach outlined by Touvron
et al. (2023) in training our PRLLM models. Using
LLaMA?2 as the base model, we trained models
with parameters of 13 billion (13B) and 70 bil-
lion (70B), naming the series PRLLM-13B and
PRLLM-70B respectively. The training process
was divided into two main stages: continual pre-
training and supervised fine-tuning (SFT).

3.1 Continual Pretraining

Data. To create an effective pretraining dataset, we
ensured diversity and comprehensive coverage in
our data. The patent domain encompasses exten-
sive legal and engineering knowledge from various
fields, necessitating a dataset that reflects this di-
versity.

First, our dataset includes patent documents and
OA records, spanning from 2003 to 2022. This
dataset comprises a total of 956,779 patents and
1,269,271 OA records from USPTO, accounting
for 55.08% of the entire dataset. Second, we incor-
porated publicly available online resources, such
as academic papers (12.64%), websites (11.24%),
Wikis (9.28%), books (2.19%), exam databases
and code repositories (2.07%), and news articles
(2.02%). Lastly, the dataset includes some internal
resources, such as judicial rulings (5.41%).

This comprehensive dataset design ensures that
our Patent Response LLM has access to rich and
diverse data during the pretraining phase. Lever-
aging data from various fields helps reduce poten-
tial biases in the model’s patent response process.
Ibrahim et al. (2024) have shown that incorporat-
ing data from different domains in the pretraining
phase can maintain the generalization capabilities
of LLM models.

Training. We initiated pretraining using an op-
timized autoregressive transformer. We employed
the LLaMA2 13B and 70B versions. The training
was conducted on an A100 GPU cluster, utilizing
the AdamW optimizer combined with BFloat16
mixed precision to ensure training stability. Ad-

ditionally, we implemented Cosine Learning Rate
Scheduling for learning rate adjustments. Each
training batch consisted of 4M tokens. To mitigate
model performance regression, we extended the
training context length from the original 4K to 16K
(Xiong et al., 2023). Table 1 outlines the attributes
and pretraining hyperparameters of the PRLLM
models.

3.2 SFT

Data. During SFT, our data is divided into two
parts. The first part, directly related to PRLLM,
consists of paired OA-response datasets from 2023,
totaling 10,000 instances. We denote this dataset
as Dy,. The second dataset is a general dataset (D)
comprising 20,000 instances, which were sampled
from a variety of sources such as UltraChat (Ding
et al., 2023), Databricks-dolly-15k (Conover et al.,
2023), and the Guanaco Dataset (Dettmers et al.,
2024). The final dataset (D) used for fine-tuning is
the union of these two datasets, D = Dy, U D,.

Training. We merged all instances and outputs
from dataset D. Each instance and its correspond-
ing output were separated by a special token. This
unified dataset was used to perform SFT on the
two PRLLM models. Next, we omitted the loss
calculation on tokens from user instructions and
applied a weighted autoregressive objective (Wang
et al., 2023). The loss function used in this training
process is:

L(©) = Exwp[—a Y _logp(x; | %;0)] (1)
€0

where « is 1 if x is from Dy, and 0.15 if x is from
D, O means output, © represents the model’s pa-
rameters, and X = (xg, 1, ...,x;—1) represents
the tokenized input sequence. In a similar vein, we
utilised a cosine learning rate scheduler with learn-
ing rate of 2 x 107° and a batch size of 128. The
models were fine-tuned over a total of 2 epochs.

4 PPNet: Construction & Evaluation

4.1 Building PPNet

Similar to constructing the Wikidata KG (Vran-
deci¢ and Krotzsch, 2014), we built PPNet for
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patent responses argument foundation. PPNet
sources include judicial relationships of compo-
nents and relevant judgment contents such as Mark-
man Hearings (Creel, 2013; Garrod, 2010). The
construction process involves several steps: First,
we performed data cleaning and annotation on the
collected materials. Next, we carried out knowl-
edge extraction, which includes Named Entity
Recognition (NER), attribute extraction, and re-
lation extraction. These steps rely not only on
existing NLP techniques but also on manual an-
notation or verification by patent agents, attorneys,
and engineers. Through these procedures, we ex-
tracted key information from the judgments and
stored it in the knowledge graph.

As aresult, PPNet can be represented as a hetero-
geneous KG consisting of triplets (head, relation,
tail), denoted as G = (£, R, T), where & is the
set of entities (e.g., components), R is the set of
relations (e.g., verbs), and 7 is the set of triplets.
In total, PPNet comprises 4 million entities, 403
types of relations, and over 7 billion triplets.

4.2 PPNet QA Pipeline

To handle complex question-answering tasks in
Knowledge Graph Question Answering (KGQA),
we adopted a method inspired by Sen et al. (2023).
Our implementation for KGQA on PPNet is as
follows:

We use a sequence-to-sequence model to predict
the distribution of relations that need to be traced
in PPNet. That is, the decoder predicts a relation
distribution in PPNet, performing this process for
up to m-hops. Each hop generates a relationship
distribution, indicating which relation might be
traced in that step.

Specifically, before the QA process, let three
sparse linear matrices be head-to-triplet M,
relation-to-triplet M,., and tail-to-triplet M. We
start with an initial query entity vector e € R™e
and a relation vector 7 € RV, The entity from
the query is represented as a one-hot vector in the
entity space, which is mapped to a triplet vector
using M},. For the relation, we use the relation vec-
tor predicted by the model and map it to a triplet
vector through M,.. Hence, the first hop can be
expressed as:

T=Mpe® M,r 2)

where © denotes element-wise multiplication.
Then, using the tail-to-triplet matrix M, the

weighted triplet vector 7 is mapped back to an
entity vector:
e =M (1) 3)

where €’ represents the begin of the second hop. At
each hop, only the top k& weighted triplets are re-
tained, and these triplets are converted into natural
language representations.

4.3 Experiments and Results

Dataset. To test the PPNet QA pipeline in an-
swering patent judgment-related questions, we con-
structed a dataset for the following experiments.
This dataset was collaboratively built by patent
agents, attorneys, and engineers. The questions in-
volve previous precedents, focusing particularly on
technical components and their associations with
others. For instance, a question might be, "What
does a metal apparatus comprise?" with a possible
answer being "copper".

The entire dataset consists of 4,730 questions
(3,000 for the training set, 300 for the validation set,
and 1,430 for the testing set). These questions are
well-defined, with some involving multiple hops
of reasoning to thoroughly test the capabilities and
accuracy of the QA pipeline.

Experimental Setup. For the model, we se-
lected several sequence-to-sequence models that
have performed well in previous seminal work (Sen
et al., 2023; Wu et al., 2023; Baek et al., 2023), in-
cluding TO models (Sanh et al., 2021), Flan-T5
models (Chung et al., 2024), and T5 models (Raf-
fel et al., 2020). In our experimental setup, we
set m = b, meaning that the model can extract
up to 5 triplets in PPNet. For metrics, we used
Hit@1, Hit@3, and Hit@5 as evaluation metrics to
measure the performance of the models.

Model k=1 k=3 k=5
T5-3B 81.12 86.10 86.80
T5-11B 86.39 88.93 89.42
Flan-T5-3B  78.29 79.25 80.57
Flan-T5-11B 81.37 84.36 85.38
TO-3B 82.40 86.05 88.76
TO-11B 82.33 86.25 87.60

Table 2: Experimental results of PPNet QA under dif-
ferent models at different Hit-k values

Results. As shown in table 2, the T5-11B model
demonstrated superior performance in the KGQA
task on PPNet with Hit@1 at 86.39%, Hit@3 at
88.93%, and Hit@5 at 89.42%, followed by the
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Table 3: Results of Evaluation Metrics and Error Rates Across Different Settings for Assessing the Quality of
Generated Responses. RAG refers to RAG in fig. 1 (a); Rtrvr refers to Retriver in fig. 1 (b).

Generator Method RAG/Rtrvr RA PA IN EN v EV RC 1E

LLaMa2-13B Zero-shot - 29.32 3531 8342 8241 8533 84.19 9235 86.50
LLaMa2-70B Zero-shot - 30.04 39.22 80.08 84.78 81.60 87.32 89.24 88.75
PRLLM-13B Zero-shot - 56.07 66.59 64.57 64.05 68.67 6479 74.15 65.99
PRLLM-70B Zero-shot - 55.12 68.14 59.63 65.69 6508 71.63 73.61 72.00
LLaMa2-70B CoT - 58.59 41.04 64.89 69.17 68.04 71.17 7252 7193
PRLLM-13B CoT - 64.72 5649 6261 6190 7290 6880 70.54 69.66
PRLLM-70B CoT - 79.39 7142 5587 6234 5872 6699 68.89 68.34
LLaMa2-70B CoT LLaMa2-70B 66.12 6040 5749 62.15 6844 6682 6893 67.03
PRLLM-13B CoT PRLLM-13B  80.55 67.93 2449 2428 3216 31.46 38.57 3825
PRLLM-70B (Mixed) CoT GPT-4 8735 6726 1064 1196 1528 21.75 30.72 29.60
GPT-4 CoT GPT-4 8543 62.18 13.28 12.81 16.58 2238 36.61 3347
PRLLM-70B (PRO) CoT PRLLM-70B 89.18 6721 17.80 8.33 11.69 14.10 20.03 19.08

T0-3B model and the T5-3B model. This indicates
the effectiveness of not only large model size but
also model architecture in capturing and retrieving
relevant triplets from the knowledge graph.

5 Evaluation on Generation

5.1 Unfaithfulness Error Taxonomy

To evaluate the faithfulness of PRO, we defined
a taxonomy of errors (see Table 3) based on Kim
et al.’s (2024) typology protocol. Our taxonomy
includes six types of errors: Intrinsic Entity Error
(IN), Extrinsic Entity Error (EN), Intrinsic Event
Error (IV), Extrinsic Event Error (EV), Reason-
ing Coherence Error (RC), and Irrelevant Evidence
Error (IE) (see appendix A for details).

We made specific modifications to Kim et al.’s
(2024): Noun-Phrase Errors were consolidated
into Entity Errors because, in patents, modifiers
can change the meaning significantly. Over-
generalization Errors were merged into Irrelevant
Evidence Errors, as both involve information that
is not relevant to the current point of contention.
These adjustments ensure the error taxonomy is
more applicable to the context of patent responses.

Additionally, in patent responses, inventors typ-
ically prefer not to have their claims restricted in
scope. Therefore, amendments are less desirable
compared to arguments. Hence, we introduced
a domain-specific metric to measure faithfulness:
Recall of Argument (RA) and Precision of Argu-
ment (PA). In this context, a generated response
judged as an argument (rather than an amendment)
is considered true, and vice versa.

5.2 Experimental Setup

To assess the quality of generated responses, we
employed human evaluation, recruiting a group

of experts in the patent field to evaluate the gen-
erated responses based on the six types of errors
and whether the generated content was an argu-
ment or an amendment. A total of 4,153 generated
responses to OAs from 2020-2022, which were un-
seen by PRLLM before, were evaluated with the
ground-truths (GT) (see appendix B for details).

Our evaluation included several different set-
tings. For the paradigm without procedural knowl-
edge, native methods with only generators were
used, including two setups: zero-shot and inte-
grated external resources with reasoning (CoT). For
the paradigm with procedural knowledge (PRO),
this framework included multiple modules such
as RAG in fig. 1 (a), retriever in fig. 1 (b), and
generator.

In our experiments, we used different combina-
tions of LLMs. For instance, we used GPT-4 for
RAG and the retriever, and our PRLLM for the
generator. However, Ding et al. (2024) indicate
that using the same large language model for both
the retriever and generator in a RAG system can
be beneficial, as it ensures consistency in language
understanding and generation and leverages shared
internal representations and knowledge. Therefore,
we focused more on using the same LLLM across
all three modules.

5.3 Results

According to table 3 the PRO framework using
PRLLM-70B performed the best, achieving the
lowest error rates across all settings. Compared
to the closed-source state-of-the-art GPT-4, PRO
showed significant improvements: IN had a 7.8%
error rate (+41% improvement), EN had an 8.33%
error rate (+35% improvement), IV had an 11.69%
error rate (+29% improvement), EV had a 14.10%
error rate (+37% improvement), RC had a 20.03%
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error rate (+45% improvement), and IE had a
19.08% error rate (+43% improvement). On av-
erage, PRO outperformed GPT-4 by 39%, demon-
strating that our domain-specific PRO framework
with PRLLM is superior to generalised LLMs.

Several trends are also revealed: Zero-shot per-
formance is inferior to CoT, and CoT is less effec-
tive than the PRO framework, indicating that the in-
clusion of procedural knowledge results in the most
faithful responses. Additionally, extrinsic errors are
generally common than intrinsic errors, particularly
in larger models, suggesting larger models may in-
troduce irrelevant external information. Lastly, our
findings confirm that using mixed LLMs across dif-
ferent modules does not perform as well as using a
consistent LLM throughout.

Regarding RA and PA, the results show that
PRO consistently achieved the best performance
across all settings, indicating high accuracy. Specif-
ically, in CoT setup, especially within PRO, RA
was greater than PA. This indicates that the system
is more inclined to analyse and rebut the examiner’s
opinions rather than directly amending the claims
to limit the scope of the invention. This behavior
aligns with the practical tendencies in the patent
industry, where arguments are often preferred over
amendments to avoid narrowing the claim scope.

For qualitative results on generated arguments,
we refer to table 4. Across three main settings, the
formatting of the responses shows no significant
issues. In the zero-shot setting, the arguments pri-
marily restate the content of the OA and merely
mention a claim without providing analysis, indi-
cated by gray text, showing an IE error. In the CoT
setting, the arguments start to take shape but often
repeat the examiner’s points and prematurely agree
with them, which is not encouraged in patent re-
sponses. This is shown in red text, indicating an IV
error. Additionally, parts of the argument analysis
lack complete logical reasoning, shown in orange
text, indicating an RC error. In the PRO setting, the
generated arguments closely match the GT, both in
format and completeness of reasoning. This indi-
cates that the PRO framework effectively enhances
the quality of patent responses, demonstrating its
effectiveness in the domain.

6 Conclusion

We introduced a domain-specific patent response
LLM (PRLLM) that can run locally to ensure pri-
vacy during patent responses, as well as a KG of

Table 4: Example Generated Arguments under Different
Settings with PRLLM-70B. Text in gray, red, and

indicates errors, while text in blue indicates correct
responses.

Setting Response

Zero-shot  Claims 1-4 and 12-14 are rejected under 35

U.S.C. 102. ... Independent claim 12 recites

an information processing apparatus compris-

ing, in part: a processor configured to: re-
ceive a printing request for a document based
on a spoken voice of a user; perform a control

for outputting a response voice indicating a

part including each element of a ...

CoT Claims 1-4 and 12-14 are rejected under 35
U.S.C. 102. ... Applicant respectfully dis-
agrees. cited inventor discloses a voice com-
mand for specifying print settings. However,
cited inventor does not disclose "a second
spoken voice of the user ...

PRO Claims 1-4 and 12-14 are rejected under 35
U.S.C. 102. ... Specifically, the claimed "des-
ignation of a specific part" pertains to the
selection of a part from among multiple parts
of a document. ... In contrast, cited inventor
does not disclose any teachings related to doc-
uments, and the selected print setting itself is
not being printed but is rather a configuration
used to print an image. Consequently, the se-
lection of a print setting cannot be construed
as the claimed feature of "receiving a second
spoken voice of the user, which includes a
designation of a specific part among the plu-
rality of parts [of the document] ...

GT Claims 1-4 and 12-14 are rejected under 35
U.S.C. 102. ... The claimed “designation of
specific part” is a selection of part out of the
plurality of parts of the document. However,
there is no teaching of document in cited in-
ventor , and the selected print setting itself is
not being printed. It is a configuration used to
print a picture. In other words, the selection
of print setting cannot be interpreted as the
claimed “receive a second spoken voice of
the user, which includes a designation of a
specific part among the plurality of parts [of
the document] ...

patent precedents (PPNet). Our proposed PRO
framework explicitise the procedural knowledge
used by patent agents, combining PPNet and RAG
with PRLLM, significantly enhancing faithfulness
across six error types compared to PRLLM alone
and outperforming the state-of-the-art generalised
LLM, GPT-4. Future research can focus on prompt
tuning in CoT, addressing other aspects of patent re-
sponses beyond novelty and non-obviousness, and
considering the history trajectory of OAs to further
improve response effectiveness.
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A Typology

To evaluate the faithfulness of our work, we em-
ployed six error types to examine the quality of the
generated responses. These error types are adapted
from Kim et al.’s (2024) typology protocol to fit
the practical scenarios of patent responses. Here is
a simple, short, and hypothetical source for exem-

plary purposes:

Patent Application: The present invention per-
tains to a device, wherein said device comprises a
wood layer positioned above two copper gates to
enhance conductivity.

Office Action: The claimed invention lacks nov-
elty because a prior art reference also discloses a
layer positioned above a gate to enhance conduc-
tivity.
Below are the definitions of each error type along
with examples relevant to patent responses.

A.1 Intrinsic Entity Error (IN)

An Intrinsic Entity Error occurs when there is a
misrepresentation of named entities, quantities, or
other surface realizations from a given source. This
type of error also includes the incorrect combina-
tion of modifiers meant for one entity with another
entity.

Incorrect Argument: The present invention

comprises a wood layer positioned above three

wooden gates, which is not identical to the prior
art.

Correct Argument: The present invention com-
prises a wood layer positioned above two copper
gates, which is not identical to the prior art.

A.2 Extrinsic Entity Error (EN)

An Extrinsic Entity Error occurs when new entities
are introduced that were not present in the given
source, or when modifiers that are not presented in
the source are incorrectly combined with entities.
Incorrect Argument: The present invention in-

cludes a wood layer positioned above a gold cir-
cuit, which is not disclosed in the prior art.

Correct Argument: The present invention com-
prises a wood layer positioned above two copper
gates, which is not disclosed in the prior art.

A.3 Intrinsic Event Error (IV)

An Intrinsic Event Error occurs when events men-
tioned in the source are misrepresented, either
through misunderstanding the event.
Incorrect Argument: The present invention de-
scribes the wood layer is placed beside the gates.

Correct Argument: The present invention de-
scribes the wood layer is positioned above the
gates.

A.4 Extrinsic Event Error (EV)

An Extrinsic Event Error occurs when new events
that are not present in the given source are intro-
duced.

Incorrect Argument: The present invention in-
cludes a wood layer is used to store spiritual en-
ergy, which is not disclosed in the prior art.

Correct Argument: The present invention a
wood layer is positioned above two copper gates
to enhance conductivity, which is not disclosed in
the prior art.

A.5 Reasoning Coherence Error (RC)

A Reasoning Coherence Error occurs when there
are logical flaws in the flow of reasoning within the
generated explanation, leading to a lack of coher-
ence or weak support for the claim.

Incorrect Argument: The present invention is
not identical to the prior art.

Correct Argument: The present invention is
novel because the wood layer is positioned above
two copper gates, which enhances conductivity,
unlike the prior art that only discloses a single
gate.

A.6 Irrelevant Evidence Error

An Irrelevant Evidence Error occurs when the ex-
planation includes evidence that does not directly
support the claim, or when it makes broad state-
ments or conclusions that extend beyond the pro-
vided evidence.

Incorrect Argument: The present invention uses
eco-friendly materials, which is not relevant to
the enhancement of conductivity discussed in the
prior art.

Correct Argument: That the wood layer is po-
sitioned above two copper gates to enhance con-
ductivity is not disclosed in the prior art which
discusses a single gate without mentioning such
an arrangement.

B Human Evaluation Procedure

To evaluate the effectiveness of each setting de-
scribed in section 5, we employed a human evalu-
ation method. We recruited a total of 331 experts
in the patent field, including patent applicants, en-
gineers, agents, scholars, and attorneys. Of the
participants, 30.21% were female, and the median
education level was a master’s degree. Each partic-
ipant was randomly assigned a varying number of
evaluation cases. Each case included the published
and public versions of the patent, the corresponding
OA, the actual response to the OA, and a response
generated by our experimental setup. Additionally,

154



each participant received experimental instructions
and an informed consent form.

After reading the informed consent form and
the experimental instructions, participants were re-
quired to evaluate the generated response based on
the six predefined error types, specifically focusing
on the examiner’s rejections related to novelty (35
U.S.C. § 102) and non-obviousness (35 U.S.C. §
103). These error evaluations were multi-select.

Beyond the error evaluations, participants also
had to determine whether the content of the re-
sponse was more aligned with an amendment or
an argument. They then judged the true response
content similarly. Upon completing their tasks,
participants received compensation in compliance
with labor regulations.

In total, the participants effectively evaluated
4,153 OAs, encompassing approximately 11K
points of contention related to novelty and non-
obviousness. This evaluation process ensured a
comprehensive assessment of the generated re-
sponses’ quality.

155



