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Abstract

This paper describes NAIST’s submission to the
simultaneous track of the IWSLT 2024 Evalua-
tion Campaign: English-to-{German, Japanese,
Chinese} speech-to-text translation and English-
to-Japanese speech-to-speech translation. We
develop a multilingual end-to-end speech-to-
text translation model combining two pre-
trained language models, HuBERT and mBART.
We trained this model with two decoding poli-
cies, Local Agreement (LA) and AlignAtt. The
submitted models employ the LA policy be-
cause it outperformed the AlignAtt policy in
previous models. Our speech-to-speech trans-
lation method is a cascade of the above speech-
to-text model and an incremental text-to-speech
(TTS) module that incorporates a phoneme esti-
mation model, a parallel acoustic model, and a
parallel WaveGAN vocoder. We improved our
incremental TTS by applying the Transformer
architecture with the AlignAtt policy for the
estimation model. The results show that our up-
graded TTS module contributed to improving
the system performance.

1 Introduction

This paper presents NAIST’s simultaneous speech
translation (SimulST) systems for the English-to-
{German, Japanese, Chinese} speech-to-text track
and the English-to-Japanese speech-to-speech track
within the simultaneous track of the IWSLT 2024
Evaluation Campaign.

Simultaneous translation involves generating
translations incrementally based on partial input,
and it requires interpreters who can provide accurate
and fluent translations while minimizing delay.

Early SimulST systems are based on a cascade of
automatic speech recognition (ASR) and machine
translation modules (e.g., Fügen et al., 2007; Ban-
galore et al., 2012; Yarmohammadi et al., 2013;
Oda et al., 2014; Arivazhagan et al., 2020), but they
suffer from error propagation and added latency

imposed by the ASR module. Recently, an end-to-
end approach has become popular (Agarwal et al.,
2023), and this approach has been demonstrated to
achieve a better quality-latency trade-off.

Conventional end-to-end SimulST models have
employed training strategies and architectures de-
signed for a simultaneous setting. However, that
approach not only requires additional effort in sys-
tem development but also results in high compu-
tational costs. To alleviate such problems, Papi
et al. (2022a) proposed a single model trained on of-
fline translation data for the simultaneous scenario.
Applying a simultaneous decoding policy to an
offline speech translation (ST) model in SimulST
inference enables the model to generate outputs
similar to simultaneous translation. Furthermore,
a decoding policy determines whether to generate
partial output or wait for more input.

Using an offline ST model with a simultaneous
decoding policy has become popular because no
specific task adaptation is required for a SimulST
task. Among several simultaneous decoding poli-
cies (Cho and Esipova, 2016; Dalvi et al., 2018;
Ma et al., 2019, 2020b; Nguyen et al., 2021), Lo-
cal Agreement (LA) (Liu et al., 2020) is widely
used and won the SimulST task at the IWSLT 2022
Evaluation Campaign (Anastasopoulos et al., 2022).
The LA policy extracts the longest common prefixes
from the 𝑛 consecutive chunks as stable hypotheses.
However, it requires a long computation time to
obtain the longest common prefix.

Since simultaneous translation requires real-time
translation, a policy that runs fast is desirable. Papi
et al. (2023) proposed a decoding policy called Alig-
nAtt, which takes the alignments of the source and
target tokens using cross attention information. Un-
der computation-aware settings, Papi et al. (2023)
have shown that AlignAtt can generate translations
with lower latency compared to the LA policy, and
it is capable of reaching a latency of 2 sec or less.

For the IWSLT 2024 Evaluation Campaign, we
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developed two types of speech-to-text translation
models with different decoding policies and com-
pared them. One is based on LA and the other on
AlignAtt. The LA-based model demonstrates better
quality than the AlignAtt-based one within the given
latency constraints, while the AlignAtt policy works
better in a low-latency region in computation-aware
settings.

For the English-to-Japanese speech-to-speech
track, we developed a cascade of the above SimulST
model and an incremental text-to-speech module
using a phoneme and prosodic symbol estimation
model, a parallel acoustic model, and a parallel
WaveGAN vocoder. In last year’s submission, our
speech-to-speech translation method suffered from
the quality of the synthesized speech and possible
ASR errors (Fukuda et al., 2023). The authors
reported that the character error rate of the NAIST
2023 speech-to-speech translation output exceeded
that of the SimulST text output by over 28%. There-
fore, we upgraded our TTS module by incorporating
Transformer architecture and AlignAtt in the esti-
mation model.

2 System Architecture

This section describes the architecture of our
SimulST systems. First, we explain the decod-
ing policies used for our translation modules. Then,
we present the details of our simultaneous speech-
to-text and speech-to-speech translation methods.

2.1 Decoding Policies
2.1.1 Local Agreement
Liu et al. (2020) introduced the concept of Local
Agreement to find a stable prefix translation hypoth-
esis in simultaneous translation scenarios where
inputs are processed in fixed-length chunks. This
method assesses the stability of a hypothesis at
step 𝑡 by comparing it with the hypothesis at step
𝑡 + 1, thus determining the agreeing prefix (i.e., the
longest common prefix) between them. The under-
lying principle is that the translation outputs with
consistent agreeing prefixes, as the input prefixes
increase, are likely to be reliable. Building upon
this idea, Polák et al. (2022) extended it to encom-
pass agreement among prefixes over 𝑛 consecutive
steps (LA-𝑛), with their experiments showing that
𝑛 = 2 performs effectively in the context of SimulST.
Based on these findings, we employed LA-2 as a
SimulST policy and adjusted the input chunk length
(in milliseconds) to manage the trade-off between

quality and latency.

2.1.2 AlignAtt
Papi et al. (Papi et al., 2023) proposed AlignAtt,
a method that leverages encoder-decoder attention
information in Transformer to establish alignment
between source and target tokens during inference.
According to the AlignAtt policy, if a target token
aligns with tokens beyond the last 𝑓 tokens of the
source speech, it implies that adequate information
has been provided to generate that token. Conse-
quently, if a target token aligns solely with the last
𝑓 tokens from the source, generation is paused to
await additional speech input. In our implementa-
tion, we use cross attention from the decoder to the
length adapter for AlignAtt.

2.2 Simultaneous Speech-to-Text Translation
Our speech-to-text SimulST system uses multilin-
gual offline speech translation models for the prefix-
to-prefix translation required for SimulST. These
models are based on large-scale pre-trained speech
and text models adopting Hidden-Unit BERT (Hu-
BERT) (Hsu et al., 2021) and mBART50 (Tang et al.,
2020), following Polák et al. (2022). We initialized
our ST models with the HuBERT speech encoder
and the mBART50 text decoder, which were fine-
tuned using English ASR data and multilingual MT
data, respectively. In addition, we applied Inter-
connection (Nishikawa and Nakamura, 2023) for
the concatenated ST model. Inter-connection is a
method that aggregates the information from each
layer of a pre-trained speech model with weighted
sums and then passes it into the decoder by connect-
ing the intermediate layer of the speech encoder
and the text decoder. We also fine-tuned the mul-
tilingual ST model using bilingual prefix pairs in
English-to-{German, Japanese, Chinese} extracted
using Bilingual Prefix Alignment (Kano et al., 2022).
Bilingual Prefix Alignment is a method used to gen-
erate augmented prefix-to-prefix data based on a
pre-trained offline model, and the SimulST model
fine-tuned on those data will generate high quality
output in a low-latency range compared to a model
trained solely on offline data. After training these
models, we applied the decoding policies in Section
2.1 to the ST model for controlling latency ranges.

2.3 Simultaneous Speech-to-Speech
Translation

Our English-to-Japanese speech-to-speech simulta-
neous translation is a cascade of the speech-to-text
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translation model (Section 2.2) and the incremental
TTS module. In decoding steps, prefixes gener-
ated from the translation model are passed to the
TTS module incrementally. Then, the TTS module
judges whether to wait for more inputs or generate
a partial hypothesis.

2.3.1 Incremental Text-to-Speech Synthesis

Incremental TTS consists of three modules: a
phoneme estimator with a prosodic symbol for the
Japanese language, an acoustic feature predictor,
and a neural vocoder.

The phoneme estimator predicts the phonemes
of SimulST outputs and prosodic symbols in the
Japanese language in parallel using a Transformer
model. This module uses three prosodic symbols
to represent rising and falling pitches, and phrase
boundary. It works simultaneously with the input
based on the AlignAtt policy using models trained
in full-sentence conditions. In TTS, it is assumed
that there is monotonicity between input and output
sequences, so there is little need to make delayed
decisions and reorder, as is the case in LA. There-
fore, we applied AlignAtt to TTS in this study. We
modified the original Transformer architecture by
adding two embedding input layers and two linear
output layers to its decoder. The self-attention mask
was applied to both the encoder and the decoder
sides because the subsequent sequences should not
be used in the inference time in the incremental
condition.

The acoustic feature predictor predicts acoustic
features from the phonemes and prosodic symbols
mentioned above, and then the neural vocoder syn-
thesizes speech in parallel. Its acoustic model
is based on FastPitch (Łańcucki, 2021) with an
additional adapter as an average phoneme power
predictor. Its encoder uses two independent embed-
ding layers for phoneme and prosodic sequences
and concatenates their embedding vectors into a
single sequence as the input to the Transformer
model. Fastpitch estimates an acoustic feature se-
quence with predicted duration, pitch, and power in
parallel. Parallel WaveGAN synthesizes a speech
waveform for the given acoustic features and noise
sequences.

3 Experimental Setting

3.1 Data
3.1.1 Simultaneous Speech-to-Text

Translation
We trained our multilingual ST model on MuST-C
v2.0 (Di Gangi et al., 2019) and CoVoST-2 (Wang
et al., 2020) for all language pairs: English-to-
German (En-De), English-to-Japanese (En-Ja), and
English-to-Chinese (En-Zh). For the En-De setting,
we also used MuST-C v1.0, Europarl-ST (Iranzo-
Sánchez et al., 2020), and TED-LIUM (Rousseau
et al., 2012). In our training data, the development
and test portions of CoVoST-2 and Europarl-ST
were also included. We used the MuST-C v2.0
tst-COMMON data as the evaluation data. We tok-
enized all of the text data in the corpora using a mul-
tilingual SentencePiece tokenizer with 250,000 sub-
word units, distributed with the mBART50 model.

For the En-Ja setting, we trained a model that
applied a data filtering approach on the prefix trans-
lation pairs for the Bilingual Prefix Alignment data.
We empirically set the ratio of the number of sam-
ples in the input speech to the number of tokens
in the output at 4000. Any utterance exceeding
the maximum ratio was excluded from the training
data. In order to prevent discrepancies in sentence
structure and word order between the source and tar-
get languages in fine-tuned models and thus avoid
favoring shorter output.

3.1.2 Incremental Text-to-Speech Synthesis
We used the JSUT corpus (Sonobe et al., 2017)
for training our FastPitch and Parallel WaveGAN.
The numbers of sentences in the training, devel-
opment, and test data were 7196, 250, and 250,
respectively. For JSUT labels, we used the open-
source repository 1. We used the Balanced Corpus
of Contemporary Written Japanese (Maekawa et al.,
2014) for training the phoneme and prosodic symbol
estimation model. These symbols were obtained
from the text using Open Jtalk2 for training the
estimation system. The same algorithm converted
these symbols (Kurihara et al., 2021), and symbols
were separated into two sequences by adding blank
tokens in prosodic symbols. The training, devel-
opment, and test data were approximately 1.4 M,
10 K, and 10 K sentences, respectively. We also
used the training portion of MuST-C as additional
training data.

1https://github.com/r9y9/jsut-lab
2https://open-jtalk.sourceforge.net
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3.2 Simultaneous Speech-to-Text Translation
We developed an end-to-end speech-to-text model
by initializing it with two pre-trained models: Hu-
BERT for the speech encoder and mBART50 for the
text decoder. Furthermore, the encoder and decoder
are interconnected via Inter-connection (Nishikawa
and Nakamura, 2023) and a length adapter (Tsiamas
et al., 2022). Speech input is provided as wave-
forms sampled at a rate of 16 kHz, which are then
normalized to have zero mean and unit variance.

We applied checkpoint averaging to the offline
SimulST model. During checkpoint averaging,
model checkpoints were saved every 1000 training
steps, and the averaged parameter values from the
five best models, based on loss in the development
data, were selected for the final model.

Subsequently, one epoch of fine-tuning was con-
ducted on the training data, focusing solely on prefix
alignment pairs in MuST-C v2. For this fine-tuning
stage, the learning rate was reduced to 2.5 × 10−5,
using translation pairs obtained via Bilingual Prefix
Alignment.

For our SimulST strategies, we implemented both
Local Agreement and AlignAtt policies. Specifi-
cally, we used Local Agreement with 𝑛 = 2 (LA-2).
To adaptively control the quality-latency trade-off,
we varied the chunk size from 200 to 1000 ms. Dur-
ing hypothesis generation for input chunks, a beam
search with a beam size of five was employed. For
the AlignAtt policy, we set the chunk size to 800
ms. In AlignAtt, the parameter 𝑓 directly governs
the model’s latency: smaller values of 𝑓 imply that
fewer frames are considered inaccessible by the
model, thereby reducing the likelihood of the stop-
ping condition being met and the resulting lower
latency occurring. To adjust the quality-latency
trade-off, we varied the parameter 𝑓 from 1 to 12.
See Appendix A for the detailed parameters of the
speech-to-text model.

3.3 Simulaneous Speech-to-Speech
Translation

Our simultaneous speech-to-speech system was a
cascade of the speech-to-text translation module
and the incremental TTS module. The parameter
settings for the translation module were the same
as those for the speech-to-text model, as described
in Section 3.2

3.3.1 Incremental Text-to-Speech Synthesis
The incremental TTS is composed of three modules:
a phoneme estimator with a prosodic symbol for the

Japanese language, an acoustic feature predictor,
and a neural vocoder.

For the phoneme estimator, the input vocabulary
size was set to 21001. The output vocabulary was
set to 40 for phoneme and 4 for prosodic symbols.
The parameter of the AlignAtt policy 𝑓 was set
to 1 in the phoneme and prosodic symbol estima-
tion modules. See Appendix B for the detailed
parameters of the TTS model.

Speech was downsampled from 48 kHz to 22.05
kHz, and an 80-dimensional Mel spectrum was used
for the acoustic features. The size of the Fourier
transform, frameshift length, window length, and
window function were 2048, 10 ms, 50 ms, and
Hann window, respectively.

Our acoustic feature predictor mostly followed
FastPitch structures, and the power predictor was
added behind the pitch predictor.

For the neural vocoder, experimental conditions
for Parallel WaveGAN were the same as in the
original paper, except for the parameters related to
acoustic features and speech.

3.4 Evaluation
We assessed our systems using the SimulEval (Ma
et al., 2020a) toolkit3 and evaluated the translation
quality of the SimulST systems using BLEU with
sacreBLEU4. We also measured translation latency
by the following metrics:

• Average Lagging (AL) (Ma et al., 2019)
• Length Adaptive Average Lagging (LAAL)

(Papi et al., 2022b)
• Average Token Delay (ATD) (Kano et al.,

2024)
• Average Proportion (AP) (Cho and Esipova,

2016)
• Differentiable Average Lagging (DAL)

(Cherry and Foster, 2019)

For the SimulS2S system, translation quality was
evaluated using BLEU scores obtained after tran-
scribing the output speech with Whisper (Radford
et al., 2022) (ASR_BLEU). Translation latency was
evaluated using ATD along with Start_Offset and
End_Offset (Agarwal et al., 2023).

AL is a widely used latency metric for both text-
to-text and speech-to-text simultaneous translation.
However, while AL focuses on the time translation

3https://github.com/facebookresearch/
SimulEval

4https://github.com/mjpost/sacrebleu
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Table 1: Results of submitted speech-to-text systems on MuST-C v2 tst-COMMON

Language pair Chunk size BLEU LAAL AL AP DAL ATD
En-De 960 ms 29.978 2193.352 1973.799 0.846 2863.481 1887.436
En-Ja 835 ms 15.329 2269.591 1868.759 0.893 2878.447 541.729
En-Zh 910 ms 22.300 2245.997 1959.588 0.839 2811.262 897.994
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Figure 1: Results of Local Agreement and AlignAtt policies with AL on the speech-to-text systems. Circled dot in
LA graph indicates our submitted system. Circled dot in AlignAtt graph indicates the best model satisfying the task
requirement of IWSLT 2024 Shared Task.
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Figure 2: Results of Local Agreement and AlignAtt policies with AL_CA on the the speech-to-text systems

Table 2: Results of offline ST in submitted speech-to-text
systems on MuST-C v2 tst-COMMON

Language pair BLEU
En-De 31.00
En-Ja 15.98
En-Zh 24.98

begins, it does not adequately consider the time
each input chunk’s translation ends. In scenarios
where speech segments are generated sequentially,
as in speech-to-speech translation, the translation
output may be delayed if the preceding outputs
occupy the speech output channel. Consequently,
AL may not be suitable for evaluating the latency of
speech-to-speech simultaneous translation. Instead,
we employ ATD, which includes delays caused by
output in the latency calculation. ATD computes

delays by calculating the average time difference
between each source token and its corresponding
target token. In the SimulEval setup, assuming
each word requires 300 ms to be spoken, both the
input and output speech are segmented into 300-ms
intervals, treating these segments as tokens for ATD
calculations.

4 Experiment Results

4.1 Simultaneous Speech-to-Text System

We chose one submission for each language di-
rection, ensuring that the settings met the task
requirement of 𝐴𝐿 ≤ 2 sec. The submission model
is based on the LA policy, since it outperformed
the AlignAtt policy used in earlier models.
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4.1.1 NAIST 2023 model vs. 2024 model
Table 1 shows the results of the submitted speech-
to-text systems evaluated on MuST-C v2 tst-
COMMON. Although the system architecture of
our submitted models was the same as that of last
year’s models, the chunk size settings were different
in every language pair. Using different chunk size
settings slightly improved the BLEU scores in every
language pair (see Appendix C for the scores for
our 2023 submission). We also show the results of
the offline ST in submitted speech-to-text systems
on MuST-C v2 tst-COMMON in Table 2.

4.1.2 Local Agreement vs. AlignAtt Policies
Figure 1 shows BLEU and AL trade-offs in non-
computation-aware conditions. When comparing
the results of the LA and AlignAtt policies, there
was little difference observed in En-Ja (Figure 1
(b)), while there were relatively large gaps in BLEU
in En-De and En-Zh, especially in the high latency
region (Figures 1 (a) and (c)).

Figure 2 shows the BLEU and AL trade-offs
in computation-aware conditions. In all language
pairs, the AlignAtt policy was better in the low-
latency region, while the LA policy was better in
the high-latency regions.

4.1.3 Non-Computation-Aware vs.
Computation-Aware Latency

The quality-latency trade-off results differed signifi-
cantly between the non-computation-aware and the
computation-aware conditions. The LA policy re-
quires a relatively long computation time to obtain
the longest common prefixes. This is especially
true when the source speech is divided into many
small segments. Therefore, the latency increases
significantly when a small chunk size is set (see
Figure 2).

The main constraint of the IWSLT 2024 Shared
Task (i.e., latency is measured in a non-computation-
aware setting) may have been advantageous for the
LA policy. In fact our LA-based system outper-
formed our AlignAtt-based one. However, in real-
ity, the LA policy is time-consuming, and thus the
AlignAtt policy may be better suited to practical
applications.

4.2 Simultaneous Speech-to-Speech System
We submitted a model with the LA policy for
the En-Ja speech-to-speech track. We selected a
model configured with a chunk size of 950 ms,
which satisfies the task requirement Start_Offset

≤ 2.5 sec. Table 3 shows the results of our speech-
to-speech model (LA (NAIST 2024)). We also
developed a model with the AlignAtt policy, but
the LA model achieved higher ASR_BLEU than
the AlignAtt model. The quality-latency trade-offs
in non-computation-aware and computation-aware
conditions are shown in Figures 3 and 4.

4.2.1 NAIST 2023 model vs. 2024 model
Our submitted model outperformed our last year’s
submission (LA (NAIST 2023)). We compared
our 2024 submission with the 2023 one to clarify
what contributed to improving the score. The
significant difference between the two systems lies
in the upgraded TTS, which has an estimation
model based on Transformer architecture with the
AlignAtt policy (see Section 3.3).

When comparing the output from the speech
translation modules, there was little difference in
BLEU scores between the two systems (2023 sys-
tem: 14.93; 2024 system: 15.44)5. However, the
performance of our 2024 system, which was mea-
sured by ASR_BLEU, was more than 2 points
higher than that of our 2023 system. The results
suggest that our new TTS contributed to the im-
proved score. We listened to samples of synthesized
speech and observed that the outputs from the 2024
system tended to be more natural in accent and in-
tonation compared to those from the 2023 system.

4.2.2 Local Agreement vs. AlignAtt Policies
We further compared the model with the LA policy
(our 2024 submission) with the model with the Alig-
nAtt policy. Comparing the translation modules of
the two systems, the difference in translation quality
measured by BLEU was about 0.4 points (15.44
and 15.09 for the LA and the AlignAtt models,
respectively). This gap is almost the same as the
gap in the evaluation scores of the speech-to-speech
systems (ASR_BLEU, see Table 3).

Although no difference was observed in BLEU
scores, a comparison between the output from the
speech-to-speech system (i.e., transcribed speech)
with the output from the translation module sug-
gests that the policy difference affects the TTS
performance. We extracted sentences that satisfy
the following criteria: (1) translations from the
translation modules were identical between the two
policies, but (2) transcribed speeches were different
between the two systems.

5The chunk size setting for the 2024 speech-to-speech
system was different from that for the 2024 speech-to-text
system.
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Table 3: Results of submitted SimulS2S system on the MuST-C v2 tst-COMMON

System Chunk size ASR_BLEU Start_Offset End_Offset ATD
LA (NAIST 2023) 650 ms 9.873 2495.010 4134.752 3278.809
LA (NAIST 2024) 950 ms 12.082 2425.485 3745.743 3792.405
AlignAtt 800 ms ( 𝑓 =6) 11.650 2493.908 3505.377 3682.920
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Figure 3: Results of Local Agreement and AlignAtt policies with ATD, Start_Offset, and End_Offset on speech-to-
speech systems. Circled dot in LA graph indicates submitted system. Circled dot in AlignAtt graph indicates the
best model satisfying the task requirement of IWSLT 2024 Shared Task.
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Figure 4: Results of Local Agreement and AlignAtt policies with ATD_CA, Start_Offset_CA and End_Offset_CA
on speech-to-speech translation systems.

We computed BLEU scores using extracted sen-
tences (𝑁=414) while regarding the outputs from
the translation modules as references. The score
for the LA policy was more than 2 points higher
than that for the AlignAtt policy (67.79 and 65.46,
respectively). In addition, the transcribed speech
for AlignAtt was shorter than that for LA (sys_len:
6364 and 6464, respectively). These results sug-
gest that the manner of passing the translations
to the TTS was different between the two decod-
ing policies (e.g., timing) and affected the TTS
performance.

Our analysis suggests that the output from the
LA policy was more suitable for our TTS than that
from the AlignAtt policy because the LA policy
generated longer partial output with more confident
agreement. On the other hand, the AlignAtt policy
tended to generate prefixes whose boundaries did

not correspond to meaningful units and sometimes
divided a word in the middle of it. Figure 5 shows
an example of the timing difference in passing the
translations to the TTS. This figure compares the
output prefixes generated from the translation mod-
ules with different decoding policies and the output
prefixes generated from the TTS module along with
the timing information. In this example, the trans-
lations generated from the translation modules are
identical between the LA and AlignAtt policies.
However, the prefixes (see Tgt text in Figure 5)
and the timing when they were passed to the TTS
module were different between the two decoding
policies. In this example, the LA policy tended
to generate semantically coherent prefixes, which
resulted in more successful output from the TTS
module (see Tgt speech). On the other hand, the
AlignAtt policy divided the word “フォーミュ
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[In the old days]

[in a Formula 1 race]

[if we want to win, the budget] [bet on a good driver and a good car]

[good]

[In the old days, in a Fogyura 1 race]

[win]

[if we want to, we bet the budget on a good driver and a good car]

(a) LA (chunk size = 950 ms)

[In the old days, Form] [if we want to win, the budget] [bet on and a good car]

[if you want to win, goodness]

[in a race of ula 1]

[In the old days, in a race of Forgura 1]

[a good driver]

[we bet on 's good driver and a good car]

(b) AlignAtt (chunk size = 800 ms, 𝑓 = 6)

Figure 5: Example of timing difference in passing translations to the TTS between the LA and AlignAtt policies.
Translations generated by speech-to-text models were identical between the two policies, but outputs from the TTS
module were different.

ラワン [Formula 1]” into two prefixes, “フォー
ミ [Form]” and “ュラワン [ula 1].” When the
boundaries of the prefixes do not correspond to
the meaning units or words are divided into pre-
fixes, it might be difficult to capture the context of
a sentence, which results in poor performance of
the TTS module. In this example, the word “予
算 [budget]” (pronounced as yosan) was wrongly
recognized as “良さ [goodness]” (pronounced as
yosa) in the system with the AlignAtt policy. The re-
sults suggest that feeding stable prefixes to the TTS
module is important in our speech-to-speech sys-
tem. Future study will involve making the AlignAtt
policy generate more stable prefixes.

4.2.3 Non-Computation-Aware vs.
Computation-Aware Latency

Figures 3 and 4 show the results in non-computation-
aware and computation-aware settings, respectively.
When the latency was measured by the Start_Offset
and the End_Offset, there were no large differ-
ences between the results in non-computation-
aware and computation-aware settings. How-
ever, when latency was measured by ATD, the
quality-latency trade-offs exhibited different trends
in non-computation-aware and computation-aware
settings.

Start_Offset does not include computation time

as a delay because Start_Offset is measured only at
the start of translation. Therefore, Start_Offset is
not appropriate as the latency metric in computation-
aware settings. Moreover, Start_Offset and
End_Offset measure the delay at a single point
in the translation and does not consider the delays
in the middle section of the translation.

In contrast, ATD measures the delay at multiple
points and has a higher correlation with Ear-Voice
Span, which is often used as a reference latency
metric in human interpretation research (Kano et al.,
2024). As the segments become smaller, the num-
ber of segments increases. This increases the num-
ber of comparison processes at the inference of LA.
Therefore, the computation time becomes larger as
the segment size becomes smaller and BLEU be-
comes lower in the low-latency range of LA, which
is only shown in Figure 4a.

In a computation-aware setting, we observed that
the AlignAtt policy outperformed the LA policy
in the low-latency region (Figure 4). In practical
situations, the LA policy might be time-consuming
for a speech-to-speech system. One future direction
would be improving the performance of a model
with the AlignAtt policy.
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5 Conclusions
In this paper, we described our SimulST systems
for the IWSLT 2024 Simultaneous Speech Trans-
lation task. Experimental results demonstrated
the effectiveness of AlignAtt by comparison to
Local Agreement in terms of computation-aware
latency, especially in the low-latency range. Our
speech-to-speech translation system also showed
the effectiveness of applying AlignAtt to the TTS
model and resulted in better performance compared
to our IWSLT 2023 system. This time, our speech-
to-text method used HuBERT with the mBART
model, while our TTS method only used the Par-
allel WaveGAN vocoder. In the future, we will
investigate other methods such as WavLM (Chen
et al., 2022) and Hi-Fi GAN (Kong et al., 2020).
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A Speech-to-Text Parameter Settings

The speech encoder was initialized with HuBERT-
Large, comprising a feature extractor trained on
60 K hours of unlabeled speech data from Libri-
Light (Kahn et al., 2020), along with Transformer
encoder layers. The feature extractor consists of
seven convolutional layers with kernel sizes of (10,
3, 3, 3, 3, 2, 2), corresponding strides of (5, 2,
2, 2, 2, 2, 2), and 512 channels. The number of
Transformer encoder layers is 24. The text decoder
was initialized using the decoder component of
mBART50. The decoder is composed of twelve
Transformer layers, sharing an embedding layer and
linear projection weights sized at 250,000. Each
Transformer and feed-forward layer has dimensions
of 1024 and 4096, respectively, with 16 attention
heads. ReLU serves as the activation function,
and layer normalization is applied before attention
operations. The length adapter is implemented as a
three-layer convolutional network featuring 1024
channels, a stride of 2, and a Gated Linear Unit
(GLU) activation function. During training, each
source audio was augmented (Kharitonov et al.,
2020) prior to normalization, with a probability
of 0.8. Multilingual models were trained using
all of the data with a maximum source length
of 400,000 frames and a target length of 1024
tokens. To achieve a batch size of approximately 32
million tokens, we employ gradient accumulation
and data-parallel computations. We utilize the
Adam optimizer with 𝛽1 = 0.99, 𝛽2 = 0.98, and
a base learning rate of 2.5 × 10−4. A tri-stage
scheduler controls the learning rate, with warm-
up, hold, and decay phases set to 0.15, 0.15, and
0.70, respectively. The initial and final learning
rates are scaled to 0.01 compared to the base rate.
Sentence averaging and gradient clipping of 20
are applied, along with a dropout probability of
0.1. Time masking is used for 10-length spans
with a probability of 0.2, while channel masking is
applied to 20-length spans with a probability of 0.1
in the output of the encoder’s feature extractor. The
loss function employed is cross-entropy with label
smoothing of 20% probability mass.
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B Incremental Text-to-Speech Parameter
Settings

For the phoneme estimator, each Transformer layer,
head, dimension of head, or dimension of Trans-
former model was 2, 8, 64, or 512, respectively.
The embedded size of the encoder was the same
as the dimension of the Transformer, and the em-
bedding sizes of the decoder were 128 dimensions
for the prosodic symbols and 512 dimensions for
the phonemes. The batch size for training was 256.
We used Adam optimizer with a learning rate of
0.1, 𝛽1 = 0.99, 𝛽2 = 0.99, and 𝜖 = 1𝑒 − 8. The
warmup scheduler is the same as that of the original
Transformer. The size of the Fourier transform,
frameshift length, window length, and window
function were 2048, 10 ms, 50 ms, and Hann win-
dow, respectively. The changed settings were as
follows: We used two embedding layers with a
hidden size of 256, the hidden size in Transformer
was 256, the number of heads was 2, the encoder
and decoder had 4 layers, the first convolution layer
in each FFT block in FastPitch had a kernel size of
3 and 256/1024 input/output channels, the second
convolution layer in an FFT block had 1024/256
input/output channels with the same kernel size, the
first convolution layer in each predictor had a kernel
size of 3 and 256/256 input/output channels, and
the second convolution layer in each predictor had
256/256 input/output channels with the same kernel
size. We used Adam optimizer with a learning rate
of 0.1, 𝛽1 = 0.99, 𝛽2 = 0.99, and 𝜖 = 1𝑒 − 9. The
batch size was 48. The schedule for the warmup
followed FastPitch.

C NAIST 2023 Submission for
Speech-to-Text

Table 4 shows the results for all chunk size settings
for the En-De, En-Ja, and En-Zh models, respec-
tively, used in our 2023 submission (Fukuda et al.,
2023).
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Table 4: Results of submitted speech-to-text systems on MuST-C v2 tst-COMMON in IWSLT 2023

Language pair Chunk size BLEU LAAL AL AP DAL ATD
En-De 950 ms 29.975 2172.927 1964.329 0.846 2856.738 1893.749
En-Ja 840 ms 15.316 2290.716 1973.586 0.892 2889.950 547.752
En-Zh 700 ms 22.105 1906.995 1471.287 0.821 2436.948 667.780
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