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Abstract

In recent years, the two-step approach for text
classification based on pre-training plus fine-
tuning has led to significant improvements in
classification performance. In this paper, we
study the low-budget scenario, and we ask
whether it is justified to allocate the additional
resources needed for fine-tuning complex mod-
els. To do so, we isolate the gains obtained
from pre-training from those obtained from
fine-tuning. We find out that, when the gains
from pre-training are factored out, the perfor-
mance attained by using complex transformer
models leads to marginal improvements over
simpler models. Therefore, in this scenario, uti-
lizing simpler classifiers on top of pre-trained
representations proves to be a viable alterna-
tive.

1 Introduction

In the past few years, a dominating paradigm
has emerged in text classification, primarily cen-
tered on a two-step approach: inducing pre-trained
weights, followed by task fine-tuning using a trans-
former model with supervised labeled data (Rad-
ford et al., 2018; Devlin et al., 2019). The new
approach has led to significant improvements over
previous classification strategies based on simpler
linear models trained on sparse bag-of-words fea-
ture representations.

The improvements observed in performance are
often attributed to the induced representation (Mi-
aschi and Dell’Orletta, 2020; Talmor et al., 2020;
Xia et al., 2020). It is not surprising that leveraging
contextual continuous word embeddings can lead
to improvements by mitigating the sparsity issues
of classical bag-of-words representations. At the
same time, we expect that richer transformer archi-
tectures would enhance classification performance
during fine-tuning. However, if the representation
is already strong enough, is it justified to allocate
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additional resources for fine-tuning to achieve sat-
isfactory results?

When the same architecture is shared for both
pre-training and fine-tuning (Peters et al., 2018;
Devlin et al., 2019), it becomes challenging to dis-
entangle the relative influence of the representation
and the classifier. To isolate the performance of
each component, we propose an empirical study
where we train both simple linear models and com-
plex transformer models, with and without pre-
trained representations, and test their performance
in high and low annotation budget scenarios.

We specifically focus on investigating the previ-
ous question within the context of a low annotation
budget scenario, where the availability of labeled
data for fine-tuning is limited.

Our empirical study shows that:

* In low-budget scenarios, the incorporation of
pre-trained representations results in a more
significant performance improvement com-
pared to high-budget scenarios. Moreover,
when we isolate the gains attributed to pre-
training, the performance gains of transform-
ers over simpler models become marginal,
meaning that the quality of the representations
is the most important component.

In this setting, a simple classifier on top of
a contextual representation achieves compet-
itive results compared to fine-tuning. Conse-
quently, the impact of the classifier proves to
be rather minimal, allowing us to utilize more
cost-effective alternatives.

2 Related Work

While transformer (Vaswani et al., 2017) architec-
tures are known to benefit from large amounts of
training data for optimal performance (Ezen-Can,
2020; Kirstain et al., 2022), the pre-training plus
fine-tuning approach has also shown promising re-
sults in low annotation budget scenarios (Ein-Dor
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et al., 2020; Tamkin et al., 2022; Shelmanov et al.,
2021; Zhang et al., 2022).

Fine-tuning is thought to adjust the pre-trained
representations in order to simplify the downstream
task (Zhou and Srikumar, 2022, 2021). However,
the fine-tuning step itself can be unstable (Mos-
bach et al., 2021; Zhang et al., 2021) and sensitive
to weight initialization (Dodge et al., 2020). These
issues are particularly pronounced in low-budget
scenarios (Margatina et al., 2022). To address these
challenges, researchers have explored techniques
such as parameter reduction (Han et al., 2021; He
etal., 2021; Liu et al., 2018) or modifications to the
fine-tuning procedure (Hua et al., 2021; Yang and
Ma, 2022). Other authors have explored the possi-
bility of using pre-trained representations directly
with simpler classifiers (Li et al., 2021; Dubey et al.,
2018)

The importance of representation choice has
lately received a significant amount of atten-
tion from the active learning (AL) community
(Schroder and Niekler, 2020; Zhang et al., 2017;
Ein-Dor et al., 2020; Yuan et al., 2020; Yauney and
Mimno, 2021; Margatina et al., 2022; Shelmanov
et al., 2021). Most of the research in AL attempts
to quantify what representation is best when train-
ing the initial model for active learning, which is
usually referred to as the cold start problem (Lu
and MacNamee, 2020; Zhang et al., 2022). The im-
portance of word embeddings has also been studied
in the context of highly imbalanced data scenarios
(Sahan et al., 2021; Naseem et al., 2021; Hashimoto
et al., 2016; Kholghi et al., 2016).

The main difference between our work and previ-
ous literature is that in prior studies, the fine-tuning
process involved the simultaneous updates of both
the pre-trained weights and the classifier, without
considering their relative importance. Having es-
tablished the relevance of the representation, es-
pecially in few-shot learning scenarios, we aim to
investigate whether fine-tuning complex architec-
tures in classification tasks is justified.

3 The Role of the Classifier in
Low-budget Scenarios

To conduct our study, we aim to compare the perfor-
mance of a transformer-based model and a simple
classifier, trained with and without pre-trained rep-
resentations. The main focus of our investigation
will be on scenarios with a limited annotation bud-
get, by utilizing learning curves. Each point in
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Dataset Size Prior Len. Task
IMDB 50K 50% 313 sentiment
WiTox 224K 9% 78  toxicity
S140 1.6M  50% 23  sentiment
CivCom 2M 8% 58 toxicity

Table 1: Datasets statistics with the number of samples,
target (positive) class prior, average token sequence
length, and classification task.

these curves represents a specific training size, en-
abling us to evaluate the model’s performance as
the data size increases. Additionally, we will report
performance on the full dataset for the different
models. Next, we detail the models, datasets, and
learning curves employed.

3.1 Models

We contrast two model architectures: a transformer
(BERT) and a max-entropy model (MaxEnt). Each
of the models will be trained in two settings: 1)
without pre-trained representations and 2) with pre-
trained representations.

BERT (Devlin et al., 2019): BERTBASE-uncased
model (110M parameters) using standard pre-
training (BooksCorpus plus Wikipedia) and im-
plemented using the HuggingFace Transformers
library (Wolf et al., 2020). Learning without pre-
trained representations means learning with ran-
domly initialized weights (similar to Voita and
Titov, 2020 and Zhang and Bowman, 2018). The
hyper-parameter values can be found in A.2.

MaxEnt: A standard max-entropy model trained
with [5 regularization. When training without pre-
trained representations, we used a sparse bag-of-
n-grams representation. For the models with pre-
training, we extracted static representations from
the second-to-last hidden layer (Bommasani et al.,
2020; Devlin et al., 2019) using the average of
BERT’s token embeddings (768 dimensions vec-
tors). Our preliminary experiments have shown that
such embeddings yield better performance than us-
ing BERT’s [CLS] token (similar to the ablation
studies in Devlin et al., 2019 and the observations
presented in Lu and MacNamee, 2020). The regu-
larization parameters and the optimal n-gram size
were validated via 5-fold cross-validation.

3.2 Datasets

We use four textual classification datasets with
both balanced and imbalanced label distributions,
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Figure 1: Performance of different models when learning with a limited annotation budget on various datasets.
‘w/o’ means without pre-trained representations. We also report the expected performance of a random classifier

predicting i.i.d. labels.

encompassing two significant classification tasks
(sentiment analysis and toxicity detection) across a
variety of language registers and input lengths:

IMDB (Maas et al., 2011): Movie reviews anno-
tated with sentiment labels. This is a dataset with a
balanced distribution of labels.

Wikipedia Toxicity (WiTox; Wulczyn et al.,
2017): Wikipedia discussion comments annotated
with toxicity labels. This is a dataset with a highly
imbalanced label distribution: less than 10% of the
labels correspond to toxic comments.

Sentiment140 (S140; Go et al., 2009): A bal-
anced dataset of Twitter messages annotated with
sentiment.

Civil Comments (CivCom; Borkan et al., 2019):
Opinions posted in the Civil Comments platform
annotated for toxic behavior. This dataset exhibits
a significantly skewed label distribution, with less
than 10% toxic comments.

For Wikipedia Toxicity and Civil Comments, we
have applied a pre-processing consisting of remov-
ing all markup code and non-alpha-numeric charac-
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ters except relevant punctuation. Table 1 presents
the datasets’ summary statistics.

3.3 Learning curves

For our study, we generate learning curves where
each point corresponds to a different training size
with a budget of [V samples. We create training sets
by selecting the IV random samples incrementally.
N ranges from 100 to 1000 in increments of 100.
At each step, new samples are added to the existing
selection.

For every model, some hyper-parameters need
optimization. At every point /V in the learning
curve, we create an 80/20% 5-fold cross-validation
split and validate the optimal hyper-parameters. We
then use these hyper-parameters to train a model us-
ing all the N training samples, and its performance
is evaluated on the test set.

We repeat the experiments using 5 training sets
and initializing the parameters using different ran-
dom seeds. We report the mean results. As eval-
uation metrics we use: accuracy for the balanced



ALC

Dataset Model
w/o p.r.
MaxEnt 0.75 0.84
IMDB BERT 0.50 0.87
) MaxEnt 0.32 0.50
WIToX  peRT 018 0.51
CivC MaxEnt 0.11 0.32
WEOM - BERT  0.15 0.26
MaxEnt 0.58 0.79
5140 BERT 0.53 0.79

Table 2: Model performance with a limited annotation
budget, using pre-trained representations (p.r.) and with-
out (w/o0). We report the area under the learning curve
(ALC) from 100 to 1000 examples, using accuracy for
balanced datasets and F1 (of the target class) for imbal-
anced datasets. The best model performance for each
dataset is reported in bold.

datasets (IMDB and Sentiment140) and F1 (of the
target class) for the imbalanced datasets (Wikipedia
Toxicity and Civil Comments).

In total, we performed 400 experiments for each
model: 4 datasets, with and without pre-trained rep-
resentations, 5 seeds, and 10 learning points. For
BERT, the computation of each learning point took
27 minutes on average on a single Nvidia V100
GPU, totaling 177 hours of GPU computation. A.1
contains further details about the running times.

4 Results

Figure 1 shows our main results on analyzing the
performance of models under the low-budget anno-
tation setting. To summarize the learning curve re-
sults, we also compute a single performance score
for each model: the area under the learning curve
(ALC). This provides us with a more robust met-
ric to compare the different models for a dataset!.
Table 2 shows the results obtained.

We observe that in the low-budget scenario when
pre-trained representations are used, the choice of
model seems to be of little importance. Both the
complex transformer model and a simple linear
max-entropy model perform similarly.

In addition, when only very few labels are avail-
able (first curve points in Figure 1), the simpler
model seems to outperform the more complex
one. MaxEnt demonstrates a more stable behavior

'Direct performance comparison across datasets is not
always feasible because the underlying score may vary.
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Dataset Model Performance
w/o p.r.
MaxEnt 0.89  0.89
IMDB BERT 0.53 0.93
Random 0.50 0.50
MaxEnt 0.66 0.61
WiTox BERT 048 0.68
Random 0.16 0.16
MaxEnt 0.60 0.57
CivCom BERT 0.15 0.70
Random 0.14 0.14
MaxEnt 0.81 0.86
S140 BERT 0.77 0.86
Random 0.50 0.50

Table 3: Model performance using all training data.

within this range, due to its fewer number of param-
eters. This shows that when the training set is small
there is not much to be gained from fine-tuning all
the layers of the model.

The biggest difference in performance in the low-
budget scenario comes from the representation and
not the architecture. In fact, without pre-trained rep-
resentations, the more complex models perform sig-
nificantly worse than simpler models. Pre-trained
representations seem to be capturing some proper-
ties of the input space that can be exploited by all
models. We suppose that since pre-training implic-
itly induces a distance space over words, models
using pre-trained representations generalize more
easily to unseen words. This would explain why
pre-trained representations are especially helpful
in the low-annotation budget scenario since gener-
alization to unseen words is critical in this case.

Table 3 presents the performance results ob-
tained by employing the entire training set. Within
this data-rich scenario, typically used for model
comparison, we first confirm the well-established
fact that BERT with pre-trained weights yields bet-
ter results than simpler models (Devlin et al., 2019).
Interestingly, in this context, simpler models do not
seem to obtain significant benefits from the use of
pre-trained representations. Unlike the low-budget
scenario, in this setting, fine-tuning all layers of the
model results in significant performance improve-
ments.



5 Conclusion

In this paper, we studied classifiers in a low-budget
scenario, analyzing the impact of fine-tuning on
performance by separating the benefits derived
from pre-training weights from those of architec-
tural fine-tuning.

Based on our findings, we recommend testing
simple models that incorporate pre-trained repre-
sentations before investing resources in fine-tuning
complex models. In fact, when labeled data is
scarce, the role of the representations is crucial,
and the use of pre-trained representations enhances
performance across all models, regardless of their
complexity. As a result, the choice of classifier
becomes irrelevant in this context compared to the
quality of the representations. The marginal perfor-
mance gains offered by more sophisticated architec-
tures may not justify the additional computational
resource demands.

Limitations

When studying the performance of a simple classi-
fier over pre-trained representations, we have con-
sidered BERT as the representative for transformer-
based models. A comparison with other trans-
former models, with a different number of parame-
ters and embedding representations, would make
our conclusions more general.

Our analysis is limited to binary classification
tasks. Future research should aim to extend our
study to other types of tasks to better understand
the broader implications of our findings.
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A Appendix

A.1 BERT Runtime

Table 4 shows BERT’s training plus testing running
times for the budgets considered in the learning
curves studied in this work. These experiments
were performed using a single Nvidia V100 GPU.

Budget IMDB WiTox CivCom S140

100 15:07  38:02 27:30  01:00
200 17:24  40:17 27:31 01:21
300 19:57  41:54 27:45  01:45
400 21:35  42:27 29:57  02:18
500 22:54 43:02 31:35  03:03
600 25:19 47:09 32:28  03:24
700  26:50  44:50 34:02  03:35

800 28:48  48:09 34:59 03:40 Hyper-parameter Value

900 31:02  48:40 35:45 04:01

Max. training epochs 10
1000 30:35  56:12 36:20 04:15 . _5
Learning rate 5-10
Table 4: BERT training and testing average runtime. AdamW A 0.0
AdamW [, 0.9
Table 5 displays the average speed of embedding AdamW B2 0.999
. . Attention dropout 0.1
generation, measured in samples per second. )
Hidden dropout 0.1
. Mixed Precision fpl6
Dataset LT
atase Gen. Time Seq. length (IMDB) 350
IMDB 37.48 i/s Seq. length (Wiki Toxic) 150
Sentiment140 135.42 /s Seq. length (Civil Comments) 150
Wiki Toxic 186.20 i/s Seq. length (Sentiment140) 50
Civil Comments 131.37 i/s Batch size (IMDB) 20
Batch size (Wiki Toxic) 50
Table 5: Embedding generation average speed. Batch size (Civil Comments) 50
Batch size (Sentiment140) 64

Compared to fine-tuning, embedding extraction
is a significantly more efficient operation and can Table 6: BERT hyper-parameters.
feasibly be computed on the CPU.

A.2 Experimental Details

Table 6 contains a summary of BERT hyper-
parameters used in the experiments.
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