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Abstract

We present vidyut-prakriya, a program that generates Sanskrit words along with their
Pāṇinian derivations. vidyut-prakriya implements more than 2,000 rules of the Aṣṭād-
hyāyī and has strong support for tiṅantas, kṛdantas, taddhitāntas, and subantas, with
partial support for samāsas and accent. Our program compiles to fast native code and
also compiles to WebAssembly for in-browser use. Informal benchmarks indicate that
vidyut-prakriya is almost three orders of magnitude faster than comparable open-
source systems. We end by discussing various applications of a fast prakriyā generator
and directions for future work.

1 Introduction

Many Sanskrit programs use and rely on a lemma list that contains verb roots, nominal stems,
and other headwords. For example, an electronic dictionary maps a list of lemmas to a list of
definitions. Some programs also rely on a word list that contains inflected versions of various
lemmas. For example, a more sophisticated electronic dictionary might accept an inflected word
then show results for the word’s underlying lemma. This distinction between lemma lists and
word lists is simple but important. Whereas lemma lists might contain entries like गम ्and दवे,
word lists might contain entries like गछित, जिग्मवांसम ्, देय,ै and दवेानाम ्.

While a word list is useful for dictionaries and other query interfaces, it has other applications
as well. For example, programs that analyze Sanskrit sentences have a long history of using
word lists internally,1 which continues into modern approaches like Sandhan et al. (2022). Ad-
ditionally, popular resources for students of Sanskrit grammar, such as Bodas (2023), display
hundreds of thousands of verbal and nominal forms for students, and these forms are regularly
consulted by modern-day Sanskrit communities. S. Prasanna (2022) also illustrates the utility
of a word list for spellchecking by using both an explicit list of irregular forms and an implicit
list that joins base words with a suffix table. We believe that word lists are likewise valuable to
any application that cares deeply about correctness.

Given these applications, we believe that an even larger word list might better suit some
of these needs, which makes creating such a list a valuable problem to pursue. But since the
Sanskrit word list is infinite and grows recursively, we cannot represent it in a straightforward
way. So in practice, an infinite word “list” is rather a finite program that can generate words
as needed. The challenge, then, is to to create such a program so that it solves needs similar to
the ones we describe above.

One promising strategy for creating such a program, as demonstrated by Bharati et al. (2006)
and others, is to combine an ad-hoc list of attested forms with some method of abstraction,
such as a finite state automaton, a statistical model, or a set of manually implemented rules.

1Hellwig (2009) and Goyal and Huet (2016) are particularly notable for their longevity and impact. We also
have high regard for the Saṁsādhanī toolkit from the University of Hyderabad, but we are less familiar with how
it works internally.
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This approach works well if the ad-hoc list is sufficiently rich to expose all of the edge cases and
subtleties of Sanskrit grammar, but we have found that approaches in this vein, as impressive
as they are, are prone to over- and under-generating, which means that they might allow invalid
words and reject valid ones. This kind of behavior is not always a problem, and it can even
be preferable for some use cases; but, it is less suited for applications that care deeply about
correctness.

An alternative strategy is to directly implement the underlying rules that generate these words.
This is the approach most famously taken by the Aṣṭādhyāyī, which condenses the mechanics of
Sanskrit grammar to roughly 4,000 short rules. When combined with secondary texts like the
Dhātupāṭha and vārttikas from the commentarial literature, the Aṣṭādhyāyī provides a powerful
system for generating an infinite number of Sanskrit words.

Accordingly, there are several systems that have implemented parts of the Aṣṭādhyāyī, each
with different philosophies and goals. Mishra (2009), for example, proposes a formal structure
that is highly Pāṇinian in spirit, with each sound in a word having a specific formal representa-
tion. Scharf (2015) likewise creates a meticulous formal representation of the Aṣṭādhyāyī ’s rules
in XML that can be converted to executable code. Goyal et al. (2009) use a simpler internal
representation but also describe a rich model for conflict resolution between rules. Patel and
Katuri (2015), meanwhile, avoid simulating conflict resolution but gain substantial performance
benefits in return.

A program that implements the Aṣṭādhyāyī ’s rules can usually also create a prakriyā, a step-
by-step derivation that shows which rules of grammar act to create a specific inflected word.
For students, a prakriyā explains and elucidates the principles of the grammar; for engineers, a
prakriyā reveals the grammar’s operations in case it needs to be debugged; and for downstream
applications, a prakriyā provides detailed grammatical information about a given word. Thus a
prakriyā is highly useful in multiple settings.

Rule Result
3.2.123 भू + लँट ्
3.4.78 भू + ितप ्
3.1.68 भू + शप +् ित
7.3.84 भो + अ + ित
6.1.78 भव +् अ + ित
(final) भवित

Table 1: An abbreviated prakriyā for the word भवित. Items on the left are references to specific
rules in the Aṣṭādhyāyī. We have elided various minor rules.

This paper presents our work toward building a comprehensive prakriyā generator based on
the Aṣṭādhyāyī. We have implemented just over 2,000 rules from the Aṣṭādhyāyī, and these rules
span all major sections of the text. In addition, we have implemented around 500 rules from
the Uṇādipāṭha and around 50 rules from the Pāṇinīyaliṅgānuśāsanam. Our main contributions
are the generator itself and our specific engineering decisions, which we believe make a complete
implementation of the Aṣṭādhyāyī more feasible and useful.

Section 2 describes our approach and the engineering and grammatical principles we follow in
this work. Section 3 describes our program’s high-level architecture, including which texts we
use as the basis of our work. Section 4 describes our implementation, including our data model,
pieces of our API, a few example rules, and a description of how we handle optional derivations.
Section 5 describes our testing methodology, which draws primarily from the traditional gram-
matical literature. Section 6 describes the current state of our work and its limitations. The
remaining sections describe applications of this work, directions for future work, and our overall
conclusions.
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2 Approach
We have viewed our program first as an engineering problem and second as a grammatical one.
That is, we have prioritized those principles that allow us to build a safe, fast, and consistent
program that produces accurate results. Since we are non-grammarians, our approach is to some
extent anti-theoretical, meaning that we have used traditional grammatical literature primarily
as a source of examples but have not deliberately followed a specific system of interpretation or
rule ordering.

2.1 Engineering strategy
Broadly, we follow a variety of engineering principles that we have found to lead to maintainable
and high-quality software. While these principles are not absolutes, they are generally true in
our system:

• Don’t reinvent the wheel. We acknowledge that prakriyā generators are well-trod ground.
That said, we have aimed to create a generator that improves on the state well enough to
become a community standard. In service of this goal, we have implemented our generator
in Rust, a relatively new systems language that combines low-level control with high-level
ergonomics. One happy consequence of this decision is that we can easily bind our program
to other languages. In other words, we can readily provide the same core implementation
in multiple environments and languages. As proofs of concept, we have created Python
bindings2 through Rust’s PyO3 library and JavaScript bindings through Rust’s wasm-pack
ecosystem.3

• Don’t repeat yourself (DRY). We generally implement a rule in exactly one place in our code,
which means that each rule we use has exactly one formal specification. Where necessary,
we reuse rules sparingly through function calls. Likewise, we maintain a simple, linear,
and predictable control flow as opposed to (for example) dynamically selecting and ranking
rules within an event loop.

• If it isn’t tested, it’s broken. The Aṣṭādhyāyī contains thousands of interconnected rules, and
an innocuous change to one rule can easily break dozens of others. Therefore, we generally
test each rule with representative examples and counterexamples from the Kāśikāvṛtti. We
have also an extensive set of additional tests from the Siddhāntakaumudī. We explain more
about our testing procedure in section 5.

• Speed is a feature. A comprehensive test suite is useful only if it can run in a reasonable
amount of time. While we avoid over-optimizing (Premature optimization is the root of
all evil), we have done enough that our full test suite, which creates roughly 1.7 million
words, runs in under a minute on our 2019 MacBook Pro. In particular, Rust has continued
to pay dividends not only through its native speed but also due to its rich ecosystem of
high-performance libraries.

• Given enough eyeballs, all bugs are shallow. All of our code is open-source and available
online.4 So far, five people have reported bugs and five have submitted code to our program.
As more people use our program and its results, we increase the likelihood of finding mistakes
and errors, which we can then correct and add to our test suite.

2.2 Grammatical strategy
As non-grammarians without much expertise in traditional grammar, we have laid aside issues
of theory and set ourselves a much humbler task: to generate a list of valid Sanskrit words while
adhering to Pāṇinian rules as closely as we can. Specifically:

2Available at https://pypi.org/project/vidyut/
3Demonstrated at https://ambuda-org.github.io/vidyullekha.
4You may find our code at https://github.com/ambuda-org/vidyut under the vidyut_prakriya directory.
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• In our schema, a word is valid if and only if it is attested by a grammatical authority. So
far, we have focused most closely on the Kāśikāvṛtti and the Siddhāntakaumudī (SK) as
published at Bodas (2023). We hope to expand our set of examples as time allows.

• We follow Patel and Katuri (2015) by manually ordering rules and avoiding any explicit
model of conflict resolution. This policy greatly increases the program’s efficiency because
the program can run code in a simpler and more predictable way, which helps both the
compiler and the CPU process the program more efficiently.

• We interpret a rule in whatever way will let us generate valid words and avoid invalid ones.
Generally, we have followed the interpretations of the Kāśikāvṛtti, but there is no broader
principle we apply when interpreting rules. We do not model anuvṛtti.

• For ease of reference, we prefer to group rules by their ordering in the text. For example,
our implementation of 7.2.61 is immediately next to our implementation of rule 7.2.62, and
likewise these two rules appear in a similar place in our overall control flow. It is often not
possible to follow this condition, but we do so where we can.

3 Architecture
This section explains the high-level architecture of our program, with a low-level view of imple-
mentation details in section 4.

3.1 Texts used
We focus on the Aṣṭādhyāyī and also include vārttikas from the Kāśikāvṛtti and the Siddhān-
takaumudī. Our approach to vārttikas has been to first find examples from the grammatical
literature that the program does not support and then implement the vārttikas necessary to
support those examples. We have taken this approach because we think that doing so helps us
better shape the overall design of the program.

We have consulted and used specific paribhāṣās from the Paribhāṣenduśekhara only if doing
so was necessary to resolve an explicit error in our program. For example, we have made use of
िश्तपा शपानबुधने ... for our yaṅ-luk derivations.

Our Dhātupāṭha, which comes from Bodas (2023), is a superset of Dhātupāṭhas from var-
ious sources, including the Siddhāntakaumudī, the Mādhavīyadhātuvṛtti, and the Bṛhaddhā-
tukusumākara. The dhātus in this list include anubandhas, and we have also modified the list to
explicitly include accent. Some example entries in SLP1 transliteration include RI\Y, qukf\Y,
and qupa\ca~^z. Our program is not coupled to any specific Dhātupāṭha and will accept any
dhātu as long as the user defines its gaṇa and antargaṇa and correctly specifies its anubandhas
and accent.

The other texts we use, including the Uṇādipāṭha and the Gaṇapāṭha, are as specified in the
Siddhāntakaumudī.

3.2 Data model
Traditional grammar describes the items in a derivation with various labels, such as pratyaya,
āgama, dhātu, prātipadika, abhyāsa, and so on. In our data model, all of these concepts are
aspects of a more general notion that we call a term.5 In our program, we explicitly model and
store all of the following for a given term:

• The term’s “visible” or surface representation, which will change according to the rules of
the grammar.

• The term’s instructional (औपदिेशक) form, which is how the term is first described in the
grammar. This form includes accents and anubandhas where applicable.

5We do not know if this concept has a traditional name.

87



• All designations (सजं्ञा) that are added by the rules of the grammar, as well as other properties
that we describe in 4.1.

• All prior instructional forms, if full substitution applies by 1.1.55 (अनकेािशसवर्य).

For example, our program will represent the verb root डुकृञ ्as having the instructional form
qukf\Y (in SLP1 transliteration), the visible form kf (which might change to kar, kAr, etc.
during the derivation), and the designations of dhātu, aṅga, ḍvit, and ñit. We also store that
the root vowel is anudātta since this information is necessary to trigger certain rules.

All other details of our data model are less important, and we refer the reader to section 4.1
for details.

3.3 Argument model
Since the Aṣṭādhyāyī is a precise system, we require the user to specify their input conditions
in precise detail. For example, suppose that we wish to derive the word kArayan. To do so, we
must tell the program that we wish to derive a masculine nominative singular subanta from the
kṛdanta formed by adding śatṛ to the sanādi-dhātu formed by adding the suffix ṇic to the mūla-
dhātu ḍukṛñ that is listed in tanādigaṇa. This complex idea becomes clearer when represented
as an s-expression:

(subanta
(kṛdanta

(dhatu
sanadi
(dhatu mula qukf\Y tanādi)
Ric)

Satf)
masc nom sg)

We have tried to strike a balance between precision and pedantry, and we use Rust’s rich type
system to guide the user toward a correct request. For example, a Rust program that tries to
add a kṛt suffix to a prātipadika will fail at compile time because a kṛt suffix can be added only
after a dhātu. Section 4.4 contains details on our specific representation in code.

3.4 Rule model
We model a rule as having two parts: a filter that matches certain conditions and an operator
that applies some change to the grammar. In code, this model naturally maps to a simple if
statement:

if filter(prakriya) {
operator(prakriya);

}

The most important aspect of this model is that it does not model anuvṛtti: for each rule, the
program must explicitly specify all of the conditions necessary for the rule to apply. By avoiding
this critical part of the grammar, our program becomes simpler and faster.

That said, an analogue of anuvṛtti exists as follows. If multiple rules can apply only when
some condition x is true, we have found it convenient to write these rules like so:

if x {
if filter_1(prakriya) {

operator_1(prakriya);
} else if filter_2(prakriya) {

operator_2(prakriya);
}

}
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3.5 Optional rules
Rules can also apply optionally under various conditions. Our program supports two kinds of
option and models them in different ways.

First, we support rules qualified by words indicating an option (vā, vibhāṣā, anyatarasyām,
...), rules qualified by the name of some grammarian, and most rules defined only in a specific
semantic sense as follows:

1. Suppose that the program sees optional rules A, B, and C during the derivation. By default,
the program accepts each rule. In addition, it also records that rules A, B, and C apply
optionally.

2. Once the derivation is complete, the program inspects the output of step (1) and notices
that rules A, B, and C are optional. it then creates three new combinations from these
rules, namely (A,B,¬C), (A,¬B), and (¬A). Here ¬A means a rejection of A. These three
“rule paths” are all added to a queue of unexplored combinations.

3. As long as the queue is non-empty, we pop a path from the queue and run the derivation
again using the rule decisions that the path describes. If this process encounters new
optional rules, we likewise create new rule paths for them. For example, if we find that we
can follow the rule path (A,¬B,D,E), then we add (A,¬B,¬D) and (A,¬B,D,¬E) to
the path.

To model a choice between three or more options, we split the rule into two binary options.
For example, consider rule 3.1.40 (कृचानपुयुयत े िलिट), which provides a choice of three different
verb roots (कृ, भ,ू and अस)् when deriving the periphrastic perfect tense. In this scenario, our
program first chooses whether or not to use भू then chooses whether or not to use अस ्.

This basic model has been workable for most rules but is too crude for taddhita rules, where
a specific suffix is available under different rules in different meaning conditions. We instead
model such rules as follows:

1. When using the program, the user can optionally request that a taddhita should be added
only with a specific meaning.

2. When checking if a taddhita rule can apply, the program first checks if the user requested a
specific meaning that is compatible with the rule. If so, and if the rule requires a different
meaning condition, the program skips the rule. If the user did not request a specific meaning,
the program simply adds the taddhita as long as at least one rule can provide it for the
user’s input conditions.

3.6 Conflict resolution
We provide no explicit model of conflict resolution. That is, if rule 2 can block rule 1, our
program does not inspect the properties of these two rules and has no explicit logic to rank or
decide which should apply. Instead, we take the approach similar to Patel and Katuri (2015)
and implement these rules as follows:

if filter_2(prakriya) {
operator_2(prakriya);

} else if filter_1(prakriya) {
operator_1(prakriya);

}

We stress that this approach neglects a core issue in interpreting and modeling the Aṣṭād-
hyāyī. It provides no model of a rule’s properties, no explicit encoding of common paribhāṣās
like पवू र्परिनयातरगापवादानामुतरोतरं बलीयः, no convenient way to reorder or rerank rules (other than
editing code), and no precise way of informing the user that one rule has blocked another.
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As compensation, however, this approach provides code that is much simpler, much faster,
and much easier to change and understand, and we believe that these advantages are highly
compelling.

3.7 Rule ordering
Given the rule model we describe above, a natural question is how we decide whether one rule
should apply before another. Simply, our ordering is ad-hoc and chosen in whatever way will
correctly generate the test cases we describe in section 5 while adhering to the engineering
principles we described in 2.1. While this approach is crude, our use of the “DRY” principle
of non-repetition in code means that our program generally commits to a single ordering that
applies consistently across all examples in our test suite.

We say that this principle applies generally because we have occasionally had to violate it by
duplicating a rule. For a trivial example, we apply the it-saṃjñā rules and most saṃjñā rules
whenever a term is added to the derivation. For a more interesting example, our system applies
rule 6.1.66 (लोपो योव र्िल) twice: once before guṇa so that we can correctly derive नोपयित (from ूनय ्
+ प ुकँ ् + िणच)् and once after guṇa so that we can correctly derive अभतू ्(from भ)ू.

3.8 Rule organization
Conceptually, we group our rules into two categories: preparing rules and finalizing rules. Prepar-
ing rules introduce terms to the derivation but apply few changes, and they include most rules
in adhyāyas 1-5. Finalizing rules apply various phonetic changes to terms in the derivation, and
they include most rules in adhyāyas 6-8. We have separated rules in this way so that we can
support nested derivations, which we have tested in basic cases but not yet in recursive ones.

For example, let us continue with the example of kArayan that we mentioned in section 3.3.
Given our specification, the program prepares each item from the innermost out then finalizes
the derivation to create the requested output:

1. Prepare qukf\Y by adding it to the derivation and applying it-saṃjñā-lopa and other saṃjñā
rules.

2. Prepare Ric by adding it to the derivation and applying the same rules as in (1).

3. Finalize to create the root kAri. Our current implementation always runs this phase after
adding sanādi suffixes because doing otherwise causes the program to fail on some of our
test examples.

4. Prepare Satf~ by first adding la~w to the derivation then replacing it with Satf~, as
specified by 3.1.124 (लटः शतशृानचावपथमासमानािधकरण)े. We then apply it-saṃjñā-lopa and other
saṃjñā rules. Satf~ also conditions the addition of Sap, so we add it then apply the same
rules as in (1).

5. Prepare su~ by adding it to the derivation and applying the same rules as in (1). The
derivation at this stage is kAri + a + at + s.

6. Finalize to apply substitutions and sound change rules. The final word is kArayan.

4 Implementation
Here we explain some implementation details from our system, which amounts to around 25,000
source lines of code excluding tests. All code in this section is adapted directly from our imple-
mentation, with light edits for clarity and readability.

We store text data internally with SLP1, which simplifies our underlying logic and reduces
the computational overhead for core operations. For details on SLP1, see Scharf and Hyman
(2012).
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4.1 Core data types
We start by presenting the core data types in our program. Almost all of our program’s rules
involve testing and transforming the data types below.

Our most basic data type is a Term, which is a string annotated with additional metadata:
struct Term {

upadesha: Option<String>,
text: String,
sthanivat: String,
tags: EnumSet<Tag>,
gana: Option<Gana>,
antargana: Option<Antargana>,
lakshanas: Vec<String>,
svara: Option<Svara>

}

enum Tag { .. }
enum Gana { .. }
enum Antargana { .. }
enum Svara { .. }

Here are some of the key terms in the example above:

• struct indicates a heterogeneous collection of fields.

• enum indicates an enumeration, i.e. a choice of one item among the members in a list.

• Vec indicates a list of elements.

• Option is how Rust models a field that can be either present or absent.

• EnumSet is a third-party library that lets us model a set of enum values.

The most important fields on Term are text, which is the surface representation of this term;
upadesha, which is the instructional (औपदिेशक) representation as enunciated in works like the
Dhātupāṭha; and lakshanas, which contains a history of substitutions for this term, as per rule
1.1.62 (पययलोप े पययलक्षणम)्. In particular, upadesha lets our code process a Term in predictable
ways despite any phonetic changes to the surface form in text. sthanivat, which we named by
reference to rule 1.1.56 (थािनवदादशेोऽनिवधौ), is necessary for certain rules in our implementation,
particularly those that deal with dvitva on a causative root.6 svara specifies the accent type
and (if applicable) which vowel in the term the accent should apply to.7

The Tag enum generalizes the saṃjñā concept from traditional grammar. In addition to
including traditional saṃjñās, Tag also contains various flags that are useful for the derivation.
For example, we indicate that a term’s last a vowel has been deleted through the tag FlagAtLopa.

We model a derivation as a list of Term structs along with additional metadata:
struct Prakriya {

terms: Vec<Term>,
tags: EnumSet<Tag>,
history: Vec<Step>,
config: Config,
rule_decisions: Vec<RuleChoice>,

6We chose the name sthanivat for this concept for lack of a better name. We wish to assure the reader that
we are aware of how important rule 1.1.56 and have modeled it appropriately throughout the program.

7Rust enums are more powerful than simple enumerations and can also contain extra data. This type of model
is more properly known as a sum type.
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lakara: Option<Lakara>,
}

enum RuleChoice {
Accept(Rule),
Decline(Rule),

}

enum Rule {
Ashtadhyayi(String),
Kashika(String),
Dhatupatha(String),
Unadi(String),
Linganushasana(String),
Kaumudi(String),

}

The syntax here is broadly similar to the Term illustration above. For brevity, we have elided
the Config and Step structs, which are straightforward. In the definitions of RuleChoice and
Rule, note that Rust’s enum type can also associate data with each enum variant.

After terms, the most noteworthy fields here are history and rule_decisions. history
stores each rule applied in the derivation along with its result. rule_decisions stores specific
decisions on optional rules that were encountered during the derivation, and we refer the reader
to section 3.4 for details.

The strength of this data model is that we can split a word’s derivation into separate strings
that each have their own metadata, and we have found such a data model to be highly convenient
for most rules. That said, its main limitation is that it is not a hierarchical representation,
meaning that we cannot easily take either a broader or narrower view:

• The broader view: Our representation is most convenient when one term represents one core
notion, such as a pratyaya. But during a derivation, we might introduce various āgamas
that come between a pratyaya and the base it follows. In this situation, we most frequently
resort to a TermView, a new data structure that abstracts over multiple Terms. While
TermView is useful and has reasonable ergonomics, it ultimately highlights a weakness of
the underlying data model.

• The narrower view: Our representation assumes that each sound in a derivation belongs
to exactly one term. However, this assumption does not always hold. For example, certain
derivations apply rules that fall in the jurisdiction of rule 6.1.84 (एकः पवू र्परयोः), which states
that a single substitute should be treated as part of both the previous and the following
items. Our data schema above cannot model this, and we have worked around it with a small
hack: we annotate the first term in the sandhi combination with the FlagAntyaAcSandhi
tag and block rules like 8.2.39 (झलां जशोऽत)े from applying between two terms if the first
term has this tag. In the future, we might implement an explicit model of rule 6.1.84 that
our API can check.

A more Pāṇinian data structure might be a list of string spans that each have their own
metadata. But in our view, it is not obvious how to create a clean and efficient API for working
with such spans. Despite its limitations, our list of Terms has been successful so far.

4.2 API
On top of these data types, we have created a rich API that lets us easily inspect, test, and
transform our derivation state. Below is a representative example of our Term API:
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impl Term {
fn antya(&self) -> Option<char> {

self.text.chars().rev().next()
}

fn has_antya(&self, char: c) -> bool {
self.antya() == Some(c)

}

fn set_antya(&mut self, s: &str) {
let n = self.text.len();
if n >= 1 {

self.text.replace_range(n - 1..n, s);
}

}
}

Here, antya returns the Term’s final character, or None if the term is empty. Likewise,
has_antya tests whether the Term has a given final sound, and set_antya modifies the last
sound of the Term in-place. (set_antya accepts multiple characters to better support certain
kinds of substitutions.)

In our production code, has_antya uses Rust’s support for generic arguments to also accept a
set of sounds, which lets us test (for example) whether a given Term ends in a specific pratyāhāra.

Prakriya likewise exposes a high-level API for changing internal state. These functions pri-
marily accept closures, which are akin to inline functions. We use closures in part for readability
and in part because we found it easier to do so while complying with Rust’s semantics. Below
is a representative example of our Prakriya API:
impl Prakriya {

fn run(&mut self, rule: Rule, operator: impl Fn(&mut Prakriya)) -> bool {
operator(self);
self.step(code);
true

}

fn run_optional(&mut self, rule: Rule, operator: impl Fn(&mut Prakriya)) -> bool {
if self.is_allowed(rule) {

operator(self);
self.step(rule);
true

} else {
self.decline(rule);
false

}
}

}

4.3 Implementing rules
Together, this combination lets us tersely express rules in a human-readable way without sacri-
ficing performance:

let yi_kniti = next.has_adi('y') && next.is_knit();
if anga.has_upadesha("SIN") && next.is_sarvadhatuka() {

prakriya.run_at("7.4.21", anga_index, |term| term.set_text("Se"));
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} else if anga.has_upadesha("SIN") && yi_kniti {
prakriya.run_at("7.4.22", anga_index, |term| term.set_text("Say"));

}

Note the explicit ordering of rules, the relatively terse code, and the use of if-else chains
to implement rule blocking. Our production code is largely the same, but it heavily abbreviates
common terms like prakriya and term and contains some method names that are legacies of
earlier stages of development.

4.4 Argument types
Our public API requires users to define their input conditions with precise types. To continue
the example from section 3.3, our program models the input conditions for kArayan as follows,
with some minor syntax elided for clarity:

let kr = Dhatu::mula("qukf\\Y", Tanadi).with_sanadi(&[Sanadi::Ric]);
let karayat = Krdanta::new(kr, Krt::Satf);
let karayan = Subanta::new(karayat, Pum, Prathama, Eka);

4.5 Performance
Since our full test suite has more than a million examples, we wish to ensure that our program
completes in a reasonable amount of time. To that end, we have taken reasonable steps to ensure
that the developer experience does not suffer.

Perhaps the most significant decision here is our choice of the Rust programming lan-
guage. Rust’s combination of speed and memory safety makes it an attractive choice for
high-performance programming projects, as noted in work like Bugden and Alahmar (2022).
In addition to Rust’s native capabilities, we wish to highlight three other features that have
benefited our program:

• Strong tooling. The default Rust installation includes a tool called cargo, which manages
dependencies, builds code for different environments, runs tests, lints and formats code,
and catches common style problems. cargo has allowed us to set aside ancillary concerns
and focus on implementing rules, and it has also made it easier for us to onboard new
contributors to our work.

• Useful libraries. Rust maintains a centralized package repository where library versions are
guaranteed to be stable and available. For example, the compact_str library gives us access
to memory-efficient string types that can be stack-allocated if they are sufficiently short.
As another example, the rayon library provides a lightweight library for parallel execution
on iterators, which allows us to more quickly generate a very large word list.

• Easy reuse. Rust is easy to bind to other languages and environments, which removes the
toil of porting an implementation to another setup. As a proof of concept, we have created
the vidyut Python library, which is available on Python’s standard package index. We
have also created a WebAssembly build that can run on a user’s device without an internet
connection.

5 Testing
The Aṣṭādhyāyī generates an infinite number of words, and it is impossible to test them all.
Therefore, any implementation of the Aṣṭādhyāyī must have a robust testing strategy to justify
some level of correctness.

We have tested our program with three kinds of tests: unit tests from the Kāśikāvṛtti, re-
gression tests from the Siddhāntakaumudī, and snapshot tests that monitor changes over time.
Our unit tests and regression tests combine to just under 32,000 lines of source code, and our
snapshot test suite contains just under 1.7 million examples.
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5.1 Unit tests

Generally, the ancient grammatical literature illustrates the function of a rule with various
examples and counterexamples, which establish and limit the rule’s scope respectively. We have
especially leaned on the Kāśikāvṛtti for these examples, since it works through the Aṣṭādhyāyī
rule by rule and generally limits its commentary to one rule at a time.

A typical unit test appears as follows:

#[test]
fn sutra_3_1_68() {

assert_has_lat(&[], &dhatu("BU", Bhvadi), &["Bavati"]);
assert_has_tip(&[], &dhatu("qupa\\ca~^z", Bhvadi), &["pacati"]);

}

We have created a variety of test functions like assert_has_lat, assert_has_tip, etc. to
verify certain forms. In the example above, the first argument is for upasargas, and &[] indicates
that we wish to derive the given form without upasargas. Note that "qupa\\ca~^z" contains
both anubandhas and accent marks, both of which are necessary for the program to run correctly.
Note also that we use assert_has_tip to restrict the output for पच ्to use only parasmaipada
endings, if they are available for the root. If we used assert_has_lat instead, then the program
would produce both पचित and पचते and the test would fail.

We implement a rule’s tests by including all examples mentioned in the Kāśikāvṛtti’s commen-
tary on that rule, to the extent that we are able to. We fail to do this either if we are unclear on
the intended result or if bugs or other technical limitations prevent us from implementing a given
example. For now, we mark these challenging examples with TODOs, or in more significant cases,
we disable the test entirely. For example, we have disabled the test for rule 3.2.12 (तबकणर्यो
रिमजपोः) because we have not implemented the rule that allows non-deletion of the case suffix,
which means we cannot produce the expected results तबरेम and कणेजप.

5.2 Regression tests

Although the Kāśikāvṛtti is thorough, its examples are sometimes insufficient to verify that the
program is working correctly. In these cases, we have drawn examples from the Siddhāntakau-
mudī (SK), which tends to focus more on the overall prakriyā rather than on specific rules.
For example, we once noticed a bug in our program where we failed to produce both ऊणुर्निवथ
and ऊणुर्निुवथ (ऊणुर्ञ ्+ िसप ्, िँलट)्. We found an illustration of this case in Kaumudī 2447 and
accordingly implemented it as a test:8

#[test]
fn sk_2447() {

let urnu = d("UrRuY", Adadi);
assert_has_sip(&[], &urnu, Lit, &["UrRunuviTa", "UrRunaviTa"]);
assert_has_tip(&[], &urnu, Lut, &["UrRuvitA", "UrRavitA"]);
assert_has_tip(&[], &urnu, Lot, &["UrROtu", "UrRotu", "UrRutAt"]);
assert_has_mip(&[], &urnu, Lot, &["UrRavAni"]);
assert_has_iw(&[], &urnu, Lot, &["UrRavE"]);

}

Our test suite currently includes almost all examples from prakaraṇas 8-13, which deal with
subantas, and 43-58, which deal with tiṅantas. As our program stabilizes, we expect to add
more and more test cases from the Siddhāntakaumudī.

8Some readers might ask how this test passes given that words like UrRutAd are also valid forms. Briefly, we
have configured our test functions so that they avoid generating nosily duplicative forms. Otherwise, our test
logic would be both more tedious to write and more cumbersome to read.
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5.3 Snapshot tests
Our largest test suite is a snapshot test that deterministically generates around 1.7 million words,
including all basic verbs in kartari-prayoga and karmaṇi-prayoga, all kartari and karmaṇi forms
of sannanta, ṇijanta, yaṅanta, and yaṅluganta verbs, and a variety of kṛdantas as well. We store
the hashes of these files as part of our test suite, which means that if any result in any file
changes, our test suite will raise an error that a human being must manually review.

Snapshot testing demonstrates stability but does not prove correctness. Even so, it is a useful
tool for verifying that a rule change does not have unintended consequences.

6 Results
6.1 Implemented rules

Pada 1 Pada 2 Pada 3 Pada 4
Adhyaya 1 27 / 75 31 / 73 72 / 93 36 / 110
Adhyaya 2 41 / 72 9 / 38 2 / 73 35 / 85
Adhyaya 3 117 / 150 139 / 188 79 / 176 38 / 117
Adhyaya 4 86 / 178 73 / 145 87 / 168 111 / 144
Adhyaya 5 64 / 136 64 / 140 73 / 119 62 / 160
Adhyaya 6 117 / 223 8 / 199 38 / 139 143 / 175
Adhyaya 7 80 / 103 112 / 118 84 / 120 86 / 97
Adhyaya 8 0 / 74 65 / 108 59 / 119 33 / 68

Table 2: Rule implementation of 2071 total rules by adhyāya and pāda. This is an undercount
that includes only those rules that might show up in a prakriyā. Paribhāṣās and simpler saṃjñā
rules like ॑ंव लघ ु are not counted here.

Table 2 shows our total count of implemented rules by adhyāya and pāda. Rules are drawn
broadly from all sections of the Aṣṭādhyāyī, with the notable exception of pāda 8.1.

• Tiṅantas have been our primary focus. Our system includes support for all lakāras and
prayogas and implements almost all of the pada rules in section 1.3, including rules that
depend on a specific upasarga. Our system also supports sannanta, ṇijanta, yaṅanta and
yaṅluganta roots, with experimental support for denominative (नामधात)ु roots. Example
words that our program produces include गछित, िजगिमषित, सचकार, िससावियषित/ससुाविययित,
अिदिधषित, and पापिचषत.े

• Kṛdantas have been a secondary focus, and our system here has broad coverage for a variety
of common suffixes, including घञ ्, यटु,् ण्वलु,् शत,ृ ा, त, वस ु,ँ and the like. We have also
implemented support for around 500 rules from the Uṇādipāṭha. Example stems include
गत, अयात/अयिमत, and जिग्मवस/्जगवस ्.

• Taddhitāntas likewise have broad coverage, and they explicitly model a variety of fine-
grained meaning conditions with a Rust enum. We have met with some challenges here
when implementing rules that match against a semantic class, such as “part of the body”
as used in 4.3.55 (शरीरावयवाच). For our coverage here, see adhyāyas 4 and 5 in table 2.

• Subantas have strong support, but we have not run a formal evaluation against systems like
Patel and Katuri (2015). As a rough measure of quality: excluding 8 sutras, we support all
examples in prakaraṇas 8-13 of the Siddhāntakaumudī.

• Samāsas have basic support. We have implemented many of the rules from pādas 2.1, 2.2,
and 6.3 and support a basic model of upapada-samāsas so that we can implement the various
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kṛt-pratyaya rules in pāda 3.2. Otherwise, initial attempts to model this section have not
felt satisfying since so many rules depend on specific semantic conditions and are relatively
less mechanical than other sections of the text. One option here is to formally model these
semantics in Rust then expose the Rust model through an API.

• Vedic rules have been a recent focus, and we currently support around ten of them.

• Accent rules have partial support. Currently, our accent model is limited to simple patterns
like िलत ्, िचत ्, िपत ्, िरत ्, and the like. For details on our data model for accent, see 4.1.

6.2 Testing
Test coverage broadly follows the pattern of table 2, but we have disabled around 7 percent
of sutra tests. This 7 percent figure is misleadingly high for two reasons. First, we have dis-
abled tests where the system generates results that we don’t know how to reconcile with the
commentaries due to our own lack of grammatical knowledge. For example, the commentary
on rule 7.2.58 (गमिेरट ् परमपैदषे)ु proposes the form संगसीट as a counter example, but our system
also generates सगसीट. We believe that both are correct but have not yet spent the time to vet
this form. Second, we have ignored a test for a rule when any one of its examples is generated
erroneously, no matter how rare that example might be.

The main comparison we wish to present here is with SanskritVerb (Patel (2023)), an exten-
sion of the work in Patel and Katuri (2015) with support for kartari-tiṅantas. SanskritVerb is
a standard implementation in the open-source community and is used in popular projects like
Bodas (2023).

We performed an exhaustive comparison against all basic kartari-tiṅantas generated by
SanskritVerb, which total to around 200,000 forms. After fixing bugs in our setup,
vidyut-prakriya features various small gains over SanskritVerb. A sample:

• Support for optional karmaṇi-luṅ forms (अयािय, अतािय, अदीिप).

• Support for optional tanādi-luṅ forms (अतत, अतथाः).

• Support for periphrastic perfect derivations with अस ्and भू (चोरयामास, चोरयाबभवू).

• Support for optional forms like तनोित, तुनोित, and so on.

• Broad support for ubhayapada derivations in curādi-gaṇa.

• Stronger support for short vowel lengths in certain curādi-gaṇa roots, commonly known as
mittva.

• Support for extra ātmanepada forms for various roots, such as था per rule 1.2.23.

Most differences are of this kind. They are small, incremental improvements based on sup-
porting or tweaking an existing rule. One notable gain is that we support rule 3.1.31 (आयादय
आध र्धातकेु वा), which allows a wide variety of optional forms for various roots listed in rules 3.1.28
to 3.1.30. We can support rule 3.1.31 only because our program has strong support for optional
derivations.

As time allows, we hope to also run a comparison with the Saṁsādhanī system from the
University of Hyderabad.

6.3 Performance
Performance comparisons are an inexact art. This is especially so when comparing two very
different systems. With that caveat, we describe an inexact performance comparison between
vidyut-prakriya and SanskritVerb. Specifically, we measure how long it takes each program
to generate all basic kartari-tiṅantas for a verb root.
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Setup Time per root (ms)
SanskritVerb 1400
vidyut-prakriya (re-compile after code change) 7.0
vidyut-prakriya (re-compile without code change) 3.5
vidyut-prakriya (no re-compile) 3.3
vidyut-prakriya (no re-compile, no prakriyās) 2.4

Table 3: Comparison of different setups when generating all basic kartari-tiṅantas for a verb
root. All setups were run on the same machine and timed with the time command. Re-
sults show the mean over a representative sample of roots (100 for SanskritVerb and 2200 for
vidyut-prakriya). Here, “no prakriyās” means that prakriyā logging is disabled.

All tests were run on the same machine and timed with Unix’s time command, and these
tests compare both systems as they existed around October 2023. We have not run an updated
evaluation due to time constraints, but we believe that this comparison is still informative
because the code paths being tested have not substantially changed since then.

Table 3 presents the results of this comparison under different scenarios. If using
vidyut-prakriya as a release build with no extra compilation, we see that vidyut-prakriya
is more than 400 times faster than SanskritVerb. If we disable prakriyā logging for
vidyut-prakriya, we find that it is almost 600 times faster.

The most obvious explanation for this difference is that vidyut-prakriya is written in Rust
while SanskritVerb is written in PHP, which is generally a much slower language than Rust.
In addition, SanskritVerb tends to implement rules with regular expressions, which means
that both checking whether a rule can apply and applying a rule to the derivation is relatively
costly. In comparison, vidyut-prakriya tends to perform direct comparisons on stack-allocated
strings, which is a much faster procedure.

PHP and other interpreted languages certainly have their own advantages. For example,
testing a PHP code change on a single example is much faster than doing the same in Rust,
which requires a compile step of several seconds. But if we wish to generate a large number of
words, then a compiled project like vidyut-prakriya is much more effective. This is especially
true for the millions of words we generate currently, but the same principle holds even for a few
thousand.

6.4 Bugs and errors
vidyut-prakriya has a variety of small errors that we explicitly track in our unit and regression
tests. These errors are typically limited to rare or unusual forms. Two examples, both from the
Siddhāntakaumudī :

• सषुषुपुतःु — This is the third-person dual perfect of िञवपँ शये as combined with the prefix
स.ु Currently, our program does not implement rule 8.3.88 (सिुविनदुर्य र्ः सिुपसिूतसमाः), so it
incorrectly applies षव to वप ्after िवव and derives the wrong form ससुषुपुतःु.

• सखा – This is the masculine nominative singular form of सखी as derived from सिख + यच +्
िँवप ्. Our current logic does not apply 7.1.93 (अनङ् सौ), so we instead derive the wrong form
सखीः. सखी should not be confused with the much more common सिख, whose forms we derive
correctly.

Errors like these are eminently fixable, and we can do so safely given our extensive test suite.

7 Applications
Our program’s errors are currently limited to rare forms, and these errors are decreasing over
time as our test suite expands. Given this work’s current standing and future trajectory, we
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think it is reasonable to explore some applications of its output.

7.1 As a word generator
We envision using the output of our word generator in one of two ways. Software with limited
resources can use our program as-is and generate words on demand as requested by the user.
For software with more resources, we have found that a finite state transducer (FST) is highly
effective at storing Sanskrit words in a space-efficient way. Briefly, an FST generalizes the prefix
tree and suffix tree into a single data structure, such that items that tend to share prefixes
and suffixes can be stored with less memory. In one early experiment, we found that we could
store tens of millions of Sanskrit words and their basic properties (person, number, etc.) at an
amortized cost of roughly one byte per word. For details on this data structure and the specific
Rust library we use, we refer the reader to Gallant (2015).

7.2 As a prakriyā generator
As a prakriyā generator, our program has obvious relevance to anyone who wants to understand
how the Aṣṭādhyāyī might derive a specific word form. But there are applications beyond this
narrow scope as well.

One tool we envision is an electronic grammar interface that is analogous to an electronic
dictionary. Suppose a student could enter a word into a search interface and see a rule-by-
rule grammatical breakdown of that word. With some translations of key rules, the same
interface could offer explanations to students without a grounding in traditional grammar and
thus comment on important high-level features in a user-friendly way. In doing so, such a tool
could help ameliorate one of the key problems that Sanskrit students face: understanding the
structure and function of a given word.

7.3 As a reference implementation of the Aṣṭādhyāyī
As our program progresses, we expect that others can start to use it as a reference implemen-
tation of the Aṣṭādhyāyī. By this, we mean that our program might become a baseline for new
implementations or an experimental tool for answering certain kinds of grammatical questions.
For example, someone who wishes to model conflict resolution more explicitly might adapt our
API and test suite to a new core implementation. Or, a user might examine the impact of
tweaking a rule’s position or definition by running our program against our full test suite.

Again, we stress that our program takes no perspective on anuvṛtti or conflict resolution, and
it is unclear what value our program could offer for exploring them, if any.

8 Future work

vidyut-prakriya offers several promising directions for future work.
The most promising direction is to continue implementing the rules of the Aṣṭādhyāyī and its

secondary texts, provided that those rules are relevant for generating words. Our main ambition
is to implement all such rules, including Vedic rules (i.e. marked with छदिस, म,े ऋिच, and so
on), the rest of the Uṇādipāṭha, and the Phiṭ Sutras.

Another direction is to tweak our prakriyās and rule order to better conform to the conventions
of modern grammarians. For example, our system derives बभवू by applying rule 6.1.8 (िलिट
धातोरनयासय) before the introduction of व ुँक-्आगम by rule 6.4.88 (भवुो वगु्लुिङ्लटोः), which we have
heard is unusual. Having a robust test case helps us make these kinds of changes with confidence.

A third direction is to add support for non-Pāṇinian usages like उप + आस ्+ वा → उपािसवा
(Pāṇinian उपाय),9 which commonly occur in the Itihasas.

A fourth direction is to allow more user control over our program’s execution flow. Our
program allows this already to a limited extent by allowing the user to disable certain optional

9This form is allowed by 7.1.38 (ाऽिप छदिस), but our program treats such a derivation as Vedic and does not
model that the form is also allowed in the Itihasas.
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rules. With tighter code discipline, we might be able to extend this behavior to all other rules as
well. Our most ambitious idea in this direction is to use Rust’s rich macro system to inspect our
existing rules and reorder them according to whatever criteria the user desires. Unfortunately,
we expect that supporting this functionality properly would require a near-total rewrite of our
code and its rules, which means that this direction is probably best served by an entirely new
project.

9 Conclusions
This paper has presented a new Pāṇinian word generator that we developed by focusing first on
producing a strong program. Our generator’s speed and performance support a large test suite,
which in turn permits faster progress on implementing rules. Over time, we expect to continue
increasing our program’s test coverage and improving the quality and range of its output.

Despite its limitations, we believe that vidyut-prakriya represents a major step forward for
Sanskrit word generators, and we look forward to creating a program that generates all Pāṇinian
words.
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