What explains the success of cross-modal fine-tuning with ORCA?
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Abstract

ORCA (Shen et al., 2023) is a recent technique
for cross-modal fine-tuning, i.e., applying pre-
trained transformer models to modalities be-
yond their training data. The technique consists
primarily of training an embedder and fine-
tuning the embedder and model. Despite its
high performance on a variety of downstream
tasks, we do not understand precisely how each
of these components contribute to ORCA’s suc-
cess. Therefore, we run a series of ablations
and find that embedder training does not help
2D tasks at all, contrary to what the original
paper posits. In 1D tasks, some amount of em-
bedder training is necessary but more is not
better. In 4 out of 6 datasets we experiment
with, it is model fine-tuning that makes the
biggest difference. Through our ablations and
baselines, we contribute a better understanding
of the individual components of ORCA.

1 Introduction

Modern Al is based on a pipeline of pre-training
general-purpose models on vast amounts of data
and then adapting them to specific tasks. Exam-
ples across natural language processing (NLP) and
computer vision (CV) typically focus on within-
modality adaptation across, e.g., tasks or domains,
but there is also a recent line of work that looks
at leveraging pre-trained models across modali-
ties, e.g., Frozen Pretrained Transformers (FPT)
(Lu et al., 2021), ORCA (Shen et al., 2023), Om-
niPred (Song et al., 2024), Unified PDE Solver
(UPS) (Shen et al., 2024), inter alia.

ORCA is a recent example of a method for cross-
modal fine-tuning (Shen et al., 2023). It consists of
a three-phase pipeline, shown in Figure 1. First, a
pre-trained transformer model is chosen, and a cus-
tom embedder and predictor are created to support
new tasks with any input and output dimensions.
Second, a within-modality proxy dataset is chosen.
The embedder is trained to minimize the distance
between the target dataset and this proxy dataset, in
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Figure 1: The ORCA pipeline. Stage 2 involves train-
ing the task-specific embedder. Stage 3 fine-tunes the
embedder, the pre-trained encoder, and the predictor.

order to map the target dataset into the embedding
space of the model. Finally, all three components
are fine-tuned on data from the target task.
According to Shen et al. (2023), embedder train-
ing is the reason for ORCA’s success. We expand
on their ablations to better understand the contri-
butions of ORCA’s individual components, focus-
ing on ablating the second and third stages of the
pipeline. Our specific research questions are:

1. How does the choice of proxy dataset affect
performance? (§3)

2. Does doing (more) embedder training im-
prove performance? (§4)

3. What do the embedder and the pre-trained
model contribute individually? (§5)

4. How much pre-training is necessary for cross-
modal transfer? (§6)

By disentangling the contributions of embedder
training and model fine-tuning, our results provide
a more nuanced perspective on the success of cross-
modal fine-tuning with ORCA. Additionally, our
findings highlight the importance of strong base-
lines and careful ablations when making claims
about why a method works.
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Figure 2: Per-epoch fine-tuning performance (]) on 2D tasks (above) and 1D tasks (below) when the embedder is
trained with different proxy datasets or not trained at all, i.e., naive fine-tuning.

2 Experimental setup

Unless otherwise specified, we follow the ORCA
paper in using RoBERTa-base (Liu et al., 2019)
and Swin-base (Liu et al., 2021) as the pre-trained
transformers, a convolutional architecture for the
embedder, and a linear transformation for the pre-
dictor (see Appendix C for details). We also use
optimal transport dataset distance (OTDD; Alvarez-
Melis and Fusi, 2020) as the loss function during
embedder training. All our experiments use their
publicly available code.! For training, we use the
same hyperparameters as they do, except for the
batch size when training on Satellite (64) and ECG
(32) data. We evaluate on six target datasets that
appear in the original paper, chosen to represent all
pairs of dimensions and types, and we experiment
with various proxy datasets. Dataset details are
shown in Appendix B.

Target datasets. We select three 2D datasets (Ni-
naPro, CIFAR-100, and Darcy Flow) and three 1D
datasets (Satellite, DeepSEA, and ECG) from the
NAS-Bench-360 benchmark (Tu et al., 2022). 2D
and 1D refer to the input being either a matrix (2
dimensions) or a sequence (1 dimension).

Proxy datasets. The original paper uses CIFAR-
10 (Krizhevsky, 2009) as the proxy dataset for all
2D tasks, and CoNLL 2003 (Tjong Kim Sang and
De Meulder, 2003) for all 1D tasks. We experiment
with additional proxy datasets to analyze their in-

Thttps://github.com/sjunhongshen/ORCA/

fluence on overall performance.

For the 2D tasks, we compare to two other image
datasets that maintain the same number of classes:
MNIST (Deng, 2012), a different image dataset,
and Fakedata®, a dataset of randomly classified
white noise images (Paszke et al., 2019). For the 1D
tasks, we compare to a custom-created fake dataset
classifying randomly generated language feature
vectors into the same number of classes as CoNLL.

3 How does the choice of proxy dataset
affect performance?

In this section, we experiment with the choice of
proxy dataset for the tasks. As a baseline, we com-
pare to just fine-tuning the embedder, model and
predictor, without training the embedder first.

As Figure 2 shows, all fine-tuning curves for the
2D datasets (first row) overlap, indicating that the
choice of proxy dataset is not important. Even fake
data as a proxy dataset results in the same perfor-
mance. Similarly, for the 1D tasks (second row),
there is no real difference between using CoNLL
and fake embeddings. Together, this shows that the
choice of proxy dataset for embedder training
does not matter for ORCA to work.

Comparing to a naive fine-tuning baseline allows
us to evaluate the claim that “ORCA consistently
outperforms naive fine-tuning” (Shen et al., 2023).
We find that embedder training does play a role
in the 1D tasks, but does not matter for 2D tasks,
even in the early stages of fine-tuning.

2From torchvision.datasets.
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Figure 3: Per-epoch embedder training comparing OTDD ({.) (metric minimized during this stage) to downstream
task performance (J).

4 (More) embedder training is not the original setup, regardless of embedder training.
secret to ORCA'’s success This indicates that these datasets are not simple
enough to be solved by training a simple predictor.
In row 2, we freeze only the pre-trained model,
but fine-tune the embedder and the predictor. These
frozen versions also perform much worse than the
original setup, indicating that fine-tuning the pre-
trained model is a critical component of ORCA,
regardless of dataset and embedder training.
Finally, in row 3, we only freeze the embedder,
allowing the fine-tuning stage to affect both the
model and the predictor. As we already saw in Fig-
ure 2, training the embedder is important across all
three datasets. However, once this training is done,
even if it is frozen, adapting the pre-trained model
is sufficient for good task performance. This shows
As this section and the previous one show that (Lt while training the embedder is important

embedder training does not affect final performance  for ORCA’s success on these datasets, it need
on the 2D tasks, we focus on the 1D tasks for our ot be fine-tuned beyond that.

remaining experiments.

The previous results motivate us to more closely
examine the role of embedder training in ORCA. In
this stage, the OTDD metric is used to quantify the
distance between the proxy and target embeddings.
The authors minimize OTDD, claiming that “as the
dataset distance decreases, the fine-tuning accuracy
increases” (Shen et al., 2023).

However, when we examine the relationship be-
tween OTDD and downstream task performance,
we find that embedder training is unnecessary
in two out of six tasks (Figures 3a and 3c). For
the remaining four tasks, training the embedder
more can even lead to worse task performance.

6 Pre-training is not always necessary
S Which components of ORCA are really
necessary? Our previous results show that fine-tuning the

model is necessary for good downstream task per-

To better understand how the fine-tuning phase af-  formance, but they do not show whether using pre-
fects the multiple components of ORCA, we exper-  trained models is necessary for this. To answer this
iment with freezing different parts of the pipeline:  question, we use ROBERTa models pre-trained on
the embedder, the pre-trained model, or both. We  different amounts of English data. Specifically,
compare our results with the original setup. we compare the original RoBERTa-base model
Row 1 of Figure 4 shows the results of freezing  to a randomly initialized model with no training
both the embedder and the pre-trained model, and  data, along with three variants trained on less
only fine-tuning the predictor. Across all datasets,  data (Warstadt et al., 2020), shown in Appendix F.
the frozen versions perform much worse than the Figure 5 shows that performance varies widely
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Figure 4: Performance (}) when freezing both the embedder and model (top row), just the model (middle row) or
just the embedder (bottom row), before full fine-tuning. We also evaluate the impact of training (purple squares)
vs. not training (green triangles) the embedder before freezing. All ablations are compared to the original ORCA

approach without freezing (blue circles).
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Figure 5: Effect of different amounts of pre-training data on downstream performance ({).

depending on the dataset. For Satellite, all models
perform the same, showing that the task is sim-
ple enough to be solved even without pre-training.
With DeepSEA and ECG, on the other hand, pre-
training data on the scale of 30B tokens results in
clearly better performance. These results highlight
the importance of comparing to a no pre-training
baseline, for ORCA—and indeed all cross-modal
fine-tuning work—to ensure that pre-training is ac-
tually necessary for the success of the method.

Until the 30B data scale, however, DeepSEA
performance remains within the variance of simply
fine-tuning a randomly-initialized model, whereas
ECG does benefit from even a small amount of
pre-training. This shows that even for non-trivial
tasks, the amount of pre-training has a notice-
able effect only at certain scales.
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7 Conclusion

We perform a series of ablations to investigate how
the different components of ORCA, a recently-
proposed method for cross-modal fine-tuning, af-
fect its performance. Contrary to the original re-
sults, we find that embedder training does not help
2D tasks at all, compared to just fine-tuning with-
out training the embeddder. In 1D tasks, some
amount of embedder training is necessary, but un-
like the claim in the original paper, more embedder
training can even hurt performance on the target
task. When we freeze various components of the
ORCA pipeline, we find that fine-tuning the model
is crucial for good task performance. Finally, we
find that for one of the 1D tasks, using a pre-trained
model is actually not necessary, indicating the im-
portance of no pre-training baselines in evaluations
of cross-modal transfer.
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A Limitations

Choice of datasets. We only experiment with
three 2D datasets and three 1D datasets, and we
do not consider the experiments from the original
paper on tabular data, where our findings may not
hold. Additionally, due to the widely varying pat-
terns we find in our results, we believe that this
is not sufficient for our findings to generalize be-
yond these specific datasets to the modalities that
they represent. This points to a limitation of cross-
modal fine-tuning work in general, which would
benefit from a larger set of datasets, and in partic-
ular, more challenging tasks, as we find that the
Satellite dataset is very simple.

Choice of pre-trained models. Our experiments
focus on 1D tasks, for which we only experi-
ment with encoder-only architectures (specifically
RoBERTa-type models) even though other encoder-
only models and even other architectures (e.g.,
encoder-decoder and decoder-only models) could
also be used. We caution against claims about
generalization of our results for these tasks to pre-
trained models beyond just RoOBERTa.

Ablating stage one. Our experiments focus on
stages two and three of the ORCA pipeline, but
stage one, i.e., the creation of the task-specific em-
bedder and predictor, is not something we vary. In
Shen et al. (2023) and in our work, the task-specific
embedder consists of a convolutional layer, a layer
norm, and a positional embedding, and the predic-
tor consists of a linear projection. It would be inter-
esting to test a much simpler method of converting
dimensions in the embedder than a convolutional
architecture, e.g., a linear projection, which we
leave to future work.

Evaluating what is being transferred. In Sec-
tion 5, we show that pre-training is necessary for
some cross-modal transfer, but we still do not know
exactly what is being transferred. The cross-modal
transfer literature posits that pre-trained knowledge
is somehow exploited in downstream tasks, but
since we do not know how to quantify “knowledge”
in this setting, we cannot make this claim. It is
just as plausible that models pre-trained on tokens
beyond a certain scale find better, more general
solutions that are a good initialization for adapting
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to a new task. One way to further probe the trans-
fer hypothesis would be by limiting the number
of parameters that are allowed to change during
fine-tuning, e.g., by using parameter-efficient fine-
tuning with LoRA. We leave an exploration of this
to future work.

B Dataset details

Table 1 shows the target and original proxy datasets
considered, along with their dimension, type,
number of classes, and the metric used to measure
target task performance. The tasks are classified
into two types, taking into account whether the
task’s output is a singular prediction (point) or
multiple predictions (dense). The target datasets
are described in more detail below.

Figure 6: CIFAR-100 examples.

CIFAR-100: Standard Image Classification.
(Alex, 2009) The dataset consists of 32x32 color
images divided into 100 classes, based on the
object represented by the image. Some examples
can be seen in Figure 6.

Darcy Flow: Solving Partial Differential
Equations (PDEs). (Li et al., 2020) The only
regression task considered. Although, for the train-
ing stages, the dataset is divided into a total of 10
inferred classes. The dataset consists of 2D grids
specifying the initial conditions of a fluid, as an
output the same 2D grid on a later time is predicted.

DeepSEA: Predicting Functional Effects From
Genetic Sequences. (Feingold et al., 2004) The
dataset consists of a collection of genomic profiles
to estimate the behavior of chromatin proteins,



Dim. Target dataset Type Metric # classes Proxy dataset # classes
NinaPro Point 0-1 error ({.) 18

2D CIFAR-100 Point 0-1 error ({) 100 CIFAR-10 10
Darcy Flow Dense relative Iy ({) 10
Satellite Point 0-1 error ({.) 24

1D DeepSEA Point (multi-label) 1- AUROC (}) 36 CoNLL-2003% 7
ECG Point 1-F1() 4

Table 1: Target datasets of each type along with the proxy datasets used for them in ORCA (Shen et al., 2023)

Figure 7: Example from the Darcy Flow dataset.

classifying it into 36 classes.

ECG: Detecting Heart Disease. (Clifford et al.,
2017) The dataset is formed by recordings of up to
a minute of Electrocardiograms classified into four
classes: normal, disease, other, or noisy rhythms.
Figure 8 shows an example of each of the classes.

NinaPro: Classifying Electromyography Sig-
nals. (Atzori et al., 2012) A subset of NinaPro
BDS is taken, to classify the electromyography
(sEMG) signals of a collection of hand movements
in 18 classes. Some examples of the movements
can be seen in Figure 9.

Satellite: Satellite Image Time Series Analysis.
(Petitjean et al., 2012) The dataset consists of satel-
lite image time series (SITS), tracking the land
changes over the years, classifying them into 24
land cover types.

3We were unable to replicate the exact workflow to create
the language features passed to the model, so we used the ones
provided in the original ORCA GitHub.
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Figure 8: Examples of ECG recordings of the 4 different
classes

C Embedder and predictor details

As described in Figure 1, in the first stage of the
ORCA workflow (Shen et al., 2023), a task-specific
embedder and predictor are created to support any
combination of input-output dimensions. Through-
out all our experiments, we kept the same archi-
tectures used in the original paper, which we will
explain in this section.

Task-specific Embedding Network The archi-
tecture is composed of a convolutional layer with
an input channel of the target dataset and an output
channel of the dimension of the pre-trained model
embedding space. The kernel size and stride can
be treated as a hyperparameter, but in all our exper-
iments for the 2D tasks both are set to four and, for
the 1D tasks, are computed based on the input and
target sequence length. After this, a layer norm and
a positional embedder are added to obtain the final
representation.

Task-specific Predictor Given the diversity of
the tasks considered, two different architectures are
implemented depending on the target task type. For



Algorithm 1 Efficient approximation of OTDD using class-wise subsampling from (Shen et al., 2023)

Input: target dataset {z¢, y'}, number of target classes K, source dataset S = {z*,y*}, subsample size

b, subsample round R
for each class i € [K!] in the target dataset do

number of target data in class i

Compute class weight w; =

total number of target data

Generate data loader D; consisting of data in class 7

end for
for i € [K'] do
for r € [R] do

Subsample b target data points D;, uniformly at random from D;
Compute class-wise distance d;; = OTDD(D;;, S)

end for

Approximate class-wise OTDD by d; = % SR dir

end for
P
Approximate OTDD by d = "K', w;d;

Figure 9: Samples of movements in NinaPro BD5 (Shen
et al., 2019), the dataset contains the electromyography
signals of the movements.

the point tasks, average pooling along the sequence
length dimension is applied, to obtain 1D tensors
with the same length as the dimension of the pre-
trained model embedding space. Then to map to
the number of classes of the target dataset, a linear
layer is used. For dense tasks, a linear layer is
applied to the sequence outputs to adjust the tensor
shape. Then, this tensor is molded to the desired
output dimension.

D OTDD approximation implementation

Following the original ORCA implementation
(Shen et al., 2023), we also used an approxima-
tion of OTDD using class-wise subsampling, as
described in Algorithm 1.

As described in the original paper, to tackle po-
tential memory issues when computing OTDD, the
dimensionality of the feature vectors is reduced
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Figure 10: Example of Satellite (Petitjean et al., 2012)

by taking the average along the sequence length
dimension. On top of that, the target dataset is
divided into subsets based on the labels, each of
these subsets will be approximated with the aver-
age of batch samples (the number of maximum
samples taken from each class is determined for
every dataset). Then the OTDD between each class
representative and a sample of the proxy dataset
(5000 samples for CIFAR-10 and 2000 for CONLL
2003) is computed. Finally, the overall OTDD is
approximated by the weighted sum of the OTDD
of all the classes in the task dataset.

E Experimental Details

We run our experiments using a single 80GB
NVIDIA A100 GPU. As in the original paper (Shen
et al., 2023), we implemented the base models us-
ing the Huggingface Transformers library (Wolf
et al., 2020).



F Details on pre-trained RoOBERTa
models

Table 2 provides information about the amount
of training data seen by the different RoOBERTa
variants released by Warstadt et al. (2020).

Model Training data

roberta-base ~30B
roberta-base-1B-2 1B
roberta-base-100M-3  100M
roberta-base-10M-3 10M
roberta-base-random 0

Table 2: Models for pre-trained knowledge comparison,
and their training data in number of tokens.
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