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Abstract

This paper presents ALADAN's approach to

the IWSLT 2024 Dialectal and Low­resource

shared task, focusing on Levantine Arabic

(apc) and Tunisian Arabic (aeb) to English

speech translation (ST).Addressing challenges

such as the lack of standardized orthography

and limited training data, we propose a solution

for data normalization in Dialectal Arabic, em­

ploying a modified Levenshtein distance and

Word2vec models to find orthographic vari­

ants of the same word. Our system consists

of a cascade ST system integrating two ASR

systems (TDNN­F and Zipformer) and two

NMT modules derived from pre­trained mod­

els (NLLB­200 1.3B distilled model and Co­

hereAI's Command­R). Additionally, we ex­

plore the integration of unsupervised textual

and audio data, highlighting the importance of

multi­dialectal datasets for bothASR andNMT

tasks. Our system achieves BLEU score of

31.5 for Levantine Arabic on the official vali­

dation set.

1 Introduction

Speech translation (ST) systems play a crucial role

in facilitating communication across languages

and dialects, enabling access to information and

services for diverse linguistic communities. How­

ever, developing accurate ST systems for dialec­

tal Arabic poses significant challenges due to the

scarcity of annotated data and the lack of standard­

ized orthography. In particular, dialectal variants

such as Levantine Arabic (apc) and Tunisian Ara­

bic (aeb) are severely under­resourced in terms of

Automatic Speech Recognition (ASR) and Neural

Machine Translation (NMT) datasets.

These limitations present a major bottleneck in

the development of high­quality ST systems and

many works in previous IWSLT evaluations (Yan

et al., 2022; Anastasopoulos et al., 2022; Agar­

wal et al., 2023; Hussein et al., 2023; Boito et al.,

2022) explored various transfer techniques on the

acoustic level by fine­tuning pre­trained speech en­

coders such as the Wav2vec 2.0 (Baevski et al.,

2020) and HuBERT (Hsu et al., 2021) for ASR,

or neural models such as NLLB­200 (Costa­jussà

et al., 2022) and mBART (Liu et al., 2020) for

NMT. The use of Modern Standard Arabic (MSA)

datasets like MGB2 for dialect transfer (Costa­

jussà et al., 2022; Tsiamas et al., 2022) has also

been proven effective.

In recent years, more sophisticated ASR archi­

tectures such as the Zipformer (Yao et al., 2023)

emerged as a more effective alternative to other

transformer­based architectures like Conformers

(Gulati et al., 2020) and Branchformer (Peng et al.,

2022). In NLP, large language models (LLMs)

(Achiam et al., 2023; Brown et al., 2020; Touvron

et al., 2023; Le Scao et al., 2023; Jiang et al., 2023)

have demonstrated strong performance across var­

ious tasks in mainstream languages, yet a notable

constraint persists in their limited support for low­

resource languages and dialects.

Building upon these novelties, we propose an

approach that leverages pre­trained models and

multi­dialectal resources for dialectal Arabic ST.

We adopt a cascade ST system comprising two

ASR systems (TDNN­F and Zipformer) and two

NMT modules derived from pre­trained models

(NLLB­200 and Command­R). Additionally, we

develop a generic text normalization methodology

for Dialectal Arabic and integrate crowd­sourced

NMT data and multi­dialectal datasets like PADIC

(Meftouh et al., 2015) to supplement the limited

training data. The outcomes for Levantine Arabic

(apc) are reported on the IWSLT2024 valid and

test2024 sets, while the results for TunisianArabic

(aeb) are provided for both validation and test set

test1 and dev published in IWSLT2022.
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2 Methods

2.1 Text normalization

Due to the lack of standardized conventions across

various dialects, it is necessary to design text nor­

malization procedures in order to mitigate ambi­

guity and facilitate dialectal data exploitation. In

this section, we detail the approach used to normal­

ize transcripts and texts written in Dialectal Ara­

bic. While our research primarily targets Levan­

tineArabic (apc) and TunisianArabic (aeb), we opt

for the term "Dialectal Arabic" to denote a broader

range of dialects. Our text normalization process

includes character­level and word­level normaliza­

tion to ensure consistency and accuracy in repre­

senting linguistic content.

2.1.1 Character normalization

Multiple character­level normalizations were ex­

plored in previous work on the IWSLT22 speech

translation task for Tunisian Arabic. Indeed, a

good improvement in ASR and ST performance

was reported in (Yan et al., 2022) after remov­

ing diacritics and single character words, and ap­

plyingAlif/Ya/Ta­Marbuta normalization. Despite

its reported efficiency, theAlif/Ya/Ta­Marbuta nor­

malization can alter certain words, changing their

meaning; eg. the words ىلع ("on" in English) and

يلع ("Ali" in English) become one and the same

once this normalization is applied. For this specific

reason, this normalization will not be used in our

work, and more effort is invested into word­level

text normalization in order to fix the most frequent

Alif/Ya/Ta­Marbuta ­related problems. Moreover,

it's important to note that using the "single charac­

ter words" filtering strategy can be harmful in the

case of LevantineArabic, which has the proclitic ,ع

a very frequent word, corresponding to a reduced

form of the ىلع preposition (meaning "to" or "on").

Removing such words can result in the loss of valu­

able grammatical information and impact the per­

formance of NMT models.

In our work, we start by applying a similar, but

less aggressive normalization, which consists of

converting all eastern Arabic numerals to western

Arabic numerals and removing all diacritics. Then,

we normalize rare characters like the non­Arabic

letter ژ and other special characters representing

loan sounds such as پ for /p/, ڤ or ڥ for /v/,

and گ or ڨ for /g/. It is important to emphasize

the fact that the characterڤ typically denotes the

sound /g/ inTunisian andAlgerian dialects (usually

normalized as (ق but often represents /v/ in other

dialects (usually normalized asف).

Table 1 summarizes the character normalization

rules used in our experiments.

Dialect Normalizations

All dialects ژ => ر پ/ ب<=

Levantine Arabic ڤ orڥ ف<=

Tunisian Arabic ڤ => ق ڥ/ ف<=

Table 1: Characters normalization rules for different

Arabic dialects.

2.1.2 Word normalization

The second step in text normalization operates at

the word level and aims at fixing orthographic

inconsistencies (words written in different forms)

and limiting transcription errors (misspellings or

typos).

Long words normalization: While analyzing

the IWSLT "aeb" dataset, we noted a significant

prevalence of lengthy words (more than 180 oc­

currences), often representing compound terms in

Arabic or French. In most instances, these elon­

gated words encapsulate entire French sentences

and should be normalized to improve readabil­

ity and reduce the amount of Out­of­Vocabulary

(OOV) words. These words are segmented into

constituent parts based on their semantic meaning

in French as shown in Table 2.

A similar phenomenon can also be observed in

Arabic words, corresponding, in most cases, to

combinedwords. Asimplemethod to identify such

words is to search for final characters mid­word,

namely the "Alif maksura" (ى) and "Ta marbouta"

.(ة) One example is the word " مكوذاهةعامجلا ", which is

normalized as " مكوذاهةعامجلا ". This criterion can also

reveal spelling mistakes in frequent words like the

misspelled word حىحص (meaning "correct" or "true")

which should be normalized as حيحص .

Orthographic variant normalization:

In Dialectal Arabic transcripts, a single word

may be written in various forms due to multi­

ple factors. This variability often arises from the

phonetic representation of words, where charac­

ters with similar pronunciations can be used inter­

changeably (such as "alif" and "alif maksura" at the

end of a word). This phenomenon is also prevalent

in foreign words where a word like "Google" can

be written as لقوق , لغوغ or لجوج depending on the

country or the region, which reflects different in­

terpretations of the loan sound /g/. French words

containing nasal vowels (like /ɑ̃/, /ɔ/̃, /œ̃/ and /ɛ/̃)
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Example 1 Example 2

Original text ناومينسيلبيننومنارتنا نويسنوتأيفابانلأ

Corresponding French entraînement ni plus ni moins elle n'a pas fait attention

Normalized text ناومينسيلبيننومنارتنا نويسنوتأيفابانلأ

Table 2: Two examples of elongated words corresponding to French phrases in the "aeb" IWSLT transcripts (before

and after normalization).

can also be written in different ways; the most fre­

quent ones being ناـ /aːn/ or نوـ /wn/.

To assist in our normalization efforts, we use

a combination of orthographic and semantic sim­

ilarities at the word level, by designing a weighted

Levenshtein distance and using it in tandem with a

Word2Vec model.

Weighted Levenshtein distance: In a recent

work (Hajbi et al., 2024), a method for convert­

ing Moroccan Arabizi text to MSA based on a

weighted Levenshtein distance was proposed. In­

spired by this idea, we develop a weighted Lev­

enshtein distance tailored specifically for Dialectal

Arabic. This adjusted metric employs a higher cost

when the insertion, removal, or substitution of a

character is likely to result in the creation of a new

word, particularly when consonants are altered in a

word. Conversely, it assigns a lower cost when the

insertion, removal, or substitution is attributable to

an orthographic variant of the same word.

1. Initialization: All insertion, deletion and

substitution costs (costI(.), costD(.) and

costS(., .) respectively) are initialized to 1.
2. Weights modification:

The costs are then modified as follows:





costI(vi) = costD(vi) = 0.1, ∀vi ∈ SV

costI(ci) = costD(ci) = 1.5, ∀ci ∈ C

costS(ci, cj) = 1.5,∀(ci, cj) ∈ C, i 6= j
costS(ci, cj) = 0.3, ∀(ci, cj) ∈ C1, i 6= j
costS(ai, aj) = 0.3,∀(ai, aj) ∈ A, i 6= j

Where:

• SV = ,ي,و} ;{ا semi­vowels + Alif.
• A = ,ا} ,أ ,إ ,آ ;{ٱ different variants of Alif.
• C = allArabic letters, excluding semi­vowels

(SV) and variants of Alif (A).

• C1 = ,(ص,س)} ,(ط,ت) ,د) ,(ذ ;{(ظ,ض)
pairs of consonants used interchangeably in

certain Arabic dialects (mainly emphatic con­

sonants (Habash et al., 2012)).

It's important to mention that these cost values

are determined empirically and can be further op­

timized to suit specific dialects.

By using this modified metric, the similarity be­

tween words such as غنيكرب and غنكراب is diminished

(two variants of the word "parking"), while the dis­

tance between غنيكراب and غنيكرام is increased ("park­

ing" vs. "marking").

In practice, relying solely on the weighted Lev­

enshtein distance proves insufficient for effec­

tively identifying orthographic variants of a word.

This limitation arises primarily from the large size

of the search space requiring the computation of

distances between all pairs of words for each di­

alect, alongside the labor­intensive manual filter­

ing requisite for determining the appropriate nor­

malizations.

To address this challenge, we augment this

string distance­based approach with a "semantic"

proxy. This supplementary technique leverages

a Word2Vec model to identify semantically simi­

lar words, thereby reducing the size of the search

space prior to the application of string distance

computation.

Word2vecmodel: Word2vec is a group of mod­

els which aim to represent words in a continuous

vector space where words with similar meanings or

contexts are closer to each other. This is achieved

by learning representations of words based on the

context in which they appear in a large corpus of

text. Word2Vec identifies similar words by com­

puting the cosine similarity (or other distance met­

rics) between their corresponding vectors. This

model can either be implemented as a Continuous

Bag of Words (CBOW) (Mikolov et al., 2013a)

where a word is predicted given its context, or as

a Skip­gram model (Mikolov et al., 2013b) where

the context is predicted given a word. In our work,

we use a CBOW model with a 100­dimensional

word embeddings and a window size of 5. The sim­

ilarity between the embeddings is computed as the

cosine similarity (range = [−1, 1]).

The following algorithm is used to find the or­

thographic variants of each word:

For each word w in the vocabulary V:

1. Use the Word2vec model to find the 50 clos­
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est words vk to w using the cosine distance

between their embeddings embvk :
{vk | cos(embw, embvk) > 0.3, ∀vk ∈ V}

2. Compute the weighted Levenshtein distance

levW and keep the words vk close tow: {vk |
levW (w, vk) < 3}

Following this process, the largest clusters of

words are identified and manually checked. These

are some examples of apc/aeb clusters:

• The Tunisian word for "anyway": ،وليساح

وليصاح،ولىصاح،هليصاح،ولوصاح،لويساح،ولصاح .

• The Syrian word for "the computer":

رتويبمكلا،ريتويبوكـلا .

• The French word "normalement": ،نلملمرن،

،نلمامرون،نومامرون،نولمومروننومللامرن،نومامرن

نولمامرون،نولمامامرون،ناملمرون،نمولمرون،نوملمرن .

2.2 ASR

Different architectures were tested in previous

IWSLT evaluations for Dialectal Arabic and most

of them opted for end­to­end architectures such

as a Conformer encoder + CTC (Yan et al., 2022;

Boito et al., 2022), a Branchformer encoder + a

Transformer decoder (Hussein et al., 2023) show­

ing the superiority of transformer­based architec­

tures for this task. In recent years, the Zipformer

architecture (Yao et al., 2023) was introduced as

a more effective end­to­end model where, differ­

ently from Conformer that processes the sequence

at a fixed frame rate of 25Hz, models use a U­

Net­like structure and learn temporal representa­

tion at different resolutions in a more efficient way.

The Zipformer architecture achieves state­of­the­

art performance while capturing long­range depen­

dencies and contextual information.

In crafting our ASR system, we prioritized com­

pactness and speed in the selection of architectures.

The ASR module developed in this work and used

for the speech translation (ST) task comprises two

distinct systems (TDNN­F and Zipformer), whose

outputs are combined using the Recognizer Output

Voting Error Reduction (ROVER) algorithm (Fis­

cus, 1997) for enhanced performance. Combining

a TDNN­F model and an end­to­end model like

Zipformer can be a powerful strategy to leverage

the strengths of both approaches and achieve im­

provedASR performance. The TDNN­Fmodel ex­

cels in its modular design, allowing for fine­tuning

of each component independently while Zipform­

ers streamline theASR pipeline by implicitly learn­

ing relevant features from raw data and capturing

long­range dependencies more effectively. More­

over, this system combination can mitigate some

known limits of end­to­end architectures, such as

high deletion errors, especially when dealing with

long utterances (Chiu et al., 2021; Fox et al., 2024).

2.3 ST

We classify the systems we have experimented

with based on their specificity into two categories:

MT­only and prompt­driven LLMs.

2.3.1 MT­only

We experimented with multiple encoder­decoder

Transformer models (see Section 3.3).

2.3.2 Prompt driven LLMs

Context Traditional MT models in the majority

operate only on sentence level, without regard for

a larger surrounding context. LLMs however are

usually trained on longer chunks of text and can

innately use the information in the context.

A simple way to translate a whole conversation

using an LLM would be to use a prompt along the

lines ``Translate the following conversation into

English: conversation"
One practical problem with this approach is that

the task evaluation is still sentence­level, mean­

ing we need to keep the same sentence boundaries

across source and translated conversations. In our

experience, this was difficult to achieve reliably

with all the LLMs we have experimented with.

There are multiple possible approaches to obtain

the same segmentation as in the input:

• Sentence splitter ­­ Unreliable and introduces

another tool into the pipeline

• Asking the model to keep the same number of

lines: only works for documents with a small

number of lines and even then, the model still

moves the content across sentence boundaries

• Using separator token, e.g. [s] in the input to
separate sentences and asking the model to

keep it in the corresponding position in the

translation ­­ similar issues as above

• Only translating one sentence at a time, but

providing the whole context (source docu­

ment and previously translated prefix) in the

prompt

We have chosen to use the last option based

on the experimental results. Our final prompt for

context­aware NMT is shown in Listing 1.

2.4 Finetuning

We finetune some of the models on datasets de­

scribed in Section 3.1. For traditional MT mod­
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We need to t r a n s l a t e a s i n g l e l i n e from conversat ion in Tunisian Arabic into Engl ish .
This i s the conversat ion : { src_context }
The s t a r t o f the conversat ion i s a lready t rans l a t ed into Engl ish : {prev_context}
Translate the f o l l ow ing l i n e from { src_lang } to {tgt_lang } .
Be very l i t e r a l , and only t r a n s l a t e the content o f the l ine , do not add any
explanat ions : { s rc_l ine }

Listing 1: The final context­aware prompt we used in our submission.

els, we finetune all the weights. For LLMs, we

use QLoRA (Dettmers et al., 2023). The hyperpa­

rameters are described in Section 3.3.

2.5 Reranking

We rerank the outputs of multiple systems us­

ing Minimum Bayes Risk (MBR) decoding (Goel

and Byrne, 2000; Kumar and Byrne, 2004; Fre­

itag et al., 2021), with COMET22­DA (Rei et al.,

2022) as the objective metric. MBR allows for

the use of reference­based metrics for reranking

even in cases where the reference is unavailable,

by instead using the initial translation candidates

as pseudo­references. For the final submission, we

used a method introduced by Jon and Bojar (2023),

which combines MBR decoding with a genetic al­

gorithm to combine and mutate the translation can­

didates to create better quality translations.

3 Experiments

This section describes our experimental settings,

used data and results.

3.1 Data

In this subsection, we list the datasets we used for

training and evaluating our systems.

3.1.1 ASR data

Table 3 summarizes the audio data used to build

ourASRmodels. To improve the robustness of our

ASR system, these data are augmented using speed

perturbation, additive noise and reverberation.

3.1.2 NMT data

Table 4 summarizes the textual data used to train

the MT models and fine­tune the LLMs.

Constrained datasets: IWSLT22

(LDC2022E01) consists of "aeb" speech, ref­

erence transcript and eng translations, containing

202k sentence pairs. The UFAL parallel dataset

(Krubiński et al., 2023) contains multi­lingual

parallel sentences (including "eng", "arb" and

"apc").

Dataset Dur.

Public supervised data

GALE (BN/BC) 2800h

Tunisian Arabic (CTS) / IWSLT22 160h

Moroccan Arabic (CTS) / Appen 1 30h

Levantine Arabic (CTS) / LDC 2 250h

Internal supervised data

Levantine Arabic (CTS) 365h

Egyptian Arabic (CTS) 135h

Algerian Arabic (CTS) 300h

Tunisian Arabic (Youtube) 20h

Moroccan Arabic (Youtube) 20h

Unsupervised data

Tunisian Arabic (Radio) 150h

Total 4230h

Table 3: List of datasets used to train the ASR module.

Dataset Dialect(s) # sents.

UFAL arb, apc 120k

LDC2012T093 arz, apc 176.1k

IWSLT224 aeb 202.4k

PADIC­ENG
arb, aeb, arq,

apc, ary
44,8k

MADAR­ENG 25 cities 12k

Interviews apc 4.8k

Global Voices arb 63k

Crowd­sourced apc 9.5k

Table 4: Datasets used for NMT finetuning.

Crowd­sourced data: We collaborate with our

ALADAN partner, Crowdee5, a micro­task crowd­

sourcing platform, to construct a parallel dataset

for Levantine Arabic (apc) to English (eng) NMT.

To ensure the high quality of the dataset, we de­

sign a linguistic assessment test consisting of 40

questions in Levantine Arabic. These questions

cover various aspects, including Arabic grammar

and multiple­choice translation exercises between

"apc" and "eng".

In these tasks, transcripts from our internal Lev­

antine Arabic CTS dataset (mentioned in Table 3)

dataset are used as input, and the resulting dataset

5Crowdee—https://www.crowdee.de/
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contains 9.5k parallel sentences.

PADIC­ENG: PADIC (Meftouh et al., 2015)

is a multi­dialect dataset containing 6400 paral­

lel sentences encompassing six distinct dialects:

two Algerian variants, along with Palestinian, Syr­

ian, Tunisian, and MoroccanArabic, in addition to

MSA.We translated the MSA side into English us­

ing the NLLB­1.3B model.

MADAR­ENG: MADAR (Bouamor et al.,

2018) is a 25­waymultiparallel dataset collected in

25 Arabic­speaking cities. We also translated the

MSA side into English and paired the translation

with source sides from cities located in Levantine

or Tunisian Arabic­speaking regions.

Interviews: We scraped a website containing

interviews in English with refugees and their ex­

perience with the integration in their new coun­

tries6, resulting in 4.8k collected sentences. We

translated the text into "apc" using the NLLB­1.3B

model and used the resulting dataset as a backtrans­

lation finetuning data. We have selected this web­

site based on the domain similarity with the valida­

tion data.

LDC2012T09 contains dataset parallel sen­

tences translated from Egyptian Arabic (arz),

North LevantineArabic (apc) and South Levantine

Arabic (ajp) to English (eng). It was developed by

Raytheon BBN, LDC, and Sakhr Software and pro­

vided to our project consortium for the purposes of

the shared task free of charge by LDC.

GlobalVoices dataset was collected by the CAS­

MACAT project. TheArabic­English part consists

of 63k parallel sentences.

Apc­valid is provided by the organizers.7

3.2 ASR

3.2.1 ASR models

(A)TDNN­F:The first system, is based on the Fac­

torized Time­Delay Neural Network (TDNN­F) ar­

chitecture as outlined in (Povey et al., 2018). This

model consists of 15 layers with approximately 28

million parameters. The ReLU layer dimension is

set to 1920, with linear bottlenecks of dimensions

{320, 240}. This acoustic model is coupled with
an n­gram language model.

(B) Zipformer: The second system adopts an

End­to­End architecture utilizing the Zipformer de­

sign, andmore specifically the "Zipformer­M" con­

figuration described in (Yao et al., 2023).

6https://socialscienceworks.org
7https://github.com/ufal/IWSLT2024_

Levantine_Arabic_data

(C) Zipformer+TDNN­F: The output of the

two developed ASR systems (A) and (B) are com­

bined using the ROVER algorithm.

3.2.2 Training procedure

First, we train generic models (TDNN­F and Zip­

former) using all available data to take advantage

of the acoustic and linguistic similarities between

different Arabic dialects. These pre­trained multi­

dialect models are then fine­tuned using "apc" (or

"aeb") ­only data.

The TDNN­Fmodel is pre­trained for 10 epochs

(on all data) using lr=1e­3, then fine­tuned us­

ing LF­MMI­based transfer learning (Ghahremani

et al., 2017) for 8 epochs using lr=2e­5, a primary

lr­factor of 0.1 and a lr­factor of 1.0 for the last

layer. The Zipformer model is pre­trained for 80

epochs (on all data) using the lr=4e­3 then ran 50

epochs for fine­tuning by using dialect­only data

and lr=5e­3.

3.2.3 Results

Table 5 summarizes the WERs achieved by our

ASR systems after applying the normalization pro­

cedure detailed in Section 2.1. This normaliza­

tion significantly improved WERs for "apc" and

"aeb" by 10% and 18%, respectively. The com­

bined model achieved even greater improvements,

demonstrating the complementarity of the two

models and outperforming all WERs reported in

(Agarwal et al., 2023) for "aeb".

apc aeb

apc­valid dev test1

(A) TDNN­F 26.5 39.9 40.8

(B) Zipformer 25.8 33.7 34.3

(C) Zipformer

+TDNN­F
23.6 32.7 33.1

Table 5: WER (%) of ASR models on IWSLT24 Lev­

antine Arabic (apc) validation and IWLST22 Tunisian

Arabic (aeb) dev/test sets.

3.3 ST

We compare lower­cased BLEU (Papineni et al.,

2002), ChrF (Popović, 2015) and COMET22­DA

(Rei et al., 2022) scores of multiple systems on

apc­valid, both on human transcriptions and in cas­

caded setting with our ASR systems.

3.3.1 Baselines

We have compared multiple open­source MTmod­

els (Costa­jussà et al., 2022; Kudugunta et al.,

2023) and LLMs (Mesnard et al., 2024; Jiang
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Type Model Human ASR

BLEU chrF COMET BLEU chrF COMET

MT

eTranslation 15.9 41 0.615 14.1 38.9 0.595
GoogleTranslate 29.9 55.7 0.780 26.3 51.6 0.747

MADLAD­10B 18.4 42.4 0.711 15.9 39.0 0.678
NLLB200­1.3B 21.1 47.5 0.739 18.7 44.6 0.716
NLLB200­600M 20.7 47.2 0.745 18.7 44.1 0.715
NLLB200­3.3B 21.1 47.4 0.728 18.1 43.9 0.700

Opus­MT 10.5 36.5 0.595 10.1 35.7 0.579

LLM

Jais­13B 21.9 45.5 0.755
Bloom­z 13.9 36.2 0.703
1­shot 15.1 37.5 0.716

Aya­101 16.1 42.3 0.711
1­shot 17.6 42.9 0.714
ALMA 7.1 32.0 0.587
1­shot 7.8 30.3 0.593
Mistral 8.5 35.4 0.620
1­shot 8.1 36.9 0.608

Gemma 6.7 31.8 0.563
1­shot 6.8 27.7 0.561

Command­R full+context 29.5 54.1 0.805

Command­R 4bit 24.3 49.8 0.778 20.7 46.2 0.737
1­shot 25.6 50.4 0.785 21.7 46.6 0.749
context 26.9 51.9 0.793 22.9 47.8 0.765

1­shot + context 26.1 51.7 0.797 24.2 49.0 0.771

Table 6: Baseline models for ST. The first row displays the origin of the transcribed source file: Human are the

transcriptions provided by the task organizers, ASR are the outputs of our Zipformer+TDNN­FASRmodel. Missing

values for +context in LLMs means that the given model was not able to provide the translation in the line­by­line

format necessary for the evaluation. We did not evaluate most of the LLMs on the ASR transcriptions, since we

already ruled these models out from the further experiments.

et al., 2023; Üstün et al., 2024; Sengupta et al.,

2023; Muennighoff et al., 2022) in both sentence­

to­sentence and context­aware translation. In the

prompt­driven LLMs, we used a simple prompt in

the form ``Translate the following sentence from

Levantine Arabic to English: {source_sentence}''

for sentence­to­sentence translation.

We evaluated the context­aware approach only

with the LLMs and we used the prompt shown in

Listing 1. We sample with temperature t = 0.2
based on preliminary experiments for the decod­

ing. We compare 0­shot and 1­shot scenarios, with

a short example taken directly from the valid set, so

the model sees one short excerpt from the valida­

tion set with the correct translation.

The results are shown in Table 6. We see that the

models vary greatly, with the best scores obtained

by the commercial engine in the case of sentence­

level, traditional MT models, and Command­R in

the case of LLMs. The only LLM that responded

well to our context­aware prompt was Command­

R, for the other models, the output was not usable.

3.3.2 Finetuning

We selected one model from each category (MT,

LLM): NLLB and Command­R, due to their best

scores and good instruction­following capabilities

in the case of the latter. We finetuned them on MT

datasets listed in Section 3.1. The results on apc­

valid are shown in Table 7.

For Command­R finetuning, we used the 4­bit

quantized model (due to hardware limitations) and

QLoRA with r values of 8, 16, 32 (at higher val­
ues we ran into memory issues), α equal to either

r/2, r or 2r and learning rates set to either 1e− 4,
5e − 5 or 1e − 5. We did not see significant dif­

ferences inmetrics scores between these configura­

tions. We ran the finetuning for 5000 updates with

a batch size of 48, on a single A100 80GB GPU.

Even though the number of updates only covers

about 15% of the whole finetuning dataset, we did

not see any improvements from continued training.

We also experimented with multiple decoding

algorithms, namely sampling with temperature

(Hinton et al., 2015; Ackley et al., 1985), con­

trastive search (Su and Collier, 2022; Su et al.,

2022), locally typical sampling (Meister et al.,

2023), and beam search (Graves, 2012). We did

not find any significantly better configuration than

sampling with t = 0.2.
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Human ASR

# Model BLEU chrF COMET BLEU chrF COMET

1 NLLB­1.3B 21.1 47.5 0.739 18.7 44.6 0.716
2 +UFAL­APC 21.4 44.4 0.723 17.7 40.5 0.686
3 +IWSLT22 25.1 52.2 0.741 21.3 47.9 0.702
4 +3­transcribed 23.3 50.1 0.746 19.2 46.1 0.710
5 +LDC2012T09 27.8 53.6 0.764 23.8 49.8 0.725
6 +Interviews 21.8 49.9 0.740 19.2 46.8 0.707
7 +CrowdSourced 27.4 53.2 0.759 24 49.3 0.722
8 +GlobVoic 21.8 48.2 0.746 19.7 45.2 0.716
9 +MADAR­MT 19.5 44.1 0.734 17.3 41.2 0.701
10 +PADIC­ENG 26.6 52.7 0.757 23.3 49.1 0.718
11 +2+3+4+5+10 ­ ­ ­ 29.1 53.1 0.753
12 +3+4+5+6+10 30.1 56 0.777 26.4 52 0.737
13 +3+4+5+6+7+10* 30.6 56.2 0.780 27 52.2 0.742

14 Command­R 4bit 26.9 51.9 0.799 22.4 50.2 0.743
15 +3+4+5+6+10 34.4 58.1 0.805 30 53.4 0.771
16 +3+4+5+6+7+10* 33.8 57.9 0.806 30.1 53.4 0.768
17 15+MBR 34.5 58.4 0.812 31.1 54.6 0.781
18 15+MBR­GA ­ ­ ­ 31.5 55 0.782

Table 7: Fintuning of NLLB­1.3B and Command­R­4bit models. Models marked with asterisk were trained after

the end of the shared task and are not a part of the submission. The first row displays the origin of the tran­

scribed source file: Human are the transcriptions provided by the task organizers, ASR are the outputs of our

Zipformer+TDNN­FASR model. Rows 18, 15, and 11 show our primary, first contrastive, and second contrastive

submissions, respectively.

3.4 Final submission

Our primary submission consists of 26 best val­

idation BLEU checkpoints from the finetuned

Command­R model from row 15, combined us­

ing MBR decoding and a genetic algorithm (Jon

and Bojar, 2023; Jon et al., 2023; row 18 in Ta­

ble 7). We did not carry out the MBR­GA combin­

ing for the translations of the reference human tran­

scriptions due to the computational requirements

of the process. Our first contrastive submission is

the translation from the single best LLM system

we trained before the end of the competition (row

15). The second contrastive submission is the best

NLLBmodel trained before the deadline, shown in

row 11.

3.5 Conclusion

In this paper, we introduced a generic data nor­

malization method for dialectal Arabic text us­

ing a modified Levenshtein distance metric and

Word2vec word embeddings, improving ASR per­

formance by up to 18%. We demonstrated the ben­

efits of multi­dialectal modeling and combining

models, achieving WERs of 23.6 on the "apc" val­

idation set, 32.7 on the "aeb" dev set, and 33.1 on

the "aeb" test1 set. In the MT part, we compared

various MT models and LLMs, highlighting the

superior performance of LLMs due to their larger

context windows. By gathering additional training

datasets, we demonstrated the effectiveness of tra­

ditional finetuning for NMT models and QLoRA

finetuning for LLMs. Combining multiple fine­

tuned models yielded a BLEU score of 31.5 on the

"apc" validation set.
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