
Proceedings of the Fifth Workshop on Insights from Negative Results in NLP, pages 135–147
June 20, 2024 ©2024 Association for Computational Linguistics

The Paradox of Preference: A Study on LLM Alignment Algorithms and
Data Acquisition Methods

Rishikesh Devanathan*, Varun Nathan and Ayush Kumar
{rishikesh.devanathan, varun.nathan, ayush}@observe.ai

Observe.AI
Bangalore, India

Abstract

This research investigates the impact of pref-
erence annotation acquisition methods on the
performance of LLM alignment algorithms, in-
cluding Direct Preference Optimization (DPO),
Identity Preference Optimization (IPO), and
Conservative DPO (cDPO), compared to Su-
pervised Fine-Tuning (SFT) in NLP tasks. We
analyze the influence of LLM and human-based
preferences on algorithm performance, con-
sidering data volume and quality. Addition-
ally, we assess DPO’s vulnerability to overfit-
ting and IPO’s resilience against it, addressing
four main research questions. Using the GAIR
dataset and Zephyr-7b as the SFT model, we
reveal unexpected negative outcomes. Specifi-
cally, DPO trained on LLM preferences outper-
forms human preferences, contrary to expecta-
tions. Moreover, there’s no correlation between
preference data volume or quality and algo-
rithm performance. Contrary to expectations,
DPO shows no overfitting in both human and
LLM preference datasets. Surprisingly, cDPO
doesn’t fare better than DPO under flip noise.
Our findings highlight the complexities of pref-
erence annotation methods and underscore the
importance of scrutinizing negative results in
NLP algorithm research.

1 Introduction

Large language models (LLMs) have proven their
capacity to amass broad knowledge by simply max-
imizing the likelihood of human-written text but
this objective isn’t sufficient to generate responses
that are safe, helpful and aligned with human prefer-
ences. Methods based on Reinforcement Learning
with Human Feedback (RLHF), including Proxi-
mal Policy Optimization (PPO) (Schulman et al.,
2017), aim to align LLMs with human preferences,
a theme also explored in other papers (Ouyang
et al., 2022; Askell et al., 2021; Bai et al., 2022a;
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Touvron et al., 2023). Direct Preference Optimiza-
tion (DPO) (Rafailov et al., 2023) was later shown
to train policies in a single stage, treating it as a
classification task using human preference data. It’s
favored over PPO for its ability to handle reward
translation issues well and consistently achieve
high rewards across different levels of KL diver-
gence in generated text.

Due to the expensive nature of collecting human
annotations, LLM preferences serve as a substi-
tute for human preferences in generating synthetic
datasets (Chiang and Lee, 2023). Reinforcement
Learning from AI Feedback (RLAIF) (Bai et al.,
2022b) provides a promising alternative by lever-
aging a powerful off-the-shelf LLM to generate
preferences for large-scale model training. The use
of LLM preferences in dataset creation (Lee et al.,
2023) has shown comparable performance between
RLAIF and RLHF across various tasks, with per-
formance degradation attributed to dataset quality
issues, as evidenced by human-agreement scores.
Conservative DPO (cDPO) 1 addresses these chal-
lenges by adopting a conservative target distribu-
tion, minimizing error probability, and deriving a
loss function to ensure alignment between model
preferences and observed preferences. The scarcity
of diverse preference datasets poses a challenge
for RLHF and feedback learning research. UL-
TRAFEEDBACK (Cui et al., 2023) addresses this
challenge by providing an extensive, high-quality,
and diversified preference dataset.

While widely adopted in preference optimiza-
tion, DPO is susceptible to overfitting as observed
by Tunstall et al. (2023) in the initial epoch of
Zephyr-7B DPO training, but noted improved per-
formance with further epochs. The IPO paper (Azar
et al., 2023) discovered that RLHF and DPO are
prone to overfitting due to relying on the assump-
tion that pairwise preferences can replace ELo-

1https://ericmitchell.ai/cdpo.pdf
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scores through Bradley-Terry modeling. To mit-
igate this, IPO introduces a regularizing term con-
trolling log-likelihood ratios to address overfitting
to the preference dataset.

A literature gap exists in exploring how training
data volume influences LLM alignment algorithms,
DPO and IPO. Empirical evidence is lacking on
IPO’s ability to counter DPO’s overfitting, and stud-
ies on data quality’s impact on DPO, and cDPO’s
effectiveness in addressing it, are scarce. It’s es-
sential to investigate the influence of preference
annotation methods (LLM vs. human preferences)
on these factors and the performance of LLM align-
ment algorithms, including DPO, cDPO, and IPO,
given the increasing use of LLM preferences.

In this work, we investigate how the method of
preference annotation acquisition affects the criti-
cal performance factors influencing the effective-
ness of LLM alignment algorithms and seek to
address the following research questions:

• RQ1: How does the choice of preference an-
notation acquisition method influence the per-
formance of DPO and IPO in comparison to
SFT?

• RQ2: What is the effect of data volume on the
performance of DPO and IPO? Does the rela-
tionship depend on the preference annotation
acquisition method?

• RQ3: What is the effect of data quality on
the performance of DPO and cDPO? Does the
relationship depend on the preference annota-
tion acquisition method?

• RQ4: To what extent does DPO suffer from
overfitting, and can IPO withstand it? How
does the preference annotation acquisition
method impact this phenomenon concerning
both loss functions?

We demonstrate unexpected superiority of LLM
trained with DPO on LLM preferences over human
preferences. Performance shows no correlation
with data volume or quality. DPO doesn’t exhibit
overfitting issues, while cDPO doesn’t improve
under noise. Our findings highlight challenges in
preference annotation and aligning LLMs.

2 Implementation Details

We choose Zephyr-7B as our SFT model and GAIR
(Li et al., 2024) as our preference dataset, contain-

ing both human and LLM preferences, for our ex-
periments. MT Bench (Zheng et al., 2023) is used
to evaluate our models while GPT4-Turbo is cho-
sen as the LLM for obtaining synthetic preferences.
Further details on our choices are provided in Sec-
tion A.1, including hyperparameter specifics.

3 Results and Analysis

In this section, we provide a comprehensive anal-
ysis of the performance evaluation results, shed-
ding light on the key observations made during our
study.

3.1 RQ1 (Preference model performance)
To investigate this, we independently fine-tuned
Zephyr-7B (SFT) using preferences from both
GPT4-Turbo and humans in the GAIR dataset. In
Table 1, the IPO model trained on human prefer-
ences, as anticipated, outperforms its GPT4-Turbo-
trained counterpart according to the MT Bench
score. However, contrary to expectations, the DPO
model trained on GPT4-Turbo preferences outper-
forms its human-trained counterpart according to
the MT Bench score. We speculate that GPT4,
acting as the MT Bench judge, might show bias to-
wards responses from GPT4-Turbo-trained models.
To verify, we collect predictions from both mod-
els on MT Bench, comprising 160 samples, and
shared them with our in-house annotation team of
three members. Model names were concealed, and
annotators chose from options ’model 1’ (GPT4-
Turbo preference trained model), ’model 2’ (human
preference trained model), or ’equal’ based on the
quality of the generated output. We opt for a major-
ity vote to determine the final preference, and the
inter-annotator agreement score, calculated using
Fleiss’ Kappa (Fleiss et al., 1971), was measured
at 0.64. As shown in Table 2, the model trained on
GPT4-Turbo preferences was preferred in 63 of 160
samples with a much higher win rate of 39.4%, sug-
gesting alignment between MT Bench scores and
human annotation. This negative outcome of model
trained on LLM preference data outperforming the
one trained on human preference data prompts a
crucial inquiry regarding the superiority of human
preferences over those sourced from LLMs and
the necessary measures to guarantee the quality
standards of human-collected data.

3.2 RQ2 (Effect of data volume)
To investigate this, we independently fine-tune
Zephyr-7B (SFT) using DPO and IPO losses on
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Algorithm GPT4-
Turbo

Human

SFT (Baseline) 6.753 6.753
Preference
Model (DPO)

6.994 6.722

Preference
Model (IPO)

5.125 5.484

Table 1: Benchmarking performance of DPO and IPO
by Preference annotation acquisition method using MT
Bench scores

Model # Wins # Ties Win Rate
DPO (GPT4-
Turbo)

63 51 39.38%

DPO (Human) 46 51 28.75%

Table 2: Results from human annotation of DPO model
trained on GPT4-Turbo and Human preferences

Data Volume (%
Train Data)

GPT4-Turbo Human
Loss = DPO Loss = IPO Loss = DPO Loss = IPO

100% 6.994 5.125 6.722 5.484
75% 6.756 5.741 6.544 6.300
50% 6.878 6.766 6.897 6.692
25% 6.788 6.953 6.819 6.928

Table 3: Benchmarking performance of DPO and IPO models by preference annotation acquisition method when
trained on different data volumes using MT Bench scores

sampled datasets with varying proportions of pref-
erences from both GPT4-Turbo and humans in the
GAIR dataset. Contrary to the anticipation of im-
proved generalization with increased data diver-
sity, this pattern is absent in DPO and IPO models
trained on both types of preferences (Table 3). Nei-
ther GPT4-Turbo-Preference-trained nor human-
preference-trained DPO and IPO models demon-
strate a monotonic relationship with data volume,
suggesting that augmenting preference data volume
may not necessarily enhance model performance.
Notably, DPO and IPO models trained on 25% hu-
man preference data outperform those trained on
the entire dataset, hinting at potential overfitting
issues. We conduct an exhaustive examination into
the susceptibility of DPO to overfitting, with de-
tailed results emphasized in 3.4.

Table 3 also demonstrates that models trained
with IPO underperform those trained with DPO
across sample proportions of 100%, 75%, and
50% in both GPT4-Turbo and human preference
datasets. Upon conducting a hyperparameter sweep
over a fine-grained range for the DPO and IPO
models trained on 100% of the human preference
dataset, significant uplift in performance was ob-
served for both IPO and DPO models post-tuning
β as indicated in Table 8. However, we see that
DPO still outperforms IPO, indicating the ineffi-
cacy of IPO in surpassing DPO despite extensive
tuning of β. Due to the high cost of running these
experiments and the limited effectiveness of IPO,
we did not extend the tuning exercise to other con-
figurations.

This finding highlights the valuable insight for
ML researchers and scientists in enterprises using
DPO for preference modeling. It also underscores
the challenges involved in exploring alternative loss
functions such as IPO to enhance performance with
limited preference data.

3.3 RQ3 (Effect of data quality)

To tackle this issue, we independently fine-tune
Zephyr-7B (SFT) using DPO and cDPO losses
on sampled datasets with varying levels of flip
noise introduced into preferences from both GPT4-
Turbo and humans in the GAIR dataset. Flip noise
is introduced by swapping the chosen response
and the rejected response for a selected percent-
age of prompts. Despite the anticipation that mod-
els would exhibit better generalization with higher
data quality, this pattern is not evident in DPO
and cDPO models trained on both types of prefer-
ences (Table 4). Intriguingly, DPO models trained
with 25% flip noise outperform those trained on
clean data across GPT4-Turbo and human pref-
erences, while the cDPO model only marginally
outperforms it when trained on 50% flip noise data.

Moreover, Table 4 indicates that models trained
with cDPO consistently exhibit inferior perfor-
mance compared to those trained with DPO across
all configurations and datasets. This contradicts ex-
pectations set by the cDPO paper, which suggests
that cDPO’s ability to optimize to a fixed delta from
the reference model and then halt likely enhances
its stability compared to the original DPO loss,
making it more effective when dealing with noisy
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Data Quality
(% Flip
Noise)

GPT4-Turbo Human
Loss =
DPO

Loss =
cDPO

Loss =
DPO

Loss =
cDPO

0% 6.994 6.994 6.722 6.722
5% 6.956 6.733 6.759 6.559
25% 7.013 6.313 6.731 6.284
50% 7.081 6.372 6.703 6.344
75% 6.984 5.456 6.584 5.378

Table 4: Benchmarking performance of DPO and cDPO models by preference annotation acquisition method when
trained on datasets with different flip noise ratios using MT Bench scores

#
Steps

GPT4-Turbo Human
Loss = DPO Loss = IPO Loss = DPO Loss = DPO (Tuned) Loss = IPO Loss = IPO (Tuned)

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

Training
Loss

MT
Bench
Score

1/4 0.212 6.809 11.796 6.578 0.283 6.638 0.539 6.969 14.775 6.669 0.577 6.919
2/4 0.037 6.859 5.959 5.244 0.057 6.744 0.505 6.919 9.322 4.677 0.368 7.056
3/4 0.024 6.813 4.056 4.781 0.038 6.728 0.253 6.981 6.648 5.874 0.274 6.953
4/4 0.018 6.994 3.231 5.125 0.031 6.722 0.219 7.184 5.415 5.484 0.241 7.113

Table 5: Impact of Overfitting on DPO and IPO Models at 100% Data Volume by Preference Annotation Acquisition
Method

training data. Upon conducting a thorough hyper-
parameter sweep over a finely grained range for
both DPO and cDPO models trained on the human
preference dataset with 5% flip noise, significant
performance enhancements were observed for both
after β tuning as indicated in Table 9. However,
DPO continues to surpass cDPO, indicating the
limited efficacy of cDPO even after extensive β
tuning. Due to the substantial expenses involved
in running these experiments and the limited effec-
tiveness of cDPO, we discontinued extending the
tuning process to other configurations.

This negative outcome holds considerable signif-
icance for researchers and professionals in organi-
zations utilizing DPO for preference modeling in
noisy datasets.

3.4 RQ4 (DPO and IPO overfitting)
Our objective is to validate the hypothesis that DPO
is susceptibile to overfitting and IPO is resilient
against it (Azar et al., 2023). We conduct empirical
validation by independently fine-tuning Zephyr-7B
(SFT) using DPO and IPO losses on 100% of pref-
erences from both GPT4-Turbo and humans in the
GAIR dataset. Overfitting is assessed by monitor-
ing training loss and evaluation scores of check-
points at intervals of 25% of the training steps on
MT Bench.

Table 5 reveals that DPO exhibits overfitting
only when trained on human preferences with the
default β of 0.1, contrasting IPO, which exhibits
overfitting when trained on both types of prefer-

ences. As suggested in the paper, we hypothesised
that tuning beta would help mitigate overfitting in
IPO trained model. As expected, when examining
models trained with a tuned β, a different pattern
emerges, where both DPO and IPO models trained
on human preference data do not display overfit-
ting. Thus, the key negative result we observe is
that tuning β (0.00625) helps mitigate overfitting
in DPO when trained on human preferences, pro-
viding valuable insights for ML researchers and
industry practitioners employing DPO and IPO for
preference modeling with limited data.

4 Conclusion

We analyze the influence of data quantity on DPO
and IPO, utilizing LLM preferences and human
preferences. Surprisingly, there’s no linear correla-
tion between data quantity and performance. Simi-
larly, the impact of data quality on DPO and cDPO,
using both LLM preferences and human prefer-
ences, also lacks a linear trend with performance.
Contrary to expectations, DPO trained on LLM
preferences outperforms its human-trained counter-
part. Additionally, IPO fails to outperform DPO
across various data volumes, while cDPO strug-
gles to address induced flip noise in preferences.
Interestingly, DPO shows no signs of overfitting
when trained on both LLM and human preference
datasets. These findings prompt further research to
enhance the resilience and effectiveness of LLM
alignment algorithms in preference modeling.
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5 Limitations

This study offers significant insights into the per-
formance of LLM alignment algorithms and the in-
fluence of preference annotation acquisition meth-
ods, but it is not without its limitations. First, the
research is grounded in a specific set of LLM align-
ment algorithms, namely DPO, IPO, and cDPO.
The results may not extend to other alignment al-
gorithms like KTO (Ethayarajh et al., 2024). Fu-
ture studies could broaden the scope by examin-
ing the performance of different algorithms for a
more holistic understanding of the field. Second,
the GAIR training dataset and MT Bench evalu-
ation dataset were used in this study. The out-
comes might vary with the use of different datasets,
hence, extrapolating these findings to other con-
texts should be done with caution. Third, the
Zephyr-7b, a decoder-only model, was used as
the underlying SFT model, and GPT4-Turbo was
used as the source in GAIR for acquiring LLM-
based preferences. The outcomes might differ with
the use of other models. Specifically, the trends
observed may not necessarily apply to other SFT
models within the same architectural class or differ-
ent architectural classes such as encoder-decoder
models. Fourth, the study did not find a correlation
between the volume or quality of preference data
and algorithm performance. However, this does not
exclude the possibility of other factors influencing
algorithm performance. Additional research is re-
quired to identify these potential factors. Fifth, the
study found that DPO trained on LLM preferences
outperforms human preferences, which was unex-
pected. This raises questions about the validity of
human preferences as a performance benchmark
for algorithms. Future research should delve deeper
into this issue. Lastly, the study found no evidence
of overfitting in DPO when trained on both LLM
and human preference datasets. However, this find-
ing should be interpreted cautiously as overfitting
is a multifaceted issue influenced by various fac-
tors, including model complexity, training dataset
size, and data noise. Further research is needed to
fully comprehend the conditions that may lead to
overfitting.

In conclusion, while this study offers valuable
insights into the performance of LLM alignment
algorithms and the impact of preference annotation
acquisition methods, these findings should be con-
sidered in light of the aforementioned limitations.
Future research should strive to address these limi-

tations for a more comprehensive understanding of
the field.
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A Appendix

A.1 Implementation Details for LLM
Alignment Experiments

In this section, we elaborate on the implementation
details of our study, exploring how variations in the
quality and quantity of preference data impact the
performance of DPO, IPO, and cDPO, alongside
the influence of preference annotation acquisition
methods.

We opt for Zephyr-7B, a decoder-only model
based on Mistral-7B, as our SFT model due to its
top-ranking performance in MT Bench (top 5 in the
list of models with a non-proprietary license) and
accessibility in the HuggingFace model repository
under the apache-2.0 license.

We employ the GAIR preference dataset (Li
et al., 2024), comprising 5.24K curated conver-
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sations with pairwise human preferences from 13K
unique IP addresses on the Chatbot Arena, col-
lected between April and June 2023. Addition-
ally, binary preference labels are gathered from 32
LLMs, incorporating 2 proprietary and 30 open-
source models. With 29 defined properties, each
response is annotated using Likert scale ratings or
property-specific annotations. This dataset is se-
lected primarily for its inclusion of both human
and LLM preferences. Furthermore, the renowned
LIMA paper (Zhou et al., 2023) originates from the
same organization that released this dataset.

We also conduct experiments on two additional
preference datasets: Ultrafeedback (Cui et al.,
2023), comprising 61K prompts with preferences
sourced from GPT4, and the Stanford Human Pref-
erences Dataset (SHP) (Ethayarajh et al., 2022),
extracted from posts and user comments across 18
subreddits containing human preferences, totaling
349K samples, which we downsample to 100K
samples by filtering for those with a score ratio
greater than 2 for experimentation. These datasets
are selected for their extensive scale and diversity
compared to other datasets.

Models are evaluated using MT Bench (Zheng
et al., 2023), a curated benchmark featuring 80
high-quality, multi-turn questions designed to eval-
uate conversation flow and instruction-following
capabilities in multi-turn dialogues. GPT-4 rates
MT Bench outputs on a scale of 1-10, with higher
scores indicating better performance. Refer to Ta-
ble 15 for the domains considered in the datasets.
Average MT Bench scores across questions and
turns are reported for all experiments.

We fine-tune all alignment models for two to
three epochs, following the approach in Tunstall
et al. (2023). Adam optimizer with betas of (0.9,
0.999) and epsilon of 1e-08 is utilized. A linear
learning rate scheduler with a peak rate of 5e-7 and
10% warmup steps is applied. Models are trained
with a global batch size of 16, using β = 0.1 to
control deviation from the reference model. A
hyper-parameter sweep for β is performed over the
range ∈ {1e− 3, 2.5e− 3, 5e− 3, 6.25e− 3, 1e−
2, 5e− 2, 1e− 1, 1.5e− 1, 2e− 1, 5e− 1, 9e− 1}
for four settings: training DPO / IPO models on
100% data volume + 0% flip noise and DPO /
cDPO models on 100% data volume + 5% flip
noise. β tuning is specifically focused on due to its
significant impact on model performance. Given
the high training cost, β tuning is not conducted
for all experiments. Experiments are conducted on

an AWS p4de.24xlarge instance with eight GPUs,
each with 80 GB of memory. A single training run
takes 3-4 hours on average, costing approximately
$140-190. Results are reported as the mean of 4
runs.
Dataset: https://huggingface.co/datasets/
GAIR/preference-dissection
Training Code: https://github.com/
huggingface/alignment-handbook/tree/
main
Evaluation Code: https://github.com/lm-sys/
FastChat

A.2 Error Analysis
In our study, we encountered several unexpected re-
sults that contradicted our initial hypotheses. This
section provides an in-depth error analysis to under-
stand these observations and their potential causes.

Firstly, we posited that DPO performance would
be superior when trained on human preferences
compared to LLM preferences. However, our find-
ings contradicted this hypothesis. One plausible
explanation for this unexpected outcome could be
the inherent biases present in human preferences,
which may not align with the objective function of
the DPO algorithm. Moreover, there may be inher-
ent limitations in the methodology used to collect
human annotations.

An example of this discrepancy is evident in the
performance of the DPO model trained on GPT4-
Turbo preferences versus human preferences, par-
ticularly in the task of coding, as illustrated in fig-
ures 1 and 2. It is conceivable that the expertise
levels of the human annotators selected for this task
were not carefully considered.

Additionally, our analysis revealed instances of
hallucinations (Row 3 in Table 16) and the genera-
tion of incomplete or redundant responses for Math
questions (Row 6 in Table 16) by the DPO model
trained on human preferences. These discrepancies
may be attributed to various biases inherent in hu-
man preferences or inconsistencies in annotation
practices.

Conversely, LLM preferences may exhibit
greater consistency or comprehensiveness, thereby
yielding superior performance. Further investiga-
tion is warranted to elucidate this discrepancy.

Secondly, we observed no discernible correla-
tion between the volume or quality of preference
data and the performance of the alignment algo-
rithms. This finding challenges the widely held
assumption that larger, higher-quality datasets in-
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variably lead to improved performance. One poten-
tial contributing factor to this discrepancy could be
the possible absence of independence and identical
distribution (iid) in the data sourced from GAIR
(Li et al., 2024), which may have influenced the
outcomes of our experiments.

As depicted in figures 3 and 4, the disparities in
performance among models trained on varying data
volumes or with different proportions of flip noise
are not uniformly distributed across the domains in
MT Bench (Zheng et al., 2023). To delve deeper
into this phenomenon, we manually mapped the
domains in GAIR (Li et al., 2024) and MT Bench
(Zheng et al., 2023), as illustrated in Table 6. Subse-
quently, we aggregated the data volume from GAIR
(Li et al., 2024) according to the distinct domains
in MT Bench (Zheng et al., 2023), as presented in
Table 7.

As demonstrated in Table 7, there exists an im-
balance in the distribution of samples within GAIR
(Li et al., 2024) across the various domains in MT
Bench (Zheng et al., 2023). This non-uniform dis-
tribution could potentially skew the results of our
experiments on data quantity and quality. Addi-
tionally, it is plausible that there are diminishing
returns once a certain threshold of data volume is
surpassed.

Thirdly, contrary to our initial expectations, the
DPO algorithm did not exhibit indications of over-
fitting on either the human or LLM preference
datasets. This suggests the possibility that our
methods for detecting overfitting may not have
been sufficiently sensitive. Moreover, the relatively
small volume of the GAIR (Li et al., 2024) dataset,
consisting of approximately 5.2K samples, may
have biased the results pertaining to DPO overfit-
ting. It is conceivable that the dataset lacked the
requisite data volume to effectively capture the on-
set of overfitting.

Furthermore, the decision to train for only 2-3
epochs might have been too brief to provoke overfit-
ting, particularly because the learning rate was ap-
propriately set. We opted for this duration based on
the findings of Tunstall et al. (2023), who reported
observing overfitting after a single epoch. How-
ever, the divergence in observed behaviors could
be attributed to the differences in the nature and
size of the datasets.

It is worth noting that models often necessitate
additional training iterations before overfitting man-
ifests, as they gradually adapt not only to the un-
derlying pattern but also to the noise present in the

training data. Consequently, further investigation is
warranted to ascertain the precise underlying cause
of these observations.

Lastly, cDPO did not perform better than DPO
under flip noise conditions. This was surprising as
cDPO is designed to be more conservative and thus
more resilient to noise. One possible explanation
could be that the flip noise in our dataset was not
significant enough to differentiate the performance
of DPO and cDPO. Alternatively, there might be
other types of noise or errors that cDPO is not
equipped to handle.

In conclusion, our error analysis has revealed
several unexpected findings that challenge common
assumptions in LLM alignment algorithm research.
These findings underscore the importance of rigor-
ous error analysis and the need for further research
to understand the complexities of preference anno-
tation methods.
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Figure 1: Analysis of GPT4 Ratings by Domains in MT Bench: DPO and IPO Models trained on GPT4-Turbo vs
Human Preferences. Notably, the DPO model trained on GPT4-Turbo preferences excels over its counterpart trained
on Human preferences in domains such as Coding, Extraction, Reasoning, and Humanities, while demonstrating
competitive performance in other areas.

Figure 2: Analysis of Human Preference Rate by Domains in MT Bench: DPO Models trained on GPT4-Turbo vs.
Human Preferences. Remarkably, the DPO model trained on GPT4-Turbo preferences demonstrates superior or
comparable performance across all domains, with the exception of Roleplay.
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Figure 3: Analysis of GPT4 Ratings by Domains in MT Bench: DPO and IPO Models trained on different volumes
of GPT4-Turbo and Human Preferences within the GAIR dataset. We present three comparisons that challenge the
expected trends: IPO model trained on 25% versus 100% Human Preferences, IPO model trained on 25% versus
100% GPT4-Turbo Preferences, and DPO model trained on 50% versus 100% Human Preferences.

Figure 4: Analysis of GPT4 Ratings by Domains in MT Bench: DPO and cDPO Models trained on different
proportions of flip noise induced in GPT4-Turbo and Human Preferences within the GAIR dataset. We present
three noteworthy comparisons that challenge the expected trends: cDPO model trained on 25% versus 50% flip
noise induced in Human Preferences, cDPO model trained on 25% versus 50% flip noise induced in GPT4-Turbo
Preferences, and DPO model trained on 5% versus 50% flip noise induced in GPT4-Turbo Preferences.
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Domain - GAIR (Train) Domain - MT Bench (Test) # Samples - GAIR
(Train)

analyzing_general Reasoning, Extraction, Writ-
ing, Roleplay

16

chitchat Roleplay 239
code_correction_rewriting Code 24
code_simplification Code 1
counterfactual Reasoning 52
explaining_code Code 29
information_extraction Extraction 30
keywords_extraction Extraction 3
note_summarization Extraction 1
question_generation Reasoning 53
recommendation Reasoning 45
solving_exam_question_with_math Math 27
solving_exam_question_without_math STEM, Humanities 39
text_simplification Writing 7
text_to_text_translation Writing 43
verifying_fact Extraction 57
writing_cooking_recipe Writing 47
writing_job_application Writing 23
writing_marketing_materials Writing 2
writing_personal_essay Writing 29
writing_product_description Writing 21
writing_social_media_post Writing 10
writing_technical_document Writing 13
creative_writing Writing 275
instructional_rewriting Writing 25
language_polishing Writing 12
open_question Writing 395
text_correction Writing 14
title_generation Writing 10
writing_advertisement Writing 5
writing_email Writing 79
writing_legal_document Writing 17
writing_news_article Writing 5
writing_presentation_script Writing 12
writing_scientific_paper Writing 6
writing_song_lyrics Writing 41
functional_writing Writing 195
paraphrasing Writing 22
writing_blog_post Writing 12
asking_how_to_question Reasoning 100
classification_identification Extraction 28
code_generation Code 341
code_to_code_translation Code 6
explaining_general Reasoning 385
ranking Reasoning 39
text_summarization Extraction 93
brainstorming Reasoning 165
data_analysis Math 19
math_reasoning Math, Reasoning 334
reading_comprehension Reasoning 13
roleplay Roleplay 131
value_judgement Humanities 172
default - 865
planning Reasoning 75
seeking_advice Roleplay 323

Table 6: Mapping between the domains represented in GAIR and MT Bench
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Domain - MT Bench (Test) # Samples - GAIR (Train)
Writing 1336
Reasoning 1277
Roleplay 924
Code 401
Math 380
Extraction 228
Humanities 211
STEM 39

Table 7: Data Volume in GAIR Corresponding to Domains in MT Bench

Data Volume
(% Train
Data)

Human
Loss =
DPO
(Tuned)

Loss = IPO
(Tuned)

100% 7.184 7.113
75% 7.038 6.981
50% 7.181 6.722
25% 6.959 6.878

Table 8: Benchmarking performance of DPO
and IPO models when trained with tuned β on
different volumes of human preference data
using MT Bench scores

Data Quality
(% Flip Noise)

Human
Loss =
DPO
(Tuned)

Loss =
cDPO
(Tuned)

0% 7.184 7.184
5% 7.078 7.063

Table 9: Benchmarking performance of DPO
and cDPO models when trained with tuned β
on human preference datasets with different
flip noise ratios using MT Bench scores

Algorithm UltraFeedback SHP
Baseline (SFT) 6.753 6.753
DPO 7.225 6.441

Table 10: Benchmarking DPO model perfor-
mance on Ultrafeedback and SHP datasets us-
ing MT Bench scores

Data Volume
(% Train Data)

UltraFeedback SHP

100% 7.225 6.441
75% 7.419 6.438
50% 7.306 6.244
25% 7.384 6.122

Table 11: Benchmarking DPO model perfor-
mance with varying sample proportions in Ul-
trafeedback and SHP datasets using MT Bench
scores

Data Quality (% Flip Noise) UltraFeedback SHP

0% 7.225 6.441
5% 6.872 6.453
25% 6.691 6.272
50% 6.403 6.244
75% 5.928 5.664

Table 12: Benchmarking DPO model performance with varying flip noise in Ultrafeedback and SHP datasets using
MT Bench scores

UltraFeedback SHP

Data Volume (% Train Data) Loss = DPO Loss = IPO Loss = DPO Loss = IPO

100% 7.225 6.813 6.441 6.200
75% 7.419 5.853 6.438 6.469
50% 7.306 6.756 6.244 6.466
25% 7.384 6.344 6.122 6.419

Table 13: Benchmarking models with DPO and IPO loss functions across different Ultrafeedback and SHP dataset
ratios using MT Bench scores
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UltraFeedback SHP

Data Quality (% Flip Noise) Loss = DPO Loss = cDPO Loss = DPO Loss = cDPO

0% 7.225 7.225 6.441 6.441
5% 6.872 6.484 6.453 6.425
20% 6.691 6.050 6.272 5.963
50% 6.403 6.325 6.244 6.403
75% 5.928 5.797 5.664 5.616

Table 14: Benchmarking models with DPO and cDPO loss functions across different Ultrafeedback and SHP flip
noise ratios using MT Bench Scores.

Dataset # Train # Val Domains / Sub-Datasets
Ultrafeedback 61135 2000 TruthfulQA, FalseQA, Evol-Instruct, UltraChat, ShareGPT
SHP 100000 1000 academia, anthropology, baking, carguys, culinary, docs, engineers, his-

torians, hr, philosophy, physics, science, science fiction, social science,
vet, change my view, explain like i’m five, legal advice

GAIR 5240 0 Chatbot Arena conversations
MT Bench - 160 Writing, Roleplay, Extraction, Reasoning, Math, Coding, Knowledge I

(STEM), and Knowledge II (humanities/social science)

Table 15: Overview of Datasets

RQ Description Text Output
Score

1 Prompt You can see a beautiful red house to your left and a hypnotic greenhouse
to your right, an attractive heated pink place in the front. So, where is
the White House?

-

1 DPO Model trained
on 100% of GPT4-
Turbo preferences in
GAIR dataset

The White House is not visible from this description as it is not men-
tioned. The description only describes other buildings and their colors.

3

1 DPO Model trained
on 100% of Hu-
man preferences in
GAIR dataset

The White House is likely located behind the red house and greenhouse,
as it is the official residence and workplace of the President of the
United States. The heated pink place in the front may be a separate
building or structure on the same property.

2

1 Prompt Benjamin went to a bookstore and purchased a variety of books. He
bought 5 copies of a sci-fi novel, each priced at $20, 3 copies of a history
book priced at $30 each, and 2 copies of a philosophy book for $45
each. What was the total cost of his purchases?

-

1 DPO Model trained
on 100% of GPT4-
Turbo preferences in
GAIR dataset

The total cost of Benjamin’s purchases is:
5 copies of sci-fi novel at $20 each = $100 3 copies of history book at
$30 each = $90 2 copies of philosophy book at $45 each = $90
Total cost = $100 + $90 + $90 = $270

6

1 DPO Model trained
on 100% of Hu-
man preferences in
GAIR dataset

5 x $20 = $100 3 x $30 = $90 2 x $45 = $90
Total cost = $100 + $90 + $90 = $270
Therefore, the total cost of his purchases was $270.

4

Table 16: Examples of generated model outputs on MT Bench
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