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Abstract
We consider two types of numeric representa-
tions for conveying the uncertainty of predic-
tions made by Machine Learning (ML) models:
confidence-based (e.g., “the AI is 90% confi-
dent”) and frequency-based (e.g., “the AI was
correct in 180 (90%) out of 200 cases”). We
conducted a user study to determine which fac-
tors influence users’ acceptance of predictions
made by ML models, and how the two types of
uncertainty representations affect users’ views
about explanations. Our results show that users’
acceptance of ML model predictions depends
mainly on the models’ confidence, and that ex-
planations that include uncertainty information
are deemed better in several respects than expla-
nations that omit it, with frequency-based repre-
sentations being deemed better than confidence-
based representations.

1 Introduction
There is a large body of research on how to com-
municate the uncertainty associated with predicted
outcomes, in particular in healthcare (Freeman,
2019; Simpkin and Armstrong, 2019; Spiegelhal-
ter, 2017; Zipkin et al., 2014). In that research,
the uncertainty is derived from simple historical
population averages, e.g., iPrevent provides such
information to enable patients to assess their risk of
breast cancer. However, in the age of personalised
medicine, the uncertainty is obtained from the pre-
dictions of Machine Learning (ML) models, which
are tailored to individuals by learning complex rela-
tionships between a prediction (e.g., a disease) and
a large number of variables. Understanding this un-
certainty is essential to improve medical decision
making (Begoli et al., 2019). However, there is rel-
atively little research on conveying the uncertainty
of predictions made by ML models.

In this paper, we consider two types of
numeric representations for conveying the un-
certainty of ML predictions: Confidence and

*Work done while the author was at Monash University.

Confidence+Frequency (denoted %Frequency).
The Confidence representation was proposed
in (Cau et al., 2023) to convey how certain an AI
is of its prediction (e.g., “The AI is 80% confident
of the predicted outcome”); and the %Frequency
representation, which is best practice for conveying
population-based statistics in healthcare (Freeman,
2019; Trevena et al., 2013), gives a frequency out
of a reference class (a base population), and the
corresponding percentage. The reference class may
be generic (e.g.,“Out of 200 people, 160 (80%) will
develop this side effect”) or tailored (e.g., “Out of
200 people like you, . . .”). We chose the latter, as
recommended in (Trevena et al., 2013).

We describe a user study that examines (1) the
influence of these two representations of uncer-
tainty and other factors on users’ acceptance of
the predictions of an ML model; and (2) users’
views about explanations featuring these represen-
tations of uncertainty. Our study was conducted
in a healthcare scenario, sourced from the Bussel-
ton dataset (Knuiman et al., 1998), where an AI
uses demographic, medical and lifestyle informa-
tion to predict whether a person is at risk of Coro-
nary Heart Disease (CHD). Concessive-contrastive
explanations for these predictions, without uncer-
tainty information, were used as a baseline. We
chose these explanations owing to their support in
the literature (Biran and McKeown, 2017; Maruf
et al., 2023; Miller, 2019).

Table 1 shows a sample scenario, a concessive-
contrastive explanation for an at-risk prediction,
and a Confidence and a %Frequency representa-
tion of uncertainty. The baseline explanation fol-
lows the general template used in (Maruf et al.,
2024) for the concessive-contrastive component of
conservative explanations. It starts with a pream-
ble which mentions feature values that support an
outcome that differs from the predicted one (“even
though” part), and ends with a resolution which
mentions feature values that overcome the values

https://www.petermac.org/iprevent
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Table 1: Instance from the Busselton dataset (top part),
a concessive-contrastive explanation of the AI’s predic-
tion, and a Confidence and %Frequency representation
of the uncertainty of this prediction.

At-risk Scenario – ResidentID 83:
You are a 76 year old female whose weight is optimal, does
not drink, but smokes 10 cigarettes a day. You also have
optimal blood pressure, borderline total and HDL cholesterol,
and high triglycerides. But on the upside, you are not diabetic.
Concessive-contrastive explanation (baseline)
Even though you have optimal blood pressure, the AI pre-
dicts that you are at risk of a coronary event because you
are between 72 and 79 years old and have a high level of
triglycerides.
Confidence representation of uncertainty
Based on its past performance, the AI is 90% confident that
you are at risk of a coronary event.
%Frequency representation of uncertainty (tailored)
The AI is 90% confident that you are at risk of a coronary
event. This confidence is based on the AI’s past performance,
where out of 200 residents like you (same age, blood pres-
sure and level of triglycerides), it correctly predicted that 180
(90%) were at risk of a coronary event.

in the preamble to yield the predicted outcome.1

Our user study considers four research questions:
RQ1: How does the type of uncertainty informa-

tion (Confidence or %Frequency) affect the like-
lihood of accepting a prediction, compared to a
baseline explanation that omits this information?
RQ2: Which factors affect the likelihood of ac-

cepting a prediction when uncertainty information
is added to a baseline explanation?
RQ3: How do percentages in Confidence and

%Frequency representations and the size of the ref-
erence class in %Frequency representations affect
the acceptance of a prediction when uncertainty
information is added to a baseline explanation?
RQ4: How does uncertainty information affect

users’ views about four explanatory attributes: com-
pleteness, presence of extraneous information, help-
fulness to understand the AI’s reasoning, and sup-
port for decision making? (Hoffman et al., 2018).

This paper is organised as follows. Section 2
presents related work on conveying uncertainty.
Section 3 describes our experimental design, fol-
lowed by our results in Section 4. Section 5 sum-
marises key findings and discusses future work.

2 Related Work
There has been substantial research in communicat-
ing the uncertainty associated with predicted out-
comes, in particular in healthcare (Freeman, 2019;
Simpkin and Armstrong, 2019; Spiegelhalter, 2017;
Zipkin et al., 2014). Most of that research con-

1We eschew varying the generated text, e.g., by using
Large Language Models, as this may vitiate the experiments.

siders how to convey probabilities derived from
historical population-based statistics, focusing on
modality selection (i.e., words, numbers or graphs),
and within each modality, on selecting a specific
format (e.g., probabilities, percentages or natural
frequencies for numeric representations).

Gigerenzer (2003) demonstrated that natural fre-
quencies are more understandable than probabili-
ties, and that it is essential to provide a reference
class. But in later review articles, Freeman (2019)
and Spiegelhalter (2017) argued that both percent-
ages and frequencies are required. These insights
have informed best practice in uncertainty repre-
sentations shown to patients (e.g., iPrevent).

Research on communicating uncertainty also
considered the effect of other factors on users’
perceptions of risk, such as communicative in-
tent (Spiegelhalter, 2017), risk type (absolute or
relative) (Gigerenzer, 2003), framing of an out-
come (positive or negative) (Peters et al., 2011),
context (e.g., information about a population at a
lower risk) (Lipkus et al., 2001), and users’ numer-
acy (Vromans et al., 2020).

Our work is inspired mainly by the research of
Vromans et al. (2020) and Cau et al. (2023). Vro-
mans et al. (2020) studied the interaction between
the specificity of the reference class in frequency
representations (generic versus tailored) and pre-
sentation format (words only versus words and
numbers) when communicating population-based
statistics. They found that patients deemed tailored
risks to be less accurate and higher than generic
risks when the risks were presented in words only,
but not when words were combined with numbers.

Cau et al. (2023) examined the interaction be-
tween the correctness of an ML model, the ex-
planation style and the model’s confidence in its
prediction (expressed as a percentage), e.g., “the
AI is 45% confident that the price will increase”.

The research described in this paper advances the
state-of-the-art in that (1) it compares the influence
of Confidence and %Frequency representations of
uncertainty on users’ acceptance of ML predictions
(which differ from population-based historical pre-
dictions); (2) it considers the influence of three new
factors, viz predicted outcome, size of the reference
class and level of concern about a coronary event,
on users’ acceptance of a prediction, in addition
to factors from the literature, viz confidence per-
centage (Cau et al., 2023), (dis)agreement between
AI and user predictions (similar to (Maruf et al.,
2023)) and users’ numeracy (Vromans et al., 2020);

https://www.petermac.org/iprevent
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Table 2: Classes, features and values, Busselton dataset.

Predicted classes: Not at risk of CHD, At risk of CHD
age (in years): 61 · · · · · · 95
gender: female male
weight status: optimal underweight overweight obese
daily std. drinks: 0 · · · · · · 44
daily cigarettes: 0 · · · · · · 75
blood pressure: optimal normal-to-high high
total cholesterol: low normal borderline high
HDL cholesterol: optimal borderline low
triglycerides: low normal borderline high
diabetes: no yes

and (3) it examines how uncertainty information in
general and our two types of uncertainty represen-
tations influence users’ views about explanations
that convey the predictions of ML models.

3 Experimental Setup
We describe our dataset, the design of our user
study,2 our experiments and our participant cohorts.

3.1 Dataset
Owing to the prevalence and importance of un-
certainty information in healthcare, we chose a
dataset from the medical domain, specifically, the
Busselton dataset (Knuiman et al., 1998). This
dataset contains demographic, medical and lifestyle
information for a group of people, and informa-
tion about whether they developed coronary heart
disease (CHD) within ten years of the initial data
collection, which is encoded as predicted class (Ta-
ble 2). The dataset was pre-processed as described
in Appendix A, and we trained a decision tree that
predicts whether a person is at risk of CHD (Fig-
ure 1, Appendix A).

The explanations we showed in this study were
based on the feature values in the path between the
root of the decision tree and a prediction (Guidotti
et al., 2019; Stepin et al., 2020). However, we man-
ually added feature values, so that all the baseline
explanations are of similar length, thereby obviat-
ing this experimental variable (according to Lom-
brozo (2016), explanation length influences users’
perceptions).

3.2 User study design
The research questions were addressed by means of
two experiments: (1) between subjects – one group
of participants saw only Confidence representa-
tions, and another group saw only %Frequency
representations; and (2) within subject – each par-
ticipant saw a Confidence representation followed

2We have addressed the recommendations for human eval-
uation in (Howcroft et al., 2020). The experiment and data are
available here.

by a %Frequency representation. We conducted
both experiments for the following reasons. On one
hand, within-subject experiments generally yield
stronger results than between-subjects experiments,
especially for relatively low numbers of partici-
pants. However, the presentation of %Frequency
representations after Confidence representations in
the within-subject experiment may influence users’
opinions about these representations.

Specificity of the %Frequency representation.
As mentioned in Section 2, Vromans et al. (2020)
found no difference in the effect of generic and
tailored frequency representations when words are
combined with numbers (they did not investigate
numbers alone). Nonetheless, we chose tailored
representations, as they are in line with medical
practice (e.g., iPrevent).3

Independent variables. Our experiment has
three intrinsic independent variables, viz predicted
outcome (at-risk, not-at-risk), confidence of the AI
in its prediction and reference class size (only for
%Frequency representations); and three extrinsic
independent variables, viz (dis)agreement between
AI and user predictions (‘agree’, ‘disagree’), and
two participant features – level of concern about
CHD and numeracy. The reference class for a tai-
lored %Frequency representation is the number of
people in the dataset who share the features of the
current patient that were mentioned in the base-
line explanation, e.g., blood pressure, age and level
of triglycerides for the example in Table 1. The
level of concern about CHD was provided by par-
ticipants (’Not at all concerned’: 1 to ‘Extremely
concerned’: 5). Following Vromans et al. (2020),
participants’ numeracy was assessed using Fagerlin
et al.’s (2007) Subjective Numeracy Scale (SNS),
which correlates well with mathematical test mea-
sures of objective numeracy. The SNS consists
of eight self-assessment numeracy questions (on
a 6-point Likert scale; Table 9, Appendix B), and
participants’ Subjective Numeracy Score (SNSc) is
the average of their answers’ scores in the SNS.

We chose two values for confidence {high (90%),
low (65%)}, and two values for reference class size
{large (200 patients), small (20 patients)} out of
1000 people. For example, a low-confidence pre-
diction for a large reference class talks about “130

3Our wording for %Frequency representations resembles
that used in (Vromans et al., 2020). However, they used
frequencies to clarify medical terms, which do not always
match lay-people’s understanding, e.g., “common (occurs in
10 out of 100 people)”.

https://umlt.infotech.monash.edu/?page_id=3986
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(65%) out of 200 patients”, while a high-confidence
prediction for a small reference class talks about
“18 (90%) out of 20 patients”. It is worth noting that
the confidence values and reference class sizes are
not based on the dataset; rather, they were chosen
to represent distinct categories, and numbers that
are easy to process. Specifically, their values were
selected so that they are significantly different, but
at the same time, we wanted a low confidence to be
substantially higher than random chance (in con-
trast with (Cau et al., 2023), where low-confidence
values were between 12-55%). These choices are
somewhat arbitrary, and additional research is re-
quired to ascertain the effect of other options.

Scenarios. Eight scenarios are required to cover
all the combinations of the three intrinsic vari-
ables. However, to avoid participant fatigue, our
scenarios comprise only four combinations of pre-
dicted outcome, confidence percentage and refer-
ence class size: {at-risk, high, large}, {at-risk, low,
small}, {not-at-risk, low, large} and {not-at-risk,
high, small}.

3.3 The experiments
After signing a consent form, participants filled a
demographic questionnaire, followed by the body
of the survey and a numeracy test.

The body of the survey consists of the follow-
ing components: an immersive narrative about a
retirement village that has purchased an AI to pre-
dict whether the residents are at risk of CHD; a
brief account of how an AI makes predictions, plus
the features and values that were input to the AI
to predict CHD (Figure 2, Appendix C); a sample
scenario to prepare participants for the survey; and
four scenarios presented in random order.

Scenario description. Each scenario began with
a narrative like that at the top of Table 1, which in-
cludes feature values for a particular patient. Partic-
ipants were then asked to make an educated guess
about the outcome for this patient, and to indicate
how sure they were about this guess on a 7-point
Likert scale (’Very unsure’: 1 to ’Very sure’: 7). A
7-point scale is used throughout our experiment,
in line with recent best practice recommendations
in (van der Lee et al., 2021). After participants
entered how sure they were about their guess of
the outcome, they were shown the AI’s prediction
and a concessive-contrastive explanation similar to
the explanation in the second segment of Table 1,
and they were asked again how likely they were to

accept the AI’s prediction on a 7-point Likert scale
(’Extremely unlikely’: 1 to ’Extremely likely’: 7).

At this point, the between-subjects and within-
subject arms of the experiment diverge, but each
arm displays the same four scenarios (in random
order). To detect unreliable responses, at the end of
each scenario, we asked an attention question about
the background information or the explanation.

Between-subjects experiment (Confidence and
%Frequency cohorts). There were two groups in
this experiment: one group saw a Confidence un-
certainty representation (third segment in Table 1),
and the other saw a %Frequency representation
(bottom segment in Table 1). After seeing the un-
certainty representation, participants in both groups
were asked again how likely they were to accept
the AI’s prediction. Participants in the %Frequency
group were also asked what prompted their deci-
sion — response options were “number of people
similar to me” (reference class), “percentage of
correct predictions” (confidence) or both.

Participants in both groups were then asked to
rate the initial (baseline) explanation with respect to
four explanatory attributes: completeness, presence
of irrelevant/misleading/contradictory information,
helpfulness for understanding the AI’s reasoning,
and support in deciding whether to accept the AI’s
prediction (Hoffman et al., 2018). Next, they were
asked whether adding the uncertainty representa-
tion (which is different for each group) would yield
improvements with respect to each of the explana-
tory attributes, compared to the initial explanation.

Within-subject experiment (Combined cohort).
Participants saw a Confidence representation fol-
lowed by a %Frequency representation — this or-
der was chosen because %Frequency representa-
tions subsume Confidence representations. Af-
ter each representation, participants were asked
how likely they were to accept the AI’s prediction,
which yields two likelihoods of acceptance for the
same confidence percentage. Also, like the above
%Frequency cohort, participants were asked what
prompted their decision (Figure 3, Appendix C).

As for the between-subjects experiment, partic-
ipants rated the initial explanation with respect to
the four explanatory attributes (top panel of Fig-
ure 4, Appendix C). But here, they were asked
which uncertainty representation they would add to
improve the explanation in terms of each attribute
— options were Confidence, %Frequency, ‘Either’
or ‘None’ (middle panel of Figure 4, Appendix C).
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Table 3: Descriptive statistics for the Confidence, %Frequency and Combined groups (number of participants) –
two options with the most participants; and Subjective Numeracy Score (on a 6-point Likert scale).

Attribute Option Confidence %Frequency Combined
(29) (28) (29)

Gender Male / Female 19 / 10 16 / 12 13 / 16
Age 25-34 / 35-44 12 / 7 10 / 8 10 / 12
Ethnicity Caucasian 23 19 21
English proficiency High 29 27 29
Education Bachelor / Some college, no degree 12 / 15 14 / 8 20 / 5
ML expertise Low / Medium 12 / 14 15 / 10 12 / 15
Concern about CHD Extremely–Moderately / Somewhat–Slightly 15 / 9 13 / 11 7 / 19
Subjective Numeracy Score (SNSc) Mean (standard deviation) 4.52 (1.08) 4.64 (0.92) 4.58 (0.89)

3.4 Participants
Our survey was implemented in the Qualtrics sur-
vey platform, and conducted on Connect (a Cloud
Research platform (Litman and Robinson, 2020)).
Participants spent 25 minutes on the experiment
on average, and were paid $8-$10 USD. Their
responses were validated based on their answers
to the attention questions and the time they spent
on each scenario, yielding 86 valid responses out
of 101. Table 3 shows descriptive statistics for
the retained participants from the three cohorts:
Confidence and %Frequency (between subjects)
and Combined (within subject). To determine
whether the cohorts are similar, we compared the
Subjective Numeracy Scores of each pair of groups
(Wilcoxon rank-sum test). We did not find any sta-
tistically significant differences between the scores
of the three groups.

4 Results
We report the results for research questions RQ1-
RQ4. Statistical significance was adjusted with
Holm-Bonferroni correction for multiple compar-
isons (Holm, 1979), where applicable; results with
0.05 < p-value < 0.1 are designated as trends.

4.1 RQ1 and RQ2
RQ1 considers the effect of the type of uncertainty
representation (Confidence or %Frequency) on the
likelihood of accepting a prediction, compared to
a baseline explanation that omits uncertainty infor-
mation. We define this dependent variable as
DiffLikely=AcceptLikelyuncertain−AcceptLikelyinit

We use difference in likelihoods, rather than ab-
solute likelihoods, because we observed a high vari-
ability between participants’ absolute likelihoods
of prediction acceptance. A similar observation
was made in (van der Bles et al., 2019) with respect
to verbal expressions of uncertainty.

RQ2 considers the influence of five of the
independent variables described in Section 3.2
on DiffLikely: the discrete variables predicted

outcome, confidence of the AI in its prediction,
(dis)agreement between AI and user predictions
and participants’ level of concern about CHD, and
the continuous variable (or covariate) Subjective
Numeracy Score (SNSc). Reference class size was
excluded from RQ2, because the Confidence group
did not receive this information.

We employed ANCOVA to analyse the data for
RQ1 and RQ2, as it adjusts for the effects of covari-
ates. However, inspection of the assumptions for
ANCOVA revealed that (dis)agreement between AI
and user predictions and level of concern about
CHD are not independent of the covariate SNSc in
the within-subject experiment. Hence, we excluded
these two variables from our initial analysis — the
results appear in Table 10, Appendix D. Our re-
sults show that SNSc has no statistically significant
impact on DiffLikely. We therefore removed this
covariate, and reintroduced the excluded variables.
ANOVA was employed to re-analyse the data for
RQ1 and RQ2, as all the variables are now discrete
— the results appear in Table 11, Appendix D.

Table 4 displays the mean (standard deviation) of
the likelihood of accepting a prediction after seeing
the baseline explanation, and the mean (standard
deviation) of the difference after viewing the un-
certainty information (DiffLikely), broken down ac-
cording to type of uncertainty and the variables that
had a statistically significant effect in either experi-
ment: predicted outcome, confidence of the AI in its
prediction and (dis)agreement between AI and user
predictions. Statistically significant differences are
boldfaced, and trends are italicised. The analysis of
the effect of the independent variables on the likeli-
hood of accepting predictions after seeing baseline
explanations appears in Appendix D.

Type of uncertainty. The leftmost DiffLikely col-
umn in the top segment of Table 4 shows no statisti-
cally significant effect of type of uncertainty in the
between-subjects experiment (F (1, 223) = 0.136,
p-value = 0.713), while the rightmost DiffLikely

www.cloudresearch.com
www.cloudresearch.com
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Table 4: Likelihood of accepting predictions after a baseline explanation, and difference after adding uncertainty
information (DiffLikely), for the between-subjects cohorts (left-hand side) and the within-subject cohort (right-hand
side), broken down by type of uncertainty, predicted outcome, confidence percentage and (dis)agreement between AI
and user predictions: mean (std. dev.); statistically significant differences in means (p-value < 0.01) are boldfaced,
and trends (0.05 < p-value < 0.1) are italicised.

Between subjects Within subject
Baseline explanation DiffLikely Baseline explanation DiffLikely

Mean (std. dev.) Mean (std. dev.) Mean (std. dev.) Mean (std. dev.)

Type of uncertainty Confidence 4.56 (1.75) 0.147 (1.02) 5.21 (1.50) −0.138 (1.27)
Frequency 5.01 (1.66) 0.098 (1.10) 5.21 (1.50) 0.155 (1.35)

Predicted outcome at-risk 5.57 (1.25) 0.009 (1.01) 5.90 (0.93) −0.207 (1.25)
not-at-risk 3.99 (1.75) 0.237 (1.10) 4.52 (1.63) 0.224 (1.35)

Confidence percentage high 4.76 (1.76) 0.500 (0.96) 5.05 (1.55) 0.526 (1.11)
low 4.80 (1.68) −0.254 (1.02) 5.36 (1.42) −0.509 (1.30)

AI predict vs User predict agree 5.85 (0.95) 0.052 (0.94) 6.05 (0.85) −0.266 (1.20)
disagree 4.00 (1.73) 0.174 (1.14) 4.24 (1.48) 0.324 (1.38)

column shows a trend in the within-subject ex-
periment (F (1, 227) = 3.544, p-value = 0.061).
According to this trend, %Frequency representa-
tions increased the likelihood of acceptance, while
Confidence representations reduced it.4

Predicted outcome. Even though predicted out-
come is domain specific, we consider this vari-
able, as the notions of good and bad outcomes
are general. According to the second segment of
Table 4, in both experiments, there is a statisti-
cally significant difference between the likelihood
of accepting a prediction for the two values of
predicted outcome {at-risk, not-at-risk}, after see-
ing the baseline explanations (p-value ≪ 0.001):
at-risk predictions have a higher likelihood of ac-
ceptance than not-at-risk predictions. The uncer-
tainty information has a statistically significant ef-
fect on DiffLikely in the within-subject experiment
(F (1, 227) = 7.664, p-value = 0.006), but shows
only a trend in the between-subjects experiment
(F (1, 223) = 3.023, p-value = 0.084), where
DiffLikely changes mainly for the not-at-risk pre-
diction. After viewing the uncertainty information,
the acceptance likelihood of not-at-risk predictions
increased in both experiments, and the acceptance
likelihood of at-risk predictions decreased in the
within-subject experiment.

Confidence percentage. The third segment of Ta-
ble 4 indicates that confidence percentage has a
statistically significant influence on DiffLikely (be-
tween subjects F (1, 223) = 33.074, within subject

4The cohorts in the between-subjects experiment corre-
spond to the types of uncertainty, which explains the different
mean ratings for accepting a prediction after seeing the base-
line explanations (leftmost ’Baseline explanation’ column).
In contrast, the cohort in the within-subject experiment saw
the same baseline explanations independently of type of un-
certainty, hence the invariant rating (mean 5.21 and standard
deviation 1.50, rightmost ’Baseline explanation’ column).

F (1, 227) = 62.07, p-value ≪ 0.001 for both). In
both experiments, a low prediction confidence led
to a reduction in the acceptance likelihood of a pre-
diction, and a high prediction confidence led to an
increase. However, recall that a low prediction con-
fidence is 65%, which is substantially higher than
random chance. This suggests that people may re-
quire a high level of confidence in order to increase
their likelihood of accepting an ML prediction.
(Dis)agreement between AI and user predictions.
Maruf et al. (2023) studied the influence of
(dis)agreement between AI predictions and users’
estimates of these predictions on users’ views
about explanations. Here, we determine whether
(dis)agreement between AI and user predictions af-
fects prediction acceptance, in particular DiffLikely.
According to the bottom segment of Table 4, the
likelihood of accepting a prediction after seeing the
baseline explanations is statistically significantly
higher when the predictions of the AI and the user
agree than when they disagree (p-value ≪ 0.0001
for both experiments). (Dis)agreement between AI
and user predictions has no statistically significant
effect on DiffLikely in the between-subjects ex-
periment (F (1, 219) = 1.167, p-value = 0.281),
but has a statistically significant effect in the
within-subject experiment (F (1, 223) = 6.072,
p-value = 0.015). After seeing the uncertainty
information, the acceptance likelihood of AI
predictions that agreed/disagreed with the user’s
decreased/increased. This suggests that uncertainty
information moderates users’ initial inclination to
accept AI predictions on the basis of agreement
with their own predictions or lack thereof.
Subjective Numeracy Score (SNSc). People’s
numeracy has been found to affect their percep-
tions of risk, especially when uncertainty is pre-
sented in different modalities, e.g., numbers versus
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Table 5: Likelihood of accepting predictions for the Confidence representation (top segment) – high and low
confidence (between-subjects Confidence cohort – left-hand side, and within-subject experiment – right-hand side);
and for the %Frequency representation (bottom segment) – high and low confidence and large and small reference
class (between-subjects %Frequency cohort – left-hand side, and within-subject experiment – right-hand side):
mean (std. dev.); statistically significant differences in means (p-value < 0.01) are boldfaced.

Confidence representation Between subjects Within subject
High Confidence Low Confidence High Confidence Low Confidence

Mean (std. dev.) Mean (std. dev.) Mean (std. dev.) Mean (std. dev.)
Baseline explanation 4.57 (1.92) 4.55 (1.57) 5.05 (1.56) 5.36 (1.42)
DiffLikely 0.431 (0.99) −0.138 (0.98) 0.414 (1.08) −0.690 (1.22)
%Frequency representation Between subjects Within subject

High Confidence Low Confidence High Confidence Low Confidence
Mean (std. dev.) Mean (std. dev.) Mean (std. dev.) Mean (std. dev.)

Baseline explanation 4.96 (1.56) 5.05 (1.76) 5.05 (1.56) 5.36 (1.42)
DiffLikely 0.571 (0.93) −0.375 (1.05) 0.638 (1.15) −0.328 (1.37)

Large reference class Small reference class Large reference class Small reference class
Mean (std. dev.) Mean (std. dev.) Mean (std. dev.) Mean (std. dev.)

Baseline explanation 4.86 (1.64) 5.16 (1.67) 5.22 (1.43) 5.19 (1.57)
DiffLikely 0.429 (1.06) −0.232 (1.04) 0.259 (1.21) 0.052 (1.48)

words (Spiegelhalter, 2017; Vromans et al., 2020).
However, SNSc has no statistically significant im-
pact on DiffLikely in our experiments (between-
subjects F (1, 223) = 0.316, p-value = 0.574;
within-subject F (1, 227) = 2.137, p-value =
0.145). This indicates that users’ numeracy, at the
levels exhibited by our participants, is not relevant
when comparing simple numeric representations.

Participants’ concern about CHD. This vari-
able was considered because people who are con-
cerned about CHD may be biased towards a par-
ticular outcome. However, participants’ concern
about CHD has no statistically significant impact
on the likelihood of accepting a prediction or on
DiffLikely in both experiments (between-subjects
F (4, 219) = 0.243, p-value = 0.913; within-
subject F (4, 223) = 1.743, p-value = 0.142).

Finding 1 The confidence percentage in an uncer-
tainty representation has the strongest influence on
DiffLikely– high values increase acceptance like-
lihood and low values decrease it. The predicted
outcome and (dis)agreement between AI and user
predictions have some influence on DiffLikely.

4.2 RQ3
RQ3 examines the influence of confidence percent-
age (Confidence and %Frequency representations)
and reference class size (%Frequency representa-
tion) on the likelihood of accepting a prediction,
compared to a baseline explanation that omits un-
certainty information (DiffLikely).

We employed ANOVA to analyse the data for
RQ3 — the results appear in Table 14, Appendix D.
Table 5 displays the mean (standard deviation) of
the likelihood of accepting a prediction and the

mean (standard deviation) of the difference after
viewing the uncertainty information (DiffLikely)
for the Confidence and %Frequency representa-
tions, for both cohorts of the between-subjects ex-
periment (left-hand side) and for the within-subject
experiment (right-hand side). The results for confi-
dence percentage are consistent with the results in
Table 4 — a high percentage (90%) increases accep-
tance likelihood, and a low percentage (65%) de-
creases it (statistically significant, p-value < 0.01
for both experiments). Looking at reference class
size, a large class (200) led to an increase in ac-
ceptance likelihood, and a small class (20) led
to a decrease, for the %Frequency cohort in the
between-subjects experiment (statistically signif-
icant, p-value < 0.001). However, this effect
was not observed in the within-subject experiment,
where the %Frequency representation followed the
Confidence representation. Rather, an interaction
effect was observed (trend; Table 14, Appendix D);
Tukey’s HSD test for the interaction indicates that
a low confidence percentage for a small reference
class led to a lower DiffLikely (mean ≤ 0) than a
high confidence percentage regardless of reference
class size (mean > 0.5) (statistically significant,
p-value < 0.01).

Finding 2 Finding 1 with respect to confidence
percentage was corroborated for both types of un-
certainty representation. Reference class size also
influences DiffLikely, but the effects differ for the
two experimental conditions.

4.3 RQ4
RQ4 considers the effect of adding uncertainty in-
formation to a baseline explanation on users’ opin-
ions about four explanatory attributes: complete-
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Table 6: Participant views about adding uncertainty
information in terms of four explanatory attributes
– one-proportion Z-test applied to Confidence and
%Frequency cohorts of the between-subjects experi-
ment together: number of ‘Yes’ replies (total number of
replies), χ2 statistic, p-value after Holm-Bonferroni cor-
rection; statistically significant results are boldfaced.

Attribute Uncertainty χ2 adjusted
(228) statistic p-value

+Complete 188 94.776 1.76E-15
+Relevant, −Misleading, . . . 161 37.934 3.66E-09
+Helpful for understanding 181 77.583 1.76E-15
+Enable better decisions 192 105.37 1.76E-15

ness, presence of irrelevant/misleading/contradic-
tory information, helpfulness for understanding
the AI’s reasoning, and support in making a de-
cision (Hoffman et al., 2018).

First, we examine overall effects, in terms of
improving a baseline explanation, as reflected by
the total number of ‘Yes’ replies to whether the un-
certainty information would make the explanation
(1) more complete, (2) more relevant, less mis-
leading or less contradictory, (3) more helpful for
understanding the AI’s reasoning, and whether this
information would (4) enable participants to make a
better decision about accepting the AI’s prediction
(Section 3.3). Table 6 displays the results of a one-
proportion Z-test applied to the Confidence and
%Frequency cohorts together (between-subjects ex-
periment)5 — the second column shows the number
of ‘Yes’ replies (out of 228 responses). As seen
in Table 6, most participants thought that uncer-
tainty information improves baseline explanations
in terms of the four explanatory attributes (statisti-
cally significant, p-value ≪ 0.001).

Next, we examine users’ views about adding
a Confidence or a %Frequency representation to
baseline explanations. For the between-subjects ex-
periment, we counted the ‘Yes’ replies to the above
questions; and for the within-subject experiment,
we counted the number of times the Confidence
representation or the %Frequency representation
was selected when asked which of these repre-
sentations would improve the four explanatory at-
tributes listed above (middle panel of Figure 4, Ap-
pendix C) — users chose very few ‘Either’ and
‘None’ options, which we excluded from our anal-
ysis. The results of the two-proportions Z-test ap-
plied to the cohorts of the between-subjects ex-
periment appear on the left-hand side of Table 7,
and the results of the one-proportion Z-test applied

5The within-subject experiment was exluded, as its ques-
tions differ from those in the between-subjects experiment.

to the cohort of the within-subject experiment ap-
pear on the right-hand side. The Confidence and
%Frequency columns show the number of ‘Yes’
replies for the corresponding representations.

As seen in Table 7 (left-hand side), no statisti-
cally significant differences were found when com-
paring the representations seen by the Confidence
cohort with those seen by the %Frequency cohort
— there was only a trend whereby %Frequency
representations were deemed more complete than
Confidence representations. These results are not
surprising, as each cohort saw only one uncertainty
representation, which was deemed to be a valu-
able addition to a baseline explanation (Table 6).
However, when participants in the within-subject
experiment directly compared the two types of un-
certainty representation, the %Frequency represen-
tation was deemed better than the Confidence rep-
resentation with respect to all explanatory attributes
(statistically significant, p-value ≪ 0.001).

Finding 3 Both types of uncertainty representa-
tions are deemed to add value to baseline expla-
nations in terms of the four explanatory attributes,
with %Frequency representations being considered
better than Confidence representations.

5 Conclusion
This research focuses on the influence of uncer-
tainty information on the acceptance of predictions
made by ML models. Our main contributions are:
(1) determining factors that influence users’ accep-
tance of these predictions; and (2) comparing the in-
fluence of Confidence and %Frequency uncertainty
representations on users’ views about explanations.

Our results show that when uncertainty infor-
mation is incorporated in an explanation of the
prediction of an ML model, users’ likelihood of ac-
cepting the prediction is influenced by the model’s
confidence percentage — high percentages (90%)
increase the likelihood of acceptance (compared
to a baseline explanation without uncertainty in-
formation), while low percentages (65%) decrease
this likelihood. This finding suggests that people
may require a high level of confidence in order
to increase their likelihood of accepting an ML
prediction. Reference class size influenced the like-
lihood of prediction acceptance, with a large class
(200 out of 1000) increasing this likelihood and a
small class (20 out of 1000) decreasing it (for the
%Frequency cohort).

Predicted outcome and (dis)agreement between
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Table 7: Participant views about adding a Confidence versus a %Frequency representation in terms of four ex-
planatory attributes – two-proportions Z-test for the between-subjects experiment, and one-proportion Z-test
for the within-subject experiment: number of Confidence and %Frequency replies (total number of replies), χ2

statistic, p-value after Holm-Bonferroni correction; statistically significant results are boldfaced, and trends
(0.05 < p-value < 0.1) are italicised.

Between subjects Within subject

Attribute Confidence %Frequency χ2 adjusted Confidence %Frequency χ2 adjusted
(116) (112) statistic p-value (116) statistic p-value

+Complete 88 100 6.200 0.0511 14 90 54.087 3.84E-13
+Relevant, −Misleading, . . . 87 74 1.780 0.3642 8 83 60.176 2.60E-14
+Helpful for understanding 89 92 0.718 0.3968 17 85 44.010 3.27E-11
+Enable better decisions 92 100 3.547 0.1789 10 90 62.410 1.12E-14

AI and user predictions influenced prediction accep-
tance for baseline explanations (without uncertainty
information), with participants being more likely
to accept at-risk predictions than not-at-risk predic-
tions, and ML model predictions that agreed with
their own predictions than ML model predictions
that disagreed. However, uncertainty information
moderated these effects, increasing the likelihood
of accepting the less-acceptable predictions and
decreasing the likelihood of accepting the more-
acceptable ones.

Users deemed explanations that include uncer-
tainty information to be better, in terms of the four
explanatory attributes, than baseline explanations
that omit uncertainty information. When the two
types of uncertainty representations were seen sep-
arately, users deemed them to be similar in terms of
their effect on the four explanatory attributes. How-
ever, when seen together, %Frequency representa-
tions were deemed to be better than Confidence
representations by the vast majority of users.

Limitations and future work

User study. We could not recruit real users who
were personally engaged with the CHD scenario,
and employed crowd-workers instead. This is a
common limitation when evaluating NLG systems,
which we tried to mitigate by having a narrative
immersion at the start of our experiment.

Uncertainty representation. Our study consid-
ers two numerical methods for representing un-
certainty, viz Confidence and %Frequency. In the
future, it is worth investigating additional modali-
ties, such as words and graphs, e.g., charts and icon
arrays (Spiegelhalter, 2017; Zipkin et al., 2014), as
well as combinations of modalities.

Confidence percentage and reference class size.
As mentioned in Section 3.2, our choices for confi-
dence percentage and reference class size are some-
what arbitrary. Additional levels of confidence and

reference class sizes should be investigated, as well
as the interaction between these two variables.

Additional factors and interactions between them.
Our experiment considers the effect of six indepen-
dent variables on prediction acceptance, viz type
of uncertainty, predicted outcome, confidence of
the AI, (dis)agreement between AI and user predic-
tions, concern about CHD and Subjective Numer-
acy Score. However, as seen in Section 2, there
are many more factors examined in the literature,
e.g., communicative intent (Spiegelhalter, 2017),
risk type (Gigerenzer, 2003), framing of an out-
come (Peters et al., 2011) and context (Lipkus et al.,
2001). Combinations of these factors should be in-
vestigated in the future.

In addition, according to Lombrozo (2016), ex-
planation length influences users’ perceptions. To
obviate the potential effect of the length difference
between %Frequency and Confidence representa-
tions on their relative ratings, content would have
to be added to the latter. However, this would
influence other explanatory attributes of this repre-
sentation, e.g., completeness and relevance.

Aleatoric and epistemic uncertainty. The un-
certainty of ML predictions comes from two
main sources (Hüllermeier and Waegeman, 2021):
aleatoric (due to chance) and epistemic (due to
insufficient information in the prediction models
themselves) — a distinction that is critical in de-
cision making (Senge et al., 2014). In the future,
we will derive these types of uncertainty for the
predictions made by ML models, and investigate
how to communicate them.
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A The Busselton dataset

We employed a version of the dataset that was pre-
processed by Maruf et al. (2023). This dataset has
two classes: whether someone will experience a
CHD event or not within ten years of the initial data
collection. We recoded these classes as at risk of a
coronary event and not at risk of a coronary event
respectively. In addition, in order to fit in with
our narrative about a retirement village (Figure 2,
Appendix C), we removed patients under the age
of 61.

The dataset was split into 80% training and 20%
test sets using proportional sampling (we did not
cross-validate, as average classifier accuracy is tan-
gential to this research). Table 8 shows the two
classes in our evaluation dataset, and the break-
down of the training/test sets. We employed the J48
classifier (Quinlan, 1993) in WEKA (Frank et al.,
2016) to learn a decision tree — the resultant deci-
sion tree has 24 nodes (Figure 1), and achieved an
accuracy of 78.4% and 68.8% on the training and
test set respectively.

Table 8: Breakdown of classes for the training and test
sets, Busselton dataset (patients over 60 years old).

Partition Not at risk At risk Total
Training 459 166 625
Testing 99 46 145
Total 558 212 770

Age <= 69.1: No
Age > 69.1
| Age <= 78.7
| | Triglyce-cat = low: No
| | Triglyce-cat = desirable
| | | Smoke_amt <= 11: No
| | | Smoke_amt > 11
| | | | Age <= 73.1: No
| | | | Age > 73.1: Yes
| | Triglyce-cat = borderline
| | | BP-cat = Optimal: Yes
| | | BP-cat = Normal-to-High
| | | | Weight-cat = underweight: No
| | | | Weight-cat = normal: No
| | | | Weight-cat = overweight
| | | | | Sex = F: No
| | | | | Sex = M: Yes
| | | | Weight-cat = obese: Yes
| | | BP-cat = Mild-Mod-Hyp: Yes
| | Triglyce-cat = high
| | | Age <= 71.7: No
| | | Age > 71.7: Yes
| Age > 78.7: Yes

Number of Leaves : 15
Size of the tree : 24

Figure 1: Pruned decision tree, Busselton dataset (pa-
tients over 60 years old), recoded classes and features.

B Subjective numeracy test

Table 9 displays the questions in Fagerlin
et al.’s (2007) Subjective Numeracy Scale. All
the answers are on a 6-point Likert scale, where
1 indicates a low preference for numerical infor-
mation or a low proficiency in processing it, and 6
indicates a high preference or proficiency.

Table 9: Questions in the Subjective Numeracy Scale –
answers are on a 6-point Likert scale.

1. Please indicate how good you are at each of the tasks
listed below:
• Working with fractions
• Working with percentages
• Calculating a 15% tip
• Figuring out the price of a shirt that is 25% off

2. When reading the newspaper, how helpful do you find
tables and graphs that are part of a story?

3. When people tell you the chance of something happening,
do you prefer that they use words (“it rarely happens”)
or numbers (“there’s a 1% chance”)?

4. When you hear a weather forecast, do you prefer pre-
dictions using percentages (e.g., “there will be a 20%
chance of rain today”) or predictions using only words
(e.g., “there is a small chance of rain today”)?

5. How often do you find numerical information useful?
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C Screenshots from the experiment

Figure 2: Background information; narrative immersion for the survey; description of the reasoning of AI systems;
features and feature values of a patient; notes and disclaimer.
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Figure 3: First page of the survey for the within-subject group: request for a participant’s prediction and their
certainty about it; the AI’s prediction, associated explanation and request to rate it; two options for communicating
uncertainty: Confidence and %Frequency; request for the main factors that prompted the participant’s decision.
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Figure 4: Second page of the survey for the within-subject group: request to rate the initial explanation on four
explanatory attributes; request to rate the influence of the two types of uncertainty representations on these attributes;
attention question.
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D Experimental results
Table 10 displays the results of the ANCOVA test
for research questions RQ1 and RQ2 for the inde-
pendent variables uncertainty type, predicted out-
come, confidence percentage and SNSc; Table 11
displays the results of the ANOVA test for research
questions RQ1 and RQ2 for the independent vari-
ables uncertainty type, predicted outcome, confi-
dence percentage, (dis)agreement between AI and
user predictions and level of concern about CHD.

Table 12 shows the results of the ANCOVA test
for accepting a predicted outcome for the indepen-

dent variables predicted outcome and SNSc af-
ter seeing the baseline explanation; and Table 13
shows the results of the ANOVA test for accepting
a predicted outcome for the independent variables
predicted outcome, (dis)agreement between AI and
user predictions and level of concern about CHD
after seeing the baseline explanation. The indepen-
dent variables type of uncertainty and confidence
percentage were excluded from these analyses, as
uncertainty is not part of the baseline explanations.

Table 14 shows the ANOVA results for research
question RQ3.

Table 10: ANCOVA results for RQ1 and RQ2 – uncertainty type, predicted outcome, confidence percentage and
SNSc (between-subjects and within-subject experiments); statistically significant results are boldfaced, and trends
(0.05 < p-value < 0.1) are italicised.

Between subjects Within subject
DF Sum of Mean F-value p-value DF Sum of Mean F-value p-value

squares square squares square
Uncertainty type 1 0.13 0.13 0.136 0.713 1 4.98 4.98 3.544 0.061
Predicted outcome 1 2.96 2.96 3.023 0.084 1 10.78 10.78 7.664 0.006
Confidence percentage 1 32.44 32.44 33.074 2.90E-08 1 62.07 62.07 44.147 2.23E-10
SNSc 1 0.31 0.31 0.316 0.574 1 3.00 3.00 2.137 0.145

Table 11: ANOVA results for RQ1 and RQ2 – uncertainty type, predicted outcome, confidence percentage,
(dis)agreement between AI and user predictions, and participants’ concern about CHD (between-subjects and
within-subject experiments); statistically significant results are boldfaced, and trends (0.05 < p-value < 0.1) are
italicised.

Between subjects Within subject
DF Sum of Mean F-value p-value DF Sum of Mean F-value p-value

squares square squares square
Uncertainty type 1 0.13 0.13 0.134 0.714 1 4.98 4.98 3.651 0.057
Predicted outcome 1 2.96 2.96 2.994 0.084 1 10.78 10.78 7.895 0.005
Confidence percentage 1 32.44 32.44 32.752 3.42E-08 1 62.07 62.07 45.478 1.31E-10
AIPredict-vs-UserPredict 1 1.16 1.16 1.167 0.281 1 8.29 8.29 6.072 0.015
Concern about CHD 4 0.96 0.24 0.243 0.913 4 9.51 2.38 1.743 0.142
Residuals 219 216.9 0.99 223 304.35 1.36

Table 12: ANCOVA results for likelihood of prediction acceptance after baseline explanations – predicted outcome
and SNSc (between-subjects and within-subject experiments); statistically significant results are boldfaced.

Between subjects Within subject
DF Sum of Mean F-value p-value DF Sum of Mean F-value p-value

squares square squares square
Predicted outcome 1 142.11 142.11 61.46 1.79E-13 1 55.17 55.17 31.082 1.71E-07
SNSc 1 4.70 4.70 2.032 0.155 1 1.28 1.28 0.721 0.397
Residuals 225 520.20 2.31 113 200.58 1.78

Table 13: ANOVA results for likelihood of prediction acceptance after baseline explanations – predicted outcome,
(dis)agreement between AI and user predictions, and participants’ concern about CHD (between-subjects and
within-subject experiments); statistically significant results are boldfaced.

Between subjects Within subject
DF Sum of Mean F-value p-value DF Sum of Mean F-value p-value

squares square squares square
Predicted outcome 1 142.11 142.11 71.712 3.49E-15 1 55.17 55.17 38.72 9.29E-09
AIPredict-vs-UserPredict 1 75.61 75.61 38.154 3.10E-09 1 45.23 45.23 31.74 1.39E-07
Concern about CHD 4 11.40 2.85 1.437 0.223 4 1.31 0.33 0.23 0.921
Residuals 221 437.90 1.98 109 155.32 1.42
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Table 14: ANOVA results for RQ3 – Confidence representation (within-subject experiment and Confidence cohort,
between-subjects experiment), and %Frequency representation (within-subject experiment and %Frequency cohort,
between-subjects experiment); statistically significant results are boldfaced, and trends (0.05 < p-value < 0.1) are
italicised.

Confidence representation Between subjects Within subject
DF Sum of Mean F-value p-value DF Sum of Mean F-value p-value

squares square squares square
Confidence percentage 1 9.39 9.39 9.631 0.002 1 35.31 35.31 26.75 1.00E-06
Residuals 114 111.12 0.98 114 150.48 1.32
%Frequency representation Between subjects Within subject

DF Sum of Mean F-value p-value DF Sum of Mean F-value p-value
squares square squares square

Confidence percentage 1 25.08 25.08 28.04 6.31E-07 1 27.03 27.03 17.29 6.30E-05
Reference class size 1 12.22 12.22 13.66 3.45E-04 1 1.24 1.24 0.79 0.375
[Confidence : Ref. class size] 1 0.01 0.009 0.01 0.921 1 5.83 5.83 3.73 0.056
Residuals 108 96.61 0.895 112 175.1 1.563
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