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Abstract

With the rapid development of LLMs, it is nat-
ural to ask how to harness their capabilities
efficiently. In this paper, we explore whether it
is feasible to direct each input query to a single
most suitable LLM. To this end, we propose
LLM routing for challenging reasoning tasks.
Our extensive experiments suggest that such
routing shows promise but is not feasible in all
scenarios, so more robust approaches should
be investigated to fill this gap.1

1 Introduction

Large language models (LLMs) demonstrate re-
markable capabilities in many natural language
generation and understanding tasks (Bommasani
et al., 2021; Chang et al., 2023; Minaee et al., 2024).
At the same time, Jiang et al. (2023) show that
no single open-source LLM outperforms all oth-
ers across different benchmarks and datasets, as
various LLMs may exhibit different domain exper-
tise (Beeching et al., 2023). Experiments towards
predicting model behavior (Rabinovich et al., 2023;
Srivatsa and Kochmar, 2024) also suggest that par-
ticular aspects of input prompts can affect different
LLMs in different ways.

It is, therefore, reasonable to investigate whether
the capabilities of different LLMs can be harnessed
to achieve better results more efficiently. Recent
findings suggest that performance can be improved
with ensembling (Wang et al., 2022, 2023; Li et al.,
2024) and collaborative frameworks (Wu et al.,
2023b; Li et al., 2023). However, the research in
this area is still in the early stages, with a number of
open research questions. In this work, we propose
LLM routing, which investigates whether directing
an input prompt to the most suitable single LLM
can lead to better performance than what can be

*Equal contribution
1Our code and data are available at https://github.

com/kvadityasrivatsa/llm-routing.

achieved with individual LLMs while maintaining
a reasonable (e.g., single LLM) latency.

With the rise of larger and more capable models
in NLP and the wider field of ML, the research
on sparse expert models has also extended. This
class of models includes mixture-of-experts (Ja-
cobs et al., 1991; Collobert et al., 2002; Eigen
et al., 2013), switch-transformers (Fedus et al.,
2022), and routing networks (Rosenbaum et al.,
2017), among other models.2 Approaches to build-
ing these sparse models vary along several dimen-
sions: (i) how the optimal parameter subset(s) or
model-pool candidates are identified for each input
(e.g., feature-based or deep-encoder-based classifi-
cation), (ii) whether the subset selection involves
pre-training the candidate models or model layers
(e.g., Mixtral (Jiang et al., 2024)), which can incur
significant training compute and data costs, (iii)
how many experts are selected for each input (e.g.,
HybridLLM (Ding et al., 2024) selects only the
single best, whereas Shazeer et al. (2017) selects
the top-k), and (iv) whether the approach also aims
to improve the response quality or overall perfor-
mance beyond that of any single candidate model.
In this context, our paper aims to build and analyze
a sparse LLM routing model that selects the sin-
gle best LLM (from a pool of at least two LLMs)
for each input query. The proposed router only re-
quires fine-tuning of a relatively small pre-trained
Transformer encoder model on the data without the
need for pre-training or fine-tuning the LLMs.

Given that LLMs frequently face challenges with
reasoning and planning tasks (Wei et al., 2022; Ko-
jima et al., 2022), we focus on two well-established
reasoning task benchmarks. We empirically investi-
gate the feasibility of building LLM routing model
capable of selecting the most suitable LLM for
each input from a pool of diverse LLMs. The rout-
ing is grounded on responses generated by LLMs.

2For more details on the related work, see Appendix F.
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Figure 1: Overview of the proposed workflow.

We explore binary and multi-label classification
modeling at the input query level, as well as a clus-
tering approach based on the similarity between
the queries. Finally, leveraging prediction confi-
dence scores, we design multiple optimal policies
to select a single suitable LLM from the pool.

The contributions and key findings of this work
are as follows: (1) We propose an LLM routing
model, which directs input queries to the most
suitable single LLM. (2) We explore two different
types of approaches for LLM routing, treating it as
a classification and a clustering task. (3) We con-
duct experiments with 7 open-source LLMs and on
two challenging reasoning benchmarks (GSM8K and
MMLU). (4) We introduce theoretical upper bounds
for two scenarios: (i) highest possible performance
achieved jointly with all LLMs (i.e., oracle), and (ii)
highest performance achieved with the proposed
routing model. (5) Our findings indicate that the-
oretical upper bounds of the routing model are
higher than individual model performance, how-
ever, the proposed model developed in practice is
unable to achieve those scores. Specifically, the
performance of the routing model is better than
that of the weak LLMs but is similar to or slightly
lower than that of the top-performing LLMs, which
may be due to the small size of the training data.

Despite the somewhat negative results, we be-
lieve this study demonstrates the feasibility of mod-
eling LLM routing and contributes to new research
directions on efficient usage of LLMs, which can
benefit researchers and practitioners.

2 Methodology

We present an overview of the proposed workflow
in Figure 1. Below, we describe our approaches to
LLM sampling and LLM routing.

Split/Criteria GSM8K MMLU
Training 6,816 13,757
Validation 359 285
Test 1,319 1,530
#examples for few-shot CoT 5 5

Table 1: Dataset statistics for the GSM8K and MMLU
datasets. MMLU data splits are remapped to have a distri-
bution similar to GSM8K. CoT: Chain-of-Thought

LLMs Chat? Specialized? #Parameters
llama2-7b × × 7B
llama2-13b-chat D × 13B
mistral-7b × × 7B
mistral-7b-it D × 7B
gemma-7b × × 7B
gemma-7b-it D × 7B
metamath-7b × D 7B

Table 2: List of diverse LLMs selected in this study.

2.1 LLM Sampling

Selection of Benchmarks and LLMs As it has
been observed that most of the existing LLMs
struggle with reasoning tasks (Patel et al., 2021;
Wu et al., 2023a), we focus on two challenging
datasets associated with distinct domains – math-
ematical (GSM8K by Cobbe et al. (2021)) and natu-
ral language reasoning (MMLU by Hendrycks et al.
(2021)). GSM8K consists of 8,792 diverse grade-
school level math word problems (MWPs), while
MMLU contains 15k multiple-choice questions span-
ning 57 subjects across STEM, humanities, and
social sciences, among others (see Table 1). We
have selected diverse LLMs based on criteria such
as performance on benchmarks, training method-
ologies, model specialization, and more. The final
set of LLMs is presented in Table 2.

Routing Data In this study, we assess each
LLM’s performance by generating 10 responses
for each input query to ensure more reliable and
replicable behavior in our modeling. For LLM
prompting and answer extraction from responses,
we have followed the standard guidelines (see Ap-
pendices B and C for details). Figure 2 presents
the sample prompting templates. We use major-
ity voting scores as labels for each input query to
train routing classifiers. Majority Voting (MAJ@K

∈ {0, 1}) determines whether the most frequent
answer matches the gold answer or not. The mean
MAJ@10 scores across all input queries are re-
ported in Table 3. Furthermore, to ensure a re-
liable response from an LLM, we consider only
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those LLMs for which the extracted answer viabil-
ity scores are above 90% (please refer to Appendix
B for more details), resulting in 6 viable LLMs for
the GSM8K dataset and 7 for the MMLU dataset, re-
spectively. We prepare the routing dataset by asso-
ciating each input query with those viable LLM(s)
that have a MAJ@10 score of 1. Formally, the
target label for an input query q ∈ Q is given
by label (q) = {l | l ∈ L,maj@10 (q, l) = 1},
where L is the set of candidate LLMs and Q is
the set of query prompts from GSM8K or MMLU.

2.2 LLM Routing
Next, we build an LLM router, determining which
model to select from a pool of LLMs for a given
input query based on performance and inference
latency. The ideal routing algorithm should select
an optimal single LLM with high accuracy and
low latency. To this end, we explore modeling at
the individual query level using classification and
utilize similarities among queries using clustering.

Classifier-Based Routing The classification-
based routing consists of (1) the development of
a classifier that can predict a set of LLMs capable
of solving the input query along with prediction
confidence scores, and (2) the identification of the
policy to select optimal LLMs (with high accuracy
and low latency) from the predicted LLMs based
on confidence scores in the range [0-1].
Multi-label and Separate Classifiers: We have con-
sidered two types of classifiers: a multi-label classi-
fier (MLC) and separate classifiers (SC). MLC aims
to predict all LLMs apt for a given input query to-
gether in a single prediction step. The SC model,
on the other hand, employs a separate binary clas-
sifier for each LLM and accumulates the results
post hoc. Both types of classifiers are built on top
of existing popular pre-trained language models
(PLMs). Specifically, we experimented with BERT,
DistilBERT, RoBERTa, and T5 models. Addition-
ally, due to the small size of the training data, we
explored smaller models, utilizing only a few lay-
ers of PLMs, as well as simpler models such as
Random Forests. RoBERTa emerged as the best-
performing model, and all results in this paper are
reported with classifiers built by fine-tuning the
RoBERTa PLM exclusively.
Proposed Policies: We utilize the classifiers’ pre-
dicted confidence scores to design the following
policies:

1. ArgMax: Select an LLM with the highest

confidence score.
2. Random: Select a pool of LLMs with con-

fidence above a certain threshold (i.e., 0.80)
and randomly pick one LLM from the pool.

3. Prediction: Train a RandomForest regressor
using training data confidence scores, where
each input represents the confidence score for
each predicted label, and the target is the con-
fidence score of the first gold reference LLM.
At test time, we select the LLM with a confi-
dence score closest to the predicted score.

4. Sorted Prediction (Sorted Pred): Similarly
to the ‘Prediction’ policy, the input confidence
scores are arranged in ascending order based
on LLMs’ performance. This ensures that
weaker LLMs have a fair opportunity.

Clustering-Based Routing Additionally, to in-
corporate the query-level similarities, we explore
clustering for LLM routing as detailed below.
Learning Clusters: We fit a KMeans3 clustering
model on query-specific features extracted from the
training data to learn discrete clusters. The features
are extracted using: (1) TF-IDF vectorizer,4 and (2)
pooled hidden embedding of the RoBERTa5 model’s
last layer.
Routing: For each cluster in the training set, the
best performing LLM is determined. At inference,
input queries in the test set are routed to the best-
performing LLM for their corresponding cluster.

3 Experimental Setup

LLM Routing Baseline Models The following
baseline models are included for comparison:

1. Oracle: The maximum possible performance
is assumed under the premise that an oracle al-
ways selects a single LLM capable of solving
each query if it is solvable.

2. Random: This represents the mean perfor-
mance of randomly selecting an LLM uni-
formly for each input query across 1000 inde-
pendent runs.

3. Individual Models: This is the mean perfor-
mance of individual models with MAJ@10
across all queries.

3https://scikit-learn.org/stable/modules/
generated/sklearn.cluster.KMeans.html

4https://scikit-learn.org/stable/modules/
generated/sklearn.feature_extraction.text.
TfidfVectorizer.html

5https://huggingface.co/FacebookAI/
roberta-base
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Models GSM8K MMLU
ACC LAT (sec) ACC LAT (sec)

Oracle 87.18 3.46 89.15 1.89
Random 55.37 3.52 52.50 2.35
gemma-7b 71.11 7.10 63.85 3.00
metamath-7b 67.55 4.70 42.28 2.40
mistral-7b 59.74 3.70 62.09 1.80
*mistral-7b-it 50.41 1.00 51.63 1.10
llama2-13b-chat 46.70 1.80 50.52 4.80
*gemma-7b-it 36.84 0.70 49.28 1.00
llama2-7b – – 48.36 2.30
All LLMs 74.37 19.00 60.39 16.40

MLC

Upper bound 79.68 5.16 77.18 1.94
ArgMax policy 67.62 4.76 62.28 2.95
Random policy 67.47 4.76 58.16 2.86
Prediction policy 67.70 4.77 63.85 2.95
Sorted Pred policy 59.90 4.77 48.36 2.92

SC ArgMax policy 67.55 4.70 62.87 2.94

Clustering
TF-IDF 67.55 4.70 61.76 2.83
RoBERTa 67.55 4.70 61.76 2.83

Table 3: Performance of different routing models on
GSM8K and MMLU test sets. For all queries, we have con-
sidered 10 generations with each LLM. ACC: mean ac-
curacy with MAJ@10 (%), LAT: LLM inference latency
in seconds per query (10 generations for each query),
MLC: multi-label classifier, and SC: separate classifiers.
* The term ‘it’ indicates instruction-tuned LLMs. The
highest individual-LLM accuracy is underlined, and the
highest classifier accuracy is in bold for each dataset.

4. All LLMs: This baseline reports the mean ac-
curacy of MAJ@(10×|L|) based on the com-
bined pool of 10 generations from each LLM,
where |L| is the total number of LLMs.

Classifier Upper Bound This is similar to the
oracle model, where the upper bound is calculated
with predicted labels instead of gold labels.

4 Results and Discussion

In Table 3, we present the performance of each
individual LLM across both datasets, alongside the
performance of baselines and routing models. We
observe that, even though gemma-7b outperforms
other LLMs, there are diverse performance trends
for other LLMs across datasets, with some per-
forming better on GSM8K, and others on MMLU. To
investigate the results further, we pose and address
a number of research questions.

Does including multiple LLMs solve all ques-
tions in a given dataset? The Oracle model’s
ACC scores for both datasets are lower than 90%,
indicating that more than 10% of questions can-
not be solved by all LLMs combined. For details,
see Figure 3 in the Appendix, where we project
the distribution of questions solved by each of the
LLMs.

How effective is a routing model when randomly
picking LLMs? As expected, the random base-
line model achieves the lowest ACC score for both
datasets. This highlights the necessity for an effec-
tive routing model to navigate through LLMs.

Is the joint performance of multiple LLMs bet-
ter than that of individual LLMs? Consider-
ing extreme cases like top-k and bottom-k LLMs
as shown in Appendix Tables 5 and 6, we find
that multiple LLMs collectively outperform single
LLMs in terms of ACC. Even the joint perfor-
mance with the bottom-2 model is better than that
of individual models, underscoring LLMs’ diverse
problem-solving capabilities. However, we note
two limitations in joint modeling: (i) the joint per-
formance with all LLMs may not always be the best
(see All LLMs baseline ACC scores), as reported for
the MMLU dataset, and (ii) joint modeling drastically
increases inference latency costs (i.e., LAT), align-
ing with recent research (Li et al., 2024). In con-
trast, the proposed LLM routing aims to leverage
joint LLM capabilities while minimizing latency
by selecting the single best-suited LLM.

Can the upper bound performance of the clas-
sifier/clustering be equal to the Oracle model
performance? This is possible in an ideal sce-
nario where classifier/clustering routing algorithms
are perfect and bias-free. However, in our case,
the training data for the algorithms is small (∼9k
in GSM8K and 15k in MMLU), which leads to sub-
optimal performance. Still, the multi-label clas-
sifier’s upper bound (ACC) has achieved a higher
score than any individual LLMs, which is also close
to the Oracle model performance. We hypothesize
that more training data for classification/clustering
may bridge this gap.

Does router modeling with multi-label classi-
fiers exhibit better performance than individual
LLMs? Unfortunately, the proposed multi-label
classifier with different confidence-based policies
does not lead to better performance (i.e., ACC)
than some individual LLMs. This may be due to
the small training data for the classifier. However,
it can be observed that the classifier’s performance
is better than most of the weak-performing LLMs
and close to the top-performing LLM. This sug-
gests that LLM routing is a promising direction
that requires better classifier modeling.

What is the impact of different policies on LLM
router modeling? We have proposed four poli-
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cies based on the label confidence scores of the
multi-label classifier. The best policy can push
the model performance closer to the upper bound
performance of the multi-label classifier. How-
ever, we observe that due to the imperfect clas-
sifier (which yields weighted F1 scores of 0.71
for GSM8K and 0.67 for MMLU), the predictions (and
confidence scores) are skewed towards only a few
labels (see Figure 4 in the Appendix) which leads
to sub-optimal ACC score. The predictions-based
policy is better than other policies; however, the
classifier performance presents a serious bottleneck.
We conclude that larger training data and the de-
velopment of a better classifier are essential for
improving the ACC scores. Small sizes of both
GSM8K and MMLU datasets prevent further investiga-
tion of this question.

How does a separate classifier compare to a
multi-label classifier for LLM routing? With
relatively small and imbalanced training sets, sep-
arate classifiers for each LLM are more prone
to over-fitting. Despite attempts to address this
with measures like early stopping and weighted
class-based loss, most individual models usually
converge to the overall best performers such as
gemma-7b on test split. Ultimately, with the argmax
policy in place, the separate classifier-based rout-
ing model’s performance is similar to that of the
argmax policy of the multi-label classifier.

How does clustering-based LLM routing com-
pare to other models? The cluster-level routing
approach aims to select the best LLM for a group
of similar query prompts. It assumes that the rela-
tive performance of LLMs for each cluster remains
consistent between the training and test sets. We
find that this assumption does not hold for many
clusters (39 out of 50 for GSM8K and 28 out of 50
for MMLU). In general, the best-performing LLM
for most clusters in the training set is the same as
the best LLM overall. The impact of different fea-
ture extraction methods (TF-IDF vs. RoBERTa) was
minimal, resulting in a similar performance to the
MLC+ArgMax model.

What is the impact of LLM routing on inference
latency? Table 3 provides the inference latencies
for all LLMs, baselines, and LLM routing mod-
els in seconds per query, recorded using a single
Nvidia A100 GPU. Ideally, the best routing poli-
cies should maximize model accuracy (while main-
taining at least same-level latency) or minimize

overall latency (with the best LLM accuracy main-
tained). For instance, the MLC+ArgMax latency
is lower than the corresponding highest individual
model latency (of gemma-7b) for GSM8K. However,
as the routing classifiers overfit to the best LLMs
on the training sets (metamath-7b for GSM8K and
gemma-7b for MMLU), the overall latency, much like
mean accuracy, differs very slightly from that of
the best LLMs. These findings validate our claim
that the proposed LLM routing model consistently
maintains a latency score equal to or lower than
any individual LLM.

Ablations with multi-label routing: In ap-
pendix Figure 5, we overview ablation tests for
LLM routing using a multi-label classifier trained
with best- and worst-performing LLMs across both
datasets. Key insights include: (1) Increasing the
number of top-performing LLMs improves ora-
cle scores but has marginal effects on the classi-
fier’s upper bound or argmax policy. (2) Increasing
the number of worse-performing LLMs results in
higher scores across oracle, MLC’s upper bound,
and MLC+ArgMax policy model, highlighting the
effectiveness of LLM routing.

5 Conclusions and Future Directions

This study investigates the feasibility of LLM rout-
ing, i.e., navigating input queries by efficiently
selecting the most suitable single LLM from a
pool of LLMs. Through extensive experimentation
with multi-label and separate classifiers, as well
as clustering across two challenging benchmarks,
we conclude that (i) there are theoretical bounds
that can be achieved with LLM routing that are
much higher than individual models’ performance,
and (ii) routing LLMs is a feasible direction that
works best with equally capable LLMs. However,
if a few LLMs dominate, the router’s performance
degrades, even though it still outperforms weak
LLMs. At the same time, the inference latency of
the routing model is at least at the same level as
that of single LLMs.

With these findings in mind, we envision future
research to investigate the following directions: (1)
collecting larger datasets for LLM routing design;
(2) developing novel models for LLM routing to
accommodate LLMs with diverse capabilities; (3)
designing better routing policies with confidence
scores; (4) incorporating LLM-specific features for
improved modeling; and (5) scaling up using more
diverse LLMs and benchmarks.
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Limitations

One of the key limitations of the proposed rout-
ing model is the limited training data available
for training different algorithms with varying poli-
cies, which can result in biased learning despite
taking a number of precautionary measures. An-
other limitation is the extraction of answers from
generated responses: despite utilizing our best an-
swer extraction algorithm, we could only extract
viable answers for 83% to 95% of queries (with
different LLMs). For the remaining queries, the
answers extracted with our algorithm may be in-
valid or incorrect. Next, the proposed model works
well with equally capable LLMs but is not yet ef-
fective enough for LLMs that have very different
capabilities.

Finally, although the inference latency of the
proposed model is comparable to that of the most
suitable single LLM, frequent switches between
the LLMs (based on the input queries) necessitate
loading most of the LLMs into memory, posing a
limited memory issue. This issue is also observed
with different emerging LLMs (Jiang et al., 2023,
2024) similarly to our case. At the same time,
the problem of limited memory in the context of
LLMs has been well studied (Alizadeh et al., 2023;
Eliseev and Mazur, 2023), and the solutions de-
veloped are directly (or with minor adjustments)
applicable to our modeling, thereby ensuring the
practical usability of the proposed model. We leave
investigation of such approaches to future work.

Ethics Statement

This paper introduces router modeling to effec-
tively harness the power of LLMs with different
capabilities. As the proposed routing models use
LLMs, we must acknowledge that, independently
of this research, there are certain risks that pertain
to all LLMs, as such models may generate out-
puts that, although plausible, are factually incorrect
or nonsensical. Such hallucinations can misguide
decision-making and propagate biases, especially
in critical scenarios where accuracy is vital. With-
out proper safeguards, widespread LLM adoption
could worsen these concerns. Thus, it is essential
to develop mechanisms to mitigate hallucination
risks, ensuring responsible and beneficial deploy-
ment of these powerful models before adopting the
proposed routing model.
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A LLM Inference Latency

Prompt Type LLM GSM8K MMLU
llama2-7b 4.21 2.30
gemma-7b 7.10 3.00

FCoT mistral-7b 3.70 1.80
metamath-7b 4.70 2.40
gemma-7b-it 0.70 1.00

ZCoT llama2-13b-chat 1.80 4.80
mistral-7b-it 1.00 1.10

Table 4: Statistics on the inference latency (i.e., runtime
in seconds) for various LLMs over 10 generations for
each input query. The timings were recorded using a
single Nvidia A100 GPU. FCoT denotes few-shot Chain-
of-Thought, and ZCoT denotes zero-shot CoT. We have
considered 5 examples for FCoT prompting.

B Prompting for LLM Sampling

The consideration of diverse LLMs and datasets
contributed to the challenges in prompting, as there
is no single uniform prompting approach across
LLMs and datasets (Sclar et al., 2023). Consider-
ing recent findings about the appropriate usage of
prompts (Sahoo et al., 2024) and those from our
own experimentation, we have converged on the
following prompting decisions:

• For non-chat LLMs, few-shot Chain-of-
Thought (CoT; Wei et al. (2022)) prompting
works better than zero-shot (Kojima et al.,
2022) for both datasets. We used 5 few-
shot examples. The few-shot prompting
leads to over 95% viable answers (except
for llama2-7b LLM, which has the viabil-
ity score of 83%) in generated solutions. A
viable answer is a single numeric/alphabetic
answer that can be extracted from the gener-
ated solution using extraction algorithms (see
Appendix C) to compare with the reference
answer. The viable answer can be correct or
incorrect.

• For chat LLMs, few-shot CoT distracts the
generation, which leads to unexpected outputs.
The zero-shot CoT works best. We utilize dif-
ferent models’ chat-templates from Hugging
Face6 to ensure correctness. The viability of
answer extraction for chat models is 92%.

The sample zero-shot and few-shot CoT prompt
templates are presented in Figure 2.

6https://huggingface.co/docs/transformers/en/
chat_templating
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C Answer Extraction from LLM
Responses

The adapted prompting approaches used in our
LLM queries are designed to instruct LLMs to
specify their final answers at the very end of each
of their responses. We thus use a simple answer
extraction policy of selecting the last mentioned
numerical value (for GSM8K) and multiple-choice
option (for MMLU) from the generated responses.
Responses failing to report any final answer are re-
garded as invalid and counted as incorrect answers.
For MMLU, we evaluate the extracted options directly
against the annotated correct options (among ‘A’,
‘B’, ‘C’, and ‘D’) in the dataset. For GSM8K, ques-
tions where the absolute difference between the
ground truth and predicted numerical answers are
less than ϵ = 0.1 are considered to be solved cor-
rectly. This threshold was set to accommodate
instances where model-generated real-valued an-
swers differ slightly from the expected answer.

Lessons Learned: It is observed that sometimes
the expected answer is present in one of the last
sentences of the response instead of at the very end.
We extracted all such answers as well. Allowing a
0.1 absolute error difference leads to more accurate
answers.

D Implementation, Hyperparameters,
and Hardware Details

Querying LLMs We use the vLLM package7

to query LLMs. All models were queried with
a temperature of 0.8 and a max token length of
2000. Each question prompt was queried 10 times
with different initialization seeds. We used a single
Nvidia A100 GPU for all runs. Querying each
dataset once took approximately 1-2 hours.

Training Routing Classifiers We use the Hug-
gingFace library8 for loading and tuning all pre-
trained Transformer encoders in our experiments.
Each model was trained for 10 epochs, with an
initial learning rate of 2e-5, warmup ratio of 0.1,
and class-balanced CrossEntropy loss. The train-
ing checkpoint with the lowest validation loss was
selected for inference.

E Detailed Results for Routing Models

See Figures 3-5 and Tables 5-6.

7https://github.com/vllm-project/vllm
8https://huggingface.co/

Models ACC (%) LAT (sec)
Oracle 87.18 3.46
Random 55.37 3.52
gemma-7b 71.11 7.10
metamath-7b 67.55 4.70
mistral-7b 59.74 3.70
mistral-7b-it 50.41 1.00
llama2-13b-chat 46.70 1.80
gemma-7b-it 36.84 0.70
top-2 LLMs 81.80 11.80
top-3 LLMs 84.00 15.5
top-4 LLMs 85.82 16.5
top-5 LLMs 86.03 18.3
bottom-2 LLMs 55.64 2.50
bottom-3 LLMs 67.02 3.50
bottom-4 LLMs 75.51 7.20
bottom-5 LLMs 79.91 11.90
All LLMs 74.37 19.00
Upper Bound of MLC 79.68 5.16
MLC + Argmax policy 67.62 4.76
MLC + Random policy 67.47 4.76
MLC + Prediction policy 67.70 4.77
MLC + Sorted Pred policy 59.90 4.77
SC + Argmax policy 67.55 4.70
Clustering + TF-IDF 67.55 4.70
Clustering + RoBERTa 67.55 4.70

Table 5: Performance of different routing models on
GSM8K data. ACC: mean accuracy with MAJ@10 (%),
LAT: LLM inference latency in seconds per query (10
generations for each query), MLC: multi-label classifier,
SC: separate classifiers, and top-k: best k performing
models. All other notation is the same as for Table 3.

F Related Work

Model Diversity Several surveys (Bommasani
et al., 2021; Minaee et al., 2024, inter alia) sug-
gest that LLMs can develop emergent capabilities.
Specifically, this suggests that models can show
behavior and demonstrate skills beyond explicitly
constructed ones. By virtue of differing training
data, models may exhibit a wide variety of domain
expertise. Jiang et al. (2023) demonstrates that no
single open-source LLM outperforms other models
across popular benchmarks. This further motivates
the need to develop ensembling or routing methods
aimed at improving the combined performance of
a pool of LLMs with a diverse range of abilities.

Model Selection A fundamental step in routing
queries within an ensemble of models is to esti-
mate the extent of overlap between the capabili-
ties of the LLMs in the candidate pool with those
deemed necessary to resolve an input query. Model
selection in the context of LLM routing greatly
differs from its traditional form in ML (Bishop,
2006; Raschka, 2020), wherein the training and test
datasets are similar in distribution. Training data
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Answer the following question step by step to the best of your ability.

Natalia sold clips to 48 of her friends in April, and then she sold half
as many clips in May. How many clips did Natalia sell altogether in

April and May?

Zero-Shot CoT Prompt

Sure, I'd be happy to help! Let's analyze the information given: 
In April, Natalia sold clips to 48 of her friends.
...
So, Natalia sold 24 clips in May.
Now, let's add the number of clips she sold in April and May to find out how
many clips she sold altogether:
48 clips + 24 clips = 72 clips
Therefore, Natalia sold a total of 72 clips in April and May.

Model Response

Zero-Shot CoT prompt for GSM8K 

<START_QUESTION> Question:  An auditor traces the serial numbers ... is supported by this test?
    (A) Valuation and allocation ... (D) Presentation and disclosure <END_QUESTION>
<START_ANSWER> Answer:  Let's think step by step. ... The answer is (B). <END_ANSWER>

<START_QUESTION> Question:  One hundred years ago, ... what is the investment worth today?
    (A) $13,000 (B) $600 (C) $15,000 (D) $28,000 <END_QUESTION>
<START_ANSWER> Answer: Let's think step by step. ... The answer is (A). <END_ANSWER>
...
<START_QUESTION> Question: A company whose stock ... stock dividend? <END_QUESTION>
    (A) Treasury stock is debited for $300. ... (D) Common stock is debited for $3,000.
<START_ANSWER> Answer: Let's Think step by step.

Few-Shot CoT Prompt

The stock dividend is calculated based on the number of shares outstanding, not the
current market price.  Hence the adjustment for the stock dividend is $1*$1,000*30%=300,
which is in Retained earnings.  The answer is (C). <END_ANSWER>

Model Response

Few-Shot CoT prompt for MMLU 

Few-Shot Exemplars

Figure 2: Sample zero-shot Chain-of-Thought (CoT) prompt template for a chat (or instruction-tuned) LLM and
few-shot Chain-of-Thought (CoT) prompt template for a standard LLM.

(a) GSM8K

(b) MMLU

LL
M

s
LL

M
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Figure 3: Distribution of queries from the GSM8K and
MMLU test sets solved (score 1 with MAJ@10) by each
LLM. The counts at the bottom of each figure denote
the number of questions in each chunk, and those on
the right denote the total number of questions solved by
each LLM.

for LLMs include massive corpora spanning tril-
lions of tokens with relatively straightforward learn-
ing objectives like next-token prediction (Brown
et al., 2020). Test data, on the other hand, often
involves highly structured tasks like reasoning and
question answering (Hendrycks et al., 2021; Cobbe
et al., 2021; Joshi et al., 2017), summarization (Tam
et al., 2023), and classification (Zhang et al., 2023),
which may not be very prevalent in correspond-
ing training data. This makes gauging the pain
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Figure 4: LLMs “solvability" distribution. The gold
label scores are obtained with MAJ@10, and prediction
label scores are obtained with a multi-label classifier.

points of resolving a complex query non-trivial.
Furthermore, studies like Rabinovich et al. (2023)
and Srivatsa and Kochmar (2024) suggest that cer-
tain aspects of the prompt phrasing, i.e., its length
and readability, significantly impact LLMs’ ability
to tackle the underlying tasks.

LLM Ensembling Previous attempts at ensem-
bling and routing of LLMs aim to tackle one of two
tasks: (1) Opting between LLM generations to se-
lect the best response. Liu and Liu (2021); Ravaut
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Figure 5: Different ablation configurations for LLMs for GSM8K and MMLU datasets.

Models ACC (%) LAT (sec)
Oracle 89.15 1.89
Random 52.50 2.35
gemma-7b 63.85 3.00
mistral-7b 62.09 1.80
mistral-7b-it 51.63 1.10
llama2-13b-chat 50.52 4.80
gemma-7b-it 49.28 1.00
llama2-7b 48.36 2.30
metamath-7b 42.28 2.40
top-2 LLMs 73.47 4.80
top-3 LLMs 79.54 5.90
top-4 LLMs 83.72 10.70
top-5 LLMs 85.75 11.70
top-6 LLMs 87.88 14.0
bottom-2 LLMs 60.13 4.70
bottom-3 LLMs 71.17 5.70
bottom-4 LLMs 78.10 10.50
bottom-5 LLMs 81.69 11.60
bottom-6 LLMs 83.11 13.40
All LLMs 60.39 16.40
Upper Bound of MLC 77.18 1.94
MLC + Argmax policy 62.28 2.95
MLC + Random policy 58.16 2.86
MLC + Prediction policy 63.85 2.95
MLC + Sorted Pred policy 48.36 2.92
SC + Argmax policy 62.87 2.94
Clustering + TF-IDF 61.76 2.83
Clustering + RoBERTa 61.76 2.83

Table 6: Performance of different routing models on the
MMLU data. ACC: mean accuracy with MAJ@10 (%),
LAT: LLM inference latency in seconds per query (10
generations for each query), MLC: multi-label classifier,
SC: separate classifiers, and top-k: best k performing
models. All other notation is the same as for Table 3.

et al. (2022); Jiang et al. (2023) train models to rank
or classify the most suitable response for a given
query. However, this requires querying all LLMs
in the model pool for each query during inference
time. This can become computationally expensive
with a large number of LLMs in the candidate pool.
(2) Building routing networks (Rosenbaum et al.,
2017) that utilize only a subset of parameters of a
model or a subset of experts from a pool of can-
didate models. For example, Jiang et al. (2024)
employ a Mixture-of-Experts (MoE) (Jacobs et al.,
1991; Collobert et al., 2002; Eigen et al., 2013)
model with 8 experts, wherein only 2 experts are
accessed at each model layer to produce the next to-
ken. This, however, requires pre-training the model
weights, which incurs large computing and data
costs. Alternatively, HYBRIDLLM (Ding et al.,
2024), Shazeer et al. (2017), and Shnitzer et al.
(2023) train separate classifiers which select the
best LLM(s) for each input query.

This paper aims to create and study a sparse
routing network for selecting the best LLM from
a pool of more than two LLMs for each exam-
ple. The routing network only needs to tune an
extra Transformer-based classifier without needing
to pre-train or fine-tune the LLMs. Furthermore,
we also incorporate the former task by measuring
the response quality (through accuracy) and deter-
mining if it can outperform the individual experts
(LLMs) in the pool.
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