
Proceedings of the 1st Workshop on Knowledge Graphs and Large Language Models (KaLLM 2024), pages 116–124
August 15, 2024 ©2024 Association for Computational Linguistics

Fine-tuning Language Models for Triple Extraction
with Data Augmentation

Yujia Zhang, Tyler Sadler, Mohammad Reza Taesiri, Wenjie Xu, Marek Z. Reformat
University of Alberta

{yujia10, tsadle, taesiri, wx4, reformat}@ualberta.ca

Abstract
Advanced language models with impressive ca-
pabilities to process textual information can
more effectively extract high-quality triples,
which are the building blocks of knowledge
graphs. Our work examines language models’
abilities to extract entities and the relationships
between them. We use a diverse data augmenta-
tion process to fine-tune large language models
to extract triples from the text. Fine-tuning is
performed using a mix of trainers from Hug-
gingFace and five public datasets, such as differ-
ent variations of the WebNLG, SKE, DocRed,
FewRel, and KELM. Evaluation involves com-
paring model output with test set triples based
on several criteria, such as type, partial, exact,
and strict accuracy. The obtained results out-
perform ChatGPT and even match or exceed
the performance of GPT-4.

1 Introduction

Knowledge graphs (KGs) represent knowledge in a
semantically rich and intuitive way, enabling one to
better understand and utilize gathered information.
A KG is a data structure representing real-world
entities and the relationships between them in the
format of a triple, e.g., ⟨head entity, relation, tail
entity ⟩ or ⟨ subject, predicate, object ⟩ (Ji et al.,
2021).

The majority of available knowledge is com-
posed of unstructured textual data. The need to
‘convert it’ into a structured format via extracting
entities and relationships between them drives the
construction of KGs. Large language models, like
ChatGPT or GPT-4, have a remarkable capacity
for understanding and generating text. It makes
them useful tools for automating the process of
knowledge extraction from textual sources. They
can capture nuances and complexities of language,
allowing for a deeper comprehension of the text’s
meaning. Therefore, they can be employed to cre-
ate KGs that accurately and fully capture compli-
cated semantic relations and the meaning of texts.

Extracting triples from texts poses several chal-
lenges (Hofer et al., 2023). Finding accurate and
comprehensive entities and representative relation-
ships from the text can be difficult, especially
with various language usage, implicit references,
and context-dependent interpretations. Addition-
ally, processing and analyzing enormous quanti-
ties of text can be computationally demanding and
resource-intensive. Therefore, methods for captur-
ing reliable contextual information are paramount
for KG’s growth and development. Advanced
context-aware techniques must be developed to
identify and separate contextual references, capture
relationships, and identify implicit connections.

This work aims to tune large language models
(LLMs) to perform triple extraction from text. We
have conducted several experiments using various
models and datasets of different quality and sizes.
The construction of triples adhering to the DBpedia
ontology format has been particularly interesting.
The WebNLG dataset (Castro Ferreira et al., 2020),
predominantly using the DBpedia vocabulary for
its entities and properties or emulating its ontologi-
cal style, serves as the basis for our training data.

We have introduced a set of procedures to gen-
erate various prompts, instructing models about
different processes related to triple extraction and
understanding. This has led to the augmentation
of the original WebNLG data and the creation of
various versions of training datasets.

Eleven models, each with seven billion param-
eters, have been trained. Their efficacy has been
evaluated in comparison with GPT-3.5 and GPT-4
on WebNLG. Additionally, we have preliminary
assessed larger models with thirteen, thirty, and
thirty-three billion parameters and trained them
similarly.

The ultimate objective is to propose and illus-
trate a training methodology capable of elevating
domain-specific models to or beyond the profi-
ciency of leading-edge models.
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The findings of the work that constitute our con-
tributions are:

• the reasonably sized large language models,
such as ones with seven billion parameters,
can be successfully tuned to extract triples
from text;

• the proposed procedures to build a variety of
prompts lead to the generation of enlarged
and enhanced (enriched with information that
improves training) datasets;

• small, fine-tuned models can outperform the
baselines set up by GPT family models: Chat-
GPT and GPT-4.

• high-quality data is essential for the triple gen-
eration task; many datasets in the triple extrac-
tion space focus on extracting only specific
relationships from text rather than all possi-
ble relationships or do not follow particular
vocabulary, like DBpedia ontology.

2 Related Work

In the field of triple extraction, LSTM is a con-
ventional technique to explore. Seq2Rdf (Liu
et al., 2018) employs an LSTM-based sequence-
to-sequence model to map natural language text
to RDF triples in one step, using pre-trained word
and knowledge graph embeddings for initialization.
However, it is limited to extracting single triples
and cannot handle multi-triple extraction. The
ChatIE framework (Wei et al., 2023) achieves zero-
shot information extraction by promoting Chat-
GPT, without requiring any labeled data for train-
ing. It allows interactively querying the model to
extract structured information piece by piece in a
multi-turn conversational format. The ChatIE relies
on LLM like ChatGPT which is not open source.
The performance depends heavily on how well the
prompts are engineered and provides many details.

The Head to Tail benchmark (Sun et al., 2023)
provides a systematic way to evaluate how knowl-
edgeable LLM are about facts in diverse do-
mains(movies, books, academics). The benchmark
is still limited in size and diversity compared to
the vast world knowledge, 18k QA pairs may not
comprehensively cover all entity types, relation-
ships, and knowledge domains. Few-shot learning
with GPT-3 (Wadhwa et al., 2023) achieves state-of-
the-art performance on standard relation extraction

Figure 1: Example of triple extraction prompt workflow

datasets, surpassing existing fully supervised mod-
els. Fine-tuning Flan-T5 on explanations generated
by GPT-3 further enhances performance. Treating
relation extraction as a text-generation task pro-
vides flexibility in expressing entities and relations.
However, GPT-3 is opaque, not open source, and
significantly costly.

3 Problem and Experimental Setup

The paper focuses on extracting information from
plain text. It is the task of building triples of the
form ⟨subject, predicate, object⟩ based on the con-
tent of a sentence. Triple extraction is a domain-
independent task. Two entities of a triple, i.e., sub-
ject and object, appear in the text, while a relation
between these two entities is often deduced by ‘un-
derstanding the meaning’ of the sentence. All the
components of a triple are extracted at the same
time.

Here is a more formal description of the task.
Given a set of sentences D := {w1, w2, ..., wn},
we want to obtain a set of facts built from and
based on these sentences. Let this set be Facts :=
{fact1, fact2, ..., factn}, and each fact is denoted
as ⟨s, p, o⟩, s ∈ S, p ∈ P, o ∈ O, where S, P,O
are sets of subjects, predicates, and objects respec-
tively.

These triples are the basic units of knowledge
graphs, resulting from the development of the Se-
mantic Web concept. The classes (types of entities)
and properties (relationships and attributes) used
to describe triples’ components are defined using
ontologies. One of the most well-known ontologies
is the one used by DBpedia (Lehmann et al., 2015).

Within the DBpedia dataset, triples are generated
and represented using the DBpedia ontology as the
schema. This ontology consists of 320 classes or-
ganized into a subsumption hierarchy and 1650 dis-
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Llama2

You are an AI assistant who is an expert in knowledge graphs.
You will be given an instruction and text.
Generate a response to appropriately complete the instruction’s request.
{instruction}{input}{output}

LLongOrca

Below is an instruction that describes a task,
paired with an input that provides further context.
Write a output that appropriately completes the request.
{instruction}{input}{output}

other models
### Instruction:{instruction}
### Input: {input}
{output}

Table 1: Generic prompt template for different models.

tinct properties describing relations between them.
The subsumption hierarchy is purposefully main-
tained relatively shallow, with a maximum depth of
five to accommodate use cases where the ontology
is traversed or visualized. Online browsing of the
entire DBpedia ontology is available at 1.

3.1 Datasets

WebNLG The WebNLG corpus (Castro Ferreira
et al., 2020) is made up of sets of triplets describ-
ing facts (entities and their relationships) and the
matching facts expressed in natural language, in
other words, text from which the triples are ex-
tracted. It includes 13,211 training data and 2,155
test data.

FewREL Few-Shot Relation Classification
Dataset (FewRel)(Han et al., 2018) composes
70,000 instances from Wikipedia and 100 relations.
The dataset is divided into three subsets: training
set (64 relations), validation set (16 relations), and
test set (20 relations).

DocRED Document-Level Relation Extraction
Dataset (DocRED) (Yao et al., 2019) is created
from Wikipedia and Wikidata in relation extrac-
tion data. Annotated on 5,053 Wikipedia articles,
DocRED comprises 132,375 entities and 56,354
relational facts. The collection offers large-scale
distantly supervised data over 101,873 documents
in addition to the human-annotated data.

KELM The English Wikidata KG and the corre-
sponding natural text sentences make up the large-
scale synthetic corpus known as KELM(Agarwal
et al., 2020). It has roughly 15 million artifi-
cially generated sentences produced by a refined
T5 model. A list of triples of the format [subject,
relation, object] is contained in each linearized
KG graph in KELM. A subset of KELM, named
KELM-sub, is used which contains 400,000/5,000
samples as train/test set.

SKE Baidu has released a Chinese dataset called
1http://mappings.dbpedia.org/server/ontology/

classes/

SKE2019. The train set contains 194,747 sen-
tences, whereas the validated set contains 21,639
sentences. SKE21 (Xie et al., 2021) has been re-
leased by manually labeling 1150 sentences from
the test set with 2765 annotated triples. It contains
194,747 training data, 21,639 validation data, and
1,150 testing data. 2

3.2 Large Language Models

LLMs like ChatGPT and GPT-4, pre-trained on a
large-scale corpus, are composed of decoder mod-
ules based on the Transformer design, which in-
corporates a self-attention mechanism. However,
it is difficult to conduct further research due to the
close-source nature of models. Then, open-source
decoder-only LLMs like Alpaca and Vicuna are
released, which are fine-tuned based on LLaMA
(Touvron et al., 2023a) and achieve competitive
performance with ChatGPT and GPT-4.

ChatGPT-3.5 and GPT-4 Human-like conver-
sations are the main purpose of ChatGPT, an ad-
vanced LLM created by OpenAI. To improve Chat-
GPT’s alignment with human tastes and values,
it uses RLHF (Christiano et al., 2017) during the
fine-tuning process. GPT-4, an advanced big lan-
guage model created by OpenAI, is expanding on
the achievements of its forerunners, such as GPT-3
and ChatGPT.

Vicuna-13B (Chiang et al., 2023),Wizard (Xu
et al., 2023), Orca (Mukherjee et al., 2023),
LLaMA (Touvron et al., 2023a)(Touvron et al.,
2023b), LlongOrca (Lian et al., 2023), SOLAR
10.7B (Kim et al., 2023)Mixtral Mixtral3, Mistral
mode4, Platypus Platypus-30B (Lee et al., 2023)
is the open-source model we choose from Hugging-
Face.

2http://ai.baidu.com/broad/download?dataset=
sked

3https://mistral.ai/news/mixtral-of-experts/
4https://huggingface.co/ignos/

Mistral-T5-7B-v1
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Data Format
Data

Augmentation
(name)

Parts of prompt Response

instruction input output

Text2triples

Think of yourself as efficient in deconstructing a
text and precisely identifying all the entities and
their interrelations. I’ll furnish you with a text and
your job is to gather all potential triples, adhering
to the pattern: (subject|relationship|object).

Sentence Triples

Explanation

"Assume you’re highly competent in scrutinizing a
piece of text and successfully distilling all its entities
along with their connections. I’ll provide a text,
and you are to extract every possible triplet,
following the convention: (subject|relationship|
object). Detail the entire process systematically."

Sentence

To extract triplets from the given text, we need to
identify the subject, predicate, and object.
Subject: "Aarhus Airport"
Predicate: "cityServed"
Object: "Aarhus, Denmark"
The property "cityServed" is derived from the
context of the sentence, where it implies that the
airport serves the city of Aarhus.
Therefore, here is the answer in the correct format:
Aarhus_Airport | cityServed| "Aarhus, Denmark")

Triples2text

Picture yourself as an expert in scrutinizing a text,
effectively extracting all entities and their
relationships and then constructing text based on
the given triples. Once I supply you with triples in
the (subject|relationship|object) format, your
duty is to reexamine these triples and create text
that imparts their semantic interpretation.

Triples Sentence

Reflection

Picture yourself as being highly skilled in text
dissection, with the ability to efficiently identify all
entities and their ties. When provided a text along
with triples in the (subject|relationship|object)
format, you are to check these triples in light of
the text and correct any inaccuracies.

Sentence
Triples Corrected triples

Table 2: The overall Data Augmentation Tricks

3.3 Prompt Engineering & Data Preparation

Prompt engineering is an in-context method for
learning language models. In a nutshell, a prompt is
a sequence of natural language inputs for a model,
consisting of an instruction, context, and input text.
The instruction guides the model to perform a spe-
cific task, while the context provides additional in-
formation; the input text is the text to be processed
by the model. An example of the triple extraction
prompt is shown in Figure 1.

In this work, we used different prompt formats
for various models, ensuring that both fine-tuning
and inference employed the same prompt format.
The three types of prompts are detailed in Table 1.
The components {instruction}, {input}, and {out-
put} are replaced with information/data specific to
the proposed Data Formats, Table 2.

The experiments have been conducted with the
training datasets built with different versions of
Data Formats. Such an approach allowed us to
increase the size of training datasets by 3- and 4-
fold. The process of building different datasets
is illustrated at the top of Figure 2. Examples of
data formats are included in Table 2. Each format
has its style of the instruction, input, as well as
output. The tasks associated with each Data Format
differed from explaining the extraction process via
reconstructing a sentence from triples to evaluating

triples. The data formats were used to construct
various Training Datasets, Table 3.

The first Training Dataset is called WebNLG-
combined dataset. It contains 39,633 entries in
three categories/subsets, each of 13,211 entries.
The first subset includes Test2triples, i.e., sets of
sentences together with the triples extracted from
them. The second subset is the extension of the
first one. We have added Explanation of the triple
extraction process. The explanations were gener-
ated by prompting GPT-3.5 with the input text and
the ground truth triples to elucidate the extraction
process. The explanations comprise entity identifi-
cation, property analysis, source derivation, entity
relationships, and the resultant triples. The third is
Triple2text subset. It sets the ground truth triples as
the model input and the original text as the target
output. The aim is to enhance reasoning capabili-
ties and improve triple generation performance.

The second generated Training Data is named
WebNLG-combined-with-reflections with 52,844
entries. We have extended the WebNLG-combined
dataset with so-called Reflection data. These
data were generated by a Vicuna model previ-
ously trained for the triple extraction task using
Test2triples and Explanation. The model was fed
with the text and triples generated from it, and the
task was either amending the triples or confirming
their correctness. The anticipated output was either
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Training Dataset Name Used Data Format(s) Size
WebNLG (original) Text2triples N
WebNLG-combined Text2triples + Explanations + Triples2text 3*N
WebNLG-combined-with-reflections Text2triples + Explanations + Triples2text + Reflection 4*N

WebNLG-reflections-updated-instructions Text2triples + Explanations + Triples2text + Reflection
+ new_instructions 4*N

Table 3: Variants of WebNLG training data

model-dependent 
prompts

original data: 
text-2-triple

 text-2-triple +
explanations

triple-2-text

set of 
instructions

set of instructions 
(new)

reflections: 
validation of 

triples

combined 
dataset

combined 
with reflections 

dataset

reflections
and new 

instructions 
dataset

Data Preparation

Fine-tuning with auto train/SFT or alpaca-lora
utilizing PEFT and LoRA

Applying LoRA to model

Benchmarking with Test Dataset

Triple Evaluation
 

Figure 2: Experimental Workflow

a confirmation that a given input triple was accurate
or its correct version.

For both datasets mentioned above, the instruc-
tion was randomly selected from the previously
generated set of twenty distinct instructions. These
instructions were a mix of human-authored instruc-
tions and variations generated by GPT-4 to enhance
diversity. All instructions underwent thorough eval-
uation before they were used.

The WebNLG-reflections-updated-instruc-
tions dataset was the WebNLG-combined-with-
reflections dataset when a new set of instructions
was used. This time, there are eleven instructions:
ten newly constructed and one from the original
set. Again, this new set of instructions is a mixture
of human-written and rephrased by GPT-4.

3.4 Overall Experiments Setup
The workflow of experimental steps and some de-
tails about the components forming different Train-
ing Datasets are shown in Figure 2. Once the
datasets were prepared, the models have been tuned
and benchmarked using the testing dataset. The fi-

nal step was an evaluation of the results (for details,
see next section).

To prepare models for the process of triple extrac-
tion, we utilized HuggingFace libraries to perform
supervised finetuning utilizing Parameter-Efficient
Finetuning (PEFT) (Liu et al., 2022) and Low-
Rank Adaptation (LoRA) (Hu et al., 2021) on the
WebNLG dataset. We used two prewritten trainers,
finetune script from alpaca-Lora and autotrain-
advanced from HuggingFace. The finetune script
was slightly modified to change evaluation steps
and to ensure the graphics processing unit (GPU)
cache was cleared after all evaluations and check-
points were saved. All models were trained using
two Nvidia 3090 24GB GPUs and a cutoff length
1024, with varying configurations of packages and
datasets based on the trainer used.

For the finetune script, we set an approximately
85:15 split between training and validation data.
The validation set size is 6,000 for WebNLG-
combined and 8,000 for WebNLG-combined-with-
reflections.

For autotrain-advanced, Supervised Fine-tuning
(SFT) Trainer is used from the Transformer Rein-
forcement Learning (TRL) package that is included
as an option for training in autotrain-advanced
(von Werra et al., 2020). The WebNLG-reflections-
updated-instructions dataset is used. It contained
different instructions for each training task, includ-
ing additional details about formatting triples and
better explaining the model’s role.

We trained a collection of eleven models chosen
based on relative performance on the HuggingFace
LLM leaderboard, and compare their performance
between each other and GPT-4. After training, the
LoRA weights are combined with the base model to
obtain our fine-tuned model output. These exported
weights are used to run inference on the model.

4 Evaluation Procedure and Results

4.1 Evaluation Procedure

The evaluation framework comprises two phases:
Inference, generating the model’s output on the test
set, and evaluation, comparing this output against
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Type Partial Exact Strict
Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

GPT-4 50 samples 0.706 0.729 0.714 0.684 0.707 0.692 0.651 0.668 0.657 0.640 0.652 0.645
GPT-4-0314 0.693 0.711 0.700 0.668 0.688 0.675 0.634 0.649 0.640 0.626 0.634 0.629

ChatGPT-3.5-2023 0.592 0.610 0.599 0.570 0.588 0.577 0.533 0.548 0.539 0.521 0.532 0.525
GPT-4 Full 0.567 0.624 0.587 0.536 0.580 0.552 0.478 0.506 0.488 0.455 0.482 0.465

Vicuna-7b 0.715 0.729 0.721 0.702 0.714 0.706 0.683 0.693 0.687 0.680 0.689 0.683
WizardLM-7b 0.700 0.715 0.706 0.688 0.701 0.693 0.671 0.682 0.675 0.667 0.677 0.671
Orca-mini-7b 0.683 0.700 0.690 0.670 0.686 0.677 0.652 0.664 0.657 0.647 0.658 0.652

Orca-mini-2-7b 0.711 0.726 0.717 0.698 0.710 0.703 0.681 0.690 0.684 0.677 0.687 0.681
Orca-mini-3-7b 0.746 0.762 0.753 0.732 0.746 0.738 0.715 0.726 0.719 0.712 0.723 0.717

Llama-2-7b 0.705 0.714 0.708 0.689 0.698 0.693 0.669 0.677 0.673 0.666 0.673 0.669
Llama-2-chat-7b 0.685 0.700 0.691 0.670 0.684 0.675 0.650 0.660 0.654 0.645 0.654 0.649

LlongOrca-7b 0.710 0.722 0.715 0.697 0.707 0.701 0.680 0.689 0.684 0.677 0.685 0.680
SOLAR-Instruct-10b 0.729 0.741 0.734 0.716 0.727 0.720 0.699 0.708 0.703 0.697 0.705 0.700

Mistral-t5-7b 0.731 0.746 0.738 0.716 0.729 0.721 0.697 0.708 0.702 0.695 0.704 0.698
Mixtral-8x7b 0.730 0.739 0.734 0.716 0.725 0.720 0.699 0.706 0.702 0.696 0.702 0.698

Vicuna-33b 0.750 0.762 0.755 0.738 0.749 0.742 0.723 0.732 0.727 0.720 0.729 0.724
Platypus-30b 0.747 0.762 0.753 0.732 0.746 0.738 0.715 0.726 0.720 0.713 0.724 0.718

Table 4: WebNLG-reflections-updated-instructions performance results

ground truth triples. All models were benchmarked
with a maximum token limit of 1,024, and the out-
put was generated without streaming. For evalua-
tion, the numerical results such as precision, recall,
and F1, and saved as the output file. The test set
includes the same instructions in our training data
and includes 2,155 instances of directly extracting
triples from text.

The scores are calculated using the evaluate
package (Segura-Bedmar et al., 2013). It calculates
metrics based on four different criteria. First is type
evaluation (TE) where only the tags must match to
be considered correct. These tags are SUB, PRED,
and OBJ for the subject, predicate, and object. Par-
tial evaluation (PE) requires the triples to match
partially or completely, irrespective of tag, to be
considered partially or completely correct. Exact
evaluation (EE) requires the triples to match ex-
actly, irrespective of tag, to be considered correct.
Strict evaluation (SE) requires both the triples and
tag to match to be considered correct. Each evalua-
tion type assigns a label of correct (COR), incorrect
(InCOR), missed (MIS), or spurious (SPU), based
on the triples and tags. Partial (PAR) is assigned
only for the partial evaluation type. MIS and SPU
are across all evaluation types, with MIS being
assigned for each part of a reference triple when
there is no matching candidate, and SPU assigned
for each part of a candidate triple when there is
no matching reference. The following formulas
are calculations of precision (P), recall (R), and F1.
The type and partial scores are calculated with the
“partial” formulas and exact and strict scores are
calculated with the “exact” formulas:

Possible = COR+ InCOR+ PAR+MIS

= TP + FN

Actual = COR+ InCOR+ PAR+ SPU

= TP + FP

PTE|PE =
COR+ 0.5 ∗ PAR

Actual

RTE|PE =
COR+ 0.5 ∗ PAR

Possible

PEE|SE =
COR

Actual
=

COR

COR+ InCOR+ SPU

REE|SE =
COR

Possible
=

COR

COR+ InCOR+MIS

4.2 Results
WebNLG Dataset. The obtained results for the
fine-tuned models are included in Table 4. It can
be observed that small 7b models Orca-mini3-7b
and Mistral-t5-7b have the best performances even
when compared with GPT-4. The Orca-mini3-7b
model achieved the highest F1 scores for all evalu-
ations, outperforming all 7b models in our compar-
ative analysis.

Small variations have been observed be-
tween training methods and datasets. In gen-
eral, models show slight improvement from
WebNLG-combined to WebNLG-combined-with-
reflections and then to WebNLG-reflections-
updated-instructions. Additionally, modifying the
instructions shows a decrease in training loss.
GPT models had a bigger drop in performance go-
ing to the exact and strict metrics compared to our
models, which resulted in our models performing
relatively better on the exact and strict metrics.

Ablation Study. We performed ablation stud-
ies to evaluate the impact of different data aug-
mentation strategies on the performance of these
models. Figure 3 shows the effects of vari-
ous data augmentation techniques on the mod-
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els’ performance. We show the performance re-
sults obtained for two models – Orca and Vi-
cuna – and four Training Datasets: the original
WebNLG dataset, the WebNLG-combined dataset,
the WebNLG-combined-with-reflections dataset,
and the WebNLG-reflections-updated-instructions
dataset, Table 3. We report the precision, recall,
and F1 values for the most demanding task of gen-
erating triples identical to those provided as the
target. It is easily seen that the results obtained for
the last Training Dataset are the best.

Other Datasets. Two models Orca-mini-3 and
Llama-2-13b have been finetuned on different
datasets, Table 5. The best scores have been ob-
tained for the KELM dataset. The Llama-2-13b
finetuned on another dataset DocRED performed
very poorly and was completely unable to learn
proper formatting of triples.

The main issue with inference on other data is
related to the type of triple properties and how
many triples are extracted from a single sentence.
For example, the analysis of the DocRED dataset
revealed that it is focused mainly on such relations
as country and location while ignoring any other
relations. In DocRed, a few triples are extracted
from paragraph sentences. There is much looping
in the models’ output; models do not efficiently
learn triple formats. Some outputs were of the
form (subject | predicate | object). Further, there
are only about 3,000 entries in annotated training
data. For yet another dataset – FewRel – the issue
seems to be related to the model not knowing when
to generate triples following the DBpedia and when
using Wikidata formats.

5 Discussion and Limitations

The obtained results and their analysis have led to a
few observations that confirmed known facts about
tuning large models and allowed to draw some new
ones. We can categorize them into three parts: data
size, model selection, and interaction with a model
(prompt and data preparation).

Size and Quality of Datasets. It is a well-known
fact that larger datasets lead to better results. Such
an obvious statement is also true for the triple ex-
traction process. It is seen in Table 5. The results
obtained for KELM data – 400,000 samples in the
training set – confirm that. The model was tuned
with a simple prompt containing text-2-triple and
instructions. Comparing that with our primary fo-
cused data, WebNLG, which includes only 13,211

training datasets, shows a significant advantage of
large datasets.

Once we collected results for the other two
datasets – DocRED and FewRel - we investigated
the content of the training datasets. It has become
apparent that the reference triples that were sup-
posed to be constructed from sentences were of
poor quality: limited to a few relations, incoherent
structure, a limited number of triples (quite often
just one) form small paragraphs.

Model Selection/Multilingual Triples. In our
experiments, one of the datasets – SKE – is a set of
Chinese sentences and extracted from them triples.
The difference in results obtained from orca-mini-
3-7b and llama-2-13b is very large. A quick inves-
tigation revealed that the dataset used to train the
orca-mini-3-7 model contained a large amount of
Chinese text. Again, it confirms a commonsense
fact that if a language model is not exposed to a
text in a given language, its performance, related
to this language, is not satisfactory.

Prompt and Data Preparation. The most inter-
esting and important observation coming from our
experiments is a high significance of the creative
approach to constructing prompts and ‘augmenta-
tion’ of the training datasets.

As indicated earlier, the task of extracting triples
from WebNLG data involves the usage of DBpedia
vocabulary. In particular, properties/relations of
the extracted triples have/should be in the DBpedia
format. The WebNLG dataset has been analyzed
to ensure the training data is of high quality. DB-
pedia ontology has been used to determine if the
triples/relations were consistent.

The consistent structure of triples is essential so
the model can effectively learn how to form triples
properly. Exposure to different properties is also
of high importance. The properties seen in the
training and testing sets overlapped, with thirty-six
properties unique to the test set. All properties were
checked to ensure they were present in DBpedia.

A small amount of training data, just 13,211, has
forced us to generate larger datasets from the origi-
nal set via setting different tasks related to process-
ing and extraction of triples. Section 3 details how
various versions of Training Datasets were created.
We enhanced the data with explanations of triple
generation processes generated by GPT-3.5 and
previously tuned model, generation of sentences
based on sets of triples, and simple evaluation of
extracted triples. These activities have improved
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Figure 3: Results of ablation studies on two modes: Orca and Wizard

Type Partial Exact Strict
Data Model Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SKE orca-mini-3 0.828 0.828 0.828 0.829 0.829 0.829 0.829 0.829 0.829 0.827 0.827 0.827
llama-2-13b 0.129 0.127 0.127 0.130 0.128 0.129 0.127 0.127 0.127 0.124 0.124 0.124

DocRED orca-mini-3 0.057 0.054 0.052 0.050 0.050 0.048 0.031 0.031 0.030 0.024 0.025 0.024
llama-2-13b 0.096 0.037 0.051 0.051 0.022 0.028 0.002 0.002 0.002 0.002 0.002 0.002

FewRel orca-mini-3 0.314 0.402 0.342 0.354 0.425 0.376 0.312 0.362 0.327 0.240 0.286 0.254
llama-2-13b 0.304 0.378 0.325 0.344 0.405 0.361 0.297 0.340 0.310 0.224 0.263 0.236

KELM orca-mini-3-7b 0.867 0.899 0.879 0.848 0.873 0.857 0.823 0.841 0.830 0.820 0.837 0.826
Llama-2-13b 0.861 0.865 0.852 0.825 0.836 0.825 0.779 0.796 0.785 0.769 0.786 0.776

raw_Webnlg orca-mini-3-7b 0.618 0.638 0.626 0.598 0.615 0.605 0.574 0.588 0.579 0.593 0.583 0.575
Llama-2-13b 0.62 0.637 0.626 0.602 0.618 0.608 0.581 0.593 0.586 0.577 0.588 0.581

Table 5: Performance on other datasets

our best model’s performance, i.e., orca-mini-3-7b.
Limitations There are some limitations of fine-

tuned models. They hallucinated on occasion, es-
pecially when they generated responses for more
well-known topics, such as when we asked them
to generate a response to the Jeff Bezos Wikipedia
article. The models frequently hallucinated the
birthplace of Bezos, providing false information
about the location. Also, models had looping is-
sues, where they would continually generate output
until they reached the token limit.

6 Conclusion

The paper aims to investigate different scenarios
of a triple extraction task. Various models and a
few datasets have been used in the experiments.
A prime contribution is the development of a pro-
cedure/methodology for augmenting the original
dataset. The additions included several tasks indi-
rectly related to the triple extraction process: ex-
plaining the extraction steps, reconstructing sen-
tences from triples, and determining the correct-
ness of extracted triples. It resulted in enlarged
training datasets (3- or 4-fold). As an outcome, the
performance of 7b tuned models is comparable to
or even better than that of well-known models from
the GPT family.

The applied procedures concentrated on generat-
ing triples containing elements compatible with a

specific vocabulary, in our case, DBpedia. While
our models suffer from occasional looping and hal-
lucinations, they effectively extract triples follow-
ing DBpedia ontology from sentences. The results
demonstrate that achieving and exceeding GPT per-
formance with fine-tuned models is possible with-
out large datasets.
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