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Abstract

This paper reports the NYA’s submissions to
IWSLT 2024 Offline Speech Translation (ST)
task on the sub-tasks including English to Chi-
nese, Japanese, and German. In detail, we par-
ticipate in the unconstrained training track us-
ing the cascaded ST structure. For the auto-
matic speech recognition (ASR) model, we use
the Whisper large-v3 model. For the neural ma-
chine translation (NMT) model, the wider and
deeper Transformer is adapted as the backbone
model. Furthermore, we use data augmenta-
tion technologies to augment training data and
data filtering strategies to improve the quality
of training data. In addition, we explore many
MT technologies such as Back Translation, For-
ward Translation, R-Drop, and Domain Adapta-
tion. Moreover, our model is a one-to-many ST
system that utilizes flags for different tasks. Ex-
perimental results on the tst2022 test set demon-
strate that our model achieves 36.37, 20.92, and
24.28 BLEU in En2Zh, En2Ja, and En2De, re-
spectively.

1 Introduction

The Offline Speech Translation (ST) Task trans-
lates the source audio into target text. Currently,
there are two leading solutions for ST. The first
is the traditional cascade system (Matusov et al.,
2005a), which decouples the ST task into an auto-
matic speech recognition (ASR) and a neural ma-
chine translation (NMT) task. In the traditional cas-
cade system, when translating, the source speech
is recognized into source text, and then the NMT
model is used to translate the source text into target
text. However, it often leads to higher architectural
complexity and error propagation (Duong et al.,
2016), affecting subsequent NMT tasks. In order
to alleviate this problem, the end-to-end (E2E) ST
architecture (Bérard et al., 2016) is proposed. The
E2E ST combines ASR and NMT modeling to es-
tablish the map between the source audio and the

target text.
For the E2E ST architecture, one disadvantage

is the lack of parallel training data. For the tradi-
tional cascade ST system, sufficient training can
obtain high-accuracy ASR and MT systems due
to the large ASR and MT datasets. Therefore, the
traditional cascade ST system generally achieves
better performance than the E2E ST. At the same
time, in the recent offline track of IWSLT evalua-
tion (Anastasopoulos et al., 2021, 2022; Agarwal
et al., 2023), we can see that the cascade ST system
is better than the E2E ST system. Thus, in this
work, we use the traditional cascaded ST scheme.

Specifically, in the ASR task, we directly adopt
the Whisper (Radford et al., 2023) large-v3 model,
which can achieve a strong comprehensive ASR
performance. We also explore sharding strategies,
such as Supervised Hybrid Audio Segmentation
(SHAS) (Tsiamas et al., 2022), to segment the
source audio for better ST results. In the MT task,
we use the Transformer architecture (Vaswani et al.,
2017) as the backbone model. To ensure the MT
model is fully trained, we meticulously collect a
large amount of parallel data and monolingual data
from various data sources. Furthermore, we delve
into many MT technologies such as Back Transla-
tion (Sennrich et al., 2016), Forward Translation,
R-Drop (Wu et al., 2021), Domain Adaptation, and
Ensemble (Ganaie et al., 2022). Moreover, we com-
pare the two solutions: one-to-one and one-to-many
ST, and we find that one-to-many is better.

Through the above explorations, our model fi-
nally achieves good ST performance. In detail,
experimental results on the tst2022 test set demon-
strate that our model achieves 36.37, 20.92, and
24.28 BLEU in En2Zh, En2Ja, and En2De, respec-
tively.

The rest of this paper is organized as follows.
Section 2 describes the datasets and data pre-
processing. Section 3 describes our speech transla-
tion system, which includes ASR and MT models.

87



Corpus En2Zh En2Ja En2De
CoVoST (Wang et al., 2020) 171K 191K 220K
MuST-C v3 (Cattoni et al., 2021) 296K 251K 238K
NewsCommentary (Tiedemann, 2012) 400K - 345K
OpenSubtitles (Lison and Tiedemann, 2016) 4.9M 832K 12M
Tatoeba (Tiedemann, 2012) - 193K 302K
GigaST (Ye et al., 2023) 6.2M - 6.3M
JParaCrawl (Morishita et al., 2020) - 6.4M -
Total 12M 8.2M 19.5M

Table 1: Data statistics on MT datasets.

Section 4 reports the experimental results. Finally,
we conclude in Section 5.

2 Dataset

2.1 Text Data

The dataset used for machine translation is shown
in Table 1, which contains both speech-to-text-
parallel and text-parallel data types of all language
pairs allowed by IWSLT 2024. Additionally, we
employ the GigaST dataset to expand our text train-
ing data. sBERT (Reimers and Gurevych, 2019,
2020) is used for calculating sentence representa-
tions. We compute sentence embeddings for all
parallel text data and remove sentences pairs that
lower than 0.7 cosine similarity. The data statistics
in table represent the number of sentences remain-
ing in each dataset after sBERT filtering.

2.2 Data pre-processing

We perform the following preprocessing steps to
filter all text-parallel data:

• Remove empty sentences and duplicate sen-
tences.

• Remove sentences containing invalid charac-
ters and HTML tags.

• Remove sentences longer than 200 tokens or
shorter than 3 tokens.

• Remove sentences with unbalanced source-
target token ratio.

• Remove sentences with too much punctuation.

• Remove sentences where the source or target
language constitutes a low percentage.

• Remove sentences with mismatched punctua-
tion marks, such as quotation marks.

Then we apply mosesdecoder toolkits1 (Koehn
et al., 2007) for punctuation, space and case nor-
malization. The sentences are then tokenized us-
ing joint SentencePiece model (SPM) (Kudo and
Richardson, 2018). The vocabulary size of joint
SPM is about 130,000, with 40k in English, 40k in
Chinese, 30k in German, and 20k in Japanese, both
source and target side share the same dictionary.

3 Speech translation system

3.1 ASR model

Whisper2 (Radford et al., 2023) is an excellent mul-
tilingual ASR system trained on 680,000 hours of
multilingual and multitask supervision data. It still
shows strong robustness in various audio scenes,
such as accent speech and background noise, and
achieves good recognition results. It adopts the
Encoder-Decoder architecture (Dong et al., 2018),
and the training data has an extraordinarily struc-
tured design. In addition, it uses a method similar
to prompt during the training process. The open-
source Whisper models have five sizes of models:
tiny, base, small, medium, and large. It is worth not-
ing that the OpenAI has recently updated the Whis-
per large model to form a more effective large-v3
version model. In this work, we adopt the Whisper
large-v3 version as the ASR part of our ST system.

3.2 MT model

3.2.1 Model structure
We adopt Transformer model (Vaswani et al., 2017)
to build our machine translation system and imple-
mente them on Fairseq toolkits (Ott et al., 2019).
More specifically, we adopt a wider and deeper
Transformer model which contains 18-layer en-
coder, 6-layer decoder, 16 self-attention heads and

1https://github.com/moses-smt/mosesdecoder
2https://github.com/openai/whisper
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Language Raw data Filter data
Chinese 22M 9M
Japanese 30M 15M
English 8M 4.1M

Table 2: Data statistics on monolingual corpus.

FFN with 4096 dimensions. We utilize all pro-
vided parallel data from three language directions
(En2Zh, En2De, En2Ja) for model training, and
derived a one-to-many MT model.

3.2.2 R-Drop
The Dropout method (Srivastava et al., 2014; Gao
et al., 2022) is an influential strategy for the regular-
ization of deep neural networks. While it enhances
the efficacy of the training process, the stochastic
nature of dropouts might result in discrepancies be-
tween the training and inference phases. R-Drop, as
introduced by Wu et al. (2021), ensures consistency
among the output distributions of the sub-models
generated by dropout. To enhance the consistency
within our model, we implement the R-Drop algo-
rithm and set weight factor α to 5. Consequently,
the R-Drop training strategy significantly improves
the performance of our baseline model.

Furthermore, when using the R-drop mecha-
nism to train models, the model computation in-
creases exponentially, which will consume more
training time and GPU resources. Given the limi-
tation of time and resources, we adopt it solely for
our foundational model, and integrate the R-Drop-
augmented model into ST system by using model
ensemble approach during the evaluation stage.

3.2.3 Data Augmentation
Previous works (Edunov et al., 2018) has demon-
strated that the incorporation of synthetic data can
significantly enhance the efficacy of machine trans-
lation systems. We implement following data aug-
mentation methodologies to further refine our trans-
lation models.

Forward translation (FT) is a process of trans-
forming source language into target language using
MT model. On the contrary, backward translation
(BT) (Sennrich et al., 2016) is the translation of
target language back into source language, forcing
the model to learn a more robust representation of
the source language. Both methods use additional
monolingual resources to create bilingual data.

As shown in Table 2, we select 22M sentences
of Chinese, 8M sentences of English and 30M sen-

Figure 1: The iterative updating process for FT and BT
model.

tences of Japanese of monolingual data from public
datasets, such as Common Crawl and News Crawl
corpus. Moreover, to make our MT model have
better results in ACL scenarios, we adopt the sci-
entific English monolingual corpus from Rohatgi
et al. (2023). After data pre-processing pipeline
mentioned above, approximately 40%-50% of the
sentences from the original data are retained for
each language. BT model is trained separately for
each language pair, and then the monolingual data
is used for backward translation. We employ an
iterative forward-backward translation approach
to progressively enhance the translation quality of
both the FT model and BT model. As shown in
figure 1, the FT model and BT model generated
pseudo-labels target’ and source’ respectively. We
mix them with labelled text pairs (source, target) to
update our BT model and FT model. As the BLEU
scores of BT model increased, the positive impact
of the back-translated data on the FT model also
becomes more pronounced.

When using data generated by BT model, we re-
fer to the tagged BT method (Caswell et al., 2019),
adding a special token <BT> at the beginning of
source sentence.

We also convert numerical expressions in En-
glish sentences into forms that more closely match
the ASR transcription results, e.g., converting ’21’
to ’twenty-one’, ’2018’ to ’two thousand and eigh-
teen’. Additionally, we randomly discard punctua-
tion marks within sentences to enable the model to
generalize well across varying punctuation styles.
These transformed sentences are merged with the
original sentences to obtain an augmented dataset.

3.2.4 Domain adaptation
Considering the quality of machine translation
models is easily influenced by specific domain, we
also select in-domain data and fine-tune the model
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System En2Zh En2Ja En2De
1 Baseline model 35.04 18.75 23.14
2 + R-drop 35.67 19.36 23.71
3 + GigaST 35.42 19.21 23.70
4 + Backward translation 35.71 19.77 23.94
5 + Domain adaptation 35.44 19.90 23.97

Ensemble(2,4) 36.33 20.90 24.26
Ensemble(2,4,5) 36.37 20.92 24.28

Table 3: Main results with BLEU scores on IWSLT tst2022 datasets

System En2Zh En2Ja
one-to-one 32.77 18.38
one-to-many 35.04 18.75

Table 4: BLEU scores on IWSLT tst2022 datasets (one-
to-one vs. one-to-many ST)

System En2Zh En2Ja En2De
Baseline 35.42 19.21 23.70

+ BT-Ja 35.37 19.71 24.00
+ BT-Zh 35.71 19.77 23.94

Table 5: BLEU scores on IWSLT tst2022 datasets with
different BT data

to enhance in-domain performance. We use MUST-
C data (Cattoni et al., 2021) as domain-specific
dataset to train monolingual language models sep-
arately, and then use them to score all language
pairs. We set specific thresholds to filter parallel
data closer to the domain, with higher scores im-
plying better quality, and train incrementally to get
domain-specific model. The filtered in-domain data
is about 5-10% of the total data.

3.2.5 ASR output adaptation
For ST dataset, we use ASR models to transcribe
the audio data and replace their source side label
with ASR recognition results, and finally obtain an
augmented dataset containing ASR noise. ASR
model may produce incorrect transcriptions for
words with similar pronunciations, which, despite
reducing the quality of MT training dataset, also
bolster the robustness of the ST system. For this
part of data, we also add a special tag <ASR> at the
beginning of source sentence.

4 Experiments and results

All models are implemented on Fairseq toolkits
(Ott et al., 2019) and trained on four NVIDIA A100
GPUs. The IWSLT test sets of tst2022 are used

to evaluate the translation performance at sentence
level. The mwerSegmenter toolkit3 (Matusov et al.,
2005b) is used to resegment and align translation
results and then SacreBLEU4 (Post, 2018) is used
to compute BLEU scores. For the Japanese text,
tokenization is performed using the Mecab, while
for the Chinese text, tokenization is executed at
character level. We apply SHAS5 (Tsiamas et al.,
2022) for audio segmentation and try a variety of
combinations for min and max segment length, the
optimal parameters is 5-30 secs for TED domain.

The table 4 presents a comparative analysis be-
tween the one-to-one and the one-to-many systems,
specifically their performance on En2Zh and En2Ja.
In the one-to-one system, each source language cor-
responds to only one target language, with BLEUs
of 32.77 in En2Zh and 18.38 in En2Ja. In the
one-to-many system, a source language text can
correspond to multiple target language texts. The
system trains data from English to three target
languages (En2Zh , En2Ja , En2De) simultane-
ously and distinguishes the target language type by
adding <zh>/<ja>/<de> tags. The performance
of the one-to-many system improves to 35.04 in
En2Zh and 18.75 in En2Ja. These scores indicate
that one-to-many system outperforms the one-to-
one system.

For the one-to-many system in Table 3, we first
train a baseline model with all constrained data. We
find that introducing R-drop mechanism positively
affects model performance. Then, we add GigaST
dataset for incremental training, which enriches the
data diversity but also leads to a dramatic increase
in the training data. We observe that as the amount
of training data increases, R-drop no longer ben-
efits model performance while consuming more
training time, so we remove the R-drop mechanism

3https://www-i6.informatik.rwth-aachen.de/web/
Software/mwerSegmenter.tar.gz

4https://github.com/mjpost/sacrebleu
5https://github.com/mt-upc/SHAS
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in subsequent stages.

In the forth stage, we collect monolingual data
in Chinese and Japanese and perform back transla-
tion. As shown in table 5, the model performance
is incrementally enhanced by incorporating back
translation data into training dataset. Specifically,
after adding BT-Ja data, the BLEU score for En2Ja
improves significantly from 19.21 to 19.71, while
En2Zh slightly decreases to 35.37. The addition of
BT-Zh data enhances En2Zh to 35.71 and En2Ja
to 19.77. Notably, although no BT data is added
for En2De, its BLEU score still improves by 0.24,
demonstrating a positive impact of back translation
data on the overall model performance. Finally,
domain adaptation brings some improvements in
En2Ja and En2De.

Finally, we integrate the baseline model, which
is enhanced by the R-drop mechanism, with fine-
tuned models that leverage additional data, back-
ward translation, and adaptation techniques. The
ensemble of model (2, 4) achieves notable improve-
ments, with BLEU scores of 36.33 for En2Zh,
20.90 for En2Ja, and 24.26 for En2De. Further-
more, the ensemble of model (2, 4, 5) slightly
surpasses the ensemble of model (2, 4), reaching
scores of 36.37 for En2Zh, 20.92 for En2Ja, and
24.28 for En2De. This indicates the effectiveness
of model ensemble in boosting translation quality.

5 Conclusion

This paper describes our submission to the
IWSLT24 offline speech translation task. We col-
lect a large amount of parallel and monolingual
data from the public data sources and adopt the
traditional cascade ST architecture for the uncon-
strained training track. For the ASR model, we
use the excellent Whisper large-v3 model, which is
trained on 680,000 hours of multilingual and multi-
task supervision data. It shows strong robustness
in various audio scenes. For the MT model, we ex-
plore a wider and deeper Transformer model using
Fairseq tookit. To make the model fully trained, we
carefully experiment many MT technologies, such
as Back Translation, Forward Translation, Domain
Adaptation, and R-Drop. Experimental results on
the tst2022 test set show that our model achieves
36.37, 20.92, and 24.28 BLEU in En2Zh, En2Ja,
and En2De, respectively.
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Cattoni, Anna Currey, Georgiana Dinu, Kevin Duh,
Maha Elbayad, Clara Emmanuel, Yannick Estève,
Marcello Federico, Christian Federmann, Souhir
Gahbiche, Hongyu Gong, Roman Grundkiewicz,
Barry Haddow, Benjamin Hsu, Dávid Javorský,
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Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Pierre Lison and Jörg Tiedemann. 2016. Opensub-
titles2016: Extracting large parallel corpora from

movie and tv subtitles. In Proceedings of the Tenth
International Conference on Language Resources
and Evaluation (LREC’16), pages 923–929.

E. Matusov, S. Kanthak, and Hermann Ney. 2005a.
On the integration of speech recognition and statisti-
cal machine translation. In Proc. Interspeech 2005,
pages 3177–3180.

Evgeny Matusov, Gregor Leusch, Oliver Bender, and
Hermann Ney. 2005b. Evaluating machine transla-
tion output with automatic sentence segmentation. In
Proceedings of the Second International Workshop
on Spoken Language Translation, Pittsburgh, Penn-
sylvania, USA.

Makoto Morishita, Jun Suzuki, and Masaaki Nagata.
2020. JParaCrawl: A large scale web-based English-
Japanese parallel corpus. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 3603–3609, Marseille, France. European
Language Resources Association.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,
Sam Gross, Nathan Ng, David Grangier, and Michael
Auli. 2019. fairseq: A fast, extensible toolkit for
sequence modeling. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Associa-
tion for Computational Linguistics (Demonstrations),
pages 48–53, Minneapolis, Minnesota. Association
for Computational Linguistics.

Matt Post. 2018. A call for clarity in reporting BLEU
scores. In Proceedings of the Third Conference on
Machine Translation: Research Papers, pages 186–
191, Belgium, Brussels. Association for Computa-
tional Linguistics.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock-
man, Christine McLeavey, and Ilya Sutskever. 2023.
Robust speech recognition via large-scale weak su-
pervision. In International Conference on Machine
Learning, pages 28492–28518. PMLR.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Shaurya Rohatgi, Yanxia Qin, Benjamin Aw, Niranjana
Unnithan, and Min-Yen Kan. 2023. The acl ocl cor-
pus: Advancing open science in computational lin-
guistics. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 10348–10361.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models

92

https://doi.org/10.1109/ICASSP.2018.8462506
https://doi.org/10.1109/ICASSP.2018.8462506
https://doi.org/10.1109/ICASSP.2018.8462506
https://doi.org/10.18653/v1/N16-1109
https://doi.org/10.18653/v1/N16-1109
https://aclanthology.org/P07-2045
https://aclanthology.org/P07-2045
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.21437/Interspeech.2005-726
https://doi.org/10.21437/Interspeech.2005-726
https://aclanthology.org/2005.iwslt-1.19
https://aclanthology.org/2005.iwslt-1.19
https://www.aclweb.org/anthology/2020.lrec-1.443
https://www.aclweb.org/anthology/2020.lrec-1.443
https://doi.org/10.18653/v1/N19-4009
https://doi.org/10.18653/v1/N19-4009
https://www.aclweb.org/anthology/W18-6319
https://www.aclweb.org/anthology/W18-6319
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813


with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 86–96.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning
research, 15(1):1929–1958.

Jörg Tiedemann. 2012. Parallel data, tools and inter-
faces in OPUS. In Proceedings of the Eighth In-
ternational Conference on Language Resources and
Evaluation (LREC’12), pages 2214–2218, Istanbul,
Turkey. European Language Resources Association
(ELRA).

Ioannis Tsiamas, Gerard I. Gállego, José A. R. Fonol-
losa, and Marta R. Costa-jussà. 2022. SHAS: Ap-
proaching optimal Segmentation for End-to-End
Speech Translation. In Proc. Interspeech 2022, pages
106–110.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Changhan Wang, Anne Wu, and Juan Pino. 2020. Cov-
ost 2 and massively multilingual speech-to-text trans-
lation. arXiv preprint arXiv:2007.10310.

Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei
Chen, Min Zhang, Tie-Yan Liu, et al. 2021. R-drop:
Regularized dropout for neural networks. Advances
in Neural Information Processing Systems, 34:10890–
10905.

Rong Ye, Chengqi Zhao, Tom Ko, Chutong Meng, Tao
Wang, Mingxuan Wang, and Jun Cao. 2023. GigaST:
A 10,000-hour Pseudo Speech Translation Corpus.
In Proc. INTERSPEECH 2023, pages 2168–2172.

93

http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
http://www.lrec-conf.org/proceedings/lrec2012/pdf/463_Paper.pdf
https://doi.org/10.21437/Interspeech.2022-59
https://doi.org/10.21437/Interspeech.2022-59
https://doi.org/10.21437/Interspeech.2022-59
https://doi.org/10.21437/Interspeech.2023-1233
https://doi.org/10.21437/Interspeech.2023-1233

