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Abstract

Deploying large language models (LLMs) en-
counters challenges due to intensive compu-
tational and memory requirements. Our re-
search examines vocabulary trimming (VT) in-
spired by restricting embedding entries to the
language of interest to bolster time and memory
efficiency. While such modifications have been
proven effective in tasks like machine transla-
tion, tailoring them to LLMs demands specific
modifications given the diverse nature of LLM
applications. We apply two language heuris-
tics to trim the full vocabulary—Unicode-based
script filtering and corpus-based selection—to
different LLM families and sizes. The meth-
ods are straightforward, interpretable, and easy
to implement. It is found that VT reduces the
memory usage of small models by nearly 50%
and has an upper bound of 25% improvement
in generation speed. Yet, we reveal the lim-
itations of these methods in that they do not
perform consistently well for each language
with diminishing returns in larger models.

1 Introduction

Large language models (LLMs) are gaining increas-
ing attention given their strong performance (Rad-
ford et al., 2019; Brown et al., 2020; Scao et al.,
2022; Touvron et al., 2023). LLMs, especially
multilingual ones, hold vocabulary items for many
languages and scripts, which entail a costly matrix
multiplication H × |V | in the output layer, where
H is the hidden size and |V | is the size of a vocabu-
lary V . This expensive operation leads to increased
costs of both memory and time given the autore-
gressive nature of LLM decoding. Given their sub-
stantial size, this latency in inference significantly
escalates the expense of LLM deployment.

In practice, creating a sub-vocabulary V ′ with
|V ′| ≪ |V | and only loading its corresponding
embedding entries for inference seems favourable
since most logits from the output layer do not
affect the hypothesis token(s) at each time step.

Vocabulary trimming (VT) has been actively ex-
plored in machine translation (often called short-
listing, Schwenk et al., 2007; Le et al., 2012; De-
vlin et al., 2014)—it computes token-level align-
ments and makes potential target tokens a sub-
vocabulary. While anticipating certain limitations
such as domain mismatch (Bogoychev and Chen,
2021; Domhan et al., 2022), vocabulary shortlist-
ing in LLMs poses a fundamental challenge: often
LLM outputs are variable and open-ended, compli-
cating the determination of the required lexicons.
Recent attempts at multilingual pre-trained models
select tokens in a task’s language (Abdaoui et al.,
2020; Ushio et al., 2023). Nonetheless, research
in this direction is still limited, especially in speed
considerations.

We follow the idea of fitting vocabulary to the
language of the downstream task. Specifically, We
examine two strategies: Unicode-based filtering
where vocabulary items are removed if they do not
belong to the task language, and corpus-based se-
lection where we record vocabulary hits from a
large representative corpus. After experimenting
with LLMs from two families of different sizes,
we identify a good upper bound of memory re-
duction with several limitations and outlooks: 1)
Unicode-based script filtering maintains quality for
Latin-based languages but harms languages requir-
ing code-mixing. 2) Corpus-based selection leads
to fewer alterations but is less effective in reduc-
ing the embedding size. 3) Embeddings are pro-
portionally smaller in larger models (with smaller
vocabularies). Yet we argue that VT can be ap-
plied orthogonally to other efficiency methods like
efficient attention, quantization, etc.

2 Language-Based Vocabulary Trimming

We explore two ways to prepare sub-vocabulary
for LLMs, focusing on only retaining tokens rel-
evant to the language being generated. We test
a batched setting on the fly: we determine a sub-
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vocabulary for an entire batch because creating
the sub-vocabulary separately for each input is too
expensive in practice. Furthermore, we always in-
clude all tokens appearing in the inputs.

Script-based filtering This is done by filtering
token strings that fall out of a language’s Unicode
range—keeping tokens in the writing script of that
language. It should be especially effective for lan-
guages operating on unique scripts, such as Arme-
nian, Chinese, Korean, etc since it allows for con-
cise vocabulary restriction. This method might be
less practical if a writing system is shared among
multiple languages (e.g. Cyrillic or Latin alpha-
bets), because it would be infeasible to limit the
lexicons to those solely belong to a specific lan-
guage, resulting in a relatively large sub-vocabulary.
Moreover, this method would strictly rule out code-
mixed texts, emojis, etc, which are used in real-
world communications.

Corpus-based selection Another way is to to-
kenize a representative corpus in the desired lan-
guage in advance and use the vocabulary entries
that have been recorded to build a sub-vocabulary.
This method is non-exhaustive because we could
miss rare but valid tokens or suffer from domain
mismatch between the vocabulary selection corpus
and the downstream tasks at inference time.

3 Experimental Setup

Languages and test sets We experimented on
four languages: Bulgarian, Chinese, English, and
Spanish, to offer distinct conditions that cover
different degrees of writing script overlap, code-
mixing, etc, with details in Appendix A. We sam-
ple 50 prompt questions from OpenAssistant (Köpf
et al., 2023) which are then human-translated into
test languages. We decode them with beam size 1.

Metrics We consider efficiency-quality trade-
offs. In terms of speed, we report end-to-end time
to decode the entire test, including model loading
and embedding slicing. As a quality indicator, we
count the chances a model fails to produce the ex-
act same output (miss) with a full vocabulary and
with VT. In addition, we report the BLEU and chrF
of the VT output w.r.t. to the original output with
the full vocabulary (not the reference). Note that
there is no gold reference due to the open domain
nature; we hence prefix the two string metrics with
an “o-”.

Large language models We experiment with
instruction-tuned LLMs based on BLOOM at var-
ious sizes (Scao et al., 2022) as well as LLaMA-
7B (Touvron et al., 2023). We adopt Chen et al.
(2024)’s models fine-tuned on machine translations
of the Alpaca dataset (Taori et al., 2023) to test
for open domain question answering, which maxi-
mizes the difficulty for VT as explained earlier.

BLOOM is multilingual and explicitly supports
English, Spanish, and Chinese, but not Bulgarian.
Consequently, it has a sizeable vocabulary of 250K
and is therefore a prime and tempting candidate to
reduce vocabulary for a specific language during
inference. We experiment with the 560M, 1B7, and
7B1 checkpoints, with diminishing computational
burden on the embedding and output layers.

LLaMA is an English-centric LLM with a small
32K vocabulary. We might have reduced benefit
from VT because a proportionally lower amount
of computation occurs in the output layer. On the
other hand, since the LLM is European language-
focused, we expect drastic vocabulary reductions
compared to BLOOM for Bulgarian and Chinese.

Vocabulary trimming details We tokenize the
test prompts and always include input tokens in
the sub-vocabulary. We then apply either of the
proposed selection methods. Script-based filtering
checks whether a vocabulary entry belongs to a
Unicode subset: Cyrillic for Bulgarian, ASCII for
English, Latin Extended-A for Spanish, and Chi-
nese characters for Chinese. Whereas for corpus-
based selection, we tokenize a subset of WikiMa-
trix (Schwenk et al., 2021) containing Wikipedia
texts for each language and record vocabulary hits.

For both selection methods, we keep the first
300 vocabulary entries of each LLM too, as those
usually correspond to special tokens, Unicode bytes
(for byte-level BPE), numbers, etc. We compute
the sub-vocabulary offline and we do not record
the time spent on pre-tokenizing a large corpus or
extracting a Unicode subset in the measurements,
as once done, these can be reused for every batch
during inference. Script-based filtering takes under
60 seconds and corpus-based selection takes up
to 10 minutes. Adding the inputs’ tokens to the
sub-vocabulary takes negligible time.

Hardware We conduct experiments both on CPU
and GPU devices. For the CPU tests, we use Xeon
Gold 6248 (40 Cores, 80 Threads), and for GPU
tests, we use a single Nvidia RTX 3090. CPU in-
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Language |V |
BLOOM-560M BLOOM-1B7 BLOOM-7B1

time miss o-BLEU o-chrF time miss o-BLEU o-chrF time miss o-BLEU o-chrF

bg full 250680 05:26 – 15:18 – 65:01 –
Unicode 22912 04:39 1 99.04 99.73 13:44 4 91.67 96.36 51:46 10 83.42 87.03
corpus 58642 04:49 0 09:34 1 99.49 99.85 60:28 3 91.68 95.84
oracle 1408 04:22 0 12:31 0 61:06 0

en full 250680 07:37 – 16:35 – 55:08 –
Unicode 186752 07:40 1 98.21 98.68 16:05 0 58:18 0
corpus 113024 07:00 1 99.22 99.45 15:08 3 96.59 98.88 54:20 2 98.91 99.40
oracle 4736 06:14 0 13:06 0 48:46 0

es full 250680 05:58 – 12:26 – 63.15 –
Unicode 187008 05:48 0 12:01 0 59:15 0
corpus 112128 05:37 0 11:34 4 95.91 97.71 57:41 4 94.46 96.25
oracle 4736 04:53 0 09:26 0 51:43 0

zh full 250680 06:29 – 15:27 – 55:09 –
Unicode 51584 05:54 16 53.32 70.38 13:09 21 47.66 63.66 50:50 22 47.76 63.60
corpus 104320 06:08 11 66.17 78.44 14:08 16 63.26 73.99 46:39 17 62.37 76.55
oracle 4096 05:16 0 12:07 0 50:50 0

Table 1: CPU VT results for the BLOOM family.

Language |V |
LLaMA-7B

time miss o-BLEU o-chrF

bg full 32000 117:15 –
Unicode 4736 125:55 19 74.13 81.51
corpus 26496 132:24 5 97.75 98.44
oracle 2048 123:06 0

en full 32000 113:52 –
Unicode 27520 125:57 6 79.43 88.91
corpus 30720 111:30 19 93.07 97.14
oracle 4480 119:32 0

es full 32000 131:03 –
Unicode 27648 128:00 8 89.60 91.62
corpus 30336 129:26 2 97.08 99.15
oracle 3456 123:25 0

zh full 32000 130:42 –
Unicode 2688 114:39 13 75.43 83.36
corpus 28160 119:58 2 95.47 97.80
oracle 1536 126:16 0

Table 2: CPU VT results for LLaMA-7B.

ference is performed in float32 precision, whereas
GPU inference is in int8 (Dettmers et al., 2022).

4 CPU Results and Discussions

Upper bound performance First of all, we con-
duct an oracle vocabulary selection experiment to
find the theoretical upper bound for speed and mem-
ory improvements: we run inference using the full
vocabulary and we add the used vocabulary items
to a oracle sub-vocabulary.

BLOOM versus LLaMA We present CPU re-
sults for the BLOOM family in Table 1 and those
for LLaMA-7B in Table 2. We observe around 20%

time improvements with the smaller BLOOM at
560M and 1B7, but only 5–10% in the 7B models.
As the model grows in size, the oracle upper bound
sees decreasing gains, due to the proportion of the
embedding matrices becoming smaller in a larger
model. By comparing BLOOM-7B1 with LLaMA-
7B, we also find that the larger the base vocabulary,
the more effective VT is. The oracle vocabulary is
more than an order of magnitude smaller than our
VT approaches, but in practice, it would be difficult
to reduce the vocabulary size by as much.

Speed numbers of LLaMA-7B on CPU are rel-
atively inconsistent and had wide variance across
test runs. We attribute this to the small vocabulary
size and thus less computational footprint in the out-
put layer affected by VT. Also, there could be vari-
ous scheduling issues and non-deterministic cache
accesses as GEMM operations are split across the
40 cores of the CPU.

4.1 Script-based vocabulary trimming

When applying script-based filtering, we observe
different trends in English and Spanish compared
to Bulgarian and Chinese. For BLOOM, the sub-
vocabulary size for Bulgarian and Chinese can be
reduced to 10–20%, whereas for English and Span-
ish, it remains at 60%. This is potentially because
BLOOM allocated more vocabulary items for Euro-
pean languages which are the dominant ones when
the tokenizer is trained. Generally, the inference
time reduces to between full and oracle vocabulary.
In terms of misses, the model can maintain almost
the same outputs with and without VT for English
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and Spanish. However, there are 10–20% misses
for Bulgarian and 30–40% for Chinese.

LLaMA-7B results are less favourable: script-
based filtering does not significantly reduce the vo-
cabulary size for English and Spanish, and all lan-
guages suffer from relatively high misses between
10–40%. Specifically for Bulgarian and Chinese,
we argue that Unicode filtering could be too harsh
as sometimes English characters are code-mixed in
the language and cannot be avoided, e.g., when gen-
erating a website link. Therefore, we conclude that
VT based on the writing script can improve infer-
ence efficiency without degrading performance for
a multilingual LLM to generate Latin languages,
but it is less feasible for non-Latin languages or
English-centric LLMs with a smaller vocabulary.

4.2 Corpus-based vocabulary trimming
Corpus-based selection leaves a much larger vocab-
ulary for Bulgarian and Chinese but reduces the
vocabulary to half or less for English and Span-
ish. This method produces a more balanced sub-
vocabulary for each language likely due to the in-
clusion of tokens outside of the desired language.
However, for LLaMA-7B which has a small vocab-
ulary in the first place, this approach keeps most of
the entries for all languages and is thus not useful.

The corpus-based selection also ameliorates the
quality problem to some extent by allowing for
code-mixing (usually English), although the Chi-
nese VT models still struggle to produce identical
output as the full vocabulary models. Overall, we
see a small but consistent reduction in runtime with
BLOOM for this VT approach, indicating its prac-
ticality at least for English.

4.3 Memory
Besides speed considerations, VT can lead to ample
memory footprint reduction, especially for smaller
models like BLOOM-560M, where the model size
is dominated by the vocabulary (nearly 50% of all
model parameters). In practice, these models are
small enough to fit in modern GPUs and CPUs, so
the reduced memory is not game-changing. On
the other hand, when looking at bigger models like
BLOOM-7B1 or LLaMA-7B, vocabulary makes up
just a tiny portion of the overall number of param-
eters and thus the relative reduction in model size
is modest and could not enable the use of smaller
GPUs. We can view this as a proxy judgement
about the computational distribution of the model:
The larger the model, the less time is spent in the

output layer, and thus the smaller the impact of VT
is. Exact memory numbers are available in Table 3.

Language
BLOOM LLaMA

|V | 560M 1B7 7B1 |V | 7B

Full model 250680 2.10 6.10 27.10 32000 27.10

Embedding matrix or output layer
full vocab 250680 0.90 1.90 3.80 32000 0.50

bg Unicode 22912 0.09 0.18 0.36 4736 0.07
bg corpus 58642 0.22 0.45 0.90 26496 0.41
en Unicode 186752 0.70 1.40 2.80 27520 0.43
en corpus 113024 0.44 0.88 1.70 30720 0.48
es Unicode 187008 0.70 1.40 2.80 27648 0.43
es corpus 112128 0.43 0.86 1.70 30336 0.47
zh Unicode 51584 0.20 0.40 0.80 2688 0.04
zh corpus 104320 0.40 0.80 1.60 28160 0.44

Table 3: Theoretical memory footprint (in GB) for
BLOOM and LLaMA with float32 featuring the em-
bedding matrix.

5 GPU results

In addition to CPU tests, we performed the same
BLOOM experiments on a GPU and observed that
all three selection criteria including the oracle do
not lead to improved inference speed. Small perfor-
mance differences might amount to little more than
noise when the overhead of model slicing is con-
sidered. We hypothesize that GPUs are designed
for multiplying large matrices, so reducing the ma-
trix size, even to the extremity of an oracle sub-
vocabulary, is not able to offer any speedup. This is
consistent with Bogoychev et al. (2020)’s findings
in applying shortlists to neural machine translation
on GPUs. We list GPU results for BLOOM in
Appendix B Table 4.

6 Conclusion

We presented a study of two straightforward
language-inspired vocabulary trimming methods
to speed up inference and save memory for large
language model deployment. Experiments reveal
ups and downs. While we can achieve speed im-
provements, it does not guarantee that the output is
not altered compared to full vocabulary generation.
With the models tested, we see the feasibility of
our proposed approaches for English and Spanish,
but there are shortcomings when considering lan-
guages written in non-Latin script and requiring
code-mixing. In terms of efficiency, the reduction
in inference time is less pronounced compared with
memory saving.
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Ethical Considerations

Our study aimed solely at reducing the computa-
tional resource consumption for deploying large
language models. Our analysis contributes to the
understanding of language heuristics in trimming
an LLM vocabulary. While there is minimal risk
associated with generating harmful content, it is
no different for other research on large language
models. We believe research into this direction has
a positive impact in terms of energy saving and
service deployment.
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A Languages

We experimented with Bulgarian, Chinese, En-
glish, and Spanish, to cover different conditions
and use cases regarding writing scripts and text
usage. English and Spanish use the same script
and have a high overlap in vocabulary with many
other languages after tokenization. Since LLMs
are English-centric, we examine how effective of
a sub-vocabulary we can find when it is not pos-
sible to shortlist merely based on the script. Bul-
garian is a low-resource language written in the
Cyrillic script. Most multilingual language mod-
els have lower amounts of Cyrillic tokens, so we
expect that script-based filtering will leave a small
sub-vocabulary; however, since Cyrillic is used by
other languages, we will inevitably end up with
vocabulary items that do not belong to Bulgarian.
Finally, Chinese is a high-resource language with a
unique script; Unicode filtering would be the most
effective in this case.

B GPU Performance

We provide GPU performance numbers in Table 4.
Unfortunately, neither of the language-based vo-
cabulary trimming methods can improve time effi-
ciency.

Language |V |
BLOOM
-560M

BLOOM
-1B7

BLOOM
-7B1

time miss time miss time miss

bg full 250680 05:22 – 08:29 – 14:43 –
Unicode 22912 05:23 0 08:45 6 14:35 17
corpus 58642 05:22 0 08:38 1 14:33 10
oracle 1408 05:21 0 09:06 0 14:33 0

en full 250680 06:50 – 09:02 – 11:54 –
Unicode 186752 06:54 0 08:52 0 11:46 0
corpus 113024 06:38 2 08:56 3 11:59 3
oracle 4736 06:43 0 09:00 0 11:52 0

es full 250680 06:17 – 07:05 – 12:35 –
Unicode 187008 06:13 0 07:03 0 12:17 0
corpus 112128 06:15 1 7:10 3 12:30 3
oracle 4736 06:26 0 07:23 0 12:17 0

zh full 250680 05:37 – 08:47 – 11:58 –
Unicode 51584 06:10 15 08:34 20 11:22 29
corpus 104320 06:03 11 09:01 16 11:35 13
oracle 4096 05:35 0 08:42 0 11:46 0

Table 4: GPU VT results for the BLOOM family.
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