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Abstract

Modularity is a paradigm of machine transla-
tion with the potential of bringing forth models
that are large at training time and small during
inference. Within this field of study, modular
approaches, and in particular attention bridges,
have been argued to improve the generalization
capabilities of models by fostering language-
independent representations. In the present pa-
per, we study whether modularity affects trans-
lation quality; as well as how well modular
architectures generalize across different eval-
uation scenarios. For a given computational
budget, we find non-modular architectures to
be always comparable or preferable to all mod-
ular designs we study.

1 Introduction

Machine Translation (MT) has historically been
under two influences that seem a prima facie con-
tradictory. One of the goals of MT research is to
provide means of converting sentences from any
language to any other. On the one hand, gener-
alization capabilities hinge on our systems pro-
ducing language agnostic representations. On the
other hand, MT models ought to be apt at encod-
ing the specifics of source languages (Belinkov
et al., 2017). The former of these trends has deeply
marked this field—the concept of an ‘interlingua’
runs through most of the history of MT research,
from Richens (1956) to Lu et al. (2018). The latter
has recently motivated the development of modular
approaches, where network parameters are specifi-
cally tied to a specific language.

How can we reconcile these two seemingly para-
doxical trends? One promising approach is the
inclusion of fully-shared subnetworks in modu-
lar architectures, and especially bridge compo-
nents: They have been argued to foster language-
independent representations (Zhu et al., 2020) as
well as zero-shot generalization capabilities (Liao
et al., 2021). Our aim is to carefully assess whether

modular architectures in general and bridges do
indeed foster greater generalization capabilities.

We therefore study six architectures, five of
which modular, with a particular focus on how they
generalize—both to unseen translation directions,
and to novel domains. We find that modular sys-
tems still struggle to remain competitive with fully-
shared MT systems in scenarios when not all trans-
lation directions are available—a conclusion that
affects systems with and without fixed-size bridges
equally. While encoder-sharing modular designs
can rival or outperform non-modular settings in
a wide range of scenarios, all other systems we
study struggle in zero-shot and out-of-distribution
conditions, strongly questioning that fully-shared
sub-networks in modular MT systems can improve
their generalization capabilities.

2 Related Work

The full span of multilingual NMT (MNMT) ar-
chitectures rely in the implicit assumption that the
systems leverage the multilingual data by creat-
ing a shared encoding space via sharing: from
fully-shared models (Johnson et al., 2017), to fully-
modular systems, where sharing occurs only at
dataset level (Escolano et al., 2021). In this work,
we assess those two extreme cases, focusing in
the modular NMT systems that incorporate some
parameter-sharing bridging layers. Lu et al. (2018)
introduced an attentional neural interlingua, which
processes language-specific encoder embeddings
to produce language-agnostic representations. Zhu
et al. (2020) proposed a language-aware interlin-
gua that transforms the encoder representation to a
shared semantic space, showcasing practical means
of fostering the semantic consistency of transla-
tions. Vázquez et al. (2019) integrated a shared
inner-attention mechanism, referred to as “atten-
tion bridge”, based on the work of Lin et al. (2017),
to generate fixed-size sentence representations. Fur-
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ther studies by Raganato et al. (2019) and Vázquez
et al. (2020), whose work we specifically build
upon, emphasized the advantages of using mul-
tiple attention heads on the semantic quality of
the translation—as well as challenges, particularly
with translating longer sentences. Boggia et al.
(2023) explored the effects of sharing encoder pa-
rameters vs. increasing the number of languages in
modular MNMT. More recently, Purason and Tät-
tar (2022) used layers shared by language groups
to enhance translation, Mao et al. (2023) proposed
a variable-length bridge that uses a classification
layer to predict its length, and in Pires et al. (2023)
the encoder is built with interspersed fully-shared
and language-specific layers.

3 Experimental Methodology

3.1 Model Variants
All the models we consider are Transformer-based
(Vaswani et al., 2017), and implemented with the
MAMMOTH library (Mickus et al., 2024).1 An
overview of the different modular architectures we
consider is displayed in Figure 1. We ensure that
all datapoints are processed by the same number of
encoder and decoder layers (6 and 6 resp.).

Non-modular baseline. To provide a reasonable
point of comparison with existing approaches, we
consider a simple non-modular architecture where
all parameters are shared across all translation di-
rections. We note these fully-shared models as F .

Fully modular baseline. A second natural point
of comparison is a modular system without bridge;
e.g. Escolano et al. (2021). Such models, noted
N below, contain one 6-layer Transformer encoder
and one 6-layer Transformer decoder per language,
which are then selected for predictions depending
on the desired language pair.

Semi-modular approaches. All other remaining
architectures we will discuss contain both language
specific and language-independent parameters. A
simple means of achieving this consist in using a
single shared encoder for all source languages (ab-
brv. E), which would allow to leverage training
signals from all source languages so as to provide
more robust encoder representations. Conversely,
one can consider employing a single shared de-
coder for al target languages (abbrv. D) in the
hopes of bolstering generation capabilities.

1Configuration files available at github.com/
Helsinki-NLP/mammoth/tree/main/examples/ab-neg/.

Bridges. We also consider models with a “bridge”
layer, i.e., where all parameters are language spe-
cific aside from the last Transformer layer in the
encoder. Such models have been explored by e.g.
Boggia et al. (2023). These models are noted T ,
and contain 5-layer language-specific Transformer
encoders, followed by a shared Transformer layer
serving as a bridge—i.e. they are N -type modular
systems where the parameters of the last layers of
each encoder are tied.

Fixed-size attention bridges. An alternative pro-
posed by Vázquez et al. (2020) consists in using
fixed-size attention bridge (FSAB) designs. FSAB
models, noted L, resemble T models except for the
fact that the fully-shared Transformer layer bridge
is replaced by the structured embedding architec-
ture proposed by Lin et al. (2017):

Y = softmax
(
WQReLU (WKX)⊤

)
·X (1)

with X the input matrix of the shared layer. Models
of the L architecture contain language-specific en-
coders comprising 5 Transformer layers, followed
by one FSAB layer shared across all languages.

3.2 Datasets
We use two MT datasets: the United Nations Par-
allel Corpus (Ziemski et al., 2016, UNPC), which
contains documents in six UN languages (Arabic,
Chinese, English, French, Russian, and Spanish);
and OPUS100 (Zhang et al., 2020), an English-
centric multilingual corpus derived from Tiede-
mann (2012) spanning 100 languages. We ig-
nore all OPUS translation directions not present in
UNPC. Since the UNPC contains over 10M paired
sentences across six languages (Arabic, English,
Spanish, French, Russian, Mandarin Chinese), we
consider the entire released data, rather than the
fully aligned sub-corpus, and hold out 10% of the
data for any evaluation and/or experiments. We
ensure that sentences are unique to a split, i.e., if a
pair of sentences (s1, s2) is present in the test split,
then any pair (s1, s3) involving either of these sen-
tence will also be assigned to the test split. Out of
these 10%, we randomly select 25k sentences per
language pairs to use as test sets. The remaining
90% examples are used for training, with 10k sen-
tences per language pairs set aside for validation.

Test splits for generalization. We assess gener-
alization capabilities in two common setups: zero-
shot translation directions and out-of-distribution
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Figure 1: Overview of considered architectures, focusing on EN setting (using English as a pivot). Layers shaded in
dark gray are shared across all languages; layers shaded in light gray are specific to a source or target language.

(OOD) examples. To evaluate out-of-distribution
performances, we simply train models on one
dataset (UNPC or OPUS) and evaluate it on the
other (resp. OPUS or UNPC). Since bridge compo-
nents are argued to be useful for unseen translation
directions (Liao et al., 2021), we experiment with
different language pivots to artificially create zero-
shot translation directions. We construct three dis-
tinct UNPC training sets: (i) one using all 30 trans-
lation directions available in the UNPC, (“All”);
(ii) one using all 10 directions involving English
as a source or target (“EN”); and (iii) one using all
10 directions involving Arabic as a source or target
(“AR”). This allows us to evaluate our models in
both English-centric and non-English-centric con-
texts as well as in a zero-shot setting.2 Hence, we
refer to EN or AR being pivot languages, when an
experiment is centered around that language.

Training conditions. To enable zero-shot trans-
lation (Vázquez et al., 2019; Artetxe and Schwenk,
2019, cf.), we train our models on auto-encoding
tasks for all 6 languages. UNPC models are trained
on monolingual data derived from the UNPC, and
likewise OPUS models are trained on OPUS mono-
lingual data. We train three seeds of all six model
variants (F , N , E , D, T , L) on the four training
sets (UNPC-All, UNPC-EN UNPC-AR, OPUS-
EN) under a strictly controlled computational bud-
get: All models are exposed to the same number
of datapoints and are trained with 6 AMD MI250X
GPUs. We use the hyperparameters of Boggia et al.
(2023) aside from batch accumulation, set to 8. We
use k = 50 in L models as Vázquez et al. (2020).

4 Results

The primary metric used for evaluating the per-
formance of our models is BLEU (Papineni et al.,
2002; Post, 2018).3 Results are shown in Table 1.

2Since OPUS100 is English-centric, only one variant of
this dataset is considered for training.

3While COMET (Rei et al., 2020) would in principle be
preferable, computing it for all translation directions in every

Choice of architecture. A clear trend emerges
from our results: Across the board, the encoder-
shared models E are found to be the most suc-
cessful, followed by the fully-shared, non-modular
models F . The latter only prevails upon the for-
mer in Arabic-centric scenario. At times, these
architectures outrank other models considered by
large margins of up to 7.5 BLEU points. While
fully modular N models or FSAB-based L models
perform well in the EN-centric scenario, these are
not overwhelmingly better than F .

Choice of pivot language. We experiment with
different pivot languages, EN and AR, to under-
stand their influence on the results. Our observa-
tions indicate that the choice of a pivot language
can significantly impact the outcomes: The results
with AR are always below the corresponding scores
with EN on translation directions studied during
training, whereas AR models yield generally higher
performance in zero-shot conditions than their EN
counterparts. Furthermore, we find tentative evi-
dence that the behavior in EN and AR differs from
that of All: In the latter case, we find a more limited
impact of the architecture being used, with score
varying at most by ±4.2 BLEU points; whereas we
observe a spread of up to ±7.3 BLEU points for the
former. As one would expect, being exposed to all
translation directions during training (All) allows
to improve performances averaged all translation
directions. If we restrict ourselves to directions a
model was exposed to during training, we find that
EN models often outperform All models; whereas
AR models are more in line with the values we see
for All. This would suggest that there is a difficulty
inherent to the translation directions considered;
focusing only on directions that involve English
may inflate performances.

Translation directions (seen vs. unseen). Ex-
panding on what we already briefly touched on,
we systematically find performances in zero-shot

model in our study is prohibitively costly.
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Translation
directions N F E D T L

te
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U

N
PC

tr
ai

n
on

U
N

PC

All (seen) 26.6± 0.5 28.2 ± 1.1 29.0± 0.2 24.8± 0.2 26.6± 0.1 26.4± 0.2

AR
all 18.1± 0.3 24.6± 1.3 23.1 ± 1.7 15.7± 1.8 16.8± 0.4 17.9± 0.1
seen 26.4± 0.1 27.1± 0.9 26.6 ± 0.7 22.0± 1.0 24.9± 0.1 26.2± 0.0
unseen 13.9± 0.3 23.4± 1.4 21.4 ± 2.3 12.5± 2.2 12.8± 0.6 13.7± 0.1

EN
all 19.3± 0.4 22.8 ± 2.9 23.9± 1.0 17.9± 0.4 19.3± 0.1 19.4± 0.1
seen 34.5± 0.2 33.1± 2.6 35.9± 0.1 31.6± 0.9 34.0± 0.2 34.6 ± 0.3
unseen 11.7± 0.6 17.6 ± 3.0 17.9± 1.4 11.0± 1.0 11.9± 0.1 11.8± 0.1

tr
ai

n
on

O
PU

S

EN
all 16.4± 0.2 20.6 ± 0.5 20.9± 0.4 13.6± 1.2 16.8± 0.2 16.3± 0.1
seen 30.8 ± 0.2 30.5± 0.5 31.1± 0.3 23.7± 1.5 30.7± 0.3 30.6± 0.3
unseen 9.1± 0.3 15.6 ± 0.5 15.8± 0.5 8.5± 1.0 9.9± 0.1 9.1± 0.1

te
st

on
O

PU
S

tr
ai

n
on

U
N

PC

All (seen) 17.6± 0.2 19.1 ± 0.8 19.7± 0.2 16.3± 0.2 17.5± 0.2 17.5± 0.3

AR
all 12.3± 0.2 16.5± 0.8 15.4 ± 1.0 10.3± 1.4 11.4± 0.2 12.1± 0.1
seen 17.7± 0.1 18.4± 0.8 17.9 ± 0.6 13.8± 1.0 16.6± 0.1 17.6± 0.1
unseen 9.2± 0.3 15.5± 0.8 13.9 ± 1.3 8.4± 1.6 8.5± 0.2 9.0± 0.1

EN
all 13.4± 0.3 15.9 ± 2.0 17.0± 0.5 12.6± 0.2 13.3± 0.1 13.5± 0.2
seen 19.7± 0.1 19.8 ± 1.4 21.0± 0.0 18.5± 0.7 19.2± 0.1 19.8 ± 0.2
unseen 8.2± 0.3 12.7 ± 2.5 13.6± 0.9 7.7± 0.7 8.4± 0.3 8.2± 0.3

tr
ai

n
on

O
PU

S

EN
all 15.0± 0.2 17.8 ± 0.3 17.9± 0.3 12.4± 1.0 15.5± 0.2 14.8± 0.1
seen 25.1± 0.2 24.6± 0.3 25.1± 0.2 19.7± 1.6 24.9± 0.2 24.9± 0.3
unseen 6.6± 0.2 12.1± 0.3 11.8 ± 0.5 6.3± 0.7 7.7± 0.2 6.4± 0.1

Table 1: Summary of performances, with best and second best values highlighted (avg. of 3 seeds ± std. dev.), and
broken down according to whether the translation direction was seen during training or not (i.e., zero shot).

conditions to remain firmly below what we observe
for translation directions observed during training.
This holds across pivot languages and architectures.
We do not observe that bridges (T or L) provide
benefits in terms of zero-shot performances over
fully modular systems (N ). instead, it would ap-
pear that sharing the encoder (E or F ) is beneficial—
although it is uncertain that this is due to greater
generalization capabilities rather than overall im-
proved performances, the improvement brought
about by E and F models is more substantiated in
zero-shot settings (with a gap of at least 4.1 BLEU
points in zero-shot settings, whereas F can be out-
performed by L and/or N for training directions).

In-distribution vs. out-of-distribution. Com-
paring performances in-distribution and out-of-
distribution does not suggest that bridges mean-
ingfully improve generalization capabilities. Per-
formances of T and L models are in line with what
we observe for the bridge-less N models.

5 Statistical modeling

SHAP analysis & predictors importance Are
our observations statistically significant? To estab-
lish which factors are at play, we rely on SHAP
(Lundberg and Lee, 2017), a library and algorithm
to derive heuristics for Shapley values (Shapley,
1953). We fit a gradient boosting decision tree

Figure 2: Overview of SHAP values, sorted by mean
absolute value. Grey: categorical predictors; red: binary
predictors where the value is true; blue, where it is false.

regression model with CatBoost (Prokhorenkova
et al., 2018) to explain the BLEU scores obtained
on specific language pairs and datasets by all the
models we trained. We use as predictors (i) the
source language (categorical); (ii) the target lan-
guage (categorical), (iii) whether the model was
trained on UNPC (binary); (iv) whether this trans-
lation direction in zero-shot (binary); (v) whether
this test corresponds to an out-of-distribution set-
ting (binary); as well as (vi–xi) which architecture
is used (binary predicates for each of N , F , E , D,
T , and L).

Figure 2 provides a general overview of the
results of this analysis. The exact evaluation
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coef std err t P> |t|
Intercept 11.8312 0.211 56.153 0.000
has bridge 4.4287 0.248 17.851 0.000
shares enc 5.3919 0.248 21.733 0.000
zero shot −7.5567 0.139 −54.277 0.000
OOD 1.9472 0.140 13.917 0.000
from EN 1.9792 0.178 11.099 0.000
from ES 2.7001 0.204 13.235 0.000
from FR 1.5625 0.182 8.578 0.000
from RU 0.5932 0.182 3.257 0.001
from ZH −2.6625 0.182 −14.617 0.000
to EN 9.1120 0.178 51.098 0.000
to ES 7.7651 0.204 38.061 0.000
to FR 4.0147 0.182 22.040 0.000
to RU 2.0937 0.182 11.494 0.000
to ZH −5.2907 0.182 −29.046 0.000
trained on UNPC 4.3278 0.125 34.705 0.000

has bridge×zero shot −4.7733 0.283 −16.876 0.000
has bridge×OOD 0.4169 0.283 1.472 0.141
shares enc×zero shot 0.3607 0.283 1.275 0.202
shares enc×OOD 0.9785 0.283 3.455 0.001

Table 2: OLS coefficients and significance. Intercept:
N -type, not OOD, not zero-shot, from & to AR.

conditions—i.e. the training and testing corpora
and the specific language pairs seen at training and
during the test at hand all, corresponding to predic-
tors (i–v)—have a strong impact on the observed
BLEU scores. We also see that using models of
type F and E more strongly and more positively im-
pacts the BLEU scores we observe than any other
model type. In short, we find that most modular
models fail to bring about results comparable with
what we see for our non-modular baseline F , with
the sole exception of encoder-sharing E .

OLS model & predictors interaction. Is there
evidence that some modular architectures (and
bridges in particular) enhance generalization ca-
pabilities? While SHAP values provide indepen-
dent coefficients for each factor, this question is
at its core one of interrelation—and is thus best
studied through models able to capture potential
interactions between predictors. To that end, we fit
a simple ordinary least squares (OLS) linear model
to predict the BLEU scores of our models using as
predictors (i) whether the architecture contains a
bridge (i.e., models of type T or L); (ii) whether
it shares the encoder across source languages (i.e.,
models of type F or E); (iii) whether the model is
tested in zero-shot; (iv) whether it is tested in an
OOD setting; (v) whether the model was trained on
UNPC; (vi & vii) the source and target languages;
(viii–xi) the interactions between modular design
(i.e., predictors i & ii) and performances in gener-

alization conditions (viz. predictors iii & iv).4

Our model achieves a R2 of 0.763. Predictor co-
efficients and significance are listed in Table 2. As
expected, modular design and training & test condi-
tions (predictors i–vii) are always significant. Zero
shot performances are linked to the strongest nega-
tive coefficient in our model; likewise, translating
from or to ZH also turns out to degrade perfor-
mance somewhat compared to the intercept (AR).
Looking at interactions, we find that models with a
bridge require a clear negative correction in zero-
shot scenarios, opposite to what has been argued
by Liao et al. (2021). Models of type F and E
require a positive correction in OOD settings, sug-
gesting they distinguish themselves further from
other modular architectures. This statistical mod-
eling suggests that bridge-based architectures sig-
nificantly decrease generalization capabilities, as
opposed to other modular (E) and non-modular (F )
designs—in contrast with much of the discourse
about their benefit for language independence and
usefulness in zero-shot conditions (Raganato et al.,
2019; Zhu et al., 2020; Vázquez et al., 2020).

6 Conclusions

In this work, we study the claim that bridge lay-
ers in modular architectures foster greater general-
ization capabilities. Given a carefully controlled
computational budget, bridge architectures never
clearly outperform bridge-less architectures, be
they modular or not. In particular, we find non-
modular architectures exhibit strong competitive-
ness, as they are only outperformed by modular
architectures with language independent encoders
and modular language-specific decoders. Addition-
ally, we note that training conditions, such as the
translation direction accessible to a model during
training, have a significant impact.

These results suggest that current modular ar-
chitectures, especially those using bridging layers,
have limited potential insofar MT is concerned.
In most cases, a default non-modular transformer
fares better or just as well than the most effective
modular system. Our study focused on modular
architectures in a small-scale, well controlled ex-
perimental protocol; we leave questions such as
whether these remarks carry on at a larger scale,
both of model parameter counts and number of
languages concerned, for future work.

4We ignore datapoints from type D models since we are
not aware of specific claims with respect to this architecture.
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