Improving LLLM-based KGQA for multi-hop Question Answering with
implicit reasoning in few-shot examples

Mili Shah, Joyce Cahoon, Mirco Milletari, Jing Tian
Fotis Psallidas, Andreas Mueller, Nick Litombe
Microsoft

milishah, jcahoon, mimillet, jingtian, fopsalli, amueller, nicklitombe@microsoft.com

Abstract

Large language models (LLMs) have shown
remarkable capabilities in generating natural
language texts for various tasks. However, us-
ing LLMs for question answering on knowl-
edge graphs still remains a challenge, espe-
cially for questions requiring multi-hop reason-
ing. In this paper, we present a novel planned
query guidance approach that improves large
language model (LLM) performance in multi-
hop question answering on knowledge graphs
(KGQA). We do this by designing few-shot ex-
amples that implicitly demonstrate a systematic
reasoning methodology to answer multi-hop
questions. We evaluate our approach for two
graph query languages, Cypher and SPARQL,
and show that the queries generated using our
strategy outperform the queries generated us-
ing a baseline LLM and typical few-shot exam-
ples by up to 24.66% and 7.7% in execution
match accuracy for the MetaQA and the Spider
benchmarks respectively. We also conduct an
ablation study to analyze the incremental ef-
fects of the different techniques of designing
few-shot examples. Our results suggest that our
approach enables the LLM to effectively lever-
age the few-shot examples to generate queries
for multi-hop KGQA.

1 Introduction

Question answering on knowledge graphs (KGQA)
is a challenging task that requires understanding
the natural language query, mapping it to the KG
schema, and generating a graph query that can
retrieve the correct answer from the KG. We fo-
cus on two graph query languages in this work,
namely Cypher!, a well-known graph query lan-
guage developed by Neo4jZ, and SPARQL, a popu-
lar language for querying RDF® databases. In this

"https://neo4j.com/docs/cypher-manual/current/
introduction/

https://neo4j.com/

3Resource Description Framework

study, we focus on the task of answering a question
from a knowledge graph by generating Cypher and
SPARQL queries to query the knowledge graph.

Large language models (LLMs), such as GPT-4
(OpenAl et al., 2024), have shown remarkable ca-
pabilities in generating natural language texts for
various tasks. Recent studies have explored the ca-
pability of LLMs in Cypher generation (Guo et al.,
2023; Jiang et al., 2023b; An et al., 2023) as well as
SPARQL generation (Jiang et al., 2023a; Li et al.,
2023; Gu and Su, 2022; Ye et al., 2021). However,
using LLMs for multi-hop KGQA still remains a
challenge, as they need to generate queries that
can capture the multi-hop reasoning logic. Fur-
thermore, models are limited by the availability of
labeled data for KGQA, which is costly and time-
consuming to obtain.

Therefore, it is desirable to leverage the few-
shot learning ability of LLMs, which allows them
to adapt to new tasks with only a few examples,
and design effective few-shot examples that can
guide the LLM to generate more accurate queries
for multi-hop KGQA. The utilization of few-shot
learning in LLMs has shown promise in various
domains to address the limitations of data scarcity
and improve model generalization. Several stud-
ies demonstrated the value of few-shot learning in
various domains for improving the performance of
LLMs (Shirafuji et al., 2023; Huang et al., 2024;
Ahmed and Devanbu, 2023). However, to the best
of our knowledge, the influence of few-shot exam-
ples design in KGQA, particularly for generating
Cypher and SPARQL queries, has not been exten-
sively studied.

Existing KGQA models like TransferNet(Shi
et al., 2021), which excels in multi-hop reason-
ing over relation graphs, UniKGQA(Jiang et al.,
2022), known for its unified retrieval and reasoning
framework, and NuTrea(Choi et al., 2023), which
leverages neural tree search for context-rich em-
beddings, outperform our proposed LLM-based

125

Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024), pages 125-135
August 15, 2024 ©2024 Association for Computational Linguistics

https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/docs/cypher-manual/current/introduction/
https://neo4j.com/

Question: “the films that share actors with the film [Dil Chahta Hai] were released in which years”

Answer: “1997]1998|2003]2001|2006|2004|2005|2014|2008|2009]2010]|2012”

Figure 1: An example of a 3-hop question-answer pair in MetaQA.

approach, achieving up to 100% in the Hits@1
metric. However, these methods incur higher com-
plexity and cost, as they require extensive training
on specific knowledge graphs. In contrast, simple
LLM-based methods can achieve competitive per-
formance with a well-designed few-shot example
set, bypassing the need for exhaustive training or
customization. This efficiency makes the study of
few-shot example design for LLM-based KGQA a
crucial research area, promising swift adaptability
and innovation in question-answering systems.

In this paper, we propose a novel approach to im-
prove the performance of LLM-based Cypher and
SPARQL generation for multi-hop KGQA. We do
this by designing few-shot examples that implicitly
demonstrate a systematic reasoning methodology
to answer multi-hop questions. This guides the
LLM to follow a similar reasoning process for new
questions, without explicitly specifying the steps.
We hypothesize that such few-shot examples can
enhance the LLM’s understanding of the question,
the KG schema, and the syntax of the graph query
language, enabling it to generate more accurate
queries for multi-hop KGQA.

We evaluate our approach on two popular bench-
mark datasets, MetaQA (Zhang et al., 2018) and
Spider (Kosten et al., 2023), both of which feature
natural language questions across various levels of
difficulty for multi-hop querying. We start by con-
ducting an ablation study to analyze the effects of
different components of our few-shot examples de-
sign on Cypher. We then show how our methodol-
ogy transfers to SPARQL. Our results demonstrate
that this strategy can enhance execution match ac-
curacy over that of conventional methods used in
few-shot examples.

2 Methodology

This work focuses on the methodology of crafting
few-shot examples for improved performance of
LLM:s for the task of Cypher and SPARQL genera-
tion for KGQA. For this task, a few-shot example
is composed of a natural language question, ac-
companied by an expected response of a Cypher

or SPARQL query that can be run on an associated
KG to answer the natural language question.

We propose a method for designing Cypher and
SPARQL queries for few-shot examples that clearly
demonstrates to the LLM the reasoning required
to answer multi-hop questions. Techniques like
chain-of-thought prompting (Wei et al., 2022) use
textual explanations to teach step-by-step reasoning
to LLMs. Our methodology employs a code style
that implicitly shows how to take each hop step-
by-step. Figure 2 is an example of a Cypher query
written in such a style to be used as a few-shot
example.

Contrast the query in Figure 2 with a typical or
conventional style* used by developers to write
Cypher queries in Figure 3. Certain prevalent
practices characterize this conventional style of
crafting such graph queries. These include the uti-
lization of succinct and non-descriptive variable
names, the consolidation of all traversal hops into
a single chain in a single MATCH clause, and the
immediate specification of string literals for en-
tity matching within the variable declaration itself
in the MATCH clause (e.g., {name: “Dil Chahta
Hai”}).

Our proposed approach outlines practical meth-
ods for crafting few-shot examples to generate
graph queries, like Cypher and SPARQL:

1. Structured Traversal Clarity: Each hop
should be articulated on a separate line to mir-
ror the logical sequence of traversals, strictly
adhering to the correct order of entities and
relationships encountered. This makes the
traversal reasoning clear and easy to follow.
This approach enhances the clarity of traver-
sal reasoning, ensuring that each step is both
transparent and sequentially accurate.

2. Logical Continuity in Chaining: Maintain
an unbroken logical chain where the endpoint

4https://neo4j.com/docs/cypher—manual/
current/styleguide/, https://neo4j.com/
docs/cypher-manual/current/queries/basic/
#find-connected-nodes, https://gist.github.
com/wjgilmore/8ba5f31ef1435dc0@4c52, https:
//gist.github.com/wjgilmore/8ba5f31ef1435dc@4c52

126

https://neo4j.com/docs/cypher-manual/current/styleguide/
https://neo4j.com/docs/cypher-manual/current/styleguide/
https://neo4j.com/docs/cypher-manual/current/queries/basic/##find-connected-nodes
https://neo4j.com/docs/cypher-manual/current/queries/basic/##find-connected-nodes
https://neo4j.com/docs/cypher-manual/current/queries/basic/##find-connected-nodes
https://gist.github.com/wjgilmore/8ba5f31ef1435dc04c52
https://gist.github.com/wjgilmore/8ba5f31ef1435dc04c52
https://gist.github.com/wjgilmore/8ba5f31ef1435dc04c52
https://gist.github.com/wjgilmore/8ba5f31ef1435dc04c52

MATCH (dilMovie: movie)-|[:starred_actors]->(actor: actor’
MATCH (actor: actor™)<-|:starred_actors]-(otherMovie: movie"
MATCH (otherMovie: movie™)-[:release_year]->(year: year
WHERE dilMovie.name

dilMovie otherMovie
RETURN

Figure 2: A sample of a Cypher query used in a few-shot example designed using our approach. Implicit reasoning
is demonstrated by writing each hop line-by-line, with an easy-to-understand code style following the correct chain
of hops, and separating reasoning of hops from the constraints into the WHERE clause. The natural language
question corresponding to this Cypher query from the MetaQA dataset is "the films that share actors with the film

Dil Chahta Hai were released in which years".

MATCH (yr: year)<-
starred_actors|-(m2: movie”

WHERE m m2

RETURN yr

release_year|-(m: movie”)-

starred_actors|->(: actor)<-

Figure 3: A sample of a Cypher query written in a commonly used style. The natural language question correspond-
ing to this Cypher query from the MetaQA dataset is "the films that share actors with the film Dil Chahta Hai were

released in which years".

of one hop is the starting point for the next,
ensuring a coherent flow of entities throughout
the query. Ensuring a coherent progression of
entities throughout the query facilitates the
LLM’s ability to mirror the thought process
when identifying subsequent steps.

3. Distinct Separation of Logic: In the case of
Cypher, employ MATCH clauses exclusively
for hops, while isolating all constraints, such
as string literals for entity matching, within
WHERE clauses to promote clarity; and in
the case of SPARQL, utilize WHERE clauses
for hops and separate constraints within the
FILTER clause. This approach delineates the
decision-making process for selecting hops
from other constraints, thus sharpening the
focus on the hop selection mechanism.

4. Descriptive Variable Naming: Adopt vari-
able names that are both illustrative and con-
sistent, reflecting the entity type and any ap-
plicable constraints, such as “dilMovie” to
denote a ‘movie’ entity constrained by the ti-
tle “Dil Chahta Hai”. This approach enhances
the traversal’s logical coherence as well as
aids the LLM in retaining the constraints for
inclusion in the WHERE clause.

5. Examples with increasing complexity:
Present multiple examples that escalate in
complexity, such as starting with a simple

1-hop query and advancing through to more
complex 2-hop and 3-hop queries, to reinforce
the learning of the reasoning pattern.

6. Consistency: Ensure that the structure and
presentation of all few-shot examples remain
uniform, facilitating easier pattern recognition
and learning.

3 Experimental setup

3.1 Cypher
3.1.1 Dataset

We evaluate our approach on a widely used bench-
mark for multi-hop KGQA, MetaQA (Zhang et al.,
2018). MetaQA comprises of a movie knowledge
graph with 43k entities and 9 relationship types,
along with question-answer pairs. The dataset con-
tains 161 1-hop question templates (31% of to-
tal question templates), 210 2-hop question tem-
plates (40% of total question templates), and 150
3-hop question templates (29% of total question
templates). The corresponding answers are a list of
entities from the KG. Figure 1 shows an example
of a 3-hop question-answer pair.

3.1.2 Baselines

We compare our proposed approach with an LLM-
based Cypher generation module® developed by

5ht’cps ://python.langchain.com/docs/use_cases/
graph/integrations/graph_cypher_qga

127

https://python.langchain.com/docs/use_cases/graph/integrations/graph_cypher_qa
https://python.langchain.com/docs/use_cases/graph/integrations/graph_cypher_qa

Our proposed LangChain’s Cypher

Examples with

Question Type approach generation module conventional style
3-hop (150 questions) 97.33% 67.33% 72.67%
2-hop (210 questions) 100% 89.52% 93.33%
1-hop (161 questions) 92.54% 88.81% 91.30%

Table 1: KGQA results for the MetaQA dataset comparing our approach (with systematic few-shot examples
implicitly demonstrating reasoning), with two baselines, the first being the Cypher generation module available in
LangChain, and the second being an approach where Cypher queries in few-shot examples are written in a typical

fashion. The metric shown is execution match accuracy.

Variation of few-shot example design Execution match accuracy
Conventionally written examples (baseline) 72.67%
Only one example written conventionally 83.33%
Non-descriptive variable names 87.33%
All hops in one line 94.67%
Only one example written with our design 95.33%
Chain direction not maintained 95.33%
Examples written with our design 97.33%

Table 2: Ablation experiments on 3-hop questions of the MetaQA dataset. Appendix D provides the few-shot

examples used for each of these experiments.

Neo4j and made available in LangChain. This is a
commonly used module for the task of KGQA.

We also compare against a second baseline of
few-shot examples with Cypher queries written in
a typical or conventional fashion. An example of
a Cypher query written in such a style is shown
in Figure 3. Section 2 details some features that
characterize this conventional style. This baseline
enables us to determine the influence of the design
of few-shot examples.

3.1.3 Query Generation and Post-Processing
pipeline

Our experiments employ GPT-4 (OpenAl et al.,

2024) as the LLM across all methods under exam-

ination to generate Cypher queries given natural

language questions.

We run these generated Cypher queries on
MetaQA KG hosted in Neo4;.

A Cypher query corrector module® is incorpo-
rated as a post-processing step to rectify common
errors in the directionality of relationships within
the Cypher queries. For instance, it corrects
MATCH (dilMovie: ‘movie ‘)<—[:starred_actors
]—(actor:‘actor’) to MATCH (dilMovie: ‘movie
“)—[:starred_actors]—>(actor:‘actor‘). To ensure

https://api.python.langchain.com/en/latest/
chains/langchain.chains.graph_ga.cypher_utils.
CypherQueryCorrector.html

consistency and fairness in our comparative analy-
sis, the Cypher query corrector module is applied
across all experimental conditions, encompassing
the proposed approach, the baselines, and all the
ablation studies.

3.1.4 Prompt

For both the proposed approach and the baseline
with typically written Cypher queries, we specify
three few-shot examples. The ablation studies em-
ploy variations of few-shot examples. All other
prompt components, namely the instructions and
the graph schema, remain consistent across these
two methods as well as ablation studies. The com-
plete prompt utilized for our proposed approach,
including all the few-shot examples, is detailed in
Appendix A. The few-shot examples employed for
the baseline featuring typically written examples
are enumerated in Appendix C.

For the baseline that relies on LangChain’s
Cypher generation module, we use the default
prompt generated by the module. Notably, it does
not involve any few-shot examples. The complete
prompt is attached in Appendix B.

3.2 SPARQL
3.2.1 Dataset

In order to evaluate how well this style of few-shot
expression generalizes and transfers to other graph

128

https://api.python.langchain.com/en/latest/chains/langchain.chains.graph_qa.cypher_utils.CypherQueryCorrector.html
https://api.python.langchain.com/en/latest/chains/langchain.chains.graph_qa.cypher_utils.CypherQueryCorrector.html
https://api.python.langchain.com/en/latest/chains/langchain.chains.graph_qa.cypher_utils.CypherQueryCorrector.html

Execution Match Accuracy

With Few-shot Technique
m= No
s Yes

network_1

car_1
cre_Doc_Template_ Mgt
dog_kennels

poker_player
student_transcripts_tracking
museum_visit

tvshow

Graph Type

world_1

concert_singer
employee_hire_evaluation
voter_1

flight 2

pets_1

course_teach

battle_death

0 20 40 60 80 100
Accuracy (%)

Figure 4: Execution match accuracy of our methodology
for generating SPARQL queries on the Spider bench-
mark.

query languages, we tested its applicability on the
SPARQL version of the Spider benchmark (Kosten
et al., 2023). This version of Spider is useful as
it already includes few-shot examples for training,
precluding the need for us to handcraft examples
as done for our Cypher module. We leverage a
static prompt as attached in Appendix E to convert
these few-shot examples into the style as outlined
in Section 2.

3.2.2 Baselines

We compare the performance of the few-shots re-
expressed in the format discussed against the per-
formance without these few-shot examples. The
prompt follows that as utilized for Cypher gen-
eration, except the graph schema is provided in
RDF format. Similar to the Cypher pipelines
above, we also include a corrector module as a
post-processing step across these strategies to en-
sure that the SPARQL generated is syntactically
valid.

3.3 Evaluation metric

The success of the generated queries is determined
by the accuracy of the output, specifically, whether
the entities in the generated answers precisely align
with those anticipated in the expected answers. Ex-
ecution match is reported in terms of the number
of samples meeting this criterion.

4 Results

4.1 On Cypher generation

We observe in Table 1 that our approach out-
performs both the LLM-based KGQA system in
LangChain and the baseline of few-shot examples
in terms of exact match accuracy across all hop
levels. The increase in performance is especially
pronounced in 3-hop questions, supporting our hy-
pothesis that our methodology is able to effectively
demonstrate to the LLM the reasoning required to
answer complex multi-hop questions.

Notably, our proposed approach shows better
performance in 3-hop and 2-hop questions over 1-
hop questions. Manual examination revealed that
most of the failures in 1-hop questions can be at-
tributed to confusion between selecting the correct
entity-type to traverse between "imdbvotes" and
"imdbrating" for questions like "how famous of a
film was [Pumping Iron]" or "what do people think
of [Beau Travail] ".

The results in Table 2 show that including three
examples instead of one in a typically written style
leads to regression in performance, and thus demon-
strates the importance of well-designed examples.
Other ablation experiments show that other features
of example design in our approach like using de-
scriptive variable names, writing the hops in order
of traversal, etc. contribute positively to perfor-
mance. Few-shot examples used for each ablation
experiment are listed in Appendix D.

4.2 On SPARQL generation

Figure 4 highlights the performance of our few-
shot design against the baseline across 16 differ-
ent knowledge graphs from the SPARQL version
of the Spider benchmark (Kosten et al., 2023).
There is a modest increase in execution match
accuracy for SPARQL, with the most significant
improvement—-a 7.7% lift-—observed in the sub-
set of questions related to the pets_1 graph. There
are six graphs where our methodology shows no
improvement in execution match accuracy, and two
graphs, tvshow and poker_player, where it leads
to regressions. This outcome primarily stems from
the use of few-shot examples that do not quite
match the query complexity for the question set
associated with those graphs, as classified by the
original benchmark’s measure of query hardness,
which includes queries with 10+ hops. Conducting
a paired difference t-test on these results yields a
test statistic of 2.33 with a corresponding p-value

129

of 0.03, indicating that the minor lift provided by
our methodology is statistically significant.

5 Discussion

Our findings demonstrate the effectiveness of our
proposed approach in improving the performance
of LLM-based KGQA systems, particularly in ad-
dressing the challenge of multi-hop reasoning. By
designing few-shot examples that implicitly demon-
strate systematic reasoning to guide LLMs in gener-
ating Cypher and SPARQL queries, we have shown
enhancements in accuracy, thereby highlighting
the potential of this methodology for advancing
the field of KGQA. Future research directions in-
clude testing our proposed approach on knowledge
graphs with increasingly complex schemas, ad-
dressing challenges such as accurate attribute se-
lection, aggregations and function usage in these
graph query languages, and assessing the efficacy
of using this few-shot example design in more
graph languages and code generation tasks. Ad-
ditionally, there is potential to develop techniques
that automatically generate few-shot examples for
a broad range of LLMs, streamlining the creation
process and enhancing adaptability across various
domains.

References

Toufique Ahmed and Premkumar Devanbu. 2023.
Few-shot training 1lms for project-specific code-
summarization. In Proceedings of the 37th
IEEE/ACM International Conference on Automated
Software Engineering, ASE 22, New York, NY,
USA. Association for Computing Machinery.

Yuan An, Jane Greenberg, Alex Kalinowski, Xin-
tong Zhao, Xiaohua Hu, Fernando J. Uribe-Romo,
Kyle Langlois, Jacob Furst, and Diego A. Gémez-
Gualdrén. 2023. Knowledge graph question an-
swering for materials science (kgqa4mat): Devel-
oping natural language interface for metal-organic
frameworks knowledge graph (mof-kg). Preprint,
arXiv:2309.11361.

Hyeong Kyu Choi, Seunghun Lee, Jaewon Chu, and
Hyunwoo J Kim. 2023. Nutrea: Neural tree search
for context-guided multi-hop kgqa. In Advances in
Neural Information Processing Systems, volume 36,
pages 35954-35965. Curran Associates, Inc.

Yu Gu and Yu Su. 2022. Arcaneqa: Dynamic pro-
gram induction and contextualized encoding for
knowledge base question answering. arXiv preprint
arXiv:2204.08109.

Jiayan Guo, Lun Du, Hengyu Liu, Mengyu Zhou, Xinyi
He, and Shi Han. 2023. Gptd4graph: Can large lan-
guage models understand graph structured data ? an
empirical evaluation and benchmarking. Preprint,
arXiv:2305.15066.

Xijie Huang, Li Lyna Zhang, Kwang-Ting Cheng, Fan
Yang, and Mao Yang. 2024. Fewer is more: Boost-
ing llm reasoning with reinforced context pruning.
Preprint, arXiv:2312.08901.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye,
Wayne Xin Zhao, and Ji-Rong Wen. 2023a. Struct-
gpt: A general framework for large language model
to reason over structured data. arXiv preprint
arXiv:2305.09645.

Jinhao Jiang, Kun Zhou, Zican Dong, Keming Ye, Xin
Zhao, and Ji-Rong Wen. 2023b. StructGPT: A gen-
eral framework for large language model to reason
over structured data. In Proceedings of the 2023 Con-
ference on Empirical Methods in Natural Language
Processing, pages 9237-9251, Singapore. Associa-
tion for Computational Linguistics.

Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, and Ji-Rong
Wen. 2022. Unikgqa: Unified retrieval and reason-
ing for solving multi-hop question answering over
knowledge graph. arXiv preprint arXiv:2212.00959.

Catherine Kosten, Philippe Cudré-Mauroux, and Kurt
Stockinger. 2023. Spiderdsparql: A complex bench-
mark for evaluating knowledge graph question an-
swering systems. In 2023 IEEE International Con-
ference on Big Data (BigData), pages 5272-5281.
IEEE.

Tianle Li, Xueguang Ma, Alex Zhuang, Yu Gu, Yu Su,
and Wenhu Chen. 2023. Few-shot in-context learn-
ing for knowledge base question answering. arXiv
preprint arXiv:2305.01750.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simén Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott

130

https://doi.org/10.1145/3551349.3559555
https://doi.org/10.1145/3551349.3559555
https://arxiv.org/abs/2309.11361
https://arxiv.org/abs/2309.11361
https://arxiv.org/abs/2309.11361
https://arxiv.org/abs/2309.11361
https://proceedings.neurips.cc/paper_files/paper/2023/file/707a2d58641b2192203b4bf4c532cfe1-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/707a2d58641b2192203b4bf4c532cfe1-Paper-Conference.pdf
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2305.15066
https://arxiv.org/abs/2312.08901
https://arxiv.org/abs/2312.08901
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574
https://doi.org/10.18653/v1/2023.emnlp-main.574

Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, fLukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Fukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerén Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wau, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Jiaxin Shi, Shulin Cao, Lei Hou, Juanzi Li, and Han-
wang Zhang. 2021. TransferNet: An effective and
transparent framework for multi-hop question an-
swering over relation graph. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4149—4158, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

A. Shirafuji, Y. Oda, J. Suzuki, M. Morishita, and
Y. Watanobe. 2023. Refactoring programs using
large language models with few-shot examples. In
2023 30th Asia-Pacific Software Engineering Confer-
ence (APSEC), pages 151-160, Los Alamitos, CA,
USA. IEEE Computer Society.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
NeurlIPS.

Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou,
and Caiming Xiong. 2021. Rng-kbqa: Generation
augmented iterative ranking for knowledge base ques-
tion answering. arXiv preprint arXiv:2109.08678.

Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
der J. Smola, and Le Song. 2018. Variational reason-
ing for question answering with knowledge graph. In
Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence and Thirtieth Innovative Ap-
plications of Artificial Intelligence Conference and
Eighth AAAI Symposium on Educational Advances in
Artificial Intelligence, AAAT’ 18/TAAT 18/EAAT’ 18.
AAAI Press.

A An example of a full prompt employing
our design

n,on

"role": "system",

"content": "You are a Cypher query
generation engine for a Neo4j graph with the
schema described below. You will create
Cypher queries that helps users navigate the
graph.

Node types:
— writer

— movie

— actor

— director
—tag

— year

— language
— genre

131

https://arxiv.org/abs/2303.08774
https://doi.org/10.18653/v1/2021.emnlp-main.341
https://doi.org/10.18653/v1/2021.emnlp-main.341
https://doi.org/10.18653/v1/2021.emnlp-main.341
https://doi.org/10.1109/APSEC60848.2023.00025
https://doi.org/10.1109/APSEC60848.2023.00025
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

— imdbrating
— imdbvotes

Relations schema:

movie —> directed_by —> actor

movie —> directed_by —> director
movie —> directed_by —> writer

movie —> has_genre —> genre

movie —> has_imdb_rating —> imdbrating
movie —> has_imdb_votes —> imdbvotes
movie —> has_tags —> tag

movie —> in_language —> language
movie —> release_year —> year

movie —> starred_actors —> actor

movie —> starred_actors —> director
movie —> starred_actors —> writer
movie —> written_by —> actor

movie —> written_by —> director

movie —> written_by —> writer

"

b
{

"role": "user",
"content": "Write a Cypher query for: \"what
films can be described by occupation\""

},

{

"role": "assistant",
"content": "¢

MATCH (movie: ‘movie‘)—[:has_tags]—>(
occupationTag: ‘tag*)

WHERE toLower(occupationTag.name)="
occupation’

RETURN movie LIMIT 200

xxall

b
{

"role": "user",
"content": "Write a Cypher query for: \"
which person wrote the films directed by
Yuriy Norshteyn\""

1,

{

"role": "assistant",
"content": "‘*

MATCH (yuriyDirector: ‘director‘)<—|:
directed_by]—(movie: ‘movie‘)

MATCH (movie: ‘movie‘)—[:written_by]—>(writer
:‘writer®)

WHERE toLower(yuriyDirector.name)="yuriy
norshteyn’

RETURN writer LIMIT 200

xxall

b,
{

"role": "user",

"content": "Write a Cypher query for: \"the
films that share actors with the film Dil
Chahta Hai were released in which years\""

il

{

"role": "assistant",
"content": "¢

MATCH (dilMovie: ‘movie ‘)—[:starred_actors
]—>(actor: ‘actor®)

MATCH (actor: ‘actor‘)<—[:starred_actors]|—(
otherMovie: ‘movie*)

MATCH (otherMovie: ‘movie‘)—[:release_year
]—>(year:‘year®)

WHERE toLower(dilMovie.name)="dil chahta
hai’

AND dilMovie <> otherMovie

RETURN year LIMIT 200
|
{
"role": "user",

"content": "Write a Cypher query for: \"what
types are the films starred by actors in The
Gypsy Moths\""
}
|

B An example of a full prompt used in the
baseline using LangChain’s Cypher
generation module

Task:Generate Cypher statement to query a graph
database.

Instructions:

Use only the provided relationship types and
properties in the schema.

Do not use any other relationship types or
properties that are not provided.

Schema:

Node properties are the following:

writer {name: STRING, node_id: STRING},
movie {name: STRING, node_id: STRING},
actor {name: STRING, node_id: STRING},
director {name: STRING, node_id: STRING
},tag {name: STRING, node_id: STRING},
year {name: STRING, node_id: STRING},
language {name: STRING, node_id:
STRING},genre {name: STRING, node_id:

132

STRING},imdbrating {name: STRING,
node_id: STRING},imdbvotes {name:
STRING, node_id: STRING}

Relationship properties are the following:

directed_by {source: STRING},written_by {
source: STRING},starred_actors {source:
STRING},release_year {source: STRING},
in_language {source: STRING},has_tags {
source: STRING},has_genre {source:
STRING},has_imdb_votes {source:
STRING},has_imdb_rating {source:
STRING}

The relationships are the following:

(:movie)—[:has_tags]—>(:tag),(:movie)—[:
directed_by]—>(:writer),(:movie)—[:
directed_by]—>(:actor),(:movie)—[:
directed_by]—>(:director),(:movie)—[:
written_by]—>(:writer),(:movie)—[:
written_by]—>(:actor),(:movie)—[:written_by
]—>(:director),(:movie)—[:in_language]—>(:
language),(:movie)—[:release_year]—>(:year)
,(:movie)—[:has_genre]—>(:genre),(:movie)
—[:starred_actors]—>(:actor),(:movie)—[:
starred_actors]—>(:director),(:movie)—[:
starred_actors|—>(:writer),(:movie)—|:
has_imdb_rating]—>(:imdbrating),(:movie)
—[:has_imdb_votes]—>(:imdbvotes)

Note: Do not include any explanations or
apologies in your responses.

Do not respond to any questions that might ask
anything else than for you to construct a
Cypher statement.

Do not include any text except the generated
Cypher statement.

The question is:

the movies that share actors with the movie [
Indiana Jones and the Last Crusade] were in
which languages

C Few-shot examples provided to LLM
for the baseline of typically written
examples

Question: what films can be described by
occupation

Cypher query: “*‘

MATCH (s:‘movie‘)—[r:has_tags]—>(o:‘tag®)

WHERE toLower(o.name)="occupation’
RETURN s LIMIT 200

X3

Question: which person wrote the films directed
by Yuriy Norshteyn

Cypher query: ““¢

MATCH (d:‘director‘ {name:’ Yuriy Norshteyn’ })
<—[:directed_by]—(m: ‘movie‘)—[:written_by
J—>(w:‘writer’) RETURN w LIMIT 200

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: “*

MATCH (yr:‘year‘)<—[:release_year]—(m: ‘movie
“)—[:starred_actors]—>(: ‘actor‘)<—[:
starred_actors]—(m2: ‘movie‘ {name: ’Dil
Chahta Hai’ })

WHERE m <> m2

RETURN yr LIMIT 200

xx3

D Few-shot examples provided to LLM
for ablation experiments

D.1 Ablation experiment ''One typical
example only"

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: “*

MATCH (yr:‘year‘)<—[:release_year]—(m: ‘movie
“)—[:starred_actors]—>(: ‘actor‘)<—[:
starred_actors]—(m2: ‘movie‘ {name: ’Dil
Chahta Hai’ })

WHERE m <> m2

RETURN yr LIMIT 200

1Xx3

D.2 Ablation experiment ''Non-descriptive
variable names''

Question: what films can be described by
occupation

Cypher query: ““¢

MATCH (m: ‘movie‘)—[:has_tags]—>(t: ‘tag®)

WHERE toLower(t.name)="occupation’

RETURN m LIMIT 200

1Xx3

Question: which person wrote the films directed
by Yuriy Norshteyn

Cypher query: ““f

MATCH (d:‘director‘)<—[:directed_by]—(m:*
movie*)

133

MATCH (m: ‘movie‘)—[:written_by]—>(w: ‘writer
9

WHERE toLower(d.name)="yuriy norshteyn’

RETURN w LIMIT 200

33

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: “*¢

MATCH (m:‘movie‘)—[:starred_actors]—>(a:*
actor®)

MATCH (a:‘actor ‘)<—[:starred_actors]—(m2:°
movie*)

MATCH (m2:‘movie‘)—[:release_year]—>(y: ‘year
‘)

WHERE toLower(m.name)="dil chahta hai’

AND m <> m?2

RETURN y LIMIT 200

X3

D.3 Ablation experiment ''All hops in one
line"

Question: what films can be described by
occupation

Cypher query: ““*

MATCH (movie: ‘movie‘)—[:has_tags]—>(
occupationTag: ‘tag*)

WHERE toLower(occupationTag.name)=’
occupation’

RETURN movie LIMIT 200

X313

Question: which person wrote the films directed
by Yuriy Norshteyn

Cypher query: ““¢

MATCH (yuriyDirector: ‘director‘)<—[:
directed_by]—(movie: ‘movie‘)—[:written_by
]—>(writer: ‘writer*)

WHERE toLower(yuriyDirector.name)="yuriy
norshteyn’

RETURN writer LIMIT 200

X3

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: “*‘

MATCH (dilMovie: ‘movie‘)—[:starred_actors
]—>(actor: ‘actor ‘)<—[:starred_actors]—(
otherMovie: ‘movie‘)—[:release_year]—>(year
:‘year)

WHERE toLower(dilMovie.name)="dil chahta

hai’
AND dilMovie <> otherMovie
RETURN year LIMIT 200

[Xx3

D.4 Ablation experiment ''One example only
employing our design''

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: ““f

MATCH (dilMovie: ‘movie‘)—[:starred_actors
]—>(actor: ‘actor®)

MATCH (actor: ‘actor‘)<—[:starred_actors]—(
otherMovie: ‘movie*)

MATCH (otherMovie: ‘movie‘)—[:release_year
]—>(year:‘year®)

WHERE toLower(dilMovie.name)="dil chahta
hai’

AND dilMovie <> otherMovie

RETURN year LIMIT 200

[Xx3

D.5 Ablation experiment ''Chain direction not
maintained"

Question: what films can be described by
occupation

Cypher query: ““f

MATCH (movie: ‘movie‘)—[:has_tags]—>(
occupationTag: ‘tag*)

WHERE toLower(occupationTag.name)="
occupation’

RETURN movie LIMIT 200

xX3

Question: which person wrote the films directed
by Yuriy Norshteyn

Cypher query: ‘¢

MATCH (movie: ‘movie‘)—[:directed_by]—>(
yuriyDirector: ‘director)

MATCH (movie: ‘movie‘)—[:written_by]—>(writer
s‘writer)

WHERE toLower(yuriyDirector.name)="yuriy
norshteyn’

RETURN writer LIMIT 200

[Xx3

Question: the films that share actors with the film
Dil Chahta Hai were released in which years

Cypher query: “*f

MATCH (dilMovie: ‘movie)—[:starred_actors
]—>(actor: ‘actor®)

134

MATCH (otherMovie: ‘movie‘)—[:starred_actors
]—>(actor: ‘actor®)

MATCH (otherMovie: ‘movie‘)—[:release_year
]—>(year:‘year‘)

WHERE toLower(dilMovie.name)="dil chahta
hai’

AND dilMovie <> otherMovie

RETURN year LIMIT 200

33

E Transferring methodology to SPARQL

E.1 Full prompt to transfer few-shot style

You are an expert at graph languages like
CYPHER and SPARQL. You want rewrite
graph queries so that each query is more
readable and understandable. An example is
given below:

OLD QUERY

MATCH (yr:‘year‘)<—[:release_year]—(m: ‘movie
“)—[:starred_actors]—>(a: ‘actor‘)<—[:
starred_actors]—(m2: ‘movie‘ { {name: ’Dil
Chahta Hai’ }})

WHERE m <> m2

RETURN yr LIMIT 200

NEW QUERY

MATCH (dilMovie: ‘movie)—[:starred_actors
]—>(actor: ‘actor®)

MATCH (actor: ‘actor‘)<—[:starred_actors]—(
otherMovie: ‘movie*)

MATCH (otherMovie: ‘movie‘)—[:release_year
]—>(year:‘year®)

WHERE toLower(dilMovie.name)="dil chahta
hai’

AND dilMovie <> otherMovie

RETURN year LIMIT 200

Help me rewrite the following query to make it
more readable and understandable. Make
sure that:

1. Each hop is articulated on a separate line to
mirror the logical sequence of traversals,
strictly adhering to the correct order of
entities and relationships encountered

2. Maintain an unbroken logical chain where the
endpoint of one hop is the starting point for
the next, ensuring a coherent flow of entities
throughout the query

135

3. Adopt variable names that are both illustrative
and consistent, reflecting the entity type and
any applicable constraints, like *dilMovie’ to

denote a "'movie entity constrained by the
title Dil Chahta Hai’

Please help me rewrite the following query in the
style discussed above.

