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Abstract

In this paper, we propose a two-phase train-
ing approach where pre-trained large language
models are continually pre-trained on paral-
lel data and then supervised fine-tuned with
a small amount of high-quality parallel data.
To investigate the effectiveness of our proposed
approach, we conducted continual pre-training
with a 3.8B-parameter model and parallel data
across eight different formats. We evaluate
these methods on thirteen test sets for Japanese-
to-English and English-to-Japanese translation.
The results demonstrate that when utilizing par-
allel data in continual pre-training, it is essen-
tial to alternate between source and target sen-
tences. Additionally, we demonstrated that the
translation accuracy improves only for transla-
tion directions where the order of source and
target sentences aligns between continual pre-
training data and inference. In addition, we
demonstrate that the LLM-based translation
model is more robust in translating spoken lan-
guage and achieves higher accuracy with less
training data compared to supervised encoder-
decoder models. We also show that the highest
accuracy is achieved when the data for contin-
ual pre-training consists of interleaved source
and target sentences and when tags are added
to the source sentences.

1 Introduction

In machine translation, transformer encoder-
decoder models (Vaswani et al., 2017), such as
NLLB-200 (NLLB Team et al., 2022), mT5 (Xue
et al., 2021), and mBART (Liu et al., 2020) pre-
dominate. The emergence of pre-trained Large
Language Models (LLMs) composed solely of
the transformer decoder, such as GPT series
(Brown et al., 2020; OpenAl, 2023), has prompted
the development of pre-trained LLMs, including,
PalLM (Chowdhery et al., 2022), and LLaMA (Tou-
vron et al., 2023). When translating with these
LLMs, it is common to use in-context few-shot

learning. According to Hendy et al. (2023), GPT-3
demonstrates comparable or superior accuracy to
WMT-best for high-resource languages. Further-
more, as reported by Kocmi et al. (2023), GPT-
4’s 5-shot surpasses WMT-best’s accuracy in most
translation directions. However, Zhu et al. (2024)
noted that in 8-shot scenarios, relatively small-scale
LLM:s (e.g., 7B parameters) exhibit lower accuracy
than supervised encoder-decoder models. There-
fore, it is necessary to investigate methods capable
of achieving translation accuracy equivalent to ex-
isting translation models with relatively small-scale
LLM:s.

On the other hand, in models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019),
which consist solely of transformer encoders, the
effectiveness of continual pre-training, where pre-
trained models are further trained on task-specific
data such as classification to improve the accuracy
of the task, has been reported (Jin et al., 2022; Ke
et al., 2022). In the context of LLMs, continual
pre-training has been reported to transfer models
primarily pre-trained in English, such as LLaMA,
to other languages (Cui et al., 2023). Additionally,
when building LLM-based translation models, the
effectiveness of conducting continual pre-training
with either monolingual data, parallel data, or both,
followed by supervised fine-tuning, has been re-
ported, mainly when basing the model on primarily
English pre-trained models such as LLaMA-2 (Xu
et al., 2024a; Alves et al., 2024; Guo et al., 2024).

Although those recent publicaion in the context
of LLMs are closely related to our study, this pa-
per presents research conducted independently of
those latest LLM-based translation studies such as
Xu et al. (2024a); Alves et al. (2024); Guo et al.
(2024). This paper proposes a two-phase training
approach: continual pre-training on parallel data
crawled from the web and supervised fine-tuning
using a small amount of high-quality parallel data
created by professional translators. To comprehen-
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sively investigate methods for improving transla-
tion accuracy through continual pre-training, we
conduct continual pre-training across eight data
formats for Japanese-to-English (Ja = En) and
English-to-Japanese (En = Ja) translations using a
3.8B-parameter LLM. We evaluate the translation
accuracy on 13 test sets. Our paper’s novelty com-
pared to Xu et al. (2024a); Alves et al. (2024); Guo
et al. (2024) lies in the following aspects.

* When conducting continual pre-training on
data where source and target sentences appear
alternately, the direction of language in which
accuracy improves varies depending on the
order of source and target sentences.

* LL.M-based translation model is more robust
in translating spoken language and achieves
higher accuracy with less training data com-
pared to supervised encoder-decoder models.

* When indicating the translation direction with
tags (“<2en>" etc.) on data for continual
pre-training, higher accuracy is achieved com-
pared to simply concatenating source and tar-
get sentences.

2 Related Work

Parallel Data in Pre-Training from Scratch
When pre-training LL.Ms from scratch, it is ex-
pected to use monolingual data. However, some
reports incorporating bilingual data, such as paral-
lel data, into the pre-training dataset can enhance
the accuracy of downstream tasks. Briakou et al.
(2023) show that incorporating parallel data into
pre-training 1B and 8B parameter LL.Ms enhances
translation accuracy in zero- and five-shot. Sepa-
rate studies further show that including parallel data
in the pre-training of the encoder-decoder model
also improved performance in downstream multi-
lingual and cross-lingual tasks (Kale et al., 2021;
Schioppa et al., 2023).

LLMs-Based Translation Models Zhang et al.
(2023) demonstrated that fine-tuning 15 multilin-
gual LLMs using QLoRA for French-to-English
translation surpasses the accuracy of both in-
context few-shot learning and models trained from
scratch. Conversely, Xu et al. (2024a) demon-
strated that models predominantly pre-trained on
English data, such as LLaMA-2, suffer reduced
translation accuracy when translating into non-
English target languages. Addressing this issue,

they introduced ALMA, a method that employs
fine-tuning monolingual data in the first stage, fol-
lowed by supervised fine-tuning with a small quan-
tity of high-quality parallel data in the second stage.
Furthermore, there exists a report on improving
translation accuracy by employing Contrastive Pref-
erence Optimization (CPO) for the second stage of
supervised fine-tuning in ALMA (Xu et al., 2024b).
In addition, the effectiveness of utilizing monolin-
gual and parallel data in the first stage has been
reported (Alves et al., 2024; Guo et al., 2024).

LLM-based translation models have only been
evaluated on test data from the WMT General Ma-
chine Translation Task (Kocmi et al., 2022, 2023)
and Flores-200 (NLLB Team et al., 2022). There-
fore, their effectiveness compared to conventional
supervised encoder-decoder models has not been
sufficiently validated across various types of data.
Additionally, the impact of continual pre-training
data on translation accuracy remains unclear. Our
study aims to address these two points.

3 Continual Pre-Training and Supervised
Fine-Tuning with Parallel Data

We introduce a two-phase training to enhance
the accuracy of translation of LLMs. In the
first phase, we perform continual pre-training us-
ing parallel data crawled from the web, such as
ParaCrawl (Bandn et al., 2020). Then, in the sec-
ond phase, we conduct supervised fine-tuning with
a small amount of high-quality parallel data. In
LLM fine-tuning, the importance of data quality
has been reported (Xu et al., 2024a; Zhou et al.,
2023). However, it has also been reported that
parallel data crawled from the web may have low
data quality (Thompson et al., 2024). Therefore,
we used data created by professional translators as
high-quality parallel data.

3.1 Continual Pre-Training

Continual pre-training involves training on data
where the source and target sentences ap-
pear alternately.  Let the source sentences
be denoted as {z1,...,x,} and the target
sentences as {yi,...,Yn}, creating a dataset
{z1,y1,...,%n,yn}. With the tokens of the cre-
ated dataset represented as z = {21,292, ..., 2m},
we train the model parameters 6 to minimize the
following loss:

L£1(0) = — Zlog P(zt|zt—cy -y ze—150) (1)
t
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where c is the number of context lengths represent-
ing the maximum input length of LLMs. £1(0) is
a standard causal language modeling loss, which
predicts the next word based on previous words
(Radford et al., 2018). Therefore, we train by ex-
tracting (2¢—c, - - ., 2t—1) from z in increments of ¢
tokens, such that the source and target sentences
alternate to predict the next word for each token.
Extracting c tokens may result in the input’s start
and end being in the middle of the source or target
sentence.

In pre-trained models such as LLaMA-2, primar-
ily pre-trained in English, it has been reported that
the effectiveness of utilizing monolingual data in
continual pre-training, in addition to parallel data,
is significant (Guo et al., 2024; Alves et al., 2024).
The rationale behind continual pre-training with
monolingual data is to acquire the generative ability
in languages other than English. Therefore, in mod-
els where pre-training with monolingual data has
been sufficiently conducted from scratch or where
continual pre-training with monolingual data has
been conducted, it is optional to conduct continual
pre-training with monolingual data.

3.2 Supervised Fine-Tuning

After continual pre-training, we perform supervised
fine-tuning with a small amount of high-quality
parallel data. Let the source sentence be denoted
by x, the target sentence corresponding to x by
y, and the prompt by I(x). We train the model
parameters to minimize the following loss:

T

Ly(0) == 1og P (yily<i,1(x);6) (2)
t=1

where 7' represents the number of tokens in the tar-
get sentence, and y; is the ¢-th token of the target
sentence. While £5(6) is also standard causal lan-
guage modeling loss, it computes the loss only for
the output of the target sentence (Xu et al., 2024a;
Zhang et al., 2024). Therefore, we combine the
prompt and target sentence (e.g., Translate “Good
morning” into Japanese: &% X 5 ) and input it into
the model. The model predicts the next word for all
input words, including the prompt portion. How-
ever, this portion is not used during inference and
hence excluded from the loss.

4 [Experiments

We conduct experiments on two NVIDIA RTX
A6000 GPUs. Due to severely limited com-

putational resources, we use a 3.8B parameters
LLM, rinna/bilingual-gpt-neox-4b (rinna-
4b)!, which is already pre-trained on Japanese and
English data, totaling 524B tokens, with 173B to-
kens in Japanese and 293B tokens in English. Since
rinna-4b has undergone sufficient pre-training from
scratch on monolingual data for both Japanese and
English, as stated in Section 3, we believe that
continual pre-training with monolingual data is un-
necessary. Given that the model we employ is pre-
trained on Japanese and English, we experiment
with Japanese-to-English and English-to-Japanese
translation tasks. All experiments utilizing rinna-4b
are conducted using the open-source huggingface
transformers library.”

4.1 Dataset

4.1.1 Continual Pre-Training

We utilize JParaCrawl v3.0 (Morishita et al., 2022)
as the web-based parallel data comprising 21.8M
parallel sentence pairs, the largest and newest
dataset of English-Japanese parallel data available.
From this dataset of 21.8M parallel sentence pairs,
we sample 20.8M sentence pairs using LEALLA-
large® (Mao and Nakagawa, 2023) for train data.
Details on sampling are provided in Appendix A.
For dev data, we use the dev and test data from
WMT20 (Barrault et al., 2020) and the test data
from WMT?21 (Akhbardeh et al., 2021).

4.1.2 Supervised Fine-Tuning

We utilize the dev and test data of WMT20 and
Flores-200 (NLLB Team et al., 2022), along with
the train data from KFTT (Neubig, 2011) as train
data, all created by professional translators. The
train data for KFTT utilized in experiments con-
sists of 10k instances randomly sampled from 440k
samples. The resulting train data comprise 15k
samples for both En = Ja and Ja = En. For dev
data, we utilize the WMT?21 test data. We use the
prompts written in the following source language,
based on the report by Xu et al. (2024a).*

En = Ja
Translate this from English to Japanese:
English: {source sentence}
Japanese:

"https://huggingface.co/rinna/
bilingual-gpt-neox-4b

2https ://github.com/huggingface/transformers

3https ://huggingface.co/setu4993/LEALLA-1arge

*The reason for writing prompts in the source sentence’s
language is that it is more natural to create translation prompts
in the source sentence’s language when translating.
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Ja=En
INEHARGEDP S HFEIZRRL T3V

HAGE : {source sentence}
TLEHE .
5[=]

4.1.3 Test Sets

We use the test sets employed by Morishita et al.
(2022) to evaluate translation accuracy. Since we
include the test data from WMT20 and WMT?21 in
the train and dev data for continual pre-training and
supervised fine-tuning, we exclude these and add
the test data from WMT?22. As a result, there are
13 test sets: 5 for the En = Ja direction, 3 for the
Ja = En direction, and 5 for both the En = Ja and
En = Ja directions. For detailed information on
the test sets, please refer to Table 6 of Appendix D.

4.2 Models
4.2.1 Baseline Models

We establish two baseline models as described be-
low. The train data consists of the data described
in Section 4.1.1 and Section 4.1.2, and the dev data
is the WMT?21 test data. Note that the data from
JParaCrawl v3.0 is created by randomly sampling
10.4M parallel sentences, which is 50% of the total
20.8M parallel sentences, to be used respectively
as the train data for En = Ja and Ja = En.

Transformer This model is a 1B-parameter
transformer trained from scratch. The model ar-
chitecture is based on mT5-large’, with two modi-
fications: reducing the vocab_size from 250,112 to
65,536, matching that of rinna-4b, and increasing
the feed-forward network dimension from 2,816 to
4,096. As a result, the model has 24 layers each
for the encoder and decoder, a model dimension
of 1,024, 16 attention heads, a feed-forward net-
work with GeGLU activation (Shazeer, 2020), and
a dropout (Srivastava et al., 2014) of 0.1. The to-
kenizer is newly created using the sentencepiece
library6 (Kudo and Richardson, 2018) with the sub-
word method set to unigram, character coverage to
0.9995, and byte-fallback enabled. Training is con-
ducted with a total batch size of 4,096 for 15 epochs
(38,160 steps), with validation every 1,000 steps,
and it is terminated if the validation loss does not
improve for three consecutive validations. We use
AdamW optimizer (Loshchilov and Hutter, 2019),
with 81 = 0.9, 82 = 0.98,¢ = 1.0 x 1075, We
set the weight decay and label smoothing (Szegedy

5https://huggingface.co/google/mtS—large
https://github.com/google/sentencepiece

et al., 2016) to 0.1, and gradient clipping (Pascanu
et al., 2013) to 1.0. The peak learning rate is set
to 1.0 x 1073, with a warmup ratio 0.1 and an
inverse square root scheduler applied. Addition-
ally, bfloat16, gradient checkpointing (Chen et al.,
2016), and the deepspeed’ (Rasley et al., 2020)
ZeRO stage 2 are applied during training. Training
is conducted on two NVIDIA RTX A6000 GPUs
with these settings, taking 17 days.

Direct-SFT Direct-SFT consists of the rinna-4b
directly supervised fine-tuning with parallel data,
using LoRA tuning (Hu et al., 2022). We con-
duct supervised fine-tuning of this model using
the prompts mentioned in Section 4.1.2. Further-
more, to approximate conditions for full-weight
tuning, we apply LoRA to the linear layers of self-
attention’s query, key, value, and output, as well
as the linear layers of the feed-forward network.
We set the rank of LoRA to 16, resulting in 25.9M
trainable parameters, which constitutes 0.68% of
the parameters in rinna-4b.

4.2.2 Source and Target Sentences Ordering
in Continual Pre-Training

We conduct continual pre-training with 4 patterns,
varying the order in which source and target sen-
tences. After continual pre-training with these 4
orders, we undergo supervised fine-tuning using
the data and prompts described in Section 4.1.2
with full fine-tuning and LoRA tuning.

Mono As stated in Section 3.1, instead of
alternating between source and target sen-
tences, the approach involves sequences such as
(x1,...,2n), (y1,---,Yn), Where only the source
or target sentences appear consecutively. Therefore,
either Japanese-only or English-only sentences ap-
pear consecutively.

En-Ja Concatenating a Japanese translation im-
mediately after each English sentence, making it
parallel data only in the En = Ja.

Ja-En Concatenating an English translation im-
mediately after each Japanese sentence, making it
parallel data only in the Ja = En.

Mix Randomly sampling 10.4M, which is 50%
from the total of 20.8M, from the En-Ja and Ja-En
without duplication.

"https://github.com/microsoft/DeepSpeed
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Baseline models

Continual pre-training + Supervised fine-tuning

Mono En-Ja Ja-En Mix
Metrics Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA
Avg. 13.9 12.2 6.3 5.9 154 15.5 7.3 7.2 14.7 149
BLEU # Sig. - 1 0 0 8 9 0 0 7 8
Avg. 79.0 79.6 756 748 835 833 769 768 829 829
COMET # Sig. - 7 0 0 8 8 0 0 8 8
(a)En=1Ja
Baseline models Continual pre-training + Supervised fine-tuning
Mono En-Ja Ja-En Mix
Metrics Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA
Avg. 17.3 12.5 7.9 7.1 7.8 7.6 17.0 170 159 158
BLEU # Sig. - 0 0 0 0 0 0 0 0 0
Avg. 76.4 75.0 704 697 703 700 778 717 77.1 769
COMET # Sig. - 0 0 0 0 0 7 6 5 5
(b)Ja=En

Table 1: Results of Baseline models and models continually pre-trained with four orders described in Section 4.2.2
then supervised fine-tuning. “Avg.” represents the average result across 12 test sets, “# Sig.” indicates the number of
test sets showing significant differences from Transformer (p < 0.05), and full represents full fine-tuning. Bold
numbers represent the highest scores in each line, and scores that surpass the Transformer are emphasized in

green .

4.3 Hyperparameters

4.3.1 Continual Pre-Training

We use the AdamW optimizer, with S
0.9, B2 = 0.95, ¢ = 1.0 x 10~8. The context length
is 2048, the same as when pre-training rinna-4b
from scratch, and training is conducted for 1 epoch.
We perform validation every 100 training steps. We
use a cosine learning rate schedule with a warmup
ratio of 1% and a peak learning rate of 1.5 x 1074
We use a weight decay of 0.1 and gradient clipping
of 1.0. We utilize two NVIDIA RTX A6000 GPUs,
processing 1 batch on each GPU with a gradient
accumulation step of 128, achieving an adequate
batch size 256. During training, bfloat16 precision,
gradient checkpointing, and deepspeed ZeRO stage
2 are employed. With these configurations, it takes
10 days.

4.3.2 Supervised Fine-tuning

We perform supervised fine-tuning on the model
that achieves the minimum validation loss in con-
tinual pre-training. We change the AdamW op-
timizer’s parameter used in Section 4.3.1 only
B2 = 0.95 to B2 = 0.999. Weight decay and gradi-
ent clipping are the same as Section 4.3.1. The peak

learning rate is set to 3.0 x 10~° for full fine-tuning
and 2.0 x 10~ for LoRA tuning, with a warmup
ratio of 1% using an inverse square schedule. For
LoRA, we set » = 16, = 32, and dropout to
0.05, applying to the linear layers of query, key,
and value in the multi-head attention, resulting
in approximately 6.4M trainable parameters cor-
responding to 0.17% of the rinna-4b’s parameters.
We conduct validation every 10% of the total train-
ing steps for Direct-SFT only, with 1 epoch and a
batch size of 256. For all other cases, validation is
performed every 100 training steps, with 5 epoch
and the batch size of 64.

4.3.3 Inference

All models use the one with the minimum vali-
dation loss for inference, applying bfloat16. The
Transformer, which has fewer parameters than the
rinna-4b, employs beam search with a beam size of
4 due to its smaller number of parameters. At the
same time, the rinna-4b-based models use greedy
decoding with the prompt described in Section ??
for inference.
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Figure 1: Radar chart of COMET score. Blue line indicates the accuracy of the Transformer, while red line
represents the accuracy of the model continually pre-trained with Mix format followed by supervised fine-tuning
with full weight. Underlines indicate test sets with a significant difference compared to the Transformer (p < 0.05).

4.4 Metrics

We use BLEU® (Papineni et al., 2002) and
COMET (Rei et al., 2022) as evaluation metrics.
We use Unbabel/wmt22-comet-da as COMET
model.

5 Results

5.1 The Impact of Source and Target
Sentences Order

Table 1 presents the results of baseline models com-
pared to models continually pre-trained with three
orders described in Section 4.2.2 and then super-
vised fine-tuning. All results of Table 1 can be
found in Table 7 and Table 8 of Appendix D. Direct-
SFT, which is directly fine-tuned, and Mono, which
was pre-trained with parallel data treated as mono-
lingual data, exhibit lower accuracy than the Trans-
former. On the other hand, continual pre-training
improves accuracy only in the translation direction
aligned with the parallel data. Therefore, continual
pre-training with data where source and target sen-
tences appear alternately is necessary to achieve
high accuracy. Despite data in both the En = Ja
and Ja = En translation directions, Mix exhibits
improved accuracy, even though the input data’s
translation direction is inconsistent. This result
suggests that LLMs can leverage the knowledge of
the translation direction matching the order of the
source and target sentences, and they can utilize the
knowledge acquired from parallel sentences mixed
in the training data.

8https ://github.com/mjpost/sacrebleu
*https://github.com/Unbabel/COMET

5.2 Accuracy Comparison Across Test Sets

Figure 1 shows a radar chart of the COMET score
of a model in which the Transformer and rinna-4b
are continually pre-trained as a Mix, followed by
supervised fine-tuning with full weight. In particu-
lar, the LLM-based translation model significantly
outperforms the Transformer on the WMT19, 20
Robustness Task for the Reddit domain, and on the
TED (tst2015), IWSLT21 En-Ja Dev, and JESC for
the TED Talk and movie subtitles domains. This re-
sult suggests that the LLM-based translation model
is more robust than the traditional encoder-decoder
model regarding data containing spoken language.

6 Discussion

6.1 Data Format in Continual Pre-Training

Mixing data from two translation directions, as in
the case of Mix, improves accuracy for both trans-
lation directions, allowing one model to be used for
both. However, the accuracy is lower than contin-
ual pre-training with data from only one translation
direction. Therefore, we investigate methods to en-
hance translation accuracy by explicitly indicating
the translation direction for the data used in contin-
ual pre-training. Drawing inspiration from studies
incorporating parallel data during pre-training from
scratch, we conduct experiments on the following
four formats.

Interleaved Translations This format directly
concatenates the source and target sentences (Bri-
akou et al., 2023), identical to the Mix described in
Section 4.2.2.

Prefixed This format involves inserting the prefix
written in the source sentence’s language before the
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Interleaved Prefix Tagged JSON
Metrics Transformer full LoRA full LoRA full LoRA full LoRA
Avg. 13.9 147 149 151 153 150 151 142 149
BLEU # Sig. - - - 4 4 6 2 1 1
Avg. 79.0 829 829 830 833 832 833 821 829
COMET # Sig. - - - 0 5 4 4 0 1
(a) En = Ja
Interleaved Prefix Tagged JSON
Metrics Transformer full LoRA full LoRA full LoRA full LoRA
Avg. 16.8 159 158 163 161 162 163 155 158
BLEU # Sig. - - - 0 0 0 0 0 0
Avg. 76.4 771 769 774 772 773 772 769 76.9
COMET # Sig. - - - 3 3 3 1 0 0
(b)Ja=En

Table 2: Results of Transformer and models continually pre-trained with four formats described in Section 6.1
then supervised fine-tuning. “# Sig.” denotes the number of test sets showing significant differences for both
Transformer and models continually pre-trained with Interleaved Translations (Interleaved), followed by supervised
fine-tuning using the same fine-tuning method (p < 0.05). “Avg.”, bold numbers, and green numbers follow the
same conventions as Table 1.

En = Ja (Average) Ja = En (Average)
Continual pre-training  Supervised fine-tuning BLEU COMET BLEU COMET
X X 0.6 40.2 0.8 46.0
v X 8.2 69.9 9.9 69.3
X v 6.5 76.4 8.0 70.9
v v 15.0 83.2 16.2 77.3

Table 3: Results of all combinations of continual pre-training and supervised fine-tuning. Continual pre-training is
conducted in Tagged format mentioned in Section 6.1, and supervised fine-tuning is performed with full weight,
utilizing the small amount of high-quality data and prompts described in Section 4.1.2. “v"” indicates whether
continued pre-training or supervised fine-tuning is conducted. In contrast, “x” indicates the absence of either. Bold
numbers indicate the maximum score in each column. When supervised fine-tuning is conducted, inference is
undergone with zero-shot, while inference is performed with five-shot for other cases.

source sentence, followed by the concatenation of
the target sentence (Kale et al., 2021). For En =
Ja, the prefix “translate to Japanese: ” is used,
while for Ja = En, “SEEEIZRIER L T Z& W 7 s
employed.

Tagged This format involves inserting a tag be-
fore the source sentence that indicates the tar-
get sentence’s language, such as “<2en>" and
“<2ja>" (Schioppa et al., 2023).

JSON The JSON format is {“L1”: {source},
“L2”: {target}}, where “source” represents the
source sentence, “target’” represents the target sen-
tence, and “L1”, “L2” are the names of the source
and target sentence’s languages written in the

source sentence’s language.'?

We conduct continual pre-training with these
four formats and perform supervised fine-tuning
under the same conditions as Section 4. All for-
mats are conducted in the Mix format described
in Section 4.2.2, with the continual pre-training
data for En = Ja and Ja = En fixed to be the
same. Table 2 presents the results of the Trans-
former and models continually pre-trained with the
four formats. Among the four formats, Prefix and
Tagged showed significant differences in BLEU
and COMET metrics compared to the Transformer,
and the models are continually pre-trained in the in-

Given that the pre-training data for rinna-4b includes
source code, this format aims to transfer the knowledge ob-
tained from the source code to translation.
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Figure 2: Data curves for BLEU and COMET scores on WMT?22 test data for Transformer, Direct-SFT, and Mix.
Mix has been evaluated after completing supervised fine-tuning with LoRA tuning following continual pre-training.
We experimented with data amounts of 10%, 20%, 30%, 50%, and 100% due to computational resource constraints.
For the Transformer, we varied the proportion of data from JParaCrawl v3.0. At the same time, for Direct-SFT and
Mix, since training was conducted for only one epoch, we consider the proportion of checkpoints equal to that of
the training data and report the accuracy for each checkpoint.

terleaved translations format. This result suggests
that the prefixed or tagged format demonstrates
higher accuracy than interleaved translation, where
source and target sentences are concatenated, indi-
cating that from the convenience perspective, the
Tagged format can achieve the highest accuracy
most easily. Whether these formats can be applied
to other translation directions and models remains
a matter of our future work.

6.2 Effectiveness of Continual Pre-Training
and Supervised Fine-Tuning

As an ablation study, we experiment with all com-
binations of continual pre-training and supervised
fine-tuning. When supervised fine-tuning is con-
ducted, the inference is made with a zero-shot,
while for other cases, the inference is performed
with a five-shot. We randomly sample five transla-
tion examples from the WMT?21 test data for five-
shot, and the same set of five samples is fixed for
all inferences. Continual pre-training is conducted
in the Tagged format as described in Section 6.1,
and all inferences utilize the prompts described in
Section 4.1.2 and employ bfloat16 precision and
greedy decoding. Table 3 presents the results, while
all results are shown in Table 10 of Appendix D.
These results suggest that achieving high accuracy
is most feasible when both continual pre-training
and supervised fine-tuning are conducted while
achieving high accuracy solely through continual
pre-training or supervised fine-tuning alone is chal-

lenging.

6.3 How Much Parallel Data is Needed?

Figure 2 presents the data curves for these three
models at 10%, 20%, 30%, 50%, and 100% data us-
age on the WMT?22 test data. For the Transformer
model, only the sampling rate from JParaCrawl
v3.0 varies, while other settings remain the same
as described in Section 4.2.1. As mentioned in
Section 4.3, Direct-SFT performs supervised fine-
tuning for one epoch, and Mix also performs contin-
ual pre-training for one epoch. Therefore, for these
two models, the proportion of training data is equiv-
alent to the proportion of checkpoints, and we re-
port the accuracy for the checkpoints at 10%, 20%,
30%, 50%, and 100%. The Transformer shows
very low accuracy, up to 10% and 20%, but there
is a significant improvement in accuracy at 30%,
after which the increase becomes gradual. When at
20%, the accuracy decreased compared to at 10%,
possibly due to the instability in learning caused
by the smaller data. On the other hand, Direct-SFT
and Mix demonstrate significantly better accuracy
at 10% and 20% compared to the Transformer, and
like the Transformer, the accuracy increases gradu-
ally from 30% onwards. These results suggest that
LLM-based translation models can achieve higher
accuracy with less training data than supervised
encoder-decoder models. Additionally, COMET
scores for all three models show a gradual increase
in accuracy from 30%, while BLEU scores con-

258



Source So, what started as a bit of an inside joke with myself and a willful provocation, as become a thing.
Reference HLro LEHEAXART KOMWHRHFEE LD OB HBRUIETRoTLEVELE
(What started as a bit of self-deprecating humor and a clever provocation has turned into a social phenomenon.)
Transformer Eho, REDbL & oL UNROITHKE XM kF L LTRE- 228, b0Ihb Lk,
69.8 (So what started as a little inside joke and intentional provocation with me has become a thing.)
Mix (Ours) ZNT, FhEBEORAETS £ o L LANRDTTHD SIAE > 72 b DB, S TR EZPETLDITBRY F L,
77.8 (So what started as a little inside joke between me and a deliberate provocation has now become a controversial thing.)
(a) IWSLT21 Simultaneous Translation En-Ja Dev
Source It’s a complex topic, so we’re just going to dive right in at a complex place: New Jersey.
Reference BRI EY 2T fIBSRITBE WHATPSHOEL LD Za—Yy—Y—MNTT
(It is a complex topic, so let us skip the introduction and start with the complicated place. New Jersey.)
Transformer ZTNFERR DYy 2220 T, I bI3EHERGANIOROAD D20 TThma—Yy—Y—,
82.4 (It is a complex topic, so we are going to jump into a complex place:New Jersey.)
Mix (Ours) BHERGEEAR DT, T a—Y vy — I —NOBHRGA P SlhD X 5,
88.4 (It is a complex topic, so let us start with the complicated places in New Jersey.)
(b) TED (tst2015)

Table 4: Specific En = Ja translation results from the two test set comprising TED Talks domains. The numbers
under the model names indicate the COMET scores, and the English text below the Japanese sentences shows the
back-translations into English. The phrases requiring free translation and the corresponding reference and model
output phrases are highlighted in red for source sentences. The results for Mix indicate that supervised fine-tuning

with full weight is performed after continual pre-training.

tinue to improve even after 30%. This suggests that
at least 3M sentence pairs are needed for the transla-
tion model to output sentences containing the same
meaning as the reference, whereas more parallel
data than the 10.4M sentence pairs is required to
output sentences containing the exact words as the
reference.

6.4 Specific Results of Spoken Language

To analyze the differences in translation between
the LLM-based model and the encoder-decoder
model for spoken language, Table 4 presents
En = Ja translation examples from two test sets
comprising TED Talks domain. In these two
examples, the LLM-based translation model has
achieved higher COMET scores than the Trans-
former. In Table 4a, the source sentence contains
the phrase "a thing," which the reference trans-
lates as "#:2Bi%4" (a social phenomenon). In con-
trast, the Transformer translates "a thing" literally
as "H ", and the LLM-based model translates it
as "Wiigx 263 £ 0" (a controversial thing). Addi-
tionally, in Table 4b, the source sentence includes
the word "dive," which the reference translates
as "B FE L X 5" (let us start). The Transformer
translates "dive" literally as "RUSAL" (jump into),
whereas the LLM-based model correctly translates
itas "#H®H K 5" (let us start). These results suggest
that the LLM-based translation model can perform
free translation better than the traditional encoder-
decoder model.

7 Conclusion

We propose a two-phase training approach compris-
ing continual pre-training with interleaved source
and target sentence data, followed by supervised
fine-tuning using a small amount of high-quality
parallel data. Our investigation comprehensively
explores methods for enhancing translation accu-
racy through continual pre-training across eight
data formats. Evaluation across 13 test sets reveals
that models trained with continual pre-training fol-
lowed by supervised fine-tuning outperform those
supervised fine-tuned solely on parallel data. Fur-
thermore, we observe variations in language direc-
tion accuracy improvement during continual pre-
training based on the order of source and target
sentences. We also demonstrate that LLM-based
translation models are more robust in translating
sentences containing spoken language, and achieve
higher accuracy with less training data, compared
to traditional encoder-decoder models. Addition-
ally, augmenting source sentences with tags or us-
ing prefixes yields higher accuracy than simple
concatenation. In larger LLMs than the rinna-4b
model we utilized, such as LLaMA-2 7B and 13B,
LoRA enables training with fewer computational
resources. LoRA has been reported to be effective
in translation tasks (Zhang et al., 2023; Guo et al.,
2024). Therefore, it is essential to experiment with
LoRA in the future to determine if similar results
can be achieved and to investigate if similar results
can be obtained with other LLMs.
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8 Limitations

Our experiments and conclusions are based
only on two translation directions (English-
to-Japanese, Japanese-to-English) and
rinna/bilingual-gpt-neox-4b, which s
an LLM pre-trained in English and Japanese. Eval-
uation for other translation directions and LLMs
has yet to be conducted. While in Section 6.3, we
demonstrated that continual pre-training requires
3M parallel data, we anticipate that this may
vary depending on the translation direction and
model. Whether our approach applies to LLMs
primarily pre-trained in English, such as XGLM
and LLaMA, remains unverified, especially in low
resource languages is challenging. Additionally,
all the experiments are conducted using only
the parameters described in Section 4.3, and an
optimal hyperparameter search still needs to be
performed. Especially in Direct-SFT, it should be
noted that the importance of hyperparameters has
been highlighted by Dettmers et al. (2023), and
whether full fine-tuning and LoRA tuning demon-
strate the same performance varies depending on
the model, hyperparameters, and task.

9 [Ethical statement

We have not conducted verification on significant
risks associated with our research. While we pro-
pose a method that may enhance translation accu-
racy using LLMs, it is worth noting that Zhu et al.
(2024) have reported GPT-4’s 8-shot translation
accuracy to be comparable to or below that of ex-
isting methods such as supervised encoder-decoder
models. Therefore, even if the proposed method
is applied to other LLMs, we do not think that
there is a potential risk that the proposed method
achieves too high translation accuracy so that it is
to be abused.

This study uses a dataset from Morishita et al.
(2022), available only for research and develop-
ment purposes, inheriting potential biases from
their datasets. We utilize open-source pre-trained
LLM, and our experimental codes also leverage
open-source libraries, as mentioned in Section 4.
Therefore, this study’s models, data, and tools ad-
here to the intended usages of those models, data,
and tools.

References

Farhad Akhbardeh, Arkady Arkhangorodsky, Mag-
dalena Biesialska, Ondfej Bojar, Rajen Chatter-
jee, Vishrav Chaudhary, Marta R. Costa-jussa,
Cristina Espafia-Bonet, Angela Fan, Christian Fe-
dermann, Markus Freitag, Yvette Graham, Ro-
man Grundkiewicz, Barry Haddow, Leonie Harter,
Kenneth Heafield, Christopher Homan, Matthias
Huck, Kwabena Amponsah-Kaakyire, Jungo Kasai,
Daniel Khashabi, Kevin Knight, Tom Kocmi, Philipp
Koehn, Nicholas Lourie, Christof Monz, Makoto
Morishita, Masaaki Nagata, Ajay Nagesh, Toshiaki
Nakazawa, Matteo Negri, Santanu Pal, Allahsera Au-
guste Tapo, Marco Turchi, Valentin Vydrin, and Mar-
cos Zampieri. 2021. Findings of the 2021 conference
on machine translation (WMT21). In Proceedings of
the Sixth Conference on Machine Translation, pages
1-88, Online. Association for Computational Linguis-
tics.

Duarte M. Alves, José Pombal, Nuno M. Guerreiro, Pe-
dro H. Martins, Jodo Alves, Amin Farajian, Ben Pe-
ters, Ricardo Rei, Patrick Fernandes, Sweta Agrawal,
Pierre Colombo, José G. C. de Souza, and André
F. T. Martins. 2024. Tower: An open multilingual
large language model for translation-related tasks.
arXiv:2402.17733.

Antonios Anastasopoulos, Ondiej Bojar, Jacob Bremer-
man, Roldano Cattoni, Maha Elbayad, Marcello Fed-
erico, Xutai Ma, Satoshi Nakamura, Matteo Negri,
Jan Niehues, Juan Pino, Elizabeth Salesky, Sebas-
tian Stiiker, Katsuhito Sudoh, Marco Turchi, Alexan-
der Waibel, Changhan Wang, and Matthew Wiesner.
2021. FINDINGS OF THE IWSLT 2021 EVAL-
UATION CAMPAIGN. In Proceedings of the 18th
International Conference on Spoken Language Trans-
lation (IWSLT 2021), pages 1-29, Bangkok, Thailand
(online). Association for Computational Linguistics.

Marta Bafién, Pinzhen Chen, Barry Haddow, Kenneth
Heafield, Hieu Hoang, Miquel Espla-Gomis, Mikel L.
Forcada, Amir Kamran, Faheem Kirefu, Philipp
Koehn, Sergio Ortiz Rojas, Leopoldo Pla Sempere,
Gema Ramirez-Sanchez, Elsa Sarrias, Marek Strelec,
Brian Thompson, William Waites, Dion Wiggins, and
Jaume Zaragoza. 2020. ParaCrawl: Web-scale acqui-
sition of parallel corpora. In Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 4555—4567, Online. Association
for Computational Linguistics.

Loic Barrault, Magdalena Biesialska, Ondiej Bo-
jar, Marta R. Costa-jussa, Christian Federmann,
Yvette Graham, Roman Grundkiewicz, Barry Had-
dow, Matthias Huck, Eric Joanis, Tom Kocmi,
Philipp Koehn, Chi-kiu Lo, Nikola Ljubesi¢, Christof
Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT20). In Proceedings of
the Fifth Conference on Machine Translation, pages
1-55, Online. Association for Computational Linguis-
tics.

260


https://aclanthology.org/2021.wmt-1.1
https://aclanthology.org/2021.wmt-1.1
https://arxiv.org/abs/2402.17733
https://arxiv.org/abs/2402.17733
https://doi.org/10.18653/v1/2021.iwslt-1.1
https://doi.org/10.18653/v1/2021.iwslt-1.1
https://doi.org/10.18653/v1/2020.acl-main.417
https://doi.org/10.18653/v1/2020.acl-main.417
https://aclanthology.org/2020.wmt-1.1
https://aclanthology.org/2020.wmt-1.1

Eleftheria Briakou, Colin Cherry, and George Foster.

2023. Searching for needles in a haystack: On the
role of incidental bilingualism in PaLM’s translation
capability. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 9432-9452, Toronto,
Canada. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems,
volume 33, pages 1877-1901. Curran Associates,
Inc.

Mauro Cettolo, Christian Girardi, and Marcello Fed-

erico. 2012. WIT3: Web inventory of transcribed and
translated talks. In Proceedings of the 16th Annual
Conference of the European Association for Machine
Translation, pages 261-268, Trento, Italy. European
Association for Machine Translation.

Tiangi Chen, Bing Xu, Chiyuan Zhang, and Carlos

Guestrin. 2016. Training deep nets with sublinear
memory cost. arXiv:1604.06174.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,

Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. PalLM: Scaling language
modeling with pathways. arXiv:2204.02311.

Yiming Cui, Ziqing Yang, and Xin Yao. 2023. Efficient

and effective text encoding for chinese llama and
alpaca. arXiv:2304.08177.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and

Luke Zettlemoyer. 2023. QLoRA: Efficient finetun-
ing of quantized llms. arXiv:2305.14314.

261

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Jiaxin Guo, Hao Yang, Zongyao Li, Daimeng Wei,
Hengchao Shang, and Xiaoyu Chen. 2024. A novel
paradigm boosting translation capabilities of large
language models. In Findings of the Association
for Computational Linguistics: NAACL 2024, pages
639-649, Mexico City, Mexico. Association for Com-
putational Linguistics.

Amr Hendy, Mohamed Abdelrehim, Amr Sharaf,
Vikas Raunak, Mohamed Gabr, Hitokazu Matsushita,
Young Jin Kim, Mohamed Afify, and Hany Has-
san Awadalla. 2023. How good are GPT models
at machine translation? a comprehensive evaluation.
arXiv:2302.09210.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. 2022. LoRA: Low-rank adaptation of large
language models. In International Conference on
Learning Representations.

Xisen Jin, Dejiao Zhang, Henghui Zhu, Wei Xiao,
Shang-Wen Li, Xiaokai Wei, Andrew Arnold, and
Xiang Ren. 2022. Lifelong pretraining: Continually
adapting language models to emerging corpora. In
Proceedings of BigScience Episode #5 — Workshop
on Challenges & Perspectives in Creating Large Lan-
guage Models, pages 1-16, virtual+Dublin. Associa-
tion for Computational Linguistics.

Mihir Kale, Aditya Siddhant, Rami Al-Rfou, Linting
Xue, Noah Constant, and Melvin Johnson. 2021.
nmTS?5 - is parallel data still relevant for pre-training
massively multilingual language models? In Pro-
ceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing (Volume 2: Short Papers), pages 683—691,
Online. Association for Computational Linguistics.

Zixuan Ke, Haowei Lin, Yijia Shao, Hu Xu, Lei Shu,
and Bing Liu. 2022. Continual training of language
models for few-shot learning. In Proceedings of
the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, pages 10205-10216, Abu
Dhabi, United Arab Emirates. Association for Com-
putational Linguistics.

Tom Kocmi, Eleftherios Avramidis, Rachel Bawden,
Ondfej Bojar, Anton Dvorkovich, Christian Fed-
ermann, Mark Fishel, Markus Freitag, Thamme
Gowda, Roman Grundkiewicz, Barry Haddow,
Philipp Koehn, Benjamin Marie, Christof Monz,
Makoto Morishita, Kenton Murray, Makoto Nagata,
Toshiaki Nakazawa, Martin Popel, Maja Popovic,


https://doi.org/10.18653/v1/2023.acl-long.524
https://doi.org/10.18653/v1/2023.acl-long.524
https://doi.org/10.18653/v1/2023.acl-long.524
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://aclanthology.org/2012.eamt-1.60
https://aclanthology.org/2012.eamt-1.60
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/1604.06174
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2304.08177
https://arxiv.org/abs/2304.08177
https://arxiv.org/abs/2304.08177
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2024.findings-naacl.42
https://aclanthology.org/2024.findings-naacl.42
https://aclanthology.org/2024.findings-naacl.42
https://arxiv.org/abs/2302.09210
https://arxiv.org/abs/2302.09210
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/v1/2022.bigscience-1.1
https://doi.org/10.18653/v1/2022.bigscience-1.1
https://doi.org/10.18653/v1/2021.acl-short.87
https://doi.org/10.18653/v1/2021.acl-short.87
https://doi.org/10.18653/v1/2022.emnlp-main.695
https://doi.org/10.18653/v1/2022.emnlp-main.695

and Mariya Shmatova. 2023. Findings of the 2023
conference on machine translation (WMT23): LLMs
are here but not quite there yet. In Proceedings of the
Eighth Conference on Machine Translation, pages
1-42, Singapore. Association for Computational Lin-
guistics.

Tom Kocmi, Rachel Bawden, Ondfej Bojar, Anton
Dvorkovich, Christian Federmann, Mark Fishel,
Thamme Gowda, Yvette Graham, Roman Grund-
kiewicz, Barry Haddow, Rebecca Knowles, Philipp
Koehn, Christof Monz, Makoto Morishita, Masaaki
Nagata, Toshiaki Nakazawa, Michal Novak, Martin
Popel, and Maja Popovié. 2022. Findings of the 2022
conference on machine translation (WMT22). In
Proceedings of the Seventh Conference on Machine
Translation (WMT), pages 1-45, Abu Dhabi, United
Arab Emirates (Hybrid). Association for Computa-
tional Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66-71, Brussels, Belgium.
Association for Computational Linguistics.

Xian Li, Paul Michel, Antonios Anastasopoulos,
Yonatan Belinkov, Nadir Durrani, Orhan Firat,
Philipp Koehn, Graham Neubig, Juan Pino, and Has-
san Sajjad. 2019. Findings of the first shared task
on machine translation robustness. In Proceedings
of the Fourth Conference on Machine Translation
(Volume 2: Shared Task Papers, Day 1), pages 91—
102, Florence, Italy. Association for Computational
Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising pre-
training for neural machine translation. Transac-

tions of the Association for Computational Linguis-
tics, 8:726-742.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv:1907.11692.

Ilya Loshchilov and Frank Hutter. 2019. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Zhuoyuan Mao and Tetsuji Nakagawa. 2023. LEALLA:
Learning lightweight language-agnostic sentence em-
beddings with knowledge distillation. In Proceed-
ings of the 17th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 1886—1894, Dubrovnik, Croatia. Association
for Computational Linguistics.

Makoto Morishita, Katsuki Chousa, Jun Suzuki, and
Masaaki Nagata. 2022. JParaCrawl v3.0: A large-

scale English-Japanese parallel corpus. In Pro-
ceedings of the Thirteenth Language Resources and
Evaluation Conference, pages 6704—-6710, Marseille,
France. European Language Resources Association.

Toshiaki Nakazawa, Manabu Yaguchi, Kiyotaka Uchi-
moto, Masao Utiyama, Eiichiro Sumita, Sadao Kuro-
hashi, and Hitoshi Isahara. 2016. ASPEC: Asian
scientific paper excerpt corpus. In Proceedings of
the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 2204—
2208, Portoroz, Slovenia. European Language Re-
sources Association (ELRA).

Graham Neubig. 2011. The Kyoto free translation task.
http://www.phontron.com/kftt.

NLLB Team, Marta R. Costa-jussa, James Cross, Onur
Celebi, Maha Elbayad, Kenneth Heafield, Kevin Hef-
fernan, Elahe Kalbassi, Janice Lam, Daniel Licht,
Jean Maillard, Anna Sun, Skyler Wang, Guillaume
Wenzek, Al Youngblood, Bapi Akula, Loic Bar-
rault, Gabriel Mejia Gonzalez, Prangthip Hansanti,
John Hoffman, Semarley Jarrett, Kaushik Ram
Sadagopan, Dirk Rowe, Shannon Spruit, Chau
Tran, Pierre Andrews, Necip Fazil Ayan, Shruti
Bhosale, Sergey Edunov, Angela Fan, Cynthia
Gao, Vedanuj Goswami, Francisco Guzman, Philipp
Koehn, Alexandre Mourachko, Christophe Ropers,
Safiyyah Saleem, Holger Schwenk, and Jeff Wang.
2022. No language left behind: Scaling human-
centered machine translation. arXiv:2207.04672.

OpenAl.  2023.
arXiv:2303.08774.

GPT-4 technical report.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic evalu-
ation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, pages 311-318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio.
2013. On the difficulty of training recurrent neural
networks. In Proceedings of the 30th International
Conference on Machine Learning, volume 28, pages
1310-1318, Atlanta, Georgia, USA. PMLR.

Reid Pryzant, Youngjoo Chung, Dan Jurafsky, and
Denny Britz. 2018. JESC: Japanese-English subtitle
corpus. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation
(LREC 2018), Miyazaki, Japan. European Language
Resources Association (ELRA).

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training. Technical report.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and
Yuxiong He. 2020. Deepspeed: System optimiza-
tions enable training deep learning models with over
100 billion parameters. In Proceedings of the 26th

262


https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://doi.org/10.18653/v1/2023.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://aclanthology.org/2022.wmt-1.1
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/W19-5303
https://doi.org/10.18653/v1/W19-5303
https://doi.org/10.1162/tacl_a_00343
https://doi.org/10.1162/tacl_a_00343
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.18653/v1/2023.eacl-main.138
https://doi.org/10.18653/v1/2023.eacl-main.138
https://doi.org/10.18653/v1/2023.eacl-main.138
https://aclanthology.org/2022.lrec-1.721
https://aclanthology.org/2022.lrec-1.721
https://aclanthology.org/L16-1350
https://aclanthology.org/L16-1350
http://www.phontron.com/kftt
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2207.04672
https://arxiv.org/abs/2303.08774
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135
https://proceedings.mlr.press/v28/pascanu13.html
https://proceedings.mlr.press/v28/pascanu13.html
https://aclanthology.org/L18-1182
https://aclanthology.org/L18-1182
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703
https://doi.org/10.1145/3394486.3406703

ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, page 3505-35006,
New York, NY, USA. Association for Computing
Machinery.

Ricardo Rei, José G. C. de Souza, Duarte Alves,
Chrysoula Zerva, Ana C Farinha, Taisiya Glushkova,
Alon Lavie, Luisa Coheur, and André F. T. Martins.
2022. COMET-22: Unbabel-IST 2022 submission
for the metrics shared task. In Proceedings of the
Seventh Conference on Machine Translation (WMT),
pages 578-585, Abu Dhabi, United Arab Emirates
(Hybrid). Association for Computational Linguistics.

Matiss Rikters, Ryokan Ri, Tong Li, and Toshiaki
Nakazawa. 2019. Designing the business conversa-
tion corpus. In Proceedings of the 6th Workshop on
Asian Translation, pages 54-61, Hong Kong, China.
Association for Computational Linguistics.

Andrea Schioppa, Xavier Garcia, and Orhan Firat. 2023.
Cross-lingual supervision improves large language
models pre-training. arXiv:2305.11778.

Thomas Scialom, Tuhin Chakrabarty, and Smaranda
Muresan. 2022. Fine-tuned language models are
continual learners. In Proceedings of the 2022 Con-
ference on Empirical Methods in Natural Language
Processing, pages 6107-6122, Abu Dhabi, United
Arab Emirates. Association for Computational Lin-
guistics.

Noam Shazeer. 2020. GLU variants improve trans-
former. arXiv:2002.05202.

Lucia Specia, Zhenhao Li, Juan Pino, Vishrav Chaud-
hary, Francisco Guzman, Graham Neubig, Nadir Dur-
rani, Yonatan Belinkov, Philipp Koehn, Hassan Saj-
jad, Paul Michel, and Xian Li. 2020. Findings of
the WMT 2020 shared task on machine translation
robustness. In Proceedings of the Fifth Conference
on Machine Translation, pages 76-91, Online. Asso-
ciation for Computational Linguistics.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov. 2014.
Dropout: A simple way to prevent neural networks
from overfitting. Journal of Machine Learning Re-
search, 15(56):1929-1958.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the inception architecture for computer vision.
In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Brian Thompson, Mehak Preet Dhaliwal, Peter
Frisch, Tobias Domhan, and Marcello Federico.
2024. A shocking amount of the web is ma-
chine translated: Insights from multi-way parallelism.
arXiv:2401.05749.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton

Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. arXiv:2307.09288.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Haoran Xu, Young Jin Kim, Amr Sharaf, and Hany Has-
san Awadalla. 2024a. A paradigm shift in machine
translation: Boosting translation performance of
large language models. In The Twelfth International
Conference on Learning Representations.

Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan,
Lingfeng Shen, Benjamin Van Durme, Kenton Mur-
ray, and Young Jin Kim. 2024b. Contrastive prefer-
ence optimization: Pushing the boundaries of LLM
performance in machine translation. In Forty-first
International Conference on Machine Learning.

Linting Xue, Noah Constant, Adam Roberts, Mihir Kale,
Rami Al-Rfou, Aditya Siddhant, Aditya Barua, and
Colin Raffel. 2021. mT5: A massively multilingual
pre-trained text-to-text transformer. In Proceedings
of the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 483—498, On-
line. Association for Computational Linguistics.

Renrui Zhang, Jiaming Han, Chris Liu, Aojun Zhou,
Pan Lu, Yu Qiao, Hongsheng Li, and Peng Gao. 2024.
LLaMA-adapter: Efficient fine-tuning of large lan-
guage models with zero-initialized attention. In The
Twelfth International Conference on Learning Repre-
sentations.

Xuan Zhang, Navid Rajabi, Kevin Duh, and Philipp
Koehn. 2023. Machine translation with large lan-
guage models: Prompting, few-shot learning, and
fine-tuning with QLoRA. In Proceedings of the
Eighth Conference on Machine Translation, pages
468-481, Singapore. Association for Computational
Linguistics.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srini Iyer, Jiao
Sun, Yuning Mao, Xuezhe Ma, Avia Efrat, Ping Yu,

263


https://aclanthology.org/2022.wmt-1.52
https://aclanthology.org/2022.wmt-1.52
https://doi.org/10.18653/v1/D19-5204
https://doi.org/10.18653/v1/D19-5204
https://arxiv.org/abs/2305.11778
https://arxiv.org/abs/2305.11778
https://doi.org/10.18653/v1/2022.emnlp-main.410
https://doi.org/10.18653/v1/2022.emnlp-main.410
https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://aclanthology.org/2020.wmt-1.4
https://aclanthology.org/2020.wmt-1.4
https://aclanthology.org/2020.wmt-1.4
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf
https://arxiv.org/abs/2401.05749
https://arxiv.org/abs/2401.05749
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=farT6XXntP
https://openreview.net/forum?id=51iwkioZpn
https://openreview.net/forum?id=51iwkioZpn
https://openreview.net/forum?id=51iwkioZpn
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://openreview.net/forum?id=d4UiXAHN2W
https://openreview.net/forum?id=d4UiXAHN2W
https://doi.org/10.18653/v1/2023.wmt-1.43
https://doi.org/10.18653/v1/2023.wmt-1.43
https://doi.org/10.18653/v1/2023.wmt-1.43

LILI YU, Susan Zhang, Gargi Ghosh, Mike Lewis,
Luke Zettlemoyer, and Omer Levy. 2023. LIMA:
Less is more for alignment. In Thirty-seventh Con-
ference on Neural Information Processing Systems.

Wenhao Zhu, Hongyi Liu, Qingxiu Dong, Jingjing Xu,
Shujian Huang, Lingpeng Kong, Jiajun Chen, and
Lei Li. 2024. Multilingual machine translation with
large language models: Empirical results and anal-
ysis. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 27652781,
Mexico City, Mexico. Association for Computational
Linguistics.

En = Ja (Avg.) Ja = En (Avg.)
Model BLEU COMET BLEU COMET
ALMA-7B-Ja-V2 10.1 80.4 13.0 75.6

Tagged + SFT (full)  15.0 83.2 16.2 71.3

Table 5: Results of BLEU and COMET scores for
ALMA-7B-Ja-V2 and the rinna-4b-based translation
model. “Tagged + SFT (full)” represents the model con-
tinually pre-trained in the Tagged format as described
in Section 6.1, followed by supervised fine-tuning with
full weight.

A Sampling of JParaCrawl v3.0

We use 20.8M parallel sentences from JParaCrawl
v3.0, initially consisting of 21.8M parallel sen-
tences. We sample sentence pairs using cosine sim-
ilarity scores between 0.4 and 0.95 based on sen-
tence vector embeddings obtained from LEALLA-
large. Parallel sentences with a similarity score
below 0.4 are excluded, as a visual inspection re-
vealed a significant presence of inappropriate sam-
ples, such as Japanese and English sentences with
disproportionate lengths. Additionally, parallel sen-
tences with similarity scores of 0.95 or higher are
also excluded, as they consist of Japanese and En-
glish sentences that were nearly identical. This
sampling results in 1.8B tokens when tokenized
with the rinna-4b tokenizer.

B Comparison with ALMA

We compared with ALMA by using ALMA-7B-
Ja-V2!'!'| which was trained similarly to ALMA
with LLaMA-2 7B but with Russian replaced by
Japanese among the languages experimented with
ALMA. We compared against ALMA-Ja-V2 us-
ing the BLEU and COMET averages of 12 test
sets, as shown in the Table 5. From these results,
it is evident that the 3.8B LLM-based translation
model outperforms the LLaMA-2-based ALMA-
7B-Ja-V2. This result aligns with reports suggest-
ing higher accuracy when using parallel data for
continual pre-training (Alves et al., 2024; Guo et al.,
2024) and the consistency with reports indicating
that the influence of parallel data increases with
fewer parameters (Kale et al., 2021; Briakou et al.,
2023).

264


https://openreview.net/forum?id=KBMOKmX2he
https://openreview.net/forum?id=KBMOKmX2he
https://aclanthology.org/2024.findings-naacl.176
https://aclanthology.org/2024.findings-naacl.176
https://aclanthology.org/2024.findings-naacl.176

23.0 —e— En-Ja 1% BLEU
: 88.25
—v— En-Ja 0% BLEU
225 —e— En-Ja 1% COMET
' : —v— En-Ja 0% COMET [88.00
22,0 !
i 87.75
=
215
@ 87.50 &
@ o
21.0 o
87.25
20.5
87.00
20.0
86.75
19.5

0 10 20 30 40 50 60 70 80 90 100
Checkpoint (%)

Figure 3: Data Curves for BLEU and COMET scores
at each 10% checkpoint of En-Ja2Mix for En = Ja
on WMT?22 test data. All models at checkpoints have
undergone supervised fine-tuning. The 0% on the x-axis
represents the accuracy of En-Ja.

C Analyzing Catastrophic Forgetting

We conducted continual pre-training on En-Ja and
then observed catastrophic forgetting by conduct-
ing continual pre-training on data, which was in
the reverse direction. Based on reports suggesting
preventing catastrophic forgetting by mixing data
from tasks that should not be forgotten (Scialom
et al., 2022), we mixed 1% of En-Ja data. This
model is named En-Ja2Mix. Figure 3 shows the
data curves for BLEU and COMET scores at each
10% checkpoint for En-Ja2Mix on the WMT22
test data, demonstrating En = Ja. As an ablation
study, we also show the data curves for a scenario
where the 1% of En-Ja data added to En-Ja2Mix is
removed, and continual pre-training is conducted
entirely with Ja-En data. From these data curves,
it is observed that when conducting continual pre-
training with En-Ja data and subsequently with
data in the reverse direction, mixing 1% of the first
continual pre-training data can mitigate the degra-
dation in accuracy for En = Ja. Therefore, this
suggests that in the continual pre-training of LLMs,
incorporating a small proportion of data that one
does not wish to be forgotten can suppress catas-
trophic forgetting.

D Detailed Tables

11https ://huggingface.co/webbigdata/
ALMA-7B-Ja-V2
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Direction Test set Domain # sentences

ASPEC (Nakazawa et al., 2016) Scientific Papers 1,812
JESC (Pryzant et al., 2018) Movie Subtitles 2,000
En & Ja KFTT (Neubig, 2011) Wikipedia Articles 1,160
TED (tst2015) (Cettolo et al., 2012) TED Talk 1,194
Business Scene Dialogue Corpus (BSD) (Rikters et al., 2019) Dialogues 2,120
WMT19 Robustness En-Ja (MTNT2019) (Li et al., 2019) Reddit 1,392
WMT20 Robustness Setl En-Ja (Specia et al., 2020) Wikipedia Comments 1,100
En = Ja WMT20 Robustness Set2 En-Ja (Specia et al., 2020) Reddit 1,376
IWSLT21 Simultaneous Translation En-Ja Dev (Anastasopoulos et al., 2021) TED Talk 1,442
WMT?22 General Machine Translation Task En-Ja (Kocmi et al., 2022) News, social, e-commerce, dialogue 2,037
WMT19 Robustness Ja-En (MTNT2019) (Li et al., 2019) Reddit 1,111
Ja= En WMT20 Robustness Set2 Ja-En (Specia et al., 2020) Reddit 997

WMT?22 General Machine Translation Task Ja-En (Kocmi et al., 2022) News, social, e-commerce, dialogue 2,008

Table 6: Domain and Number of sentences in test sets. “# sentences” represents the number of sentences on the
English side.

Baseline Models Continual pre-training + Supervised fine-tuning
Mono En-Ja Ja-En Mix

Test set Transformer Direct-SFT  full LoRA  full LoRA full LoRA full LoRA

ASPEC 19.6 15.4 5.1 4.6 19.1 19.0 6.6 6.4 18.4 18.5

JESC 5.8 5.0 3.6 34 7.4% 7.3*% 43 3.9 7.4% 7.0*

KFTT 12.8 8.7 6.7 6.1 15.5% 15.0* 7.1 6.3 14.1*  13.5

TED 12.2 10.9 5.4 5.1 12.7  12.8%* 6.7 6.3 123  12.9*

BSD 12.5 13.1% 7.5 7.5 14.4*% 15.5% 8.6 8.6 14.1* 15.2*
WMTI19 R En-Ja 13.1 12.3 6.0 5.5 15.2*  15.1* 6.7 6.7 14.4*%  14.7*
WMT20 R Setl En-Ja 16.9 15.3 7.1 6.5 18.4*% 19.5* 7.5 8.0 17.5 18.7*
WMT20 R Set2 En-Ja 12.9 12.1 5.5 4.9 14.8* 14.8* 6.8 6.8 13.9% 13.7*
IWSLT21 En-Ja Dev 12.2 9.8 5.3 52 13.2*  13.2*% 6.6 7.0 12.8*% 12.8*
WMT22 GMT En-Ja 21.2 19.1 11.0 98 231* 231* 119 11.7 22.0* 22.1*%
Average 13.9 12.2 6.3 5.9 154 155 73 7.2 14.7 14.9

# Sig. - 1 0 0 8 9 0 0 7 8
(a) BLEU
Baseline Models Continual pre-training + Supervised fine-tuning
Mono En-Ja Ja-En Mix

Test set Transformer Direct-SFT  full LoRA  full LoRA full LoRA full LoRA
ASPEC 88.5 87.0 787 771 88.6 88.7 80.5 80.7 88.1 88.2

JESC 71.7 72.8* 714 70.8 76.0* 75.7* 724 724 75.77* 75.8%

KFTT 83.9 79.9 76.4  75.7 84.4 843 764 76.1 83.3 83.7

TED 79.7 80.6* 76.4 75.1 83.6* 83.2* 781 7777 83.0%* 83.0*

BSD 84.2 85.7* 81.3 81.2 87.5*% 87.7* 829 83.1 87.0* 87.4*
WMT19 R En-Ja 75.8 77.0* 742 73.1  81.7* 81.5* 753 75.1 81.2* 81.0*%
WMT20 R Setl En-Ja 65.2 68.2* 64.6 637 76.8* 763* 656 663 762% 754%
WMT20 R Set2 En-Ja 74.0 76.1* 727 722 81.6* 81.1* 748 746 80.6* 80.4*
IWSLT21 En-Ja Dev 81.8 82.2 794 78.8 86.2* 859* 813 81.2 85.8* 85.8*
WMT?22 GMT En-Ja 84.9 85.8* 80.8 79.8 883* 88.3* 82.1 81.0 87.8* 87.9*%
Average 79.0 79.6 75.6 748 83.5 83.3 769 768 82.9 82.9

# Sig. - 7 0 0 8 8 0 0 8 8
(b) COMET

Table 7: Results of En = Ja translation accuracy. Details of baseline models and models continually pre-trained
with four orders described in Section 4.2.2 then supervised fine-tuning. Bold numbers represent the highest
scores in each line, and scores that surpass the Transformer are emphasized in green . “*” indicates significant
differences compared to Transformer,“ # Sig.” indicates the number of test sets showing significant differences from
Transformer (p < 0.05).
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Baseline Models Continual pre-training + Supervised fine-tuning

Mono En-Ja Ja-En Mix
Test set Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA
ASPEC 21.8 16.0 8.8 7.9 9.4 8.5 203 204 191 194
JESC 8.9 6.3 4.6 4.0 4.1 4.3 8.5 8.8 7.9 7.7
KFTT 21.0 11.1 9.6 8.4 10.6 9.7 199 19.0 185 174
TED 14.7 10.6 7.4 6.3 6.9 6.6 147 152 143 144
BSD 19.8 16.0 94 8.8 8.5 9.2 20.1 204 18.7 18.6
WMTI19 R Ja-En 17.2 14.2 8.3 6.9 8.3 7.1 180 17.1 164 16.5
WMT20 R Set2 Ja-En 14.3 10.8 5.6 5.4 5.4 5.4 139 141 13.0 13.0
WMT22 GMT Ja-En 21.0 15.0 9.5 9.4 9.3 9.9 20.8 21.1  19.1 193
Average 17.3 12.5 7.9 7.1 7.8 7.6 170 17.0 159 158
# Sig. - 0 0 0 0 0 0 0 0 0
(a) BLEU
Baseline Models Continual pre-training + Supervised fine-tuning
Mono En-Ja Ja-En Mix
Test set Transformer Direct-SFT full LoRA full LoRA full LoRA full LoRA
ASPEC 82.7 80.4 748 742 753 748 82.5 82.5 81.9 82.1
JESC 68.0 67.2 643 632 643 635 69.2* 69.3* 68.7* 68.6%
KFTT 77.4 73.5 70.1 694 705 703 782* 77.8 77.4 76.6
TED 77.6 759 712 704 712 709 78.7* 78.7% 783*% 78.1%
BSD 81.1 79.9 744 741 741 742  82.9* 82.0% 814 81.1
WMT19 R Ja-En 74.0 74.2 696 68.6 690 684 76.8* 763* 76.5% 76.2%
WMT20 R Set2 Ja-En 70.6 70.6 657 648 650 650 72.8* 73.0% 722*% 72.1%
WMT22 GMT Ja-En 79.9 77.9 734 726 727 729 81.0* 82.0% 80.5* 80.4*
Average 76.4 73.8 704 69.7 703 70.0 77.8 77.7 77.1 76.9
# Sig. - 0 0 0 0 0 7 6 5 5
(b) COMET

Table 8: Results of Ja = En translation accuracy. Bold scores, green numbers , “*”, and “# Sig.” are the same in
Table 7.

267



Interleaved Prefix Tagged JSON
Test set Transformer full LoRA full LoRA full LoRA full LoRA
ASPEC 19.6/88.5 18.4/88.1 18.5/882  18.87/88.5f 18.6/88.5 18.81/88.5 18.7/88.6" 18.5/88.3 18.7/88.5F
JESC 58/71.7  74%/757% 7.0%/75.8%  7.8%/757%  6.9%/758% 7.4%/75.9% 6.8%/75.8%  72%/753%  6.6%/75.7*
KFTT 128/839  14.1%/833 13.5%/83.7 14.9%1/837  13.9%/84.0 14.2%/83.6 14.1%/ 83.6 14.0%/833  13.9%/83.7
TED 1227797  123/83.0% 12.9%/83.0% 12.6/83.0%+  13.0%/83.2% 12.7+1/83.4%T  13.1%/83.2%  12.8%1/83.0% 13.0%/83.2%
BSD 125/842  14.1%/87.0% 152%/87.4* 147%1/87.2% 151%/87.5% 14.6*1/87.2%  14.9%/87.5%  14.2%/86.9*
WMTI9 R En-Ja 13.1/75.8 14.4%/812% 14.7%/81.0% 153%7/81.3% 1541 /81.7+" 15.1%1/81.9%T 14.9%/8L6*  14.3%/80.9*
WMT20 R Setl En-Ja  16.9/652  17.5/76.2% 18.7%/754% 17.8%/76.2% 19.51 /76.7%1  18.0%1 /76.6% 19.2*1/76.8*1  12.1/69.6%  18.1%/74.0%
WMT20R Set2 En-Ja  12.9/74.0  13.9%/80.6% 13.7/80.4%  14.0%/80.7% 14.8*1 /8091 14.3+7/81.1%F 14.5%1 /81.1%1  13.6%/80.0% 14.3%1 /80.6*
IWSLT21 En-JaDev  122/81.8 12.8%/85.8% 12.8%/858* 127%/859% 13.0¢/86.0+T  12.7%/86.0% 12.6 / 86.0* 12.6/85.7%  12.7%/ 86.1%
WMT22 GMT En-Ja  21.2/84.9 22.0%/87.8% 22.1%/87.9% 227+ /88.0% 227+ /88.2+1 22.4*1/88.2%1 22.4%/88.3%1 222%/87.9% 22.4%/88.1*
Average 139/79.0  147/829  149/829 15.1/83.0 153/83.3 15.0/83.2 15.1/83.3 142/82.1 1497829
# Sig. - - - 4/0 4/5 6/4 2/4 1/0 1/1
(a) En = Ja
Interleaved Prefix Tagged JSON
Test set Transformer full LoRA full LoRA full LoRA full LoRA
ASPEC 21.8/827 19.1/81.9 19.4/82.1 19.61/8231  19.6/822 19.5/82.1 19.6/82.1 1937821  19.3/82.1
JESC 8.9/68.0  7.9/68.7% 717/68.6% 7.9/69.1%1  7.9/68.9% 8.1/68.8% 8.0/68.7%  7.9/68.6% 7.8/68.7*
KFTT 21.0/77.4 185/774 174/766  189/77.6  184i/7721  1901/774 1861/77.11 187/713 17.6/76.7
TED 14.7/774  143/783% 14.4/78.1% 14.1/784*  144/783%  14.6/78.8*1  142/78.3% 13.3/78.0% 14.1/78.3*
BSD 19.8/81.1 18.7/81.4 18.6/81.1 19.51/81.6*1 19.37/81.6*T 19.0/81.6*  18.9/81.6* 18.6/81.5% 18.8/81.3
WMTI9 R Ja-En 172/74.0 16.4/765% 16.5/76.2% 1721/76.7%  168/762%  163/76.5%*  16.9/76.5% 14.8/75.6% 15.9/75.6*
WMT20 R Set2 Ja-En ~ 14.3/70.6  13.0/72.2% 13.0/72.1% 13.0/72.6%  13.4/72.6% 133/72.6*1  13.7/72.4% 12.1/71.7% 12.9/72.2%
WMT22 GMT Ja-En ~ 21.0/79.9 19.1/80.5% 19.3/80.4* 19.81/80.8* 19.3/80.8*" 20.07/80.8+" 20.31/81.0%1 19.2/80.6* 19.8/80.6*
Average 173/76.4 159/77.1 158/769  163/774 16.1/77.2 16.2/71.3 163/772  155/769 158/769
#Sig. - - - 0/3 0/3 0/3 0/1 0/0 0/0
(b)Ja=-En

Table 9: Results of translation accuracy (BLEU / COMET). “*” indicates significant differences compared to
Transformer, T indicates significant differences compared to the same fine-tuning method as Iterleaved Translations
(Interleaved), bold numbers indicate significant differences in both Transformer and the same fine-tuning method
as Interleaved Translations, and “# Sig.” denotes the number of test sets where significant differences is observed in
both Transformer and the same fine-tuning method as Interleaved Translations. (p < 0.05)

BLEU COMET

Test set rinna-4b  rinna-4b + CPT rinna-4b + SFT rinna-4b + CPT + SFT rinna-4b rinna-4b + CPT rinna-4b + SFT rinna-4b + CPT + SFT
ASPEC 0.3 8.9 52 18.8 453 724 79.0 88.5
JESC 0.2 3.1 3.6 74 36.1 64.4 71.9 75.9
KFTT 0.3 4.2 6.8 14.2 41.4 66.8 76.4 83.6
TED 0.3 9.1 5.4 12.7 40.5 72.0 77.2 83.4
BSD 0.4 8.8 7.6 14.6 40.6 711 81.7 87.2
WMTI19 R En-Ja 0.6 6.5 6.7 15.1 40.2 64.7 75.1 81.9
WMT20 R Setl En-Ja 2.0 7.1 7.7 18.0 39.3 49.3 66.5 76.6
WMT20 R Set2 En-Ja 0.4 74 6.1 14.3 39.5 65.0 74.3 81.1
IWSLT21 En-Ja Dev 0.2 7.6 5.6 12.7 40.7 73.2 80.6 86.0
WMT22 GMT En-Ja 1.4 19.3 10.3 224 38.3 83.5 81.3 88.2
Average 0.6 8.2 6.5 15.0 40.2 69.9 76.4 83.2

(a)En=1Ja
BLEU COMET

Test set rinna-4b  rinna-4b + CPT rinna-4b + SFT rinna-4b + CPT + SFT rinna-4b rinna-4b + CPT rinna-4b + SFT rinna-4b + CPT + SFT
ASPEC 1.0 15.5 8.9 19.5 53.0 77.7 75.0 82.1
JESC 0.3 4.0 4.5 8.1 41.5 62.3 64.6 68.8
KFTT 0.2 9.6 10.0 19.0 44.0 66.7 71.1 77.4
TED 0.3 6.6 7.4 14.6 49.6 66.6 72.0 78.8
BSD 0.3 13.3 9.0 19.0 48.1 76.5 74.6 81.6
WMTI19 R Ja-En 1.4 8.3 8.5 16.3 49.9 65.2 69.6 76.5
WMT20 R Set2 Ja-En 0.5 6.7 6.0 133 46.4 62.6 65.7 72.6
WMT22 GMT Ja-En 2.0 15.3 9.8 20.0 393 76.6 73.4 80.8
Average 0.8 9.9 8.0 16.2 46.0 69.3 70.9 71.3

(b)Ja=En

Table 10: Results of all combinations of continual pre-training and supervised fine-tuning (BLEU / COMET).
Bold numbers indicate the highest scores in each line. “+ CPT” indicates continual pre-training in the Tagged
format, described in Section 6.1. At the same time, “+ SFT” represents supervised fine-tuning with a small amount
of high-quality parallel data, as described in Section 4.1.2. During supervised fine-tuning, zero-shot inference is

performed, and five-shot inference is performed for others.
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