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Abstract

Humans interpret visual aspects of objects
based on contexts. For example, a banana
appears brown when rotten and green when
unripe. Previous studies focused on language
models’ grasp of typical object properties. We
introduce WINOVIZ, a text-only dataset with
1,380 examples of probing language models’
reasoning about diverse visual properties un-
der different contexts. Our task demands prag-
matic and visual knowledge reasoning. We also
present multi-hop data, a more challenging ver-
sion requiring multi-step reasoning chains. Ex-
perimental findings include: a) GPT-4 excels
overall but struggles with multi-hop data. b)
Large models perform well in pragmatic rea-
soning but struggle with visual knowledge rea-
soning. c) Vision-language models outperform
language-only models.

1 Introduction

Language models (LMs) face challenges in devel-
oping intuitive reasoning and acquiring knowledge
from experience, similar to humans. Human knowl-
edge acquisition from the visual world is effortless
but poses difficulties for LMs, as such knowledge is
often not explicitly described in text. Overcoming
these challenges requires visual grounding, con-
necting language and visual information for com-
prehension.

Previous studies have predominantly aimed at
investigating language models in relation to ob-
ject prototypical visual properties such as color,
shape, and affordance, and transferring such knowl-
edge from vision-language models (Norlund et al.,
2021; Paik et al., 2021; Zhang et al., 2022; Li et al.,
2023b). In this work, we study language models’
reasoning ability on associations between objects
and their visual properties across different object
states. The task requires a model to reason about
different states of an object where the object may
exhibit different properties.

A man went to grab a quick breakfast before 
leaving, but saw that the only remaining banana 

was rotten.

The banana is brown.The banana is yellow.

Premise sentence

Hypothesis 1 Hypothesis 2

The banana is the 
color of a tree log.

The banana is the 
color of an egg yolk.

Multi-hop

Figure 1: The WINOVIZ task. We investigate the
divergent properties of an object and explore the rea-
soning abilities of language models pertaining to object
attributes.

In this work, we investigate the divergent proper-
ties of an object and explore the reasoning abilities
of language models pertaining to object attributes.
Annotators create a premise sentence portraying
a scene with a banana and two hypothesis sen-
tences highlighting its visual properties as depicted
in Fig. 1. The goal is to choose a more plausible hy-
pothesis, requiring comprehension of the banana’s
properties in different states. A more challenging
multi-hop version replaces the visual attribute word
with another object word sharing a similar visual
attribute.

Benchmarking zero-/few-shot performance in-
cludes text-only models like BERT (Kenton and
Toutanova, 2019), T5 (Raffel et al., 2020; Chung
et al., 2022), and GPT variants (Brown et al., 2020),
ranging from 110 million to 175 billion parameters.
Models incorporating visual information, such as
VL-BERT (Su et al., 2019) and Oscar (Li et al.,
2020), are explored.
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Key findings from experiments with the
WINOVIZ benchmark include: a) GPT-4 performs
effectively but degrades on multi-hop data. b)
Large models excel in pragmatic reasoning but
face challenges in visual knowledge reasoning. c)
Vision-language models outperform language mod-
els.

2 The WINOVIZ Task

The WINOVIZ task entails the need for a model to
deduce whether objects can demonstrate prototypi-
cal behaviors in various scenarios. More precisely,
when provided with a natural language sentence
describing an object engaged in a particular behav-
ior (premise sentence), the model must determine
between two sentences presenting contrasting vi-
sual attributes of the object (hypothesis sentences).
Fig. 2 includes dataset collection (details are in the
appendix)

Challenges. The WINOVIZ task assesses a ma-
chine’s reasoning ability about daily objects, fo-
cusing on their varied properties. Models often
struggle with visual knowledge related to common
objects due to limited explicit details in training
text, attributed to reporting bias (Norlund et al.,
2021; Jin et al., 2022). The task is challenging as it
requires pragmatic reasoning and visual knowledge
reasoning, involving finding intended meanings in
the text and reasoning about object properties. A
more challenging version, multi-hop data, requires
multi-step reasoning chains.

3 Experiments

We first describe the experimental setup used in our
analysis and share experimental results.

Language Models. We experiment with 7 lan-
guage models in total (Table 5). We include
encoder-only, encoder-decoder, decoder-only mod-
els. The sizes of LMs vary from 109M to 175B.
We include large LMs, GPT-3, GPT-3.5, and GPT-
4 (Brown et al., 2020; Ouyang et al., 2022; OpenAI,
2023).

Vision-language Models. We experiment with
a total of 5 vision-language models (see Table 5).
Our task involves understanding visual informa-
tion about objects in various states, derived from
image-caption datasets. We investigate whether
vision-language models surpass language models
in our task. For evaluation, we deliberately exclude

Object: Banana

P1: Ripe

P2: Rotten

Identify properties and attributes

VA1: Yellow

VA2: Brown

Write natural sentences for each attribute and property 

He picked up a ripe 
banana and put it in his 
grocery cart. 

P1: Ripe P2:Rotten
He went to grab a quick 
breakfast before leaving, but
saw that the only remaining 
banana was rotten.

VA1: Yellow
The banana is yellow.

VA2: Brown
The banana is brown.

Figure 2: Dataset Collection. We collect our data
through crowdsourcing efforts. The first step is to iden-
tify properties and visual attributes for an object and
the second step is to write natural sentences for each
property and attribute. Sentences with properties will
be used as premise sentences and sentences with visual
attributes will be used as hypothesis sentences.

image inputs and focus solely on the language com-
ponents of the models, using encoder-only models
(VL-BERT (Su et al., 2019) and Oscar (Li et al.,
2020)), a decoder-only model (LLaVA-v1.5 (Liu
et al., 2023)), and a bi-encoder model (CLIP ‘clip-
vit-large-patch14’(Radford et al., 2021)).

Inference. In our analysis, we rely on zero-
shot inference and few-shot in-context learning
for encoder-decoder, decoder-only models. Our
prompt design for the zero-shot inference is as
follows: “You will be given a sentence, and two
options. Output either Option 1 or Option 2, de-
pending on which option is more likely to be true
given the sentence.” For the few-shot in-context
learning, we use 4 examples. We also adopt chain-
of-thought prompting (Wei et al., 2022) for the few-
shot inference. In addition to the encoder-decoder
and decoder-only models, we explore encoder-only
models. Encoder-only models cannot do zero-shot
inference for multi-choice tasks since it requires a
task-specific head for unseen tasks. Thus, we fine-
tune the encoder-only models with SNLI (Bowman
et al., 2015) and ANLI (Nie et al., 2019) datasets
and we use only ‘contradiction’ and ‘entailment’
labels in fine-tuning.

Evaluation Setup. We evaluate models with two
different metrics: individual accuracy (Ind.) and
pair accuracy (Pair). Individual accuracy refers to
accuracy on each individual question, while pair
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Model Single-hop Multi-hop

Ind. Pair Ind. Pair

FLAN-T5-XXL 86.24 72.71 68.09 40.43
LLaMA2 73.28 48.85 52.84 20.45
LLaVA 79.47 59.63 56.82 17.05
GPT-3 84.17 69.24 58.5 22
GPT-3.5 86.58 75.62 58 20
GPT-4 90.25 81.19 72 45

Table 1: Results on WINOVIZ in a zero-shot manner.
We evaluate large models using 0 examples on both
our single-hop and multi-hop datasets. We observe that
these models performed well on the single-hop data;
however, their performance is significantly degraded on
the multi-hop data.

accuracy refers to the accuracy on each pair of
questions. In WINOVIZ, two premise sentences are
paired and they share the same set of hypothesis op-
tions. We measure the model’s performance based
on its ability to accurately predict both premise
sentences. If the model’s prediction is correct for
only one of the premise sentences in the pair, we
consider the prediction less robust.

3.1 Analysis Questions

In our empirical analysis, we try to answer the
following questions:

1. How good are large models on our task?
When it comes to multi-hop data, how good
are they? (Section 3.2)

2. Do few-shot prompting and CoT prompting
improve the results? (Section 3.3)

3. Which reasoning step between pragmatic rea-
soning and visual knowledge reasoning is
main bottleneck in our task? (Section 3.5)

4. Do vision-language models outperform
language-model counterparts? (Section 3.2)

3.2 Zero-shot Results

We evaluate language models and vision-language
models in a zero-shot way, without utilizing any
training data (Table 1). Overall, large models per-
form well on the single-hop data, but their perfor-
mance is significantly degraded on the multi-hop
data. Among them, GPT-4 exhibits the best over-
all performance on both single-hop and multi-hop
tasks. Surprisingly, FLAN-T5-XXL, the smallest

Model Single-hop Multi-hop

Ind. Pair Ind. Pair

FLAN-T5 (0) 86.35 73.17 68.09 40.43
FLAN-T5 (4) 87.84 76.15 69.32 42.05
FLAN-T5 (4 CoT) 87.16 74.77 67.05 38.64
GPT-3.5 (0) 86.58 75.62 58 20
GPT-3.5 (4) 88.42 77.75 62.5 28.41
GPT-3.5 (4 CoT) 77.18 59.63 65.34 34.09

Table 2: Results on WINOVIZ with 4-shot in-context
learning. We use FLAN-T5-XXL and GPT-3.5 in this
analysis. Standard prompting marginally improves the
performance of them, while chain-of-thought prompting
is beneficial for GPT-3.5 in the multi-hop task.

Method Single-hop Multi-hop

Ind. Pair Ind. Pair

BERT-Large 67.31 39.44 54 16
VL-BERT-Large 69.61 42.88 56 18
Oscar-Large 72.93 50.22 64.5 32

Table 3: Results on WINOVIZ after NLI training. We
train encoder-only models on NLI datasets and choose
an option by the highest probability of the ‘entailment’
class.

model among the comparison, yields comparable
results to larger models, including GPT-3. More-
over, it outperforms GPT-3 and GPT-3.5 on the
multi-hop dataset. LLaVA, built upon LLaMA2
and trained with image-caption datasets, shows
noteworthy performance. As indicated in the ta-
ble, LLaVA surpasses LLaMA2 on both single-hop
and multi-hop data, suggesting that image-caption
datasets enhance reasoning in our task.

3.3 Few-shot Results

Table 2 displays the results with 4 in-context ex-
amples for FLAN-T5-XXL and GPT-3.5. We con-
duct tests using standard prompting and chain-of-
thought prompting in this experiment. Initially,
standard prompting with 4 in-context examples
marginally improves the performance of FLAN-
T5 and GPT-3.5 on both single-hop and multi-hop
tasks. It’s surprising that chain-of-thought prompt-
ing appears to negatively impact the performance of
GPT-3.5. However, it proves beneficial for GPT-3.5.
in the multi-hop task. We speculate that the effec-
tiveness of chain-of-thought prompting increases
when the task is more challenging.
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Model Pragmatic Visual Combined

FLAN-T5-XXL 93.04 82.91 79.75
LLaMA2 86.71 70.25 69.62
LLaVA 92.41 74.05 73.25
GPT-3.5 91.14 82.28 79.75
GPT-4 95.57 88.61 85.44

Table 4: Results on pragmatic reasoning, visual
knowledge reasoning, and our original data (com-
bined). We study different types of reasoning in our
data. We report individual accuracy.

3.4 Results of Encoder-only Models

Encoder-only models cannot be applied to our
task without fine-tuning. Thus, we fine-tune the
encoder-only models on natural language inference
datasets instead. By doing this, our task is framed
into the NLI setup and choose an option by the high-
est probability of the ‘entailment’ class. We fine-
tune the encoder-only models with SNLI (Bowman
et al., 2015) and ANLI (Nie et al., 2019) datasets
and we use only ‘contradiction’ and ‘entailment’
labels. Table 3 shows the results of encoder-only
models. VL-BERT and Oscar are BERT-based
vision-language models, and they are trained on
image-caption datasets. In our experiments, we ob-
serve that the vision-language models consistently
surpass the BERT model on our dataset.

3.5 Pragmatic and Visual Knowledge
Reasoning

We investigate whether models genuinely under-
stand visual knowledge for our task. Our task re-
quires pragmatic reasoning and visual knowledge
reasoning. We decouple our task into pragmatic
reasoning and visual knowledge reasoning and an-
alyze which step is a bottleneck. Table 4 shows the
results on pragmatic reasoning (pragmatic), visual
knowledge reasoning (visual), and our original data
(combined), utilizing the same subset. Firstly, re-
sults on pragmatic reasoning are better than others,
suggesting that large models do well on pragmatic
reasoning. For example, GPT-4 achieves 95.57%
on pragmatic reasoning. Main bottleneck in our
task is on visual knowledge reasoning; results on
visual knowledge reasoning are lower than those on
pragmatic reasoning. When comparing LLaMA2
and LLaVA, LLaVA demonstrates superior abilities
in both pragmatic reasoning and visual knowledge
reasoning. Interestingly, FLAN-T5-XXL performs
comparably to a proprietary model, GPT-3.5, in

terms of pragmatic reasoning and visual reasoning.

4 Conclusion

Examining real-world object properties requires
a visual understanding that language models lack.
In our study, we introduced a text-only WINOVIZ

focused on question-answering tasks, comprising
1,380 examples exploring language models’ reason-
ing capabilities across various visual properties of
objects in diverse contexts. Our findings revealed
that large language models demonstrate effective
performance overall but struggle particularly with
the multi-hop version of our dataset. It became
apparent that the bottleneck in our task lies in the
reasoning of visual knowledge. Vision-language
models surpass their language-only counterparts,
although image-generation approaches prove in-
effective for our specific task. Future endeavors
will delve into how to efficiently transfer visual
knowledge from images or captions.

5 Limitations

Our work is focused on a specific subset of lan-
guage models and vision-language models. We
adopt vision-language models in which the lan-
guage backbones are pre-trained using image-
caption datasets. Additionally, we employ Stable
Diffusion for image generation, although the cur-
rent output may not directly benefit our task. Utiliz-
ing state-of-the-art diffusion models could enhance
image quality, yet the challenge of generating im-
ages useful for our task persists. Moreover, our
observations indicate that large language models
excel in our single-hop task, achieving up to 90%
accuracy. This suggests that these large models can
effectively reason over visual knowledge even in
the absence of explicit visual signals. Nonetheless,
how visual signals can be harnessed to enhance
language models is underexplored, and we defer it
to future research endeavors.
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A Appendix

A.1 Data Collection

The data collection is broken down into three sec-
tions: (1) collecting candidate objects, (2) annotat-
ing premise and hypothesis sentences, (3) verifying
the quality of the annotated dataset, and (4) human
evaluation.

Object Collection. To begin with, we gather
a collection of objects along with their poten-
tial properties or attributes for constructing our
data. These objects and attributes are obtained
by scraping information from reliable sources such
as Memory Colors (Norlund et al., 2021), Visual
Property Norms (Hagström and Johansson, 2022),
and McRae feature norms (McRae et al., 2005).
Through this process, we manage to collect a total
of 800 unique objects and 302 unique attributes.
However, it is necessary to refine our dataset by
filtering out attributes that are either too abstract
or non-visual in nature. To accomplish this, we
employ specific heuristics to ensure the inclusion
of only concrete and visually relevant attributes.
As a result of this filtering process, we successfully
obtain a final dataset comprising 775 objects and
156 attributes.

Dataset Annotation. We utilized Amazon Me-
chanical Turk (Crowston, 2012) for data annotation,
as depicted in Figure 1. The data annotation pro-
cess involves several steps. Initially, annotators are
given an object, and are instructed to identify two
properties for the object and corresponding visual
attributes for those properties. For example, for the
object banana, the annotator may come up with
two properties ripe and rotten, which would have
corresponding visual attributes yellow and brown,
respectively. After identifying a pair of object prop-
erties and visual attributes, they are tasked with
composing natural language sentences for each at-
tribute and property. The properties are associated
with premise sentences, while the attributes were
linked to hypothesis sentences.

Annotators were selected from a small pool of
Mechanical Turkers that the authors had previously
worked with. The Turkers had to further pass a
qualification task that tested their understanding
of the annotation task. The authors manually ex-
amined the annotations to ensure quality of the
collected data.
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Model # Params Public VL model

BERT-Base 109M ✓ ✗

BERT-Large 335M ✓ ✗

VL-BERT-Large 335M ✓ ✓

Oscar-Large 335M ✓ ✓

CLIP-Large 427M ✓ ✓

FLAN-T5-XXL 11B ✓ ✗

InstructBLIP 11B ✓ ✓

LLaMA2 13B ✓ ✗

LLaVA 13B ✓ ✓

GPT-3 175B ✗ ✗

GPT-3.5 Unknown ✗ ✗

GPT-4 Unknown ✗ ✗

Table 5: A list of models used in the experiments:
BERT (Kenton and Toutanova, 2019), CLIP (Radford
et al., 2021), VL-BERT (Su et al., 2019), Oscar (Li
et al., 2020), FLAN-T5 (Chung et al., 2022), Instruct-
BLIP (Dai et al., 2023), LLaMA2 (Touvron et al., 2023),
LLaVA (Liu et al., 2023), GPT-3 (Brown et al., 2020;
Ouyang et al., 2022), and GPT-4 (OpenAI, 2023). We
use the ‘text-davinci-003’ API for GPT-3, ‘gpt-3.5-
turbo-instruct’ for GPT-3.5, and ‘gpt-4-0314’ for GPT-4.

A.2 Versions of WINOVIZ

We now collect our WINOVIZ data. We also pro-
pose the multi-hop data, a more challenging ver-
sion of WINOVIZ, and a dataset for probing visual
knowledge. For the multi-hop data, we create new
hypothesis options that require more intermediate
steps while we simplify the premise sentences to
measure the ability of models about visual knowl-
edge.

Multi-hop Data. To create a more challenging
task, we introduce a multi-hop version of our data,
which requires more intermediate steps. The basic
idea of the multi-hop data is to replace a visual
attribute word in hypotheses with another object
word which has a similar visual attribute. This
requires one more reasoning step to find out the vi-
sual attribute. For example, one hypothesis option
is ‘The banana is yellow.’. Then ’yellow’ can be
replaced with ‘the color of an egg yolk.’ So the new
hypothesis option for the multi-hop version is ’The
banana is the color of an egg yolk.’ The multi-hop
version is more challenging since a model has to
find out what color is an egg yolk. We focus on
color, shape, material on the multi-hop data and
curate prototypical objects for each visual property
word. We get 200 samples for the multi-hop data.

Pragmatic Reasoning vs. Visual Knowledge Rea-
soning. Another important aspect of this work is

Model Ind. Pair

FLAN-T5-Base (No imgs) 67.89 40.37
CLIP-Large 64.67 36.46

FLAN-T5-XXL (No imgs) 86.24 72.71
FLAN-T5-XXL (Captions) 85.83 71.88

InstructBLIP 53.21 22.93

Table 6: Results on WINOVIZ with generated im-
ages. We use Stable Diffusion (Rombach et al., 2022)
to generate 5 images per premise sentence. We adopt
majority voting at inference time to choose an option.
FLAN-T5-Base (No imgs) refers to a model without
any generated images, with a size comparable to CLIP-
Large. FLAN-T5-XXL (No imgs) refers to a model
without any generated images, while FLAN-T5-XXL
(Captions) refers to a model with captions generated
by BLIP2 on the generated images. Instead of directly
inputting images into FLAN-T5, we extract captions
from the generated images and use them as additional
context. InstructBLIP uses generated images.

that models genuinely understand and know visual
knowledge. Our task requires pragmatic reasoning,
the process of finding the intended meaning, and
visual knowledge reasoning but models may fail
in one of the reasoning steps. Thus, we decouple
the premise sentence into pragmatic reasoning step
and visual knowledge reasoning step to analyze
which step is a bottleneck. Pragmatic reasoning
involves finding the intended meaning and finding
key phrases for the next step, visual knowledge
reasoning. For example, a model should first find
‘the banana is ripe’ given the premise sentence in
the pragmatic reasoning step (Figure 1). Given
the simplified sentence, a model should choose a
better option, ‘the banana is yellow’, in the visual
knowledge reasoning step. We obtain 160 samples
to study this (Section 3.5).

A.3 Using Image Generation for WINOVIZ
Task.

Another approach for our task is to utilize image
generation. We generate images based on premise
sentences and employ these generated images for
our task. The generated images may contain use-
ful information that assists in identifying a correct
hypothesis. We utilize an image generation ap-
proach, Stable Diffusion (Rombach et al., 2022), to
generate images. We use the generated images to
guide the LMs inspired by imagination-guided text
generation (Zhu et al., 2022). Given the generated
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images, there are three ways to use them. The first
method involves using CLIP (Radford et al., 2021)
on both the images and hypothesis sentences to
identify a superior hypothesis option. Specifically,
we calculate the cosine similarity between the em-
bedding of a generated image and the embedding
of a hypothesis option, selecting the hypothesis
with a higher cosine similarity score. The second
approach is to generate captions for the generated
images using a caption model. Since language mod-
els cannot directly process images, we generate
captions and utilize them as additional context for
the task. BLIP2 (Li et al., 2023a) is employed for
caption generation. The third strategy is to reframe
our task as a visual question-answering task and
employ a vision-language model to identify a bet-
ter option. In this setup, we use InstructBLIP (Dai
et al., 2023). For image generation, we use Sta-
ble Diffusion (Rombach et al., 2022), generating 5
images per premise sentence. A better hypothesis
option is determined through majority voting.

Table 6 displays the outcomes related to image
generation. The first approach utilizing CLIP falls
short compared to FLAN-T5-Base which is slightly
smaller than CLIP-Large. In the second approach
involving BLIP2 captions, we opt for FLAN-T5-
XXL as the benchmark, comparing one scenario
with no additional data and another incorporating
captions from generated images. Our experiment
reveals a notable decline in performance when cap-
tions are employed. The third approach signifi-
cantly underperforms FLAN-T5-XXL by a large
margin. These experiments collectively indicate
that generated images offer limited utility for our
task. Furthermore, a manual assessment of 100
generated images reveals that 66% of them do not
contribute meaningfully to our objectives. Exam-
ples of generated images with premise sentences
are shown in Figure 3. In the figure, the bananas in
both images are yellow; the generated images do
not provide any clues to choose a more plausible
option.

A.4 Related Work

There are multiple perspectives on how our contri-
butions relate to previous work, and we elaborate
on this in the subsequent sections.

Visual Knowledge Probing. Several attempts
have been made to assess the reasoning ability
of language models regarding objects, primarily
through natural language benchmarks (Norlund

Figure 3: Examples of generated images. We generate
images using Stable Diffusion (Rombach et al., 2022).
In the second example, the bananas in both images are
yellow, leading the model to select the incorrect option.
The generated image examples don’t assist in selecting
a more plausible hypothesis option.

et al., 2021; Hagström and Johansson, 2022; Paik
et al., 2021; Zhang et al., 2022; Singh et al., 2022;
Qasemi et al., 2021). Norlund et al. (2021) in-
troduced a task involving querying a multimodal
model for visual commonsense knowledge related
to memory colors, which are the typical colors as-
sociated with well-known objects. Hagström and
Johansson (2022) expanded on this work by propos-
ing visual property norms as a measure of visual
commonsense knowledge in both language models
and multimodal models. Paik et al. (2021) evalu-
ated the color perception of language models us-
ing a color dataset called CoDa, revealing that re-
porting bias negatively affects model performance
and that multimodal training can alleviate these ef-
fects. Zhang et al. (2022) confirmed these findings
and extended the evaluation to a wider range of
visually salient properties. Similarly, Singh et al.
(2022) evaluated vision-language models on a vi-
sually accessible commonsense knowledge dataset.
Liu et al. (2022) explored spatial commonsense,
the knowledge about spatial position and relation-
ship between objects, finding that image synthesis
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models are more capable of learning accurate and
consistent spatial knowledge than other models. Gu
et al. (2022) proposed a probing dataset for physi-
cal knowledge about everyday things. In contrast,
we present a challenging dataset that probes the
reasoning abilities of language models regarding
variant visual properties of objects under different
context.

Vision-Language Modeling Recent advances in
vision-language (VL) models have led to success
on vision-language tasks such as visual question
answering, captioning, and grounding (Antol et al.,
2015; Lin et al., 2014; Mao et al., 2016). Existing
VL models jointly learn image and text represen-
tations through cross-modal alignments including
VL-BERT (Su et al., 2019), LXMERT (Tan and
Bansal, 2019), Oscar (Li et al., 2020). Recent ap-
proaches have introduced visual instruction tun-
ing, which involves fine-tuning a VL model using
instruction-following data (Liu et al., 2023).

While these VL models have shown significant
improvement in VL tasks, the exploration of how
to transfer visual knowledge from VL modeling to
language tasks remains underexplored. Vokeniza-
tion (Tan and Bansal, 2020) utilized token-level
text-to-image retrieval to transfer visual knowledge
to language models. VidLanKD (Tang et al., 2021)
employd contrastive learning to train a teacher
model on video datasets and uses distillation ap-
proaches to transfer visual knowledge from the
teacher to a student model. CMKT (Jin et al.,
2022) investigated two types of knowledge trans-
fer: text knowledge transfer (e.g., captions) and vi-
sual knowledge transfer (e.g., images and captions).
Their findings demonstrate that such transfer can
enhance performance on commonsense reasoning
tasks.

A.5 Annotation Interfaces
We provide Turking interfaces: qualification task
in Figure 4, and annotation task in Figures 5, 6, 7,
8.
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Figure 4: The Interface of the qualification task. We provide 12 questions to find quality workers.
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Figure 5: Interfaces of annotating visual contrast sets (parts 1 and 2).
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Figure 6: Interfaces of annotating visual contrast sets (part 3).
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Figure 7: Interfaces of converting contrast sets into sentence puzzles (parts 1 and 2).
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Figure 8: Interfaces of converting contrast sets into sentence puzzles (part 3).
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