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Abstract

We explore threshold vocabulary trimming in
Byte-Pair Encoding subword tokenization, a
tokenization postprocessing step that replaces
rare subwords with their component subwords.
The technique is available in popular tokeniza-
tion libraries but has not been subjected to rig-
orous scientific scrutiny. While the removal
of rare subwords is suggested as best practice
in model implementations, both as a means to
reduce model size and for improving model per-
formance through robustness, our experiments
indicate that, across a large space of hyperpa-
rameter settings, vocabulary trimming fails to
consistently improve model performance, and
is even prone to incurring heavy degradation.

1 Introduction

Subword tokenization is an important process in
modern neural language modeling, as it enables
models to represent any possible word over a
known alphabet while keeping the vocabulary size
small. One of the most common subword tok-
enization methods is Byte-Pair Encoding (BPE;
Gage, 1994; Sennrich et al., 2016), a greedy, sta-
tistical subword tokenization method. BPE builds
its vocabulary and tokenizes a corpus by iteratively
replacing the most frequently co-occurring token
pair with a single, merged token. An unfortunate
side-effect of this process is the existence of “inter-
mediate” subwords—subwords that appear during
the process of forming longer subwords, but rarely
appear as output tokens in the final sequence.

Vocabulary trimming is a tokenization post-
processing step where subwords that appear fewer
than a prescribed number of times in a given corpus
are replaced with their component subwords, with
the intent of removing rare tokens for which the
model cannot learn a robust representation (Sen-
nrich et al., 2017; Sennrich and Zhang, 2019).

Let B = (VB,MB) be a BPE tokenizer trained
on corpus C with character vocabulary Σ. VB ⊂ Σ+

is the subword vocabulary and MB ⊂ VB × VB is
a set of merges such that ∀v ∈ VB \ Σ, there exists
a unique (l, r) ∈ MB such that lr = v. And, let
cv be the number of times a token v appears in the
tokenized corpus and T ≥ 0 be a threshold. Then,
XB,T = {v ∈ VB \ Σ | cv ≤ T} is the set of non-
atomic subword tokens that appear at most T times
in the tokenized corpus and decXB,T : VB → V+

B is
a recursive decomposition function:

dec
XB,T

(v) =

{
v if v /∈ XB,T
decXB,T(lv) ◦ decXB,T(rv) otherwise.

Given a B-tokenized sequence t1, t2, . . . , tn, a
trimmed BPE tokenizer produces a new sequence
decXB,T(t1), decXB,T(t2), . . . ,decXB,T(tn).

We perform a comprehensive study to under-
stand the actual effect of vocabulary trimming on
the performance of machine translation systems. In
general, we find that vocabulary trimming has no
consistent positive effect on model quality, and in
many cases can substantially degrade it.
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Vocabulary
(Bs,Bt)

Thresholds
(Ts,Tt)

BLEU COMET
Effective

Vocabulary
(B̂s, B̂t)

Sequence
Length

(6k, 6k)

Baseline 34.05 79.52 (6.1k, 6.0k) 23.30/22.12
(100, 100) −0.28 +0.06 (5.3k, 4.2k) +1.4%/+4.2%
(100, 150) −0.66 −0.90 (5.3k, 2.9k) +1.4%/+10.6%
(100, 200) −0.41 −0.45 (5.3k, 2.3k) +1.4%/+15.6%
(150, 100) −0.27 −0.96 (3.7k, 4.2k) +7.5%/+4.2%
(150, 150) −0.28 +0.03 (3.7k, 2.9k) +7.5%/+10.6%
(150, 200) −0.22 +0.11 (3.7k, 2.3k) +7.5%/+15.6%
(200, 100) −0.22 −0.02 (2.9k, 4.2k) +13.1%/+4.2%
(200, 150) −0.12 −0.04 (2.9k, 2.9k) +13.1%/+10.6%
(200, 200) −0.30 −0.05 (2.9k, 2.3k) +13.1%/+15.6%

(8k, 8k)

Baseline 33.63 79.26 (8.0k, 8.0k) 22.47/21.51
(100, 100) +0.16 +0.54 (4.8k, 3.7k) +7.3%/+9.4%
(100, 150) −0.02 +0.38 (4.8k, 2.6k) +7.3%/+16.7%
(100, 200) +0.32 +0.35 (4.8k, 2.1k) +7.3%/+22.0%
(150, 100) +0.24 +0.39 (3.3k, 3.7k) +14.7%/+9.4%
(150, 150) −0.01 +0.20 (3.3k, 2.6k) +14.7%/+16.7%
(150, 200) +0.05 +0.11 (3.3k, 2.1k) +14.7%/+22.0%
(200, 100) +0.27 +0.31 (2.6k, 3.7k) +21.3%/+9.4%
(200, 150) −0.03 +0.13 (2.6k, 2.6k) +21.3%/+16.7%
(200, 200) +0.18 +0.30 (2.6k, 2.1k) +21.3%/+22.0%

(10k, 10k)

Baseline 33.56 79.20 (10.0k, 9.9k) 21.93/21.12
(100, 100) +0.37 +0.25 (4.4k, 3.4k) +12.3%/+13.2%
(100, 150) +0.30 +0.25 (4.4k, 2.4k) +12.3%/+20.9%
(100, 200) +0.14 +0.24 (4.4k, 1.9k) +12.3%/+26.6%
(150, 100) +0.14 +0.26 (3.1k, 3.4k) +20.1%/+13.2%
(150, 150) +0.23 +0.22 (3.1k, 2.4k) +20.1%/+20.9%
(150, 200) +0.24 +0.48 (3.1k, 1.9k) +20.1%/+26.6%
(200, 100) +0.31 +0.22 (2.3k, 3.4k) +27.3%/+13.2%
(200, 150) +0.18 +0.47 (2.3k, 2.4k) +27.3%/+20.9%
(200, 200) +0.18 +0.45 (2.3k, 1.9k) +27.3%/+26.6%

Vocabulary
Bj

Thresholds
(Ts,Tt)

BLEU COMET
Effective

Vocabulary
(B̂s, B̂t)

Sequence
Length

7k

Baseline 34.02 79.52 (6.5k, 4.9k) 24.11/23.25
(100, 100) −0.02 +0.14 (4.2k, 3.7k) +1.8%/+1.1%
(100, 150) −0.15 −0.04 (4.2k, 3.3k) +1.8%/+2.6%
(100, 200) −0.54 −0.48 (4.2k, 2.7k) +1.8%/+6.1%
(150, 100) −0.26 −0.07 (3.8k, 3.7k) +3.2%/+1.1%
(150, 150) −0.19 +0.01 (3.8k, 3.3k) +3.2%/+2.6%
(150, 200) −0.45 −0.48 (3.8k, 2.7k) +3.2%/+6.1%
(200, 100) −0.09 +0.08 (3.1k, 3.7k) +6.9%/+1.1%
(200, 150) −0.09 +0.19 (3.1k, 3.3k) +6.9%/+2.6%
(200, 200) = +0.21 (3.1k, 2.7k) +6.9%/+6.1%

10k

Baseline 34.02 79.46 (8.8k, 6.6k) 22.99/22.25
(100, 100) +0.15 +0.15 (5.1k, 4.3k) +3.4%/+3.1%
(100, 150) −0.10 +0.10 (5.1k, 3.0k) +3.4%/+9.5%
(100, 200) −0.17 +0.19 (5.1k, 2.3k) +3.4%/+14.5%
(150, 100) −0.17 +0.11 (3.6k, 4.3k) +10.2%/+3.1%
(150, 150) −0.20 +0.24 (3.6k, 3.0k) +10.2%/+9.5%
(150, 200) −0.23 +0.10 (3.6k, 2.3k) +10.2%/+14.5%
(200, 100) −0.12 +0.07 (2.8k, 4.3k) +15.9%/+3.1%
(200, 150) −0.11 +0.14 (2.8k, 3.0k) +15.9%/+9.5%
(200, 200) −0.17 +0.04 (2.8k, 2.3k) +15.9%/+14.5%

14k

Baseline 33.94 79.47 (12.0k, 8.9k) 22.09/21.56
(100, 100) −0.39 −0.37 (4.6k, 3.8k) +10.4%/+8.9%
(100, 150) −0.20 −0.14 (4.6k, 2.6k) +10.4%/+16.0%
(100, 200) −0.30 −0.23 (4.6k, 2.0k) +10.4%/+21.7%
(150, 100) −0.13 +0.03 (3.1k, 3.8k) +18.7%/+8.9%
(150, 150) −0.44 −0.23 (3.1k, 2.6k) +18.7%/+16.0%
(150, 200) −0.22 +0.03 (3.1k, 2.0k) +18.7%/+21.7%
(200, 100) −0.21 +0.03 (2.4k, 3.8k) +25.5%/+8.9%
(200, 150) −0.41 −0.20 (2.4k, 2.6k) +25.5%/+16.0%
(200, 200) −0.26 +0.03 (2.4k, 2.0k) +25.5%/+21.7%

Table 1: A subset of experimental results for the split- and joint-vocabulary settings. For each BPE baseline and
its trimmed counterparts, we report BLEU (Papineni et al., 2002) and COMET (Rei et al., 2020) (relative to the
baseline), the effective vocabulary size (B̂s, B̂t), which is the size of the resulting vocabularies after trimming with
the given thresholds, and sequence length, the average tokens-per-sentence in the tokenized test corpora (and the
relative percent increase for the trimmed models). For both BLEU and COMET, the worst performing model in
each setting is double underlined and the best performing model is underlined.

2 Experiments

To determine the effect of vocabulary trimming,
we use the IWSLT14 German→English translation
task (Cettolo et al., 2014). For all experiments, we
use the same underlying transformer-iwslt
architecture from fairseq (Ott et al., 2019), and
only vary the embedding and decoding layers of
the model by changing the tokenizer’s source and
target vocabulary sizes, Bs and Bt (or Bj for the
joint-vocabulary setting), and source and target
thresholds, Ts and Tt, respectively. For the joint-
vocabulary setting, a single tokenizer was formed
by setting a vocabulary size and training the tok-
enizer on the concatenation of the source and target
corpora. This baseline tokenizer was used to form
separate source and target trimmed tokenizers.

As seen in Table 1, which contains a subset of
our experimental results, while subword trimming
reduces parameter count (by shrinking the embed-
ding and decoding layers), it does not consistently
improve performance and it causes an increase in
average tokenized sequence length. In a sweep test,
we found (6k, 6k) to be the best performing split-
vocabulary baseline and 7k and 10k to be the best
performing joint-vocabulary baselines. For each
of these configurations, trimming nearly always

decreases BLEU, sometimes dramatically.
On the other hand, (10k, 10k) was found to

be the worst performing split-vocabulary baseline.
Trimming this baseline increased BLEU, but not
enough to match the better performing baseline
models. For another baseline, (8k, 8k), trimming
did not consistently improve or degrade BLEU.

COMET shows a slight positive trend in most
settings. In all but one case, trimming with a
threshold of (100, 100) lead to an improvement
in over the baseline. Curiously, in the 10k joint-
vocabulary setting, the trimmed models all have
higher COMET scores than the baseline, while all
but one have lower BLEU scores.

We conclude that vocabulary trimming should
be done with caution, as it does not consistently
improve performance, can heavily degrade perfor-
mance, and comes at the cost of longer sequence
lengths. This conclusion is based on the results
from Table 1, as well as our much more expansive
set of experimental results not listed here, which
include many more ablation studies and a replica-
tion on the much larger Europarl English→French
dataset (Koehn, 2005).

The complete results and code to reproduce them
will be made public in our forthcoming full article.
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