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Abstract
Large language models show significant in-
equality in language representation, particu-
larly for Uralic languages. Our analysis found
that existing tokenizers allocate minimal to-
kens to Uralic languages, highlighting this
imbalance. To address this, we developed a
pipeline to create clean monolingual datasets
from Wikipedia articles for four Uralic lan-
guages. We trained Byte Pair Encoding (BPE)
tokenizers with a vocabulary size of 256,000
tokens, though Northern Sami had only 93,187
due to limited data.

Our findings revealed most tokens are unique
to each language, with 8,102 shared across
all four, and 25,876 shared among Estonian,
Finnish, and Hungarian. Using the Compres-
sion Ratio metric, our tokenizers outperformed
popular ones like LLaMA-2 and Gemma 2, re-
ducing Finnish’s compression ratio from 3.41
to 1.18.

These results demonstrate the importance of
specialized tokenizers for underrepresented lan-
guages, improving model performance and low-
ering costs. By sharing our tokenizers and
datasets, we provide crucial resources for fur-
ther research, emphasizing the need for equi-
table language representation.

1 Introduction

Large language models have rapidly integrated into
our daily lives, yet they exhibit significant inequal-
ity in language representation due to issues of dig-
ital vitality. This imbalance is particularly pro-
nounced in the Uralic language family, which in-
cludes well-represented languages like Finnish, Es-
tonian, and Hungarian, as well as underrepresented
ones like Northern Sami. Our initial assessment
revealed that existing tokenizers inadequately rep-
resent Uralic languages, with a minimal number of
tokens allocated to them.

However, there is significant inequality in lan-
guage representation at all stages due to the issue

of digital vitality (Acs et al., 2017; Zaugg et al.,
2022), where there is an insufficient amount of dig-
itized text available (Arkhangelskiy, 2019). As a
result, training datasets are dominated by texts in
popular languages, leading to an imbalance (Choi
et al., 2023). It’s not just the training datasets; the
same problem exists with tokenizers (Petrov et al.,
2023), as was shown earlier. The efficiency of a
tokenizer directly impacts performance in that lan-
guage and, consequently, the cost of tasks, since
pricing is tightly linked to the number of tokens.

On the other hand, new methods are emerging
that allow adjustments to the tokenizer’s vocabulary
during fine-tuning, and even better, future models
could pay closer attention to token representation
in tokenizers during training (Downey et al., 2024).
However, to achieve this, a resource is needed that
enables such adjustments (Alnajjar et al., 2023;
Paul et al., 2024). The approach we propose for
creating monolingual tokenizers serves as exactly
this kind of resource. Uralic languages provide a
useful model, as the group is relatively small and
includes three languages that are comparatively
well represented on Wikipedia, one that is poorly
represented, and a significant number of languages
that are not represented at all.

First, we decided to assess how many Uralic
language tokens are present in existing tokenizers.
After evaluating the token representation, we real-
ized that these languages are almost entirely absent.
This led us to the question: can we train a BPE
tokenizer both for individual Uralic languages and
for all Uralic languages combined?

We encountered the challenge that detecting
Uralic languages, beyond Finnish, Estonian, and
Hungarian, is a complex task. For the tokenizer,
we used Wikipedia articles from four languages: in
addition to the three mentioned, we also included
Northern Sami. We developed a pipeline to extract
the cleanest monolingual texts for these four lan-
guages, and based on these texts, we trained four
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monolingual tokenizers with a size of 256K, as
well as one tokenizer for the combined languages.

Although the initial goal was to create monolin-
gual tokenizers, the tokenizers themselves turned
out to be an interesting new tool for comparative
analysis. They provide an additional perspective
for approaching many classic tasks (Toraman et al.,
2023).

We have made both the tokenizers and the clean
monolingual Wikipedia datasets publicly available.
These datasets can also serve as a foundation for
other research projects.

Finally, we evaluated how much more effectively
our proposed tokenizers perform compared to exist-
ing ones. We also assessed the impact of tokenizer
size on tokenization efficiency and proposed meth-
ods for determining how many additional tokens
need to be added to a tokenizer for it to effectively
handle Uralic languages.

2 Results and Methods

2.1 Assessing the Representation of Uralic
Languages in Existing Tokenizers

Our first task was to assess how well Uralic lan-
guages are represented in existing tokenizers. To
study the representation of Uralic languages within
the tokenizers of popular LLMs, we first classified
each token according to the language it belongs
to. Table 1 presents the Uralic language encodings
from the key standards.

The ISO 639-1 standard encompasses three lan-
guages: Estonian, Finnish, and Hungarian. Expand-
ing to broader classifications, the ISO 639-2 stan-
dard includes nine languages, while ISO 639-3 cov-
ers twenty-seven languages. Additionally, the Com-
mon Locale Data Repository (CLDR) incorporates
sixteen Uralic languages. This hierarchical structur-
ing across multiple standards highlights the varying
levels of granularity and coverage, underscoring
the importance of comprehensive language encod-
ing for effective NLP applications in the Uralic
language family. While our findings are promising,
we are currently unable to accurately assess the
representation of these languages in the Common
Crawl dataset, which constitutes a substantial por-
tion of the training data for foundation models. The
seemingly large number of Uralic languages repre-
sented in standards like ISO 639-3 is offset by the
fact that most language classifiers do not use this
standard. To compare the classifications, we use
two popular libraries for language identification

Tokenizers llama-2 llama-3 gemma
fi 415 875 3518
et 429 1082 3335
hu 711 1359 4456

Table 1: Langid numbers of tokens for llama-2, llama-3,
and gemma tokenizers across three languages.

Tokenizers llama-2 llama-3 gemma
fi 202 779 1905
et 251 1145 2066
hu 403 1115 2570

Table 2: Cld3 numbers of tokens for llama-2, llama-3,
and gemma tokenizers across three languages.

— langid.py (Lui and Baldwin, 2012) and pycld3
(Ooms, 2024) The langid.py classifier is based on
the ISO 639-1 standard, which significantly limits
the classification of Uralic languages, narrowing
it down to Finnish, Estonian, and Hungarian. The
pycld3 classifier uses the CLDR standard, which of-
fers an apparent advantage over langid.py and ISO
639-1 when it comes to Uralic language classifica-
tion. However, none of the existing classification
tools are comprehensive, as they have considerable
biases when classifying short tokens and underrep-
resented languages (Chelombitko et al., 2024). To
highlight this issue, we provide a comparison of the
number of Uralic language tokens in the tokenizers
of top models with publicly available tokenizers in
Table 1 and 2.

2.2 Creating Monolingual Datasets Based on
Wikipedia Articles

We downloaded Wikipedia dumps in ZIM format
for four languages—Estonian, Finnish, Hungarian,
and Northern Sami. The links are organized by lan-
guage and further classified by size, such as "nopic"
or "maxi," and date. Specifically, links related to
the "all" topic are added to the data structure. For
each language, we prioritize the "nopic" size if it
is available. If the "nopic" size is not available,
the "maxi" size is used instead. Within each size
category, the links are sorted by date to identify
the most recent links. If a link from May 2024 is
available, it is given priority. For Finnish, no link
from May 2024 was available. Therefore, we used
the most recent link from May 2023.

Downloaded zim files were processed with a
custom C++ program available in github. It iter-
ates through each entry in the archive by path. If
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an entry is identified as a redirect, it is skipped.
The script parses the HTML content using an
HtmlParser library. The script looks for elements
with the class name “mw-parser-output” within
the parsed HTML document. If such elements
are found, the script further extracts all HTML
paragraph elements within the “mw-parser-output”
element. For each paragraph element found, the
script outputs the HTML content of the paragraph.
Finally we used a custom python script to clean
HTML paragraphs of the text. The script reads
input from the standard input, which is usually pro-
vided via a pipeline or redirection. The input text
is passed through the ‘clean_text‘ function, and the
cleaned text is printed to the standard output.

To eliminate contamination from other lan-
guages, we performed two iterations. In the first
iteration, we removed all paragraphs containing
non-Latin characters, which we identified based on
their Unicode values. In addition, we removed all
paragraphs containing fewer than ten words, which
is particularly relevant for Wikipedia. Wikipedia
articles often include not just text but also various
links and other irrelevant content that we wanted to
eliminate. The ten-word filter effectively removed
such unnecessary paragraphs. In the second iter-
ation, we used CLD2, a tool commonly used for
language detection in the Common Crawl dataset.

We removed all paragraphs that CLD2 did not
identify as at least 90 percent belonging to the tar-
get language in order to ensure the dataset remained
monolingual. The exception was Northern Sami, as
CLD2 does not support this language. For Northern
Sami, we retained all paragraphs without applying
language detection.

Within Hungarian language content, there ex-
ists both modern Hungarian and historical Hun-
garian (Old Hungarian) texts. In our research,
we only include modern Hungarian content, as
Wikipedia dumps are categorized using ISO 639-
1 language codes, which only includes the code
’hu’ for Hungarian. While Old Hungarian exists
as a distinct language variety in the more compre-
hensive ISO 639-3 standard (with code ’ohu’), the
current Wikipedia’s infrastructure does not distin-
guish between historical and modern variants of
Hungarian.

The significant reduction in the number of para-
graphs—almost 35 percent—is due to the fact that
a Wikipedia paragraph is far from being clean text.
It contains a large amount of metadata, and many
paragraphs include links to other languages, frag-

ments of other languages, and quotes in different
languages. We removed all of this to make our
datasets as monolingual as possible. Comprehen-
sive statistics for the dataset are provided in Table
3.

2.3 Training and Characterization of
Tokenizer

Typically, a tokenizer training dataset uses only a
portion of the available data. However, we decided
to use the entire monolingual Wikipedia dataset we
created to minimize any bias from dataset sampling
on the tokenizer. By using all available data, we
aim to produce a tokenizer that is as close as possi-
ble to an ideal tokenizer for the given language.

For training the tokenizer, we used a custom
program based on the Tokenizers library from Hug-
gingFace. The program is available on our GitHub.
The only change we made to the reference code
was setting the vocabulary size to 256,000, as we
aimed to capture the maximum number of tokens.
It’s clear that such a large tokenizer is not practical
for use, and the actual tokenizer will be a subset of
these 256,000 tokens.

Interestingly, for Northern Sami, the dataset was
insufficient to train a tokenizer with 256,000 tokens.
We were only able to generate 93,187 tokens for
this language. It is important to emphasize that
even with some amount of text available, a mini-
mum dataset size is required to effectively train a
tokenizer. Nevertheless, the tokenizer for Northern
Sami remains a valuable outcome.

2.4 Comparative Tokenology of Uralic
Languages

With the trained tokenizers in hand, we asked how
many common tokens exist between them. Since
we created a monolingual dataset for training and
ensured that the tokenizers were as monolingual as
possible, we were curious to see how many tokens
are shared among the Uralic languages, as well
as how many tokens are specific to each language.
When we used our tokenizer and examined the total
number of unique tokens across all tokenizers, we
found that there were 785,115 unique tokens. Not
surprisingly, the majority of tokens are unique to a
single tokenizer. We were particularly interested in
finding how many tokens are shared across tokeniz-
ers, but we found no fully common tokens. The
number of tokens that appear in only one tokenizer
is 692,081. Only 8,102 tokens are shared across
all four languages. After excluding Northern Sami,
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Language Estonian Finnish Hungarian Northern Sami
Code et fi hu se
Content pages 248,159 581,930 548,859 7,892

Table 3: Language and number of content pages in Wikipedia.

Language Estonian Finnish Hungarian Northern Sami
Code et fi hu se
Raw Paragraphs 1,342,090 3,141,975 3,932,082 18,652
HQ paragraphs 926,628 (69%) 2,081,601 (66%) 2,385,635 (61%) 6,720 (36%)
HQ Words 33,140,238 86,033,550 122,512,745 249,444
HQ Chars 265,243,383 765,211,790 967,144,007 1,938,899

Table 4: Language and number of paragraphs, words, and characters.

we examined the common tokens between Esto-
nian, Finnish, and Hungarian, and found 25,876
shared “core” tokens. It’s important to note that,
since the data comes from Wikipedia, the number
of shared tokens is slightly overestimated. This is
due to the presence of similar names, toponyms,
and terms. While we tried to exclude non-Latin
scripts, some countries and terms appear in English
on Wikipedia, leading to an inflated count. In re-
ality, the number of truly shared tokens is likely
lower.

2.5 Evaluation of Tokenizer Efficiency for
Tokenizing Texts in Uralic Languages

Our next task was to assess how effectively our
tokenizers, trained on individual languages, to-
kenize their corresponding datasets. We com-
pared their performance with widely used open
tokenizers, including Mistral, LLaMA-2, LLaMA-
3, and Gemma 2. We aimed to determine whether
our language-specific tokenizers outperform these
general-purpose tokenizers, which inevitably in-
clude tokens from multiple languages. To evaluate
tokenizer efficiency, we used the Compression Rate
metric. This metric assesses how effectively the
tokenizer performs during training. The smaller
the resulting text after tokenization, the better the
tokenizer’s performance. Overall, this metric can
be interpreted as ‘how many tokens are needed to
represent a single word.’ The closer this value is to
one, the more efficient the tokenizer. The results of
the analysis are presented in Table 5.

The figure 1 shows tokenization of parallel text
samples in English and Finnish using different tok-
enizers. The Finnish text is processed by GPT4o
(149 tokens, compression ratio 2.76), fi BPE (77
tokens, compression ratio 1.43), and uralic BPE
(86 tokens, compression ratio 1.59). The English
tokenization ratio (1.96) can be considered as a ref-

urBPE llama2 llama3 Gemma2
et 1.13 3.09 2.88 2.45
fi 1.18 3.41 3.12 2.49
hu 1.11 2.69 2.83 2.18
se 1.32 3.53 3.27 3.04
uralic 1.24 3.00 2.94 2.33

Table 5: Comparison of tokenizer efficiency between
our tokenizer and three popular open-source tokenizers
for four individual languages and the combined Uralic
dataset. The metric used is the Compression Ratio,
which is the ratio of the number of tokens after tokeniza-
tion to the number of words in the dataset. The lower
the ratio, the better the performance.

erence point for expected tokenizer performance,
showing that current general-purpose tokenizers
handle Finnish significantly worse than English
(2.76 vs 1.96). However, specialized Finnish and
Uralic tokenizers achieve even better compres-
sion ratios than English, demonstrating that proper
language-specific tokenization can be highly effi-
cient.

This visualization effectively demonstrates the
efficiency gains achieved by language-specific to-
kenizers over general-purpose ones, with fi BPE
showing nearly 50% reduction in token count com-
pared to GPT4o for the same content. This reduc-
tion in token count directly translates to a propor-
tional decrease in processing costs - effectively
halving the cost of working with Finnish text.
While our current work focuses on building sepa-
rate specialized tokenizers, future research might
explore whether similar efficiency gains could be
achieved by selectively adding essential language-
specific tokens to existing tokenizers, potentially
offering a more practical path to improving multi-
lingual performance while maintaining compatibil-
ity with existing models.
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Figure 1: Visual comparison of tokenization patterns across different tokenizers. Each tokenizer’s output is color-
coded to show individual token boundaries, illustrating how the same text is segmented differently. Parallel text is
shown in English (top-right panel, GPT4o) and Finnish (other panels) using different tokenizers.

3 Discussion

3.1 The Importance of Creating
Well-Designed Multilingual Tokenizers

As shown in Table 5, if a tokenizer compresses texts
efficiently, this not only holds fundamental impor-
tance but also has practical implications for the
use of large language models, whose costs increase
with each new iteration and generation. Perhaps
we should rethink how we approach training tok-
enizers—not just by processing large amounts of
text, but by assembling tokenizers from more spe-
cialized ones. This would ensure that tokens and
languages are represented more equally in each to-
kenizer, allowing them to tokenize a wider variety
of texts rather than primarily texts in the most pop-
ular languages, such as English, Russian, Chinese,
German, and Japanese.

3.2 Significant Challenges with Low Digital
Vitality Languages

For languages with low representation in textual
data, none of the available tools for language anal-
ysis work reliably (Zaugg et al., 2022). We en-
countered difficulties even with relatively larger
languages, such as Estonian. This issue is critical
not only for endangered languages but also for any
underrepresented languages in online texts (Hjort-
naes et al., 2021). The most accurate count of exist-
ing Uralic languages is around 39-40 living and ex-
tinct languages (including recently extinct ones like
Kamassian). Currently, 14 Uralic languages have

their own Wikipedia editions, and only four have
automatic Wikipedia dumps for computer-friendly
processing.

The complete absence of Wikipedia editions for
the most Uralic languages actually reinforces our
paper’s main point about the severe digital divide
within the Uralic family. While other text sources
might exist, using them would require entirely dif-
ferent methods for data cleaning and quality con-
trol.

The issue is not just the availability of text; it
also lies in the tools themselves, which are trained
on specific datasets. The performance of these
tools varies greatly across different languages. This
needs to be considered, and we believe that provid-
ing a high-quality monolingual dataset is a crucial
resource for both evaluating existing tools and, in
cases where they perform poorly, improving them
or developing new tools tailored specifically to lan-
guages for which standard tools are ineffective.

In addition, we observed that language detection
proved to be quite challenging, especially for Es-
tonian. Estonian Wikipedia articles often contain
more English words than other languages, which
led to many false negatives and false positives in
the detection process.

One potential approach for low-resource lan-
guages could be the artificial transfer of tokenizers
from one language to another. This might be a solu-
tion for such languages, as word fragments can still
be derived from relatively small amounts of text,
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as we have demonstrated here with Northern Sami.
Despite the limited amount of text, we were able to
extract the basic tokens quite effectively; however,
the challenge lies with full words. Perhaps enrich-
ing tokenizers with additional dictionaries could be
a viable solution for languages that lack sufficient
textual resources.

3.3 Monolingual BPE tokenizer as promising
new tool for comparative linguistic

One of the surprising properties of BPE is its abil-
ity to find all repeating substrings in a language,
making it a potentially valuable tool for compara-
tive linguistics, especially when working with large
text corpora. It can serve as an additional resource
alongside existing linguistic tools (Hämäläinen,
2019; Silfverberg and Tyers, 2019).

This tool can be used, for example, for lan-
guage detection, potentially more effectively than
probability-based models. In essence, BPE is also a
type of probabilistic model, but it has the advantage
of identifying tokens that are more characteristic
of a language, even if they are relatively short. By
analyzing these short tokens, we can estimate the
likelihood that a given text belongs to a specific
language. Currently, no such tools exist Language
Modeling and Perplexity Reduction

3.4 Texts Authorship Quality in
Low-Resource Uralic Languages

For low-resource languages, particularly within the
Uralic language family, large-scale datasets remain
scarce. A critical consideration when working with
extremely low-resource languages is the assess-
ment of dataset quality and representativeness. This
is particularly relevant for languages with a small
number of native speakers yet maintain some pres-
ence in digital corpora. A fundamental method-
ological challenge arises regarding the linguistic
authenticity of the collected data, specifically con-
cerning the authorship of corpus texts. The distinc-
tion between native speakers and proficient L2 (sec-
ond language) users becomes crucial, as the latter
may possess sufficient competency to produce texts
while potentially introducing subtle non-native pat-
terns. In low-resource scenarios, where the corpus
size is inherently limited, such authorship varia-
tions can significantly impact the linguistic quality
of the dataset, subsequently affecting downstream
tasks such as tokenization and model training.

Future research will explore methodologies for
assessing dataset authenticity through perplexity-

based analysis. We hypothesize that texts authored
by native and non-native speakers will demonstrate
measurably different perplexity patterns, though
the exact nature of these differences requires em-
pirical investigation. We plan to validate this hy-
pothesis by developing a systematic approach to
perplexity-based authorship analysis, which could
provide a quantitative tool for dataset quality as-
sessment in low-resource scenarios, particularly
valuable for Uralic languages where high-quality
digital data is crucial yet scarce.

4 Conclusion

In this work, we addressed the inequality in lan-
guage representation within large language models,
focusing on the Uralic language family. Using high-
quality monolingual datasets from Wikipedia for
Estonian, Finnish, Hungarian, and Northern Sami,
we trained specialized BPE tokenizers. Our analy-
sis showed that existing tokenizers poorly represent
Uralic languages, leading to inefficient tokeniza-
tion and increased computational costs. Our mono-
lingual tokenizers outperformed widely used open-
source tokenizers with lower compression ratios,
improving both performance and cost-efficiency for
underrepresented languages. Additionally, these
tokenizers offer valuable tools for comparative lin-
guistic analysis, highlighting shared and unique
features of Uralic languages. By sharing our tok-
enizers and datasets, we provide key resources for
further research in natural language processing for
low-resource languages. This work underscores
the need for equitable tokenization, especially for
languages with low digital vitality.

5 Availability

All resources from this research are publicly avail-
able:

• Source Code: Complete analysis tools and
scripts are available in our GitHub repos-
itory https://github.com/nup-csai/
uralicBPE

• Reproducibility: A Jupyter notebook contain-
ing step-by-step analysis reproduction, includ-
ing all tables and figures

• Data: Processed Wikipedia datasets and pre-
trained tokenizers are hosted on Hugging
Face https://huggingface.co/datasets/
nup-csai/uralicBPE
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