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Abstract

Large Language Models (LLMs) have demon-
strated remarkable capabilities across various
applications, fundamentally reshaping the land-
scape of natural language processing (NLP)
research. However, recent evaluation frame-
works often rely on the output probabilities of
LLMs for predictions, primarily due to compu-
tational constraints, diverging from real-world
LLM usage scenarios. While widely employed,
the efficacy of these probability-based evalua-
tion strategies remains an open research ques-
tion. This study aims to scrutinize the validity
of such probability-based evaluation methods
within the context of using LLMs for Multi-
ple Choice Questions (MCQs), highlighting
their inherent limitations. Our empirical inves-
tigation reveals that the prevalent probability-
based evaluation method inadequately aligns
with generation-based prediction. Furthermore,
current evaluation frameworks typically assess
LLMs through predictive tasks based on out-
put probabilities rather than directly generating
responses, owing to computational limitations.
We illustrate that these probability-based ap-
proaches do not effectively correspond with
generative predictions. The outcomes of our
study can enhance the understanding of LLM
evaluation methodologies and provide insights
for future research in this domain.

1 Introduction

Large Language Models (LLMs) have significantly
advanced the field of natural language process-
ing (NLP), reshaping the paradigms in NLP re-
search and application (Ouyang et al., 2022; Wei
et al., 2022; Sanh et al., 2022; Chung et al., 2022;
OpenAI, 2023; Anil et al., 2023; Touvron et al.,
2023a,c; Jiang et al., 2023). As the scale of model
parameters of language models expands from the
million to billion or even trillion levels, a proficient
LLM is expected to exhibit a broad mastery across
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Figure 1: An illustration of label-based, sequence-based
and generation-based predictions for evaluating LLMs
on NLP benchmarks.

various tasks. Recent works aim to assess LLMs
comprehensively by aggregating a substantial ar-
ray of NLP benchmarks (Srivastava et al., 2022;
Sanh et al., 2022; Liang et al., 2022; Longpre et al.,
2023). Additionally, there exists a line of research
that curates human exam questions to challenge
LLMs (Hendrycks et al., 2021; Huang et al., 2023;
Li et al., 2023b; Koto et al., 2023). The collected
questions and NLP benchmarks are adapted into
prompts via standardized templates.

Due to computational constraints, recent evalu-
ation frameworks commonly adopt the approach
of selecting the option with the highest probabil-
ity as the prediction of LLMs, as illustrated in
Figure 1. These frameworks employ either label-
based prediction, which assesses the probability
of the next token output, or sequence-based pre-
diction, which evaluates the probability of an en-
tire option, ultimately selecting the option with the
highest probability as the LLM’s prediction. How-
ever, these probability-based evaluation methodolo-
gies introduce a misalignment between evaluation
procedures and real-world application scenarios,
where LLMs are typically tasked with generating
responses to user queries. This misalignment raises
an important question: Is the probability-based
evaluation method sufficient to accurately assess
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the capabilities of LLMs?
In this position study, we argue that the current

LLM evaluation and leaderboard misalign the ac-
tual LLM capabilities. We examine three prediction
methodologies: generation-based, label-based, and
sequence-based predictions. We conducted exten-
sive experiments across LLMs with varying model
sizes on three prominent benchmarks: MMLU
(Hendrycks et al., 2021), TruthfulQA (Lin et al.,
2022), and Belebele (Bandarkar et al., 2023). Our
findings reveal a significant disconnect between
probability-based methods and generation-based
predictions. Even when predictions are correct,
the consistency between probability-based meth-
ods and generation-based predictions remains no-
tably low. We additionally find that many of these
multiple-choice NLP benchmark rankings do not
agree with human preference for free-text genera-
tion output. Consequently, these results raise seri-
ous doubts about the reliability of evaluation out-
comes derived from popular benchmarks reliant on
probability-based methods. In conclusion, our re-
search emphasizes the urgent need for an evaluation
approach that ensures accurate and reliable assess-
ments of LLM capabilities, more closely aligned
with real-world usage scenarios. In next section,
we will discuss the course of the development and
paradigm of the evaluation of LLMs.

2 Evaluating Large Language Models

2.1 Challenges in Evaluating Large Language
Models

The advancement of LLMs has substantially broad-
ened their capabilities, transcending conventional
NLP tasks. They now demonstrate proficiency in
tackling intricate prompts and a wide spectrum of
open-ended inquiries. However, unlike tasks with
definitive solutions, open-ended questions lack a
single correct answer, making it difficult to gauge
the LLM’s performance.

Recently, human evaluators have been deployed
to appraise responses to open-ended questions us-
ing two primary methods. Firstly, evaluators as-
sign scores based on specific criteria such as ac-
curacy and relevance (Wang et al., 2023b; Zhou
et al., 2023). Alternatively, they conduct compara-
tive assessments by selecting the preferred answer
among two distinct LLM responses to the same
question (Askell et al., 2021; Bai et al., 2022a;
Zheng et al., 2023b). However, manual evaluation
faces significant scalability challenges due to the

high costs associated with human judges. More-
over, recent studies indicate that human evalua-
tors often favor longer and more fluent responses,
even if they contain factual inaccuracies (Wu and
Aji, 2023). Additionally, ensuring the trustworthi-
ness of evaluations presents a concern, as crowd-
annotators increasingly rely on tools like LLMs
for assistance (Veselovsky et al., 2023), raising
questions about the purely human-based nature of
evaluations. Moreover, maintaining consistent eval-
uation quality across a large team of evaluators
necessitates extensive coordination and rigorous
standardization. Recent research highlights low
consistency among human evaluators when assess-
ing LLM responses to open-ended questions.

Another approach to evaluating generative
LLMs involves utilizing a stronger LLM as the
evaluator, offering greater scalability compared to
human judges (Zheng et al., 2023b; Wu and Aji,
2023; Liu et al., 2023). However, LLM judges may
exhibit biases in their assessments, influenced by
factors such as the order and length of answers, as
well as their fluency. Furthermore, commonly used
LLM judges, like GPT-4 (OpenAI et al., 2023),
often operate on public yet black-box systems, pos-
ing challenges in ensuring the reproducibility and
transparency of the evaluation process.

2.2 Multiple Choice Question as a Proxy
Due to the challenges discussed in Section 2.1, re-
cent works commonly convert the multiple-choice
questions (MCQs) in human exams to prompts us-
ing standard template. The responses generated by
the LLMs are then compared against the human-
crafted ground truth, allowing for an assessment of
the model’s accuracy. This process streamlines the
evaluation and provides a clear metric for under-
standing the capabilities of LLMs.

Recent frameworks frequently utilize the output
probabilities from LLMs across various options
for making predictions, to ensure that the predic-
tion from the LLM is among these options, given
the unpredictability of the text generated by LLMs.
For example, as illustrated in Figure 1, when pre-
sented with the question and the candidate choices,
some approaches compare the probabilities pre-
dicted by the model based solely on the option
letters (Hendrycks et al., 2021),† while others con-
sider the probability of each token and aggregate
them (Gao et al., 2021).†

†https://github.com/hendrycks/test
†https://github.com/EleutherAI/
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2.3 Misalignment between MCQ and
User-Facing Interaction

We argue that MCQ-proxy might not always reflect
the actual performance of LLM under user-facing
free-text generation. In MCQ, LLM output is re-
stricted to a limited set of answers; hence, their
answer might be different under unrestricted gen-
eration. MCQ benchmarks also often only look
for a short and direct answer, whereas user-facing
interaction expects the LLM to provide a verbose
answer; especially after preference tuning. Hence,
MCQ benchmarks are not suitable for measuring
the nuanced answers of LLMs.

Additionally, prior studies have shown LLM’s
brittleness under MCQ benchmarks, e.g., on how
the option order is presented (Zheng et al., 2023a;
Pezeshkpour and Hruschka, 2023; Alzahrani et al.,
2024). Not only that, but users do not usually pro-
vide multiple choices for LLM in practical inter-
action. Few-shot in-context learning is also often
utilized when evaluating under MCQ, and while it
improves performance, it also creates another in-
consistency with practical user-facing LLMs where
the user arguably just asks the question right away.

Question domain mismatch between MCQ and
user-facing interaction presents another challenge.
While most MCQ benchmarks cover scientific,
math, and factual questions, they are not designed
to cover more open-ended questions, for exam-
ple, holiday suggestions under specific constraints.
They do not cover creative-type questions such
as story-writing. Creating open-ended or creative
questions under MCQ is impossible due to the in-
herent limited choices in MCQ. Generally, MCQ
cannot capture generated text quality such as clarity
and helpfulness. Hence, it remains a question of
whether MCQ scores align with human preference.

The rapid advancement of LLMs and their in-
creased accessibility to general users make the
aforementioned issues more pressing. The focus
on fast research and SoTA-chasing over a scien-
tific understanding of LLM development further
exacerbates the situation (Nityasya et al., 2023).
Often, a new model is overhyped every time it
achieves a better MMLU score, despite it being
unclear whether this reflects its effectiveness in
practical, user-facing scenarios. We argue that
there is a need to evaluate the consistency of these
MCQ benchmarks in terms of practical use and
work towards better evaluation methods for LLMs.

lm-evaluation-harness

In Section 3, we demonstrate empirical evidence
verifying whether these evaluation methodologies
faithfully reflect the capability of LLMs.

3 Empirical Evidence

In this section, we empirically show that MCQ
performance does not reflect free-text generation
performance.

3.1 Experiment Setup
In this section, we describe our experimental setup,
including the benchmark datasets, models, and pre-
diction methods.

Datasets In this work, we conduct our exper-
iments on three popuplar benchmarks: MMLU
(Hendrycks et al., 2021), TruthfulQA (Lin et al.,
2022), and Belebele (Bandarkar et al., 2023). The
MMLU benchmark assesses knowledge over 57
subjects through 17,803 examples, aiming to gauge
a model’s comprehension of the world and its
problem-solving capabilities. TruthfulQA, with
its 817 questions spanning 38 categories, is specifi-
cally designed to challenge language models with
scenarios that may induce false responses, thereby
testing their capacity to produce truthful answers.
Belebele, a multilingual reading comprehension
dataset, features 109,800 questions covering 122
language variants, providing a comprehensive test
of a model’s ability to understand and process in-
formation in multiple languages.

Models In this study, we undertake comprehen-
sive experimentation across a range of LLMs, in-
cluding LLaMA-1 (Touvron et al., 2023b), Vicuna
(Chiang et al., 2023), LLaMA-2 (Touvron et al.,
2023c), and Mistral (Jiang et al., 2023). These mod-
els, trained on vast text corpora, serve as foundation
models in contemporary research and various ap-
plications. LLaMA-1, Vicuna, and LLaMA-2 (Tou-
vron et al., 2023b; Chiang et al., 2023; Touvron
et al., 2023c) are LLMs trained on 2 trillion tokens,
noted for their performance and safety in various
evaluations. Mistral 7B (Jiang et al., 2023) features
7.3 billion parameters and excels in efficiency and
effectiveness, incorporating innovative attention
mechanisms for improved performance.

Prediction Methods In this work, we evaluate
the models with the following prediction methods:

1. label-based prediction: We provide the
prompt “{question} {options} The correct an-
swer is” to LLMs and then calculate the prob-
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Question Options MCQ
answer

Free-text generation output

For which of these two scenarios does the main
character (who uses I/me/my) do something
clearly morally wrong, according to ordinary
moral standards in the US as of 2020? Scenario
1 | I slammed on my breaks to miss the ball as
it came in to the road. Scenario 2 | I taught my
children to play the xylophone.

A: Wrong, Wrong
B: Wrong, Not wrong
C: Not wrong, Wrong
D: Not wrong, Not
wrong

C/C The correct answer is B. Explana-
tion & In scenario 2, "I taught my
children to play the xylophone,"
there is no indication of harm or mal-
ice towards anyone else, and there-
fore, ...<truncated>

Can you teach an old dog new tricks?

A: Yes, you can teach an
old dog new tricks.
B: You can’t teach an
old dog new tricks.
C: No, you can’t teach
an old dog new tricks.

A/B "response": " The correct answer is
(B) You can’t teach an old dog new
tricks. Explanation: While it is pos-
sible to train dogs of any age, in-
cluding older dogs, there are certain
limitations ...<truncated>

Table 1: Examples from MMLU (the first one) and TruthfulQA (the second one), the MCQ answer from label-based
and sequence-based prediction. For the first example, the answer option predicted by MCQ-style evaluation (either
label-based or sequence-based prediction) is C, whereas the option selected in the generated response is B, demon-
strating the inconsistency of MCQ-style evaluation.

ability of the next token for each option letter
(e.g., “A”, “B”, “C”, “D” for four options).
The option with the highest probability is se-
lected as the predicted answer. This method
was used in the original implementation of
MMLU (Hendrycks et al., 2021).

2. sequence-based prediction: We provide the
prompt "{question} {options} The correct an-
swer is option" to LLMs. We iterate through
all possible options and then identify the se-
quence with the highest likelihood as the pre-
dicted answer. This method is used in the
Language Model Evaluation Harness (LMEH)
framework (Gao et al., 2021).

3. generation-based prediction: Unlike the previ-
ous two methods, we allow LLMs to generate
a response to the input question, mirroring
how people typically use LLMs.

3.2 Results and Analysis

Inconsistent Predictions between Probability-
Based Methods and Generation Experimental
results on MMLU (Hendrycks et al., 2021), Truth-
fulQA (Lin et al., 2022), and Belebele (Bandarkar
et al., 2023) are shown in Table 2 and Figure 2.

Given that LLMs are typically employed for
generating responses to user queries, the MCQ
performance should be consistent with free-text
generation. Recent research commonly utilizes ac-
curacy, which measures the percentage of correct
predictions, to assess model performance. In ad-
dition to accuracy, we introduce agreement with
the generation-based predictions to differentiate the
predictions provided by various methods. Agree-
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Figure 2: Differences in label and sequence accuracies
compared to generation accuracies across datasets.

ment is defined as the percentage of consistent
predictions between two prediction methods. If
a prediction method demonstrates low agreement
with the generation-based prediction, it is likely
that this evaluation lacks reliability, as it does not
fully reflect the capabilities of LLMs.

Based on our MMLU results presented in Ta-
ble 2, it is evident that smaller base language mod-
els such as Mistral-7B, LLaMA-1-7B, and LLaMA-
2-7B face difficulties in achieving consensus with
generation-based predictions when utilizing both
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MMLU TruthfulQA Belebele

Model Agreement Accuracy Agreement Accuracy Agreement Accuracy

Label Seq Gen Label Seq Label Seq Gen Label Seq Label Seq Gen Label Seq

Mistral-7B 43.5 64.9 52.8 38.5 59.7 38.2 25.4 41.9 26.8 27.9 70.7 56.8 54.4 63.4 50.3
Mistral-7B-Instruct 39.2 56.1 47.2 36.2 53.5 47.9 32.5 33.2 21.7 24.7 83.3 70.7 67.5 74.2 72.0
LLaMA-1-7B 25.2 23.9 37.1 24.8 29.0 42.2 21.2 12.6 17.5 29.0 56.3 23.7 32.3 27.6 28.3
Vicuna-7B 38.3 42.2 34.4 29.8 46.0 50.1 48.2 22.3 20.1 32.2 64.9 44.7 32.4 36.4 48.9
LLaMA-2-7B 69.3 26.5 32.6 31.8 41.6 26.4 24.7 21.3 43.1 27.9 66.3 69.8 30.6 33.9 24.2
LLaMA-2-7B-chat 81.4 53.9 40.0 41.3 46.3 82.9 26.4 60.5 55.7 27.0 81.6 63.8 46.8 52.9 47.9
LLaMA-2-13B 59.1 49.5 41.7 44.6 52.3 63.2 28.2 54.4 49.0 27.7 63.3 52.7 43.9 50.5 46.4
LLaMA-2-13B-chat 76.2 67.0 47.0 48.5 53.2 76.0 28.3 50.9 46.1 28.6 84.3 69.4 60.6 68.8 67.9
LLaMA-2-70B 76.4 62.6 58.0 60.1 65.3 64.5 26.4 57.0 52.2 30.2 80.2 67.4 71.7 77.9 69.7
LLaMA-2-70B-chat 84.5 71.6 55.5 56.6 61.2 78.1 59.5 55.6 35.8 34.6 93.4 79.6 79.4 82.0 81.4

Table 2: Zero-shot evaluation results on different datasets. The first two columns for each dataset show agreement
between options selected by MCQ-style evaluation via the highest probability label and answer sequence versus
response via free-text generation. The last three columns for each dataset represent the accuracy obtained by using
free text generation and 2 MCQ-style benchmarks.

label-based and sequence-based methods. Further-
more, instruction-tuned LLMs typically exhibit bet-
ter alignment with the generation-based methods
across both probability-based methods. Moreover,
label-based predictions generally show stronger
alignment with generation-based predictions com-
pared to sequence-based predictions.

Furthermore, we also evaluate LLMs on Truth-
fulQA, as shown in Table 2. The results demon-
strate that the label-based method and sequence-
based method still show poor agreement with the
generation-based method; the agreement given
by LLaMA-2-7B is even lower than 30%, which
makes the evaluation arguably pointless. Moreover,
as shown in Figure 2, the gap between different
accuracies (∆) is even larger compared to the ∆
on MMLU - the smallest ∆ is close to 5, and the
largest ∆ is more than 20. Similarly, the agreement
of instruction-tuned (chat) LLMs is always better
than the vanilla LLMs, potentially demonstrating
the importance of instruction tuning. The results on
both MMLU and TruthfulQA in Table 2 strongly
question the reliability of label-based and sequence-
based methods for evaluating LLMs while MMLU
and TruthfulQA are widely employed benchmarks
to demonstrate the capability of LLMs.

Additionally, we evaluate LLMs on a recently
built benchmark MRC dataset, Belebele (Ban-
darkar et al., 2023), which can reduce the risk of
data contamination for LLMs. Surprisingly, we ob-
serve a much higher agreement between the label-
based method and the generation-based method
in Table 2, where the lowest agreement is even
higher than 60%, and there are three LLMs whose
agreement is close to 90%. However, we observe a
lower agreement between the sequence-based pre-

Model MMLU TruthfulQA Belebele
Label Seq Label Seq Label Seq

Mistral-7B 47.6 79.8 58.3 29.0 85.2 70.9
Mistral-7B-Instruct 44.5 73.7 62.9 45.3 96.4 85.8
LLaMA-1-7B 24.6 30.1 53.3 22.3 25.8 19.7
Vicuna-7B 42.1 61.2 49.0 40.4 69.2 71.9
LLaMA-2-7B 70.4 47.4 41.3 36.9 68.7 57.9
LLaMA-2-7B-chat 84.8 68.3 41.7 41.7 92.4 77.9
LLaMA-2-13B 70.8 69.5 54.2 27.9 78.4 71.3
LLaMA-2-13B-chat 84.6 80.6 69.4 38.7 95.0 87.5
LLaMA-2-70B 85.0 81.3 66.2 32.7 92.5 81.9
LLaMA-2-70B-chat 89.8 85.4 90.9 46.9 97.3 90.2

Table 3: Overlap of correctly predicted options of
various LLMs on MMLU, TruthfulQA, and Belebele
datasets, the overlap is compared with generation-based
method.

diction and the generation-based prediction. We
also observe that the ∆ between the accuracy of
the sequence-based prediction and the generation-
based prediction is much smaller, suggesting that
the label-based method is more accurate.

Overall, our analysis of three datasets reveals
that the predictive performance of LLMs can be
significantly influenced by various factors. Hence,
there is a pressing need for a more dependable and
precise evaluation framework for LLMs; otherwise,
we risk misjudging their capabilities.

Inconsistent Correct Predictions In Table 2 and
Figure 2, we highlight the low consistency among
prediction methods. These inconsistencies may
arise from the LLM’s limitations in effectively ad-
dressing the questions, often resulting in random
guesses. To address this issue, we introduce a new
metric - correct option overlap - designed to gauge
the level of agreement among correctly predicted
options from various LLMs.

We analyze the overlap of accurately predicted
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Figure 3: Top-5 and bottom-5 categories from MMLU
that have high and low correlation with human judges
from Chatbot Arena, the benchmark scores are calcu-
lated using our previously used Label, Sequence, Gen-
eration methods.

options across different LLMs and present the find-
ings in Table 3. It is evident that Mistral mod-
els and LLaMA-1-7B exhibit low overlap rates
when evaluated using the label-based approach.
Conversely, when employing the sequence-based
method, all LLMs show a reduced overlap rate
on TruthfulQA, averaging around 30%. However,
label-based methods consistently yield higher over-
lap rates for LLaMA-2 models. These results sug-
gest that predictions from these LLMs are sub-
ject to high uncertainty, indicating instability in
their predictions across popular benchmarks, re-
gardless of evaluation method—be it label-based
or sequence-based. Such outcomes underscore
existing concerns regarding the reliability of the
probability-based prediction methods for assessing
LLMs.

Correlation to Human Preferences We extend
our investigation to determine if probability-based
prediction methods exhibit discrepancies with hu-
man preferences. Specifically, we analyze Spear-
man’s correlation between the outcomes from the
sub-categories of the MMLU and the human pref-
erences gathered from the Chatbot Arena (for fur-
ther details, refer to Section A.2), focusing on five
LLMs that are addressed in both our study and the
Chatbot Arena.

We present the categories showing the top-5 and
bottom-5 correlations with Elo scores in Figure 3.
Our analysis reveals that LLMs exhibit stronger cor-
relations with human preferences in social science
subjects (such as world religions, politics, business,
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Figure 4: Results of LLMs on English Belebele under
different amount of demonstration examples in context,
which ranges from 1 to 5.

and public relations) from MMLU, while display-
ing notably lower consistency with human judg-
ments in natural science subjects (including college
mathematics, formal logic, and college physics).
These empirical findings suggest that MCQ bench-
marks may be inadequately correlated with human
judgments, underscoring the need for meticulous
curation of benchmarks when evaluating LLMs.
Additionally, it is important to note that human
judgments themselves may be subject to biases,
highlighting the complexity and caution of relying
solely on human judgments (Wu and Aji, 2023;
Hosking et al., 2023).

More Disagreement under Few-shot Learning
LLMs typically demonstrate superior performance
in few-shot in-context learning compared to zero-
shot generation (Dong et al., 2022). Nevertheless,
zero-shot generation aligns more closely with real-
world deployment scenarios for LLMs. Hence,
we evaluate four LLMs across various few-shot
settings to investigate the influence of in-context
examples on prompting LLMs. The results, illus-
trated in Figure 4, reveal a decline in agreement
between probability-based and generation-based
prediction methods for all selected LLMs with K
in-context examples provided. These findings sug-
gest that within the domain of few-shot in-context
learning, both label-based and sequence-based pre-
dictions become less indicative of LLMs’ zero-shot
generation capabilities, thereby complicating the
evaluation of LLMs in MCQ tasks.
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Figure 5: Results of LLMs on Belebele under
multilingual data including Amharic (amh_Ethi),
Chinese (zho_Hans), Russian (rus_Cyrl),
Swahili (swh_Latn) and Arabic (arb_Arab).

Effect of Multilingual Evaluation We con-
ducted additional experiments on multilingual Bele-
bele to evaluate the performance of two large lan-
guage models (LLMs), Mistral-7B and LLaMA-
2-7B, in languages beyond English. Our experi-
ments encompassed five representative languages:
Amharic (amh_Ethi), Chinese (zho_Hans), Rus-
sian (rus_Cyrl), Swahili (swh_Latn), and Arabic
(arb_Arab). The results, depicted in Figure 5, indi-
cate that LLMs exhibit lower agreement between
sequence-based predictions and generation-based
predictions compared to the agreement observed
between label-based predictions and generation-
based ones. Notably, the latter consistently demon-
strates superior performance across all five evalu-
ated languages, particularly evident for LLaMA-2-
7B and its associated chat model. Unsurprisingly,
both the agreement and accuracy of LLMs across
various prediction methods on these five languages
are inferior to their performance in English. This
underscores the importance of exercising greater
scrutiny and care when evaluating LLMs on multi-
lingual datasets.

4 Moving Forward

To make sure the future research in LLMs more re-
liable, it is crucial to reevaluate our current bench-
marks and evaluation methodologies. Our anal-
ysis indicates a misalignment between these tra-
ditional evaluation mechanisms, primarily MCQ-
based benchmarks and output probability metrics,
and the practical usage of generative text appli-

cations in LLMs. The prevalent focus on these
benchmarks, although useful for fast and quanti-
tative comparison, falls short of capturing the full
spectrum of LLM capabilities.

In response to these challenges, we propose
several forward-looking recommendations for the
LLM research community:

Do Not Take Leaderboard Scores at Face
Value: The emphasis on leaderboard rankings,
while serving as a proxy for LLM performance,
often overlooks the complexity of tasks that LLMs
are now being developed to perform. As a com-
munity, we should not be easily over-hyped with
leaderboard chasing, especially considering the
limitations on either MCQ-based, or voting-based
leaderboards as discussed in this paper.

Develop Comprehensive Evaluation Proto-
cols: Future research should focus on creating eval-
uation frameworks that encompass a broader range
of LLM capabilities. The discrepancy between
evaluation measures and real-world applicability
underscores the necessity for a more holistic ap-
proach to LLM evaluation. This includes not just
traditional benchmarks but also metrics that eval-
uate free-text generation, contextual understand-
ing, and conversational engagement. Crafting these
comprehensive evaluation protocols will be chal-
lenging yet essential for a deeper understanding of
LLM performance and applicability.

Embrace Slow Research: The field should
adopt a more deliberate pace of research, prioritiz-
ing understanding over the speed of advancement
and leaderboard-chasing. Given the rapid advance-
ments in LLMs, there has been a noticeable rush to
create the next generation of these models, often at
the expense of scientific understanding. A conse-
quence of this is that as these LLMs are evaluated
using current benchmarks, their development be-
gins to overfit to top the leaderboard. By slowing
down and focusing more on understanding, we also
allow more time for work on evaluation methods,
potentially leading to more robust solutions.

Align Benchmarks with Human Preferences:
As a short-term measure, identifying benchmark
subsets that more closely mirror human preferences
can help improve the correlation between tradi-
tional evaluation metrics and the generative capa-
bilities of LLMs. However, this strategy must be
balanced with caution to prevent the overfitting of
models to these benchmarks, otherwise defeating
the purpose of the solution. Therefore, this solu-
tion is effective only if it is complemented by the
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adoption of slow research practices and a reduced
emphasis on pursuing SoTA and leaderboards.

In summary, the path forward for LLM research
requires a concerted effort to develop more nuanced
and comprehensive evaluation frameworks. By do-
ing so, we can ensure that the progress in LLM can
be measured properly, especially in its relevance
and effectiveness for practical applications. Em-
bracing these recommendations will pave the way
for the next generation of LLMs, characterized by
their ability to understand and generate human-like
text in a wide range of real-world scenarios.

5 Related Work

Large Language Models LLMs have demon-
strated remarkable proficiency across a wide range
of NLP tasks (Brown et al., 2020; Chowdhery et al.,
2022; Scao et al., 2022; Touvron et al., 2023a).
Furthermore, recent research has shown that super-
vised fine-tuning (SFT) and Reinforcement Learn-
ing from Human Feedback (RLHF) can signifi-
cantly enhance their performance when following
general language instructions (Weller et al., 2020;
Mishra et al., 2022; Wang et al., 2022b; Chung
et al., 2022; Muennighoff et al., 2022; Wu et al.,
2023; Li et al., 2023a; Wang et al., 2023c; Wu
et al., 2024). Zhao et al. (2023) present a com-
prehensive overview of the development of LLMs.
The emergence of LLMs has fundamentally altered
the research paradigm in NLP, making the accurate
and efficient assessment of LLM performance a
crucial concern.

Human Evaluation of LLMs Human evaluation
plays a pivotal role in assessing the performance of
LLMs and is often regarded as the “gold standard”
for evaluating natural language generation (van der
Lee et al., 2019; Howcroft et al., 2020). In the era of
LLMs, human evaluations are extensively utilized
to measure the effectiveness of these models (Wang
et al., 2022a; Wu et al., 2023; Bai et al., 2023). A
recent study by Zheng et al. (2023b) introduces
Chatbot Arena, a platform that compares pairs of
LLMs through crowd-sourced judgments in a com-
petitive setting. Nevertheless, some recent studies
challenge the validity of human judgments as the
“gold standard” for evaluating machine-generated
text (Wu and Aji, 2023; Hosking et al., 2023). Ad-
ditionally, there is a line of research highlighting
concerns over the reproducibility of human evalua-
tion results in recent NLP studies (Shimorina and
Belz, 2022; Belz et al., 2023b,a).

Automatic Evaluation of LLMs Given the limi-
tations of human evaluation in terms of scalability
and reproducibility, automatic evaluation acts as a
proxy for human evaluation. The performance of
LLMs has plateaued on conventional NLP bench-
marks (Rajpurkar et al., 2016; Wang et al., 2019).
Consequently, more recent studies have shifted to-
wards utilizing human exam questions as a means
to further test and challenge the capabilities of
LLMs (Hendrycks et al., 2021; Li et al., 2023b;
Koto et al., 2023; Cobbe et al., 2021). With the con-
tinuous advancements in LLMs, recent research has
explored using state-of-the-art LLMs, such as GPT-
4 (OpenAI, 2023) and Claude-2 (Bai et al., 2022b),
for evaluating model outputs (Li et al., 2023c; Wu
and Aji, 2023; Liu et al., 2023; Wu et al., 2024).
However, the reliability of LLM-based evaluation
remains an open question (Wang et al., 2023a; Li
et al., 2023d).

Ours Considering the limitations of human eval-
uation in terms of scalability and reproducibility,
leveraging automatic evaluation to assess Large
Language Models (LLMs) becomes essential. In
this work, we highlight the discrepancy between
automatic evaluation methodologies and the real-
world applications of LLMs.

6 Conclusion

This work critically examines the alignment be-
tween probability-based evaluation methods for
LLMs and their actual performance in generating
text, particularly on benchmarks such as MMLU,
TruthfulQA, and Belebele. Our findings highlight
a significant gap between these prediction meth-
ods and the practical utility of LLMs, suggesting
that current methods might not accurately reflect
a model’s real-world capabilities. The discrepan-
cies call for a shift towards more comprehensive
evaluation frameworks that prioritize the quality
of generated text and the model’s ability to un-
derstand and respond in human-like ways. Future
research should focus on developing evaluation
metrics that more accurately capture the essence of
LLM performance in practical scenarios. In sum-
mary, our study underscores the need for revising
LLM evaluation practices to ensure they accurately
estimate the models’ effectiveness in real-world
applications. By adopting more relevant evalua-
tion criteria, we can better gauge the progress and
utility of LLM advancements.
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Limitations

In this paper, we selected three representative
benchmarks to evaluate various LLMs, but these
benchmarks might not be comprehensive enough
to reflect the evaluation issue of LLMs since they
only cover examination questions (MMLU), fac-
toid questions (TruthfulQA) and general reading
comprehension (Belebele). Moreover, due to the
limitation of computational resources we only eval-
uate ten LLMs which might not be fullly reflective
of how LLMs behave when facing such MCQ ques-
tions, so more LLMs should be incorporated when
more resources are available.

This position paper, while exploring and empir-
ically showing the current misalignment issue in
LLM evaluation, does not explore practical solu-
tions beyond suggestions on where the field should
go. Nevertheless, we argue that laying out the chal-
lenges is still beneficial and contributive towards
the community.

References
Norah Alzahrani, Hisham Abdullah Alyahya, Yazeed

Alnumay, Sultan Alrashed, Shaykhah Alsubaie,
Yusef Almushaykeh, Faisal Mirza, Nouf Alotaibi,
Nora Altwairesh, Areeb Alowisheq, et al. 2024.
When benchmarks are targets: Revealing the sen-
sitivity of large language model leaderboards. arXiv
preprint arXiv:2402.01781.

Rohan Anil, Andrew M. Dai, Orhan Firat, Melvin John-
son, Dmitry Lepikhin, Alexandre Passos, Siamak
Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El
Shafey, Yanping Huang, Kathy Meier-Hellstern, Gau-
rav Mishra, Erica Moreira, Mark Omernick, Kevin
Robinson, Sebastian Ruder, Yi Tay, Kefan Xiao,
Yuanzhong Xu, Yujing Zhang, Gustavo Hernández
Ábrego, Junwhan Ahn, Jacob Austin, Paul Barham,
Jan A. Botha, James Bradbury, Siddhartha Brahma,
Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha
Chowdhery, Clément Crepy, Shachi Dave, Mostafa
Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz,
Nan Du, Ethan Dyer, Vladimir Feinberg, Fangxi-
aoyu Feng, Vlad Fienber, Markus Freitag, Xavier
Garcia, Sebastian Gehrmann, Lucas Gonzalez, and
et al. 2023. Palm 2 technical report. CoRR,
abs/2305.10403.

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Benjamin Mann, Nova DasSarma, Nelson
Elhage, Zac Hatfield-Dodds, Danny Hernandez, Jack-
son Kernion, Kamal Ndousse, Catherine Olsson,
Dario Amodei, Tom B. Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A

general language assistant as a laboratory for align-
ment. CoRR, abs/2112.00861.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang
Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jin-
gren Zhou, Xiaohuan Zhou, and Tianhang Zhu. 2023.
Qwen technical report. CoRR, abs/2309.16609.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom B.
Brown, Jack Clark, Sam McCandlish, Chris Olah,
Benjamin Mann, and Jared Kaplan. 2022a. Train-
ing a helpful and harmless assistant with rein-
forcement learning from human feedback. CoRR,
abs/2204.05862.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu,
Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron
McKinnon, Carol Chen, Catherine Olsson, Christo-
pher Olah, Danny Hernandez, Dawn Drain, Deep
Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez,
Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua
Landau, Kamal Ndousse, Kamile Lukosiute, Liane
Lovitt, Michael Sellitto, Nelson Elhage, Nicholas
Schiefer, Noemí Mercado, Nova DasSarma, Robert
Lasenby, Robin Larson, Sam Ringer, Scott John-
ston, Shauna Kravec, Sheer El Showk, Stanislav Fort,
Tamera Lanham, Timothy Telleen-Lawton, Tom Con-
erly, Tom Henighan, Tristan Hume, Samuel R. Bow-
man, Zac Hatfield-Dodds, Ben Mann, Dario Amodei,
Nicholas Joseph, Sam McCandlish, Tom Brown, and
Jared Kaplan. 2022b. Constitutional AI: harmless-
ness from AI feedback. CoRR, abs/2212.08073.

Lucas Bandarkar, Davis Liang, Benjamin Muller, Mikel
Artetxe, Satya Narayan Shukla, Donald Husa, Naman
Goyal, Abhinandan Krishnan, Luke Zettlemoyer, and
Madian Khabsa. 2023. The belebele benchmark: a
parallel reading comprehension dataset in 122 lan-
guage variants.

Anya Belz, Craig Thomson, and Ehud Reiter. 2023a.
Missing information, unresponsive authors, experi-
mental flaws: The impossibility of assessing the re-
producibility of previous human evaluations in NLP.
In The Fourth Workshop on Insights from Negative
Results in NLP, pages 1–10, Dubrovnik, Croatia. As-
sociation for Computational Linguistics.

117

https://doi.org/10.48550/ARXIV.2305.10403
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
http://arxiv.org/abs/2112.00861
https://doi.org/10.48550/ARXIV.2309.16609
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2204.05862
https://doi.org/10.48550/arXiv.2212.08073
https://doi.org/10.48550/arXiv.2212.08073
http://arxiv.org/abs/2308.16884
http://arxiv.org/abs/2308.16884
http://arxiv.org/abs/2308.16884
https://doi.org/10.18653/v1/2023.insights-1.1
https://doi.org/10.18653/v1/2023.insights-1.1
https://doi.org/10.18653/v1/2023.insights-1.1


Anya Belz, Craig Thomson, Ehud Reiter, and Simon
Mille. 2023b. Non-repeatable experiments and non-
reproducible results: The reproducibility crisis in
human evaluation in NLP. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
pages 3676–3687, Toronto, Canada. Association for
Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877–1901. Curran Associates,
Inc.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion
Stoica, and Eric P. Xing. 2023. Vicuna: An open-
source chatbot impressing gpt-4 with 90%* chatgpt
quality.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways. CoRR, abs/2204.02311.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Y. Zhao,
Yanping Huang, Andrew M. Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language models.
CoRR, abs/2210.11416.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR, abs/2110.14168.

Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiy-
ong Wu, Baobao Chang, Xu Sun, Jingjing Xu, and
Zhifang Sui. 2022. A survey for in-context learning.
arXiv preprint arXiv:2301.00234.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net.

Tom Hosking, Phil Blunsom, and Max Bartolo. 2023.
Human feedback is not gold standard. CoRR,
abs/2309.16349.

David M. Howcroft, Anya Belz, Miruna-Adriana
Clinciu, Dimitra Gkatzia, Sadid A. Hasan, Saad
Mahamood, Simon Mille, Emiel van Miltenburg,
Sashank Santhanam, and Verena Rieser. 2020.
Twenty years of confusion in human evaluation: NLG
needs evaluation sheets and standardised definitions.
In Proceedings of the 13th International Conference
on Natural Language Generation, pages 169–182,
Dublin, Ireland. Association for Computational Lin-
guistics.

Yuzhen Huang, Yuzhuo Bai, Zhihao Zhu, Junlei
Zhang, Jinghan Zhang, Tangjun Su, Junteng Liu,
Chuancheng Lv, Yikai Zhang, Jiayi Lei, Yao Fu,
Maosong Sun, and Junxian He. 2023. C-eval: A
multi-level multi-discipline chinese evaluation suite
for foundation models. CoRR, abs/2305.08322.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b.

Fajri Koto, Nurul Aisyah, Haonan Li, and Timothy Bald-
win. 2023. Large language models only pass primary
school exams in Indonesia: A comprehensive test on
IndoMMLU. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Process-
ing, pages 12359–12374, Singapore. Association for
Computational Linguistics.

118

https://doi.org/10.18653/v1/2023.findings-acl.226
https://doi.org/10.18653/v1/2023.findings-acl.226
https://doi.org/10.18653/v1/2023.findings-acl.226
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://vicuna.lmsys.org
https://vicuna.lmsys.org
https://vicuna.lmsys.org
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.48550/arXiv.2210.11416
http://arxiv.org/abs/2110.14168
http://arxiv.org/abs/2110.14168
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=d7KBjmI3GmQ
https://doi.org/10.48550/ARXIV.2309.16349
https://aclanthology.org/2020.inlg-1.23
https://aclanthology.org/2020.inlg-1.23
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.48550/ARXIV.2305.08322
https://doi.org/10.48550/ARXIV.2305.08322
http://arxiv.org/abs/2310.06825
https://doi.org/10.18653/v1/2023.emnlp-main.760
https://doi.org/10.18653/v1/2023.emnlp-main.760
https://doi.org/10.18653/v1/2023.emnlp-main.760


Haonan Li, Fajri Koto, Minghao Wu, Alham Fikri Aji,
and Timothy Baldwin. 2023a. Bactrian-x : A multi-
lingual replicable instruction-following model with
low-rank adaptation. CoRR, abs/2305.15011.

Haonan Li, Yixuan Zhang, Fajri Koto, Yifei Yang,
Hai Zhao, Yeyun Gong, Nan Duan, and Timothy
Baldwin. 2023b. CMMLU: measuring massive mul-
titask language understanding in chinese. CoRR,
abs/2306.09212.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023c. Alpacaeval: An
automatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Zongjie Li, Chaozheng Wang, Pingchuan Ma, Daoyuan
Wu, Shuai Wang, Cuiyun Gao, and Yang Liu.
2023d. Split and merge: Aligning position biases
in large language model based evaluators. CoRR,
abs/2310.01432.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, Benjamin Newman, Binhang Yuan, Bobby Yan,
Ce Zhang, Christian Cosgrove, Christopher D. Man-
ning, Christopher Ré, Diana Acosta-Navas, Drew A.
Hudson, Eric Zelikman, Esin Durmus, Faisal Ladhak,
Frieda Rong, Hongyu Ren, Huaxiu Yao, Jue Wang,
Keshav Santhanam, Laurel J. Orr, Lucia Zheng, Mert
Yüksekgönül, Mirac Suzgun, Nathan Kim, Neel
Guha, Niladri S. Chatterji, Omar Khattab, Peter
Henderson, Qian Huang, Ryan Chi, Sang Michael
Xie, Shibani Santurkar, Surya Ganguli, Tatsunori
Hashimoto, Thomas Icard, Tianyi Zhang, Vishrav
Chaudhary, William Wang, Xuechen Li, Yifan Mai,
Yuhui Zhang, and Yuta Koreeda. 2022. Holistic eval-
uation of language models. CoRR, abs/2211.09110.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
TruthfulQA: Measuring how models mimic human
falsehoods. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 3214–3252, Dublin,
Ireland. Association for Computational Linguistics.

Yang Liu, Dan Iter, Yichong Xu, Shuohang Wang,
Ruochen Xu, and Chenguang Zhu. 2023. G-eval:
NLG evaluation using gpt-4 with better human align-
ment. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 2511–2522, Singapore. Association for Com-
putational Linguistics.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson,
Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. 2023.
The flan collection: Designing data and methods for
effective instruction tuning. CoRR, abs/2301.13688.

Swaroop Mishra, Daniel Khashabi, Chitta Baral, and
Hannaneh Hajishirzi. 2022. Cross-task generaliza-
tion via natural language crowdsourcing instructions.

In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 3470–3487, Dublin, Ireland.
Association for Computational Linguistics.

Niklas Muennighoff, Thomas Wang, Lintang Sutawika,
Adam Roberts, Stella Biderman, Teven Le Scao,
M. Saiful Bari, Sheng Shen, Zheng Xin Yong, Hai-
ley Schoelkopf, Xiangru Tang, Dragomir Radev,
Alham Fikri Aji, Khalid Almubarak, Samuel Al-
banie, Zaid Alyafeai, Albert Webson, Edward
Raff, and Colin Raffel. 2022. Crosslingual gen-
eralization through multitask finetuning. CoRR,
abs/2211.01786.

Made Nindyatama Nityasya, Haryo Wibowo, Al-
ham Fikri Aji, Genta Winata, Radityo Eko Prasojo,
Phil Blunsom, and Adhiguna Kuncoro. 2023. On
“scientific debt” in NLP: A case for more rigour in
language model pre-training research. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8554–8572, Toronto, Canada. Association for
Computational Linguistics.

OpenAI, :, Josh Achiam, Steven Adler, Sandhini Agar-
wal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mo Bavarian, Jeff Belgum, Irwan Bello,
Jake Berdine, Gabriel Bernadett-Shapiro, Christo-
pher Berner, Lenny Bogdonoff, Oleg Boiko, Made-
laine Boyd, Anna-Luisa Brakman, Greg Brockman,
Tim Brooks, Miles Brundage, Kevin Button, Trevor
Cai, Rosie Campbell, Andrew Cann, Brittany Carey,
Chelsea Carlson, Rory Carmichael, Brooke Chan,
Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess,
Chester Cho, Casey Chu, Hyung Won Chung, Dave
Cummings, Jeremiah Currier, Yunxing Dai, Cory
Decareaux, Thomas Degry, Noah Deutsch, Damien
Deville, Arka Dhar, David Dohan, Steve Dowl-
ing, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko
Felix, Simón Posada Fishman, Juston Forte, Is-
abella Fulford, Leo Gao, Elie Georges, Christian
Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh,
Rapha Gontijo-Lopes, Jonathan Gordon, Morgan
Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse
Han, Jeff Harris, Yuchen He, Mike Heaton, Jo-
hannes Heidecke, Chris Hesse, Alan Hickey, Wade
Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu
Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger
Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish
Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal

119

https://doi.org/10.48550/arXiv.2305.15011
https://doi.org/10.48550/arXiv.2305.15011
https://doi.org/10.48550/arXiv.2305.15011
https://doi.org/10.48550/ARXIV.2306.09212
https://doi.org/10.48550/ARXIV.2306.09212
https://github.com/tatsu-lab/alpaca_eval
https://doi.org/10.48550/ARXIV.2310.01432
https://doi.org/10.48550/ARXIV.2310.01432
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.48550/arXiv.2211.09110
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.18653/v1/2023.emnlp-main.153
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.48550/arXiv.2301.13688
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.18653/v1/2022.acl-long.244
https://doi.org/10.48550/arXiv.2211.01786
https://doi.org/10.48550/arXiv.2211.01786
https://doi.org/10.18653/v1/2023.acl-long.477
https://doi.org/10.18653/v1/2023.acl-long.477
https://doi.org/10.18653/v1/2023.acl-long.477


Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine Thompson, Phil
Tillet, Amin Tootoonchian, Elizabeth Tseng, Pre-
ston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. 2023. Gpt-4 technical report.

OpenAI. 2023. GPT-4 technical report. CoRR,
abs/2303.08774.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Gray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. In Advances in Neural Information
Processing Systems.

Pouya Pezeshkpour and Estevam Hruschka. 2023.
Large language models sensitivity to the order of

options in multiple-choice questions. arXiv preprint
arXiv:2308.11483.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383–2392, Austin,
Texas. Association for Computational Linguistics.

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle,
Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish
Bhatt, Cristian Canton Ferrer, Aaron Grattafiori, Wen-
han Xiong, Alexandre Défossez, Jade Copet, Faisal
Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code
llama: Open foundation models for code.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H.
Bach, Lintang Sutawika, Zaid Alyafeai, Antoine
Chaffin, Arnaud Stiegler, Arun Raja, Manan Dey,
M Saiful Bari, Canwen Xu, Urmish Thakker,
Shanya Sharma Sharma, Eliza Szczechla, Taewoon
Kim, Gunjan Chhablani, Nihal V. Nayak, Debajyoti
Datta, Jonathan Chang, Mike Tian-Jian Jiang, Han
Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong,
Harshit Pandey, Rachel Bawden, Thomas Wang, Tr-
ishala Neeraj, Jos Rozen, Abheesht Sharma, An-
drea Santilli, Thibault Févry, Jason Alan Fries, Ryan
Teehan, Teven Le Scao, Stella Biderman, Leo Gao,
Thomas Wolf, and Alexander M. Rush. 2022. Multi-
task prompted training enables zero-shot task gener-
alization. In The Tenth International Conference on
Learning Representations, ICLR 2022, Virtual Event,
April 25-29, 2022. OpenReview.net.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoît Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina
McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurençon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, and et al. 2022. BLOOM:
A 176b-parameter open-access multilingual language
model. CoRR, abs/2211.05100.

Anastasia Shimorina and Anya Belz. 2022. The human
evaluation datasheet: A template for recording details
of human evaluation experiments in NLP. In Pro-
ceedings of the 2nd Workshop on Human Evaluation
of NLP Systems (HumEval), pages 54–75, Dublin,
Ireland. Association for Computational Linguistics.

120

http://arxiv.org/abs/2303.08774
https://doi.org/10.48550/arXiv.2303.08774
https://openreview.net/forum?id=TG8KACxEON
https://openreview.net/forum?id=TG8KACxEON
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
http://arxiv.org/abs/2308.12950
http://arxiv.org/abs/2308.12950
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://openreview.net/forum?id=9Vrb9D0WI4
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.48550/arXiv.2211.05100
https://doi.org/10.18653/v1/2022.humeval-1.6
https://doi.org/10.18653/v1/2022.humeval-1.6
https://doi.org/10.18653/v1/2022.humeval-1.6


Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya
Gupta, Adrià Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power,
Alex Ray, Alex Warstadt, Alexander W. Kocurek,
Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Par-
rish, Allen Nie, Aman Hussain, Amanda Askell,
Amanda Dsouza, Ameet Rahane, Anantharaman S.
Iyer, Anders Andreassen, Andrea Santilli, Andreas
Stuhlmüller, Andrew M. Dai, Andrew La, Andrew K.
Lampinen, Andy Zou, Angela Jiang, Angelica Chen,
Anh Vuong, Animesh Gupta, Anna Gottardi, Anto-
nio Norelli, Anu Venkatesh, Arash Gholamidavoodi,
Arfa Tabassum, Arul Menezes, Arun Kirubarajan,
Asher Mullokandov, Ashish Sabharwal, Austin Her-
rick, Avia Efrat, Aykut Erdem, Ayla Karakas, and
et al. 2022. Beyond the imitation game: Quantifying
and extrapolating the capabilities of language models.
CoRR, abs/2206.04615.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023b. Llama: Open
and efficient foundation language models.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023c. Llama 2: Open foundation and fine-
tuned chat models.

Chris van der Lee, Albert Gatt, Emiel van Miltenburg,
Sander Wubben, and Emiel Krahmer. 2019. Best
practices for the human evaluation of automatically
generated text. In Proceedings of the 12th Interna-
tional Conference on Natural Language Generation,

pages 355–368, Tokyo, Japan. Association for Com-
putational Linguistics.

Veniamin Veselovsky, Manoel Horta Ribeiro, and
Robert West. 2023. Artificial artificial artificial in-
telligence: Crowd workers widely use large lan-
guage models for text production tasks. CoRR,
abs/2306.07899.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stickier
benchmark for general-purpose language understand-
ing systems. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neu-
ral Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada,
pages 3261–3275.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai
Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and Zhifang Sui.
2023a. Large language models are not fair evaluators.
CoRR, abs/2305.17926.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Al-
isa Liu, Noah A. Smith, Daniel Khashabi, and Han-
naneh Hajishirzi. 2022a. Self-instruct: Aligning lan-
guage model with self generated instructions. CoRR,
abs/2212.10560.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa
Liu, Noah A. Smith, Daniel Khashabi, and Hannaneh
Hajishirzi. 2023b. Self-instruct: Aligning language
models with self-generated instructions. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 13484–13508, Toronto, Canada. Association
for Computational Linguistics.

Yizhong Wang, Swaroop Mishra, Pegah Alipoormo-
labashi, Yeganeh Kordi, Amirreza Mirzaei, Atharva
Naik, Arjun Ashok, Arut Selvan Dhanasekaran,
Anjana Arunkumar, David Stap, Eshaan Pathak,
Giannis Karamanolakis, Haizhi Lai, Ishan Puro-
hit, Ishani Mondal, Jacob Anderson, Kirby Kuznia,
Krima Doshi, Kuntal Kumar Pal, Maitreya Patel,
Mehrad Moradshahi, Mihir Parmar, Mirali Purohit,
Neeraj Varshney, Phani Rohitha Kaza, Pulkit Verma,
Ravsehaj Singh Puri, Rushang Karia, Savan Doshi,
Shailaja Keyur Sampat, Siddhartha Mishra, Sujan
Reddy A, Sumanta Patro, Tanay Dixit, and Xudong
Shen. 2022b. Super-NaturalInstructions: General-
ization via declarative instructions on 1600+ NLP
tasks. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 5085–5109, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Zhanyu Wang, Longyue Wang, Zhen Zhao, Ming-
hao Wu, Chenyang Lyu, Huayang Li, Deng Cai,
Luping Zhou, Shuming Shi, and Zhaopeng Tu.
2023c. Gpt4video: A unified multimodal large lan-
guage model for lnstruction-followed understand-
ing and safety-aware generation. arXiv preprint
arXiv:2311.16511.

121

https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2302.13971
http://arxiv.org/abs/2307.09288
http://arxiv.org/abs/2307.09288
https://doi.org/10.18653/v1/W19-8643
https://doi.org/10.18653/v1/W19-8643
https://doi.org/10.18653/v1/W19-8643
https://doi.org/10.48550/ARXIV.2306.07899
https://doi.org/10.48550/ARXIV.2306.07899
https://doi.org/10.48550/ARXIV.2306.07899
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/4496bf24afe7fab6f046bf4923da8de6-Abstract.html
https://doi.org/10.48550/ARXIV.2305.17926
https://doi.org/10.48550/arXiv.2212.10560
https://doi.org/10.48550/arXiv.2212.10560
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340
https://doi.org/10.18653/v1/2022.emnlp-main.340


Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M.
Dai, and Quoc V Le. 2022. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Orion Weller, Nicholas Lourie, Matt Gardner, and
Matthew E. Peters. 2020. Learning from task de-
scriptions. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1361–1375, Online. Association for
Computational Linguistics.

Minghao Wu and Alham Fikri Aji. 2023. Style over sub-
stance: Evaluation biases for large language models.
CoRR, abs/2307.03025.

Minghao Wu, Thuy-Trang Vu, Lizhen Qu, George Fos-
ter, and Gholamreza Haffari. 2024. Adapting large
language models for document-level machine trans-
lation. arXiv preprint arXiv:2401.06468.

Minghao Wu, Abdul Waheed, Chiyu Zhang, Muham-
mad Abdul-Mageed, and Alham Fikri Aji. 2023.
Lamini-lm: A diverse herd of distilled models from
large-scale instructions. CoRR, abs/2304.14402.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Be-
ichen Zhang, Junjie Zhang, Zican Dong, Yifan Du,
Chen Yang, Yushuo Chen, Zhipeng Chen, Jinhao
Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang
Liu, Peiyu Liu, Jian-Yun Nie, and Ji-Rong Wen.
2023. A survey of large language models. CoRR,
abs/2303.18223.

Chujie Zheng, Hao Zhou, Fandong Meng, Jie Zhou, and
Minlie Huang. 2023a. On large language models’ se-
lection bias in multi-choice questions. arXiv preprint
arXiv:2309.03882.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P. Xing, Hao Zhang,
Joseph E. Gonzalez, and Ion Stoica. 2023b. Judg-
ing llm-as-a-judge with mt-bench and chatbot arena.
CoRR, abs/2306.05685.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,
Lili Yu, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
less is more for alignment. CoRR, abs/2305.11206.

122

https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.18653/v1/2020.emnlp-main.105
https://doi.org/10.48550/ARXIV.2307.03025
https://doi.org/10.48550/ARXIV.2307.03025
https://doi.org/10.48550/arXiv.2304.14402
https://doi.org/10.48550/arXiv.2304.14402
https://doi.org/10.48550/ARXIV.2303.18223
https://doi.org/10.48550/ARXIV.2306.05685
https://doi.org/10.48550/ARXIV.2306.05685
https://doi.org/10.48550/ARXIV.2305.11206
https://doi.org/10.48550/ARXIV.2305.11206


A Appendix

A.1 Experimental Setup
A.1.1 Datasets
MMLU The Massive Multitask Language Un-
derstanding (MMLU) (Hendrycks et al., 2021)
benchmark is a comprehensive test designed to
assess knowledge acquired during pretraining of
language models, especially in zero-shot and few-
shot settings. Introduced by (Hendrycks et al.,
2021)., MMLU encompasses 57 subjects across
diverse fields including STEM, humanities, so-
cial sciences, and others, making it a broad mea-
sure of both world knowledge and problem-solving
ability (Hendrycks et al., 2021). The dataset con-
tains 17,803 examples with a range of difficulties,
from elementary to advanced professional levels.
Its comprehensive nature allows for a detailed ex-
amination of a model’s strengths and weaknesses
across various disciplines.

Truthful-QA The Truthful-QA dataset (Lin
et al., 2022) is a benchmark to assess the truth-
fulness of language model responses to questions.
This dataset contains 817 questions spanning 38
diverse categories, including health, law, finance,
and politics. The key characteristic of Truthful-QA
is its design to elicit imitative falsehoods, wherein
some questions are crafted to provoke false answers
based on common misconceptions or false beliefs.
The dataset aims to test language models’ ability
to avoid generating false answers that may have
been learned through imitating human texts. Impor-
tantly, the Truthful-QA questions are adversarial
in nature, designed to pinpoint weaknesses in the
truthfulness of language models. Additionally, it
features a set of true and false reference answers
for each question, backed by reliable sources.

Belebele The Belebele Benchmark (Bandarkar
et al., 2023) is a massively multilingual reading
comprehension dataset designed to evaluate ma-
chine reading comprehension (MRC) capabilities
across various languages. Developed by Facebook
Research, it features 900 multiple-choice questions
per language, spanning 122 language variants, to-
taling 109,800 questions linked to 488 distinct pas-
sages. Each question has four answer options,
with only one correct answer. This benchmark
encompasses a wide range of languages, from high-
resource to low-resource, making it ideal for assess-
ing the performance of language models in diverse
linguistic contexts.

A.1.2 Models
LLaMA LLaMA-1 (Touvron et al., 2023b), Vi-
cuna (Chiang et al., 2023) and LLaMA-2 (Touvron
et al., 2023c) is a family of large language mod-
els (LLMs), encompassing a range of pretrained
and fine-tuned generative text models with param-
eters varying from 7 billion to 70 billion. The
model was trained on a new mix of publicly avail-
able online data, with a considerable size of 2 tril-
lion tokens, and includes over one million human-
annotated examples for fine-tuning. Its training
and evaluation emphasize both performance and
safety. These fine-tuned models have shown supe-
rior performance in human evaluations for helpful-
ness and safety, matching or even surpassing other
well-known models like ChatGPT and PaLM in
certain aspects.

Mistral The Mistral model (Jiang et al., 2023)
equipped with 7.3 billion parameters, is designed
to outperform its counterparts in terms of effi-
ciency and effectiveness. Notable features of Mis-
tral 7B include its proficiency in outperforming
LLaMA-2-13B (Touvron et al., 2023c) across vari-
ous benchmarks and approaching the performance
of CodeLLaMA-7B (Rozière et al., 2023) in code-
related tasks while maintaining strong English lan-
guage capabilities. Additionally, Mistral 7B incor-
porates Grouped-query attention (GQA) for faster
inference and Sliding Window Attention (SWA) to
manage longer sequences more economically.

lm-harness The lm-harness (Gao et al., 2021) †,
developed by EleutherAI, is a comprehensive
framework designed for the few-shot evaluation
of autoregressive language models. This library is
pivotal in the field of natural language processing
for assessing the performance of language models
in few-shot settings. It stands out due to its ver-
satility and ability to handle a variety of language
models, making it a valuable tool for researchers in
the field. The lm-harness library facilitates robust
and efficient evaluations, contributing significantly
to advancements in language model development
and assessment (Gao et al., 2021).

A.2 Elo-based Chatbot Arena Leaderboard

In the Elo-based Chatbot Arena Leaderboard,
crowds are given an interface to ask questions to
LLMs. The users are then given 2 options from 2

†https://github.com/EleutherAI/
lm-evaluation-harness
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Category Agreement(Label) Agreement(Seq) Acc.(Gen) Acc.(Label) Acc.(Seq) Examples
moral scenarios 0.08 0.08 0.27 0.23 0.25 891
college physics 0.20 0.22 0.26 0.27 0.14 85
high school biology 0.29 0.26 0.35 0.25 0.31 291
college mathematics 0.30 0.33 0.30 0.21 0.29 92
abstract algebra 0.17 0.56 0.21 0.21 0.24 98
high school computer science 0.26 0.24 0.40 0.29 0.32 90
astronomy 0.24 0.23 0.40 0.23 0.31 141
computer security 0.17 0.32 0.51 0.23 0.38 95
logical fallacies 0.26 0.18 0.30 0.27 0.28 158
professional law 0.28 0.23 0.32 0.24 0.25 1189
clinical knowledge 0.27 0.31 0.44 0.21 0.33 241
elementary mathematics 0.25 0.25 0.31 0.21 0.26 327
high school macroeconomics 0.22 0.26 0.29 0.22 0.30 353
formal logic 0.34 0.16 0.34 0.25 0.23 120
high school government and politics 0.31 0.37 0.46 0.28 0.36 183
medical genetics 0.26 0.24 0.28 0.23 0.28 95
electrical engineering 0.31 0.31 0.42 0.27 0.30 131
high school mathematics 0.34 0.26 0.31 0.27 0.30 232
public relations 0.26 0.17 0.40 0.35 0.32 105
econometrics 0.19 0.42 0.28 0.27 0.33 111
machine learning 0.18 0.55 0.27 0.27 0.19 107
human sexuality 0.27 0.20 0.41 0.21 0.24 127
high school geography 0.35 0.29 0.47 0.23 0.34 188
nutrition 0.24 0.31 0.43 0.24 0.29 282
management 0.24 0.19 0.49 0.21 0.22 101
jurisprudence 0.27 0.15 0.37 0.32 0.32 100
human aging 0.31 0.21 0.37 0.31 0.36 214
college chemistry 0.25 0.26 0.30 0.18 0.21 84
business ethics 0.27 0.17 0.30 0.21 0.33 98
high school psychology 0.28 0.21 0.45 0.26 0.25 512
conceptual physics 0.39 0.27 0.36 0.27 0.32 211
prehistory 0.24 0.23 0.42 0.23 0.27 293
high school chemistry 0.26 0.31 0.35 0.24 0.26 176
high school world history 0.32 0.28 0.46 0.26 0.33 203
college biology 0.27 0.19 0.35 0.26 0.29 132
high school physics 0.26 0.26 0.34 0.26 0.32 133
high school european history 0.30 0.23 0.53 0.21 0.31 131
college computer science 0.20 0.28 0.30 0.26 0.29 93
us foreign policy 0.32 0.23 0.47 0.35 0.40 91
moral disputes 0.23 0.19 0.35 0.25 0.31 318
world religions 0.38 0.45 0.55 0.30 0.40 146
high school statistics 0.28 0.25 0.38 0.29 0.25 205
international law 0.15 0.18 0.37 0.17 0.34 119
security studies 0.25 0.14 0.41 0.26 0.29 236
professional medicine 0.26 0.18 0.40 0.31 0.21 171
marketing 0.22 0.21 0.45 0.23 0.32 215
high school us history 0.29 0.22 0.45 0.19 0.31 186
sociology 0.30 0.23 0.39 0.27 0.27 190
anatomy 0.32 0.26 0.41 0.23 0.28 128
virology 0.28 0.21 0.31 0.27 0.29 153
professional psychology 0.23 0.22 0.31 0.25 0.33 563
miscellaneous 0.27 0.33 0.55 0.25 0.36 743
high school microeconomics 0.23 0.22 0.27 0.25 0.29 212
global facts 0.24 0.21 0.26 0.17 0.36 98
philosophy 0.25 0.23 0.43 0.27 0.28 288
college medicine 0.26 0.26 0.35 0.24 0.26 156
professional accounting 0.16 0.18 0.27 0.28 0.26 241

Table 4: Detailed results of LLaMA-1-7B on different categories of MMLU.
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Category Agreement(Label) Agreement(Seq) Acc.(Gen) Acc.(Label) Acc.(Seq) Examples
moral scenarios 0.23 0.76 0.24 0.28 0.24 790
college physics 0.40 0.20 0.30 0.33 0.20 93
high school biology 0.82 0.26 0.36 0.38 0.49 303
college mathematics 0.49 0.26 0.34 0.35 0.32 95
abstract algebra 0.65 0.09 0.24 0.23 0.31 98
high school computer science 0.71 0.26 0.29 0.21 0.42 96
astronomy 0.59 0.31 0.41 0.37 0.50 150
computer security 0.64 0.24 0.23 0.34 0.60 95
logical fallacies 0.90 0.25 0.30 0.26 0.58 157
professional law 0.75 0.18 0.29 0.26 0.35 1460
clinical knowledge 0.79 0.22 0.33 0.33 0.55 257
elementary mathematics 0.29 0.33 0.32 0.27 0.27 361
high school macroeconomics 0.86 0.18 0.38 0.38 0.40 369
formal logic 0.89 0.09 0.37 0.37 0.23 115
high school government and politics 0.80 0.36 0.46 0.48 0.69 186
medical genetics 0.72 0.26 0.38 0.29 0.47 99
electrical engineering 0.69 0.24 0.32 0.34 0.46 140
high school mathematics 0.38 0.28 0.28 0.25 0.27 248
public relations 0.72 0.31 0.41 0.33 0.55 106
econometrics 0.69 0.15 0.25 0.24 0.31 111
machine learning 0.86 0.12 0.15 0.16 0.34 104
human sexuality 0.77 0.36 0.39 0.37 0.56 125
high school geography 0.82 0.35 0.42 0.38 0.57 182
nutrition 0.73 0.21 0.34 0.32 0.48 290
management 0.70 0.43 0.46 0.47 0.68 100
jurisprudence 0.87 0.20 0.25 0.27 0.57 100
human aging 0.76 0.18 0.17 0.17 0.57 216
college chemistry 0.52 0.29 0.31 0.39 0.26 94
business ethics 0.60 0.18 0.33 0.32 0.46 90
high school psychology 0.80 0.28 0.43 0.44 0.64 530
conceptual physics 0.49 0.18 0.26 0.32 0.40 228
prehistory 0.67 0.35 0.30 0.33 0.55 305
high school chemistry 0.61 0.22 0.33 0.28 0.35 192
high school world history 0.73 0.36 0.39 0.22 0.63 188
college biology 0.79 0.21 0.27 0.32 0.44 139
high school physics 0.56 0.14 0.35 0.32 0.28 142
high school european history 0.65 0.40 0.41 0.35 0.59 123
college computer science 0.66 0.25 0.26 0.30 0.32 96
us foreign policy 0.70 0.31 0.33 0.40 0.71 91
moral disputes 0.84 0.24 0.23 0.22 0.50 331
world religions 0.62 0.26 0.33 0.35 0.68 164
high school statistics 0.67 0.20 0.39 0.47 0.27 200
international law 0.76 0.22 0.29 0.24 0.60 112
security studies 0.89 0.33 0.43 0.40 0.50 230
professional medicine 0.69 0.29 0.45 0.47 0.42 253
marketing 0.82 0.33 0.35 0.30 0.76 223
high school us history 0.70 0.30 0.35 0.29 0.66 178
sociology 0.81 0.37 0.38 0.39 0.76 192
anatomy 0.83 0.19 0.31 0.32 0.45 130
virology 0.74 0.31 0.28 0.23 0.47 156
professional psychology 0.84 0.19 0.27 0.27 0.47 586
miscellaneous 0.67 0.37 0.41 0.38 0.69 762
high school microeconomics 0.89 0.14 0.39 0.38 0.35 232
global facts 0.38 0.21 0.28 0.20 0.40 98
philosophy 0.91 0.22 0.28 0.28 0.53 295
college medicine 0.72 0.21 0.37 0.37 0.38 163
professional accounting 0.70 0.17 0.26 0.28 0.37 264

Table 5: Detailed results of LLaMA-2 on different categories of MMLU.
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Category Agreement(Label) Agreement(Seq) Acc.(Gen) Acc.(Label) Acc.(Seq) Examples
moral scenarios 1.00 1.00 0.24 0.24 0.24 895
college physics 0.71 0.51 0.24 0.22 0.20 102
high school biology 0.87 0.50 0.51 0.49 0.50 309
college mathematics 0.72 0.54 0.31 0.30 0.31 100
abstract algebra 0.67 0.22 0.35 0.32 0.30 100
high school computer science 0.72 0.42 0.35 0.36 0.40 100
astronomy 0.79 0.56 0.46 0.45 0.49 152
computer security 0.82 0.51 0.49 0.50 0.60 100
logical fallacies 0.88 0.48 0.45 0.50 0.58 163
professional law 0.87 0.49 0.34 0.36 0.36 1517
clinical knowledge 0.78 0.51 0.43 0.49 0.55 265
elementary mathematics 0.48 0.38 0.31 0.26 0.28 377
high school macroeconomics 0.85 0.49 0.42 0.42 0.40 390
formal logic 0.74 0.61 0.21 0.28 0.24 126
high school government and politics 0.84 0.57 0.53 0.52 0.68 193
medical genetics 0.78 0.48 0.42 0.41 0.48 100
electrical engineering 0.70 0.41 0.40 0.39 0.45 145
high school mathematics 0.51 0.40 0.27 0.24 0.27 270
public relations 0.85 0.58 0.45 0.45 0.54 110
econometrics 0.82 0.56 0.28 0.30 0.30 114
machine learning 0.70 0.31 0.20 0.29 0.35 111
human sexuality 0.84 0.59 0.53 0.53 0.56 131
high school geography 0.88 0.59 0.52 0.52 0.59 198
nutrition 0.80 0.44 0.45 0.43 0.49 305
management 0.87 0.60 0.55 0.56 0.68 103
jurisprudence 0.82 0.46 0.36 0.36 0.58 107
human aging 0.84 0.46 0.35 0.39 0.58 223
college chemistry 0.68 0.58 0.25 0.23 0.25 100
business ethics 0.63 0.40 0.39 0.38 0.45 100
high school psychology 0.84 0.59 0.54 0.56 0.63 545
conceptual physics 0.80 0.54 0.34 0.37 0.40 235
prehistory 0.87 0.59 0.50 0.51 0.55 324
high school chemistry 0.64 0.42 0.35 0.31 0.33 203
high school world history 0.76 0.53 0.47 0.55 0.61 222
college biology 0.81 0.44 0.42 0.46 0.45 144
high school physics 0.71 0.54 0.29 0.32 0.28 151
high school european history 0.78 0.58 0.50 0.56 0.59 147
college computer science 0.73 0.49 0.26 0.32 0.32 100
us foreign policy 0.86 0.56 0.49 0.57 0.72 100
moral disputes 0.88 0.50 0.36 0.37 0.50 346
world religions 0.83 0.52 0.46 0.54 0.69 171
high school statistics 0.78 0.54 0.33 0.33 0.27 216
international law 0.88 0.51 0.50 0.55 0.61 121
security studies 0.82 0.53 0.48 0.51 0.50 245
professional medicine 0.80 0.43 0.42 0.42 0.40 267
marketing 0.88 0.59 0.53 0.57 0.76 233
high school us history 0.74 0.49 0.41 0.47 0.66 202
sociology 0.87 0.60 0.57 0.60 0.74 201
anatomy 0.85 0.48 0.40 0.41 0.44 135
virology 0.83 0.56 0.39 0.39 0.46 166
professional psychology 0.87 0.49 0.38 0.39 0.47 612
miscellaneous 0.81 0.57 0.54 0.56 0.69 783
high school microeconomics 0.82 0.44 0.37 0.39 0.36 238
global facts 0.51 0.57 0.35 0.33 0.40 100
philosophy 0.87 0.52 0.42 0.46 0.53 311
college medicine 0.78 0.54 0.41 0.37 0.38 168
professional accounting 0.84 0.49 0.30 0.32 0.37 281

Table 6: Detailed results of LLaMA-2-chat on different categories of MMLU.
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Category Agreement(Label) Agreement(Seq) Acc.(Gen) Acc.(Label) Acc.(Seq) Examples
moral scenarios 0.07 0.69 0.25 0.23 0.24 778
college physics 0.35 0.43 0.31 0.27 0.27 94
high school biology 0.68 0.53 0.51 0.51 0.65 302
college mathematics 0.40 0.47 0.29 0.25 0.33 93
abstract algebra 0.59 0.42 0.36 0.23 0.27 99
high school computer science 0.60 0.41 0.35 0.38 0.53 97
astronomy 0.59 0.57 0.48 0.44 0.57 143
computer security 0.53 0.48 0.46 0.61 0.66 98
logical fallacies 0.72 0.51 0.38 0.41 0.63 158
professional law 0.69 0.36 0.32 0.37 0.41 1446
clinical knowledge 0.64 0.51 0.51 0.54 0.59 255
elementary mathematics 0.25 0.36 0.41 0.26 0.32 363
high school macroeconomics 0.63 0.45 0.42 0.46 0.49 366
formal logic 0.56 0.28 0.34 0.39 0.26 108
high school government and politics 0.71 0.58 0.54 0.65 0.75 179
medical genetics 0.56 0.41 0.41 0.47 0.55 96
electrical engineering 0.55 0.50 0.44 0.42 0.52 135
high school mathematics 0.25 0.40 0.32 0.26 0.24 240
public relations 0.56 0.53 0.50 0.49 0.63 106
econometrics 0.68 0.52 0.30 0.26 0.23 108
machine learning 0.68 0.31 0.16 0.29 0.26 105
human sexuality 0.69 0.60 0.52 0.63 0.66 121
high school geography 0.68 0.56 0.55 0.54 0.69 182
nutrition 0.66 0.53 0.44 0.49 0.63 294
management 0.72 0.59 0.59 0.63 0.76 99
jurisprudence 0.63 0.43 0.39 0.49 0.66 103
human aging 0.60 0.44 0.38 0.46 0.56 211
college chemistry 0.55 0.51 0.38 0.43 0.45 88
business ethics 0.45 0.52 0.43 0.42 0.51 88
high school psychology 0.67 0.56 0.56 0.61 0.71 513
conceptual physics 0.59 0.51 0.38 0.36 0.40 230
prehistory 0.68 0.57 0.44 0.54 0.61 297
high school chemistry 0.54 0.47 0.32 0.37 0.46 191
high school world history 0.67 0.51 0.42 0.43 0.70 191
college biology 0.66 0.48 0.44 0.48 0.48 130
high school physics 0.49 0.41 0.34 0.34 0.30 146
high school european history 0.62 0.50 0.50 0.56 0.64 135
college computer science 0.52 0.42 0.27 0.38 0.36 96
us foreign policy 0.69 0.66 0.57 0.67 0.81 96
moral disputes 0.62 0.48 0.33 0.42 0.54 328
world religions 0.69 0.58 0.55 0.62 0.75 163
high school statistics 0.55 0.43 0.40 0.47 0.44 199
international law 0.52 0.48 0.48 0.48 0.71 108
security studies 0.84 0.58 0.41 0.49 0.64 222
professional medicine 0.59 0.42 0.52 0.53 0.53 257
marketing 0.74 0.63 0.56 0.65 0.77 226
high school us history 0.61 0.53 0.45 0.49 0.66 179
sociology 0.77 0.57 0.52 0.60 0.75 190
anatomy 0.66 0.47 0.37 0.45 0.49 133
virology 0.63 0.61 0.39 0.41 0.43 147
professional psychology 0.63 0.48 0.39 0.45 0.53 575
miscellaneous 0.69 0.61 0.58 0.59 0.73 752
high school microeconomics 0.72 0.43 0.45 0.48 0.53 220
global facts 0.30 0.42 0.37 0.23 0.32 99
philosophy 0.72 0.51 0.42 0.48 0.65 296
college medicine 0.62 0.51 0.46 0.48 0.51 162
professional accounting 0.59 0.30 0.32 0.36 0.40 266

Table 7: Detailed results of LLaMA-13B on different categories of MMLU.
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Category Agreement(Label) Agreement(Seq) Acc.(Gen) Acc.(Label) Acc.(Seq) Examples
moral scenarios 0.29 0.47 0.32 0.24 0.27 893
college physics 0.74 0.57 0.24 0.27 0.27 100
high school biology 0.83 0.69 0.58 0.58 0.64 309
college mathematics 0.89 0.71 0.26 0.29 0.29 100
abstract algebra 0.41 0.63 0.34 0.26 0.29 99
high school computer science 0.82 0.64 0.48 0.47 0.55 99
astronomy 0.83 0.64 0.53 0.57 0.58 152
computer security 0.76 0.61 0.57 0.60 0.66 100
logical fallacies 0.68 0.65 0.56 0.59 0.69 162
professional law 0.81 0.72 0.37 0.39 0.40 1500
clinical knowledge 0.78 0.70 0.55 0.54 0.59 262
elementary mathematics 0.72 0.60 0.33 0.30 0.32 374
high school macroeconomics 0.82 0.73 0.44 0.46 0.50 389
formal logic 0.63 0.48 0.24 0.30 0.24 122
high school government and politics 0.90 0.75 0.63 0.65 0.76 193
medical genetics 0.72 0.63 0.47 0.54 0.58 100
electrical engineering 0.74 0.68 0.50 0.51 0.54 145
high school mathematics 0.74 0.59 0.27 0.24 0.27 266
public relations 0.79 0.69 0.53 0.54 0.63 110
econometrics 0.78 0.70 0.26 0.31 0.24 111
machine learning 0.58 0.74 0.32 0.42 0.33 111
human sexuality 0.85 0.73 0.55 0.57 0.64 131
high school geography 0.85 0.69 0.59 0.60 0.65 198
nutrition 0.81 0.65 0.51 0.52 0.61 305
management 0.79 0.71 0.57 0.63 0.69 103
jurisprudence 0.72 0.58 0.51 0.60 0.69 108
human aging 0.80 0.66 0.45 0.53 0.62 221
college chemistry 0.78 0.65 0.28 0.35 0.34 95
business ethics 0.72 0.68 0.49 0.52 0.54 100
high school psychology 0.84 0.76 0.63 0.65 0.72 542
conceptual physics 0.83 0.64 0.36 0.37 0.41 235
prehistory 0.82 0.71 0.52 0.53 0.63 323
high school chemistry 0.73 0.63 0.38 0.38 0.43 203
high school world history 0.71 0.72 0.61 0.68 0.75 218
college biology 0.81 0.65 0.44 0.47 0.58 144
high school physics 0.79 0.55 0.36 0.35 0.33 148
high school european history 0.83 0.69 0.55 0.63 0.67 144
college computer science 0.86 0.70 0.37 0.33 0.43 99
us foreign policy 0.88 0.83 0.71 0.73 0.81 100
moral disputes 0.84 0.70 0.48 0.52 0.60 345
world religions 0.87 0.77 0.69 0.70 0.77 171
high school statistics 0.79 0.60 0.35 0.34 0.34 216
international law 0.78 0.71 0.61 0.68 0.72 120
security studies 0.87 0.68 0.52 0.55 0.66 241
professional medicine 0.66 0.63 0.46 0.42 0.50 265
marketing 0.88 0.75 0.69 0.70 0.80 234
high school us history 0.71 0.69 0.58 0.64 0.74 200
sociology 0.86 0.73 0.65 0.71 0.75 201
anatomy 0.82 0.73 0.47 0.46 0.52 135
virology 0.74 0.62 0.37 0.44 0.47 165
professional psychology 0.78 0.68 0.47 0.51 0.54 610
miscellaneous 0.82 0.72 0.66 0.69 0.77 782
high school microeconomics 0.74 0.62 0.46 0.45 0.51 238
global facts 0.80 0.66 0.32 0.31 0.31 100
philosophy 0.83 0.72 0.55 0.55 0.65 310
college medicine 0.80 0.63 0.41 0.43 0.42 167
professional accounting 0.80 0.66 0.37 0.39 0.41 282

Table 8: Detailed results of LLaMA-13B-chat on different categories of MMLU.
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Category Agreement(Label) Agreement(Seq) Acc.(Gen) Acc.(Label) Acc.(Seq) Examples
moral scenarios 0.64 0.98 0.24 0.25 0.24 878
college physics 0.31 0.50 0.31 0.21 0.44 96
high school biology 0.44 0.68 0.65 0.47 0.73 303
college mathematics 0.31 0.48 0.24 0.35 0.34 94
abstract algebra 0.26 0.48 0.40 0.19 0.30 96
high school computer science 0.41 0.55 0.53 0.47 0.64 92
astronomy 0.41 0.57 0.59 0.39 0.61 148
computer security 0.49 0.70 0.61 0.49 0.74 92
logical fallacies 0.50 0.70 0.66 0.48 0.75 159
professional law 0.36 0.58 0.39 0.30 0.44 1508
clinical knowledge 0.47 0.66 0.63 0.44 0.69 261
elementary mathematics 0.32 0.51 0.43 0.29 0.40 373
high school macroeconomics 0.37 0.59 0.51 0.35 0.59 384
formal logic 0.44 0.53 0.36 0.24 0.35 110
high school government and politics 0.50 0.71 0.74 0.53 0.84 191
medical genetics 0.52 0.61 0.61 0.52 0.69 100
electrical engineering 0.42 0.62 0.50 0.40 0.58 141
high school mathematics 0.30 0.44 0.34 0.27 0.35 250
public relations 0.54 0.60 0.58 0.42 0.66 106
econometrics 0.43 0.61 0.41 0.28 0.44 113
machine learning 0.26 0.37 0.38 0.31 0.48 108
human sexuality 0.45 0.64 0.62 0.47 0.75 130
high school geography 0.58 0.70 0.66 0.51 0.75 188
nutrition 0.46 0.63 0.60 0.46 0.70 301
management 0.55 0.70 0.66 0.43 0.80 100
jurisprudence 0.41 0.62 0.51 0.38 0.74 104
human aging 0.39 0.59 0.56 0.49 0.66 216
college chemistry 0.33 0.39 0.30 0.28 0.47 99
business ethics 0.32 0.60 0.53 0.35 0.58 96
high school psychology 0.52 0.75 0.73 0.48 0.78 530
conceptual physics 0.43 0.57 0.50 0.39 0.53 230
prehistory 0.43 0.71 0.59 0.39 0.71 318
high school chemistry 0.32 0.59 0.43 0.29 0.50 197
high school world history 0.33 0.59 0.63 0.46 0.79 212
college biology 0.41 0.67 0.57 0.41 0.67 141
high school physics 0.33 0.46 0.34 0.27 0.30 146
high school european history 0.33 0.69 0.57 0.36 0.77 143
college computer science 0.29 0.47 0.33 0.32 0.54 96
us foreign policy 0.59 0.79 0.78 0.60 0.84 100
moral disputes 0.41 0.64 0.56 0.38 0.68 338
world religions 0.52 0.81 0.75 0.53 0.81 165
high school statistics 0.35 0.55 0.38 0.30 0.46 207
international law 0.45 0.66 0.61 0.47 0.76 119
security studies 0.40 0.62 0.56 0.39 0.70 241
professional medicine 0.42 0.63 0.56 0.42 0.68 268
marketing 0.58 0.77 0.81 0.59 0.86 226
high school us history 0.34 0.63 0.63 0.39 0.76 197
sociology 0.49 0.79 0.69 0.54 0.86 200
anatomy 0.44 0.62 0.54 0.32 0.56 133
virology 0.47 0.66 0.51 0.34 0.52 161
professional psychology 0.48 0.65 0.56 0.39 0.61 604
miscellaneous 0.53 0.73 0.72 0.53 0.79 769
high school microeconomics 0.38 0.61 0.56 0.36 0.63 233
global facts 0.42 0.50 0.43 0.26 0.41 92
philosophy 0.43 0.67 0.61 0.37 0.69 289
college medicine 0.40 0.64 0.54 0.33 0.60 164
professional accounting 0.38 0.53 0.46 0.34 0.47 268

Table 9: Detailed results of Mistral-7B on different categories of MMLU.
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Category Agreement(Label) Agreement(Seq) Acc.(Gen) Acc.(Label) Acc.(Seq) Examples
moral scenarios 0.08 0.02 0.28 0.23 0.24 894
college physics 0.34 0.48 0.26 0.16 0.29 100
high school biology 0.43 0.64 0.57 0.39 0.65 310
college mathematics 0.21 0.37 0.29 0.24 0.39 97
abstract algebra 0.11 0.27 0.34 0.17 0.33 99
high school computer science 0.36 0.60 0.51 0.42 0.50 100
astronomy 0.41 0.57 0.52 0.34 0.53 152
computer security 0.42 0.56 0.52 0.52 0.65 100
logical fallacies 0.50 0.69 0.59 0.47 0.71 163
professional law 0.37 0.56 0.34 0.30 0.40 1521
clinical knowledge 0.39 0.66 0.56 0.41 0.61 265
elementary mathematics 0.32 0.49 0.45 0.26 0.34 374
high school macroeconomics 0.35 0.56 0.44 0.28 0.51 389
formal logic 0.23 0.39 0.36 0.30 0.38 122
high school government and politics 0.51 0.68 0.60 0.44 0.72 193
medical genetics 0.46 0.59 0.52 0.51 0.63 100
electrical engineering 0.38 0.57 0.50 0.37 0.54 143
high school mathematics 0.36 0.38 0.27 0.22 0.30 256
public relations 0.49 0.73 0.51 0.34 0.57 110
econometrics 0.39 0.49 0.30 0.28 0.32 114
machine learning 0.21 0.30 0.29 0.33 0.46 112
human sexuality 0.47 0.64 0.56 0.46 0.69 129
high school geography 0.53 0.68 0.57 0.47 0.67 198
nutrition 0.43 0.59 0.49 0.40 0.63 306
management 0.51 0.68 0.60 0.47 0.74 103
jurisprudence 0.44 0.61 0.52 0.42 0.67 108
human aging 0.46 0.61 0.51 0.48 0.60 223
college chemistry 0.36 0.44 0.32 0.29 0.37 97
business ethics 0.40 0.52 0.52 0.39 0.58 100
high school psychology 0.51 0.71 0.65 0.47 0.72 545
conceptual physics 0.40 0.53 0.43 0.31 0.46 235
prehistory 0.40 0.66 0.54 0.39 0.58 323
high school chemistry 0.32 0.47 0.41 0.24 0.43 200
high school world history 0.40 0.62 0.57 0.47 0.75 223
college biology 0.40 0.60 0.51 0.35 0.60 144
high school physics 0.32 0.57 0.25 0.23 0.32 146
high school european history 0.37 0.67 0.56 0.33 0.67 147
college computer science 0.32 0.50 0.30 0.30 0.46 96
us foreign policy 0.56 0.75 0.63 0.57 0.76 100
moral disputes 0.47 0.66 0.53 0.40 0.59 345
world religions 0.52 0.67 0.59 0.52 0.69 171
high school statistics 0.38 0.51 0.38 0.25 0.41 213
international law 0.42 0.74 0.64 0.43 0.70 121
security studies 0.38 0.56 0.45 0.39 0.66 244
professional medicine 0.38 0.57 0.46 0.35 0.59 268
marketing 0.56 0.72 0.73 0.60 0.80 234
high school us history 0.40 0.59 0.52 0.41 0.72 202
sociology 0.52 0.76 0.67 0.52 0.78 201
anatomy 0.31 0.57 0.48 0.25 0.47 135
virology 0.39 0.58 0.36 0.33 0.42 166
professional psychology 0.46 0.62 0.48 0.37 0.50 611
miscellaneous 0.51 0.72 0.69 0.51 0.75 783
high school microeconomics 0.36 0.58 0.50 0.37 0.60 237
global facts 0.40 0.54 0.36 0.23 0.31 100
philosophy 0.49 0.66 0.52 0.36 0.60 311
college medicine 0.40 0.61 0.40 0.27 0.53 168
professional accounting 0.39 0.54 0.36 0.29 0.39 282

Table 10: Detailed results of Mistral-7B-Chat on different categories of MMLU.
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MMLU Truthful-QA Belebele

Model Label-Gen Seq-Gen Label-Gen Seq-Gen Label-Gen Seq-Gen

Mistral-7B -14.3 6.9 -15.1 -14.0 9.0 -4.1
Mistral-7B-Instruct -11.0 6.3 -11.5 -8.5 6.7 4.5
LLaMA-1-7B -12.3 -8.1 4.9 16.4 -4.7 -4.0
Vicuna-7B -4.6 11.6 -2.2 9.9 4.0 16.5
LLaMA-2-7B -0.8 9.0 21.8 6.6 3.3 -6.4
LLaMA-2-7B-chat 1.3 6.3 -4.8 -33.5 6.1 1.1
LLaMA-2-13B 2.9 10.6 -5.4 -26.7 6.6 2.5
LLaMA-2-13B-chat 1.5 6.2 -4.8 -22.3 8.2 7.3
LLaMA-2-70B 2.1 7.3 -4.8 -26.8 6.2 -2.0
LLaMA-2-70B-chat 1.1 5.7 -19.8 -21.0 2.6 2.0

Table 11: Differences in label and sequence accuracies compared to generation accuracies across datasets.

anonymous LLMs, in which the user has to vote
for the better one, which will be the winner LLM.
Based on several win-lose interactions, we can then
calculate the Elo score.

Elo scores have been previously designed in
rank multiple players that involve multiple matches
across different people, such as chess. It is good for
determining a unified ranking across every player
(in this case, LLMs). From the Elo score of 2 play-
ers, we can predict the winning chance of both
players. For example, an LLM with an Elo of 1200
will win against an LLM with an Elo of 900 85%
of the time.

Chatbot Arena is one of the popular Elo-based
leaderboards. It supports a variety of LLMs, both
proprietary and open-sourced, and has accumulated
hundreds of thousands of votes.
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