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Abstract

Visual storytelling systems generate multi-
sentence stories from image sequences. In
this task, capturing contextual information and
bridging visual variation bring additional chal-
lenges. We propose a simple yet effective
framework that leverages the generalization
capabilities of pretrained foundation models,
only training a lightweight vision-language
mapping network to connect modalities, while
incorporating context to enhance coherence.
We introduce a multimodal contrastive objec-
tive that also improves visual relevance and
story informativeness. Extensive experimen-
tal results, across both automatic metrics and
human evaluations, demonstrate that the sto-
ries generated by our framework are diverse,
coherent, informative, and interesting.

1 Introduction

Visual storytelling (VIST; Huang et al., 2016)
aims at crafting a narrative from a sequence of or-
dered images. This task involves a number of key
challenges, some of which are well-studied prob-
lems in computational narrative generation, while
others arise from the visually grounded nature of
the task: VIST image sequences exhibit semantic
and temporal gaps, so that (i) a successful VIST
system needs to balance textual coherence (Re-
deker, 2000; Callaway and Lester, 2001) with (ii)
visual grounding (Wang et al., 2022; Surikuchi
et al., 2023). At the same time, (iii) generated nar-
ratives should capture the reader’s attention, ne-
cessitating a degree of creativity and interesting-
ness (Gervás, 2009), but should also (iv) be infor-
mative (Li et al., 2019a; Chen et al., 2021), that
is, incorporate relevant details of the entities and
activities in the visual content.

Existing models usually include a vision en-
coder and language decoder either trained from
scratch or finetuned (Kim et al., 2018; Wang et al.,
2018b; Hu et al., 2020; Li et al., 2022; Fan et al.,

2022; Yang and Jin, 2023; Wang et al., 2024)
on the VIST task. This requires a large amount
of computational resources. Instead, we pro-
pose to benefit from pre-trained models that have
already learned meaningful representations from
vast amounts of data, following the ClipCap ap-
proach (Mokady et al., 2021) that integrates pre-
trained CLIP (Radford et al., 2021) and GPT2
(Radford et al., 2019) via a lightweight mapping
network. ClipCap trains only the mapping net-
work to construct soft visual prefixes from CLIP
embeddings to guide GPT2 to generate text, while
both CLIP and GPT2 can be kept frozen. Al-
though visual prefix tuning has been widely used
for image captioning, it has not been adapted for
visual storytelling, and its potential here is yet to
be explored.

Our new framework incorporates a context-
aware mappping network, while addressing co-
herence by incorporating previous story sentences.
To enhance visual grounding and informativeness,
we employ a multimodal training objective. We
further compare four common decoding strate-
gies (beam, top-k, nucleus and contrastive search),
showing that they have substantial impact on the
generation quality, especially as reflected in hu-
man evaluation, in contrast to standard metrics.

The main contributions of this work are:1

• a framework to incorporate textual coherence
in VIST, while leveraging pretrained models;

• contrastive training to improve informative-
ness and visual grounding;

• a comprehensive human evaluation targeting
the four challenges outlined above;

• extensive evaluation demonstrating competi-
tiveness with state-of-the-art baselines.

1Our code and model are available at
https://github.com/yjsong22/ContextualVIST
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2 Related Work

Visual Storytelling. The Visual Storytelling
(VIST) task (Huang et al., 2016) aims to create
narrative continuity between images for a fluent,
coherent story. Early attempts extended image
captioning models by combining global-local vi-
sual attention (Kim et al., 2018) and learning con-
textualized image representations (Gonzalez-Rico
and Fuentes-Pineda, 2018). Considerable efforts
explored Reinforcement Learning (RL) with cus-
tom reward functions for visual storytelling (Wang
et al., 2018a,b; Huang et al., 2019; Hu et al., 2020).
Given that storytelling involves imagination and
reasoning, many works (Yang et al., 2019; Hsu
et al., 2020; Wang et al., 2020; Chen et al., 2021;
Xu et al., 2021; Zheng et al., 2021; Li et al., 2022;
Wang et al., 2024) also integrate external knowl-
edge to introduce commonsense concepts not di-
rectly present in visual input.

Recent research leverages Transformer-based
architectures to learn multimodal feature embed-
dings, integrating image regions with semantic re-
lationships (Qi et al., 2021). Several studies have
focused on utilizing pre-trained models for vi-
sual storytelling, either by fine-tuning pre-trained
Transformer encoders (Fan et al., 2022), or jointly
tuning pre-trained LMs with pre-trained image en-
coders (Yu et al., 2021). Other variants consider
additional factors such as emotion/sentiment (Li
et al., 2019b), personas (Chandu et al., 2019; Liu
and Keller, 2023; Hong et al., 2023), and writ-
ing style (Wang et al., 2023; Yang and Jin, 2023).
Unlike prior work, our approach efficiently adapts
frozen VLMs and LLMs, conditioning on both
textual context and visual input to ensure story
continuity and coherence.

Prompt and Prefix Tuning. Prompting means
designing “instructions” for pretrained language
models (LM) to generate desired outputs, condi-
tioning them on either human-crafted templates or
automatically optimized tokens (Liu et al., 2023b).
Much research proposes to automate prompt en-
gineering by learning discrete (Jiang et al., 2020;
Haviv et al., 2021; Ben-David et al., 2022) or
continuous prompts (Li and Liang, 2021; Lester
et al., 2021). The latter can be updated via back-
propagation, making them less constrained than
(Zhong et al., 2021; Petrov et al., 2024). With
large frozen LMs, Prompt Tuning (Lester et al.,
2021) simply adds a tunable, real-valued embed-
ding to the input of the decoder, achieving results

comparable to full model fine-tuning. On the other
hand, Prefix Tuning (Li and Liang, 2021) opti-
mizes the inputs of every attention layer in the pre-
trained LMs.

Constructing soft visual prompts for a frozen
LLM is an effective way to achieve vision-
language alignment (Merullo et al., 2023; Koh
et al., 2023). Flamingo (Alayrac et al., 2022)
adds cross-attention layers to the LLM for incor-
porating visual features, pretrained on billions of
image-text pairs. BLIP-2 (Li et al., 2023) adopts
a Q-Former module to link a frozen image en-
coder to a frozen LLM, learning visual features
relevant to text. LLaVA (Liu et al., 2023a), trained
on multimodal instruction-following, uses a linear
layer to map image features from pre-trained CLIP
to the word embedding space of Vicuna (Chiang
et al., 2023). Inspired by the widespread applica-
tion of visual prefix tuning in V&L tasks, we ex-
plore its potential in visual storytelling while also
considering the context when tuning the prefix.

3 Method

In visual storytelling, the input is a sequence of
N images I = {I1, . . . , IN}, where N = 5
in the VIST dataset (Huang et al., 2016). Our
model aims to generate a multi-sentence story S
by predicting the probability P (S|I). In this sec-
tion, we introduce a visual storytelling pipeline
enhanced with prefix tuning (§3.1), then describe
the context-aware components (§3.2), curriculum
training (§3.3) and finally the contrastive learn-
ing loss involved (§3.4). Figure 1 illustrates an
overview of our framework.

3.1 Visual Storytelling with Prefix Tuning
From the perspective of a single image, visual
storytelling is very similar to image captioning,
where an image-sentence pair {Ii, Si} is given.
Motivated by prefix tuning (Li and Liang, 2021),
ClipCap (Mokady et al., 2021) only updates the
parameters of a lightweight Transformer-based
mapping network during training to produce vi-
sual prefix vectors that can drive a pretrained
frozen language model (LM) to generate text.
ClipCap applies frozen CLIP (Radford et al.,
2021) as vision encoder to extract visual features
from the input image as vi = fCLIP (Ii). The
visual feature vi is then processed by a trainable
mapping network MN v to map the visual features
to visual prefix vectors that are in the embedding
space of the LM:

pIi = [p1, . . . , pk] = MN v(vi) = MN v(fCLIP (Ii))

where k denotes the prefix size and MN v is a
Transformer with 8 multi-head self-attention lay-
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Figure 1: Illustration of the framework. A Transformer-based mapping network (MN v) is trained to map visual
features from a frozen encoder (CLIP) into a visual prefix for a frozen LLM (GPT2). We incorporate the previ-
ous sentences as the context via (1) concatenation after MN v: previous context is encoded by the LLM (GPT2),
combined with the visual prefix and then fed into the LLM decoder; or (2) concatenation before MN v: previous
context is encoded by the CLIP text encoder, combined with CLIP visual features and then fed into MN v. In ad-
dition to the teacher-forcing objective LNLL, we further compel the model to produce text that aligns semantically
with the image through a contrastive training objective Lcontras.

ers with 8 heads each. We then concatenate the vi-
sual prefix vectors pIi to the caption tokens Si =
[s1, s2, ..., sℓ], as

zIi = [p1, . . . , pk; s1, . . . , sℓ]

where ‘ ;’ denotes the concatenation. During train-
ing, zi is fed into the LM with a teacher-forcing
objective in an auto-regressive manner. In other
words, the mapping network MN v is trained us-
ing Negative Log-Likelihood (NLL) loss:

LNLL = −
ℓ∑

j=1

log pθ (sj | p1, . . . , pk; s1, . . . , sj−1)

where θ are the trainable parameters of the model.

3.2 Context-aware Mapping Network
VIST story generation needs to establish informa-
tive connections between images in a sequence to
bridge the potential visual/semantic gaps between
them. We incorporate contextual knowledge into
our model in the form of past story sentences. In
addition to the image, we use the previous L sen-
tences [Si−L, . . . ,Si−1] to generate the sentence
for the current image Ii. For the first image I0
in a sequence, we use the title and description
of the belonging album2 as the textual context.

2Huang et al. (2016) collected 10,117 Flickr albums that
each contains 10 - 50 images. They asked human annotators

We propose two methods to include the previous
sentences3 as additional contextual information:
(1) Concatenate [Si−L, . . . ,Si−1] with visual pre-
fix vectors pIi ; (2) Concatenate [Si−L, . . . ,Si−1]
with visual features vi and use them together as
the input of mapping network.

Concatenate after MN v. Following Han et al.
(2023), we embed the sentences [Si−L, . . . ,Si−1]
with the language generation model fLM as

Ctexti = [BOStext; fLM([Si−L, . . . ,Si−1]); EOStext]

where BOStext and EOStext are learnable begin-
ning and end of sequence tokens. The contextual
vector Ctexti is concatenated with the prefix vec-
tor pIi and then fed to the language generation
model as a prompt vector (see Figure 1). MN v
is trained with NLL loss as:

LNLL = −
ℓ∑

j=1

log pθ (sj | pIi ;Ctexti; s1, . . . , sj−1)

Concatenate before MN v. Since CLIP (Rad-
ford et al., 2021) is multimodal, we can use a
common embedding space to encode both the
image Ii as fCLIP (Ii), and previous sentences

to select 5 images of each album to form an image sequence,
and write a story correspondingly. Album titles, descriptions
and other metadata were provided in the original Flickr al-
bums by the album owners.

3During training, we use the previous ground-truth sen-
tences as the context, while during inference the past pre-
dicted sentences are used instead.
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[Si−L, . . . ,Si−1] as fCLIP([Si−L, . . . ,Si−1]). The
two CLIP embeddings are then concatenated and
fed into the mapping network to produce visual
prefix vectors

p′
Ii = MN v([fCLIP (Ii) ; fCLIP([Si−L, . . . ,Si−1])]).

The MN v is trained with NLL loss as:

LNLL = −
ℓ∑

j=1

log pθ
(
sj | p′

Ii ; s1, . . . , sj−1

)
3.3 Curriculum Learning
In VIST, reference texts are often too generic and
lack concretness to the image content. An exam-
ple is "There was a lot to see and do" for an im-
age depicting a funfair. The frequency of this phe-
nomenon may compromise the model’s ability to
ground its linguistic choices in visual data. To ad-
dress this, we use curriculum learning, which in-
volves training a model with data sorted by diffi-
culty to improve generalization and speed up con-
vergence (Bengio et al., 2009).

We start by training the model on basic im-
age captioning data to enhance grounding abilities
before progressing to storytelling from image se-
quences. The training proceeds as follows: (1)
Train the mapping network MN v with image-
caption pairs (Description in Isolation, DII) from
VIST (see Section 4.1). (2) Switch to visual story-
telling data (Stories in Sequence, SIS) once vali-
dation loss stops decreasing. (3) Return to step (1)
when validation loss stops decreasing. (4) Stop
training when no further improvement in valida-
tion loss is observed.

3.4 Visually-supervised Contrastive Training
To encourage our model to generate text that
is grounded in the image, we leverage a con-
trastive training objective Lcontras in addition to
the teacher forcing objective LNLL. To maximize
the relatedness between a positive pair consist-
ing of a target text sequence and a source image,
while minimizing the similarity between the neg-
ative pairs, we apply InfoNCE (Noise-Contrastive
Estimation) loss (Oord et al., 2018) as:

Lcontras = − log
exp

(
sim

(
vi, Ŝi

)
/τ

)
∑|B|

j ̸=i exp
(
sim

(
vi, Ŝj

)
/τ

)
where Ŝi is the projected representation of the text
decoder’s final layer output via a linear projection

Original Ours

Train No. DII captions 120,465 120,099
No. SIS stories5 40,098 40,071

Val No. DII captions 14,970 14,940
No. SIS stories 4,988 4,988

Test No. DII captions 15,165 15,165
No. SIS stories 5,050 5,030

Table 1: Data split in original VIST dataset annota-
tions and our experiments. Differences are due to the
removal of unavailable images for some samples. DII:
Descriptions of Images in Isolation. SIS: Stories of Im-
ages in Sequence.

layer, sim(, ) denotes the cosine similarity of the
two vectors, |B| is the batch size, and τ denotes
the temperature.

During training, we first train the mapping net-
work with the NLL loss LNLL (training DII and
SIS data in curriculum training scheme) for the
first Nnll epochs and then add the contrastive loss
Lcontras (using only SIS data). The reason for not
using Lcontras from the beginning is that initially
the model can only generate random tokens, which
cannot be projected to semantically meaningful
embeddings for contrasting with the image repre-
sentation. Overall, our model is trained by mini-
mizing the combined loss L (Zhu et al., 2023) as:

L =

{
LNLL, epoch < Nnll

LNLL + λLcontras, epoch ≥ Nnll

where λ is the coefficient of the contrastive loss.

4 Experiments4

4.1 Dataset

The visual storytelling (VIST; Huang et al.,
2016) dataset includes 210,819 unique photos and
50,200 stories collected from 10,117 Flickr al-
bums. Our experiments follow the data splits in
the original VIST, removing the broken or unavail-
able image files (see Table 1).

4.2 Decoding Strategies

We compare four popular decoding methods for
text generation: Beam search selects the text con-
tinuation with highest probability based on the
model’s probability distribution; this may result

4Experimental details of training, inference and automatic
evaluation are listed in the Appendix A.

5Each story usually consists of 5 sequences of text corre-
sponding to 5 images.
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in low variation (Li et al., 2016) and degenera-
tion (Fan et al., 2018; Holtzman et al., 2020) in the
generated text. Top-k sampling redistributes the
probability mass among only the top k most likely
next tokens, avoiding sampling from the unreliable
tail of the distribution (Fan et al., 2018). Nucleus
sampling (Holtzman et al., 2020), also known as
top-p sampling, chooses from the smallest set of
tokens whose cumulative probability exceeds the
probability p. Contrastive search (SimCTG, Su
et al., 2022) jointly considers the probability pre-
dicted by the language model and the similarity
with respect to the previous context.

4.3 Baseline Models

For a fair and thorough comparison, we choose
four SOTA baselines that don’t require additional
datasets and have reproducible code/weights.
GLACNet (Kim et al., 2018) is a seq2seq model
using global-local attention and context cascading
on visual features. AREL (Wang et al., 2018b)
is an adversarial framework learning an implicit
reward function from human demonstrations and
optimizing policy search with a CNN-based re-
ward model. ReCo-RL (Hu et al., 2020) is a
reinforcement learning model with composite re-
wards for relevance, coherence, and expressive-
ness. TAPM (Yu et al., 2021) uses an adaptation
loss to align a vision encoder with a pretrained LM
and a sequential coherence loss to improve tempo-
ral coherence by aligning predicted text represen-
tations with neighboring visual representations.

4.4 Automatic Evaluation Metrics

In line with prior work on the VIST bench-
mark, we validate our results over the test set us-
ing the standard metrics BLEU (Papineni et al.,
2002), ROUGE-L (Lin and Och, 2004), METEOR
(Banerjee and Lavie, 2005), CIDEr (Vedantam
et al., 2015) and SPICE (Anderson et al., 2016).
We evaluate the generated text in terms of text-text
semantic similarity using BLEURT (Sellam et al.,
2020), image-text semantic similarity using CLIP-
Score (Hessel et al., 2021), and language fluency
using Perplexity. Following Su et al. (2022), we
also assess text degeneration and word diversity
using: (1) rep-n = 1.0− | unique n-grams |

| total n-grams | measures
story-level repetition by computing the portion of
duplicate n-grams; (2) diversity=

∏4
n=2(1− rep-

n) measures the diversity of n-grams.

4.5 Human Evaluation

We conduct a human evaluation on a sample of
generated texts. We randomly select 100 distinct
image sequences and the corresponding generated
stories from 8 models (i.e., our model6 with four
decoding strategies, the ground truth texts (GT),
GLACNet, AREL and TAPM).

We invite 75 human annotators from Prolific to
rate stories on a 5-point Likert scale for the cri-
teria of Visual Grounding, Coherence, Interest-
ingness, and Informativeness. As noted in Sec-
tion 1, we consider these among the most impor-
tant criteria for visually grounded narrative gen-
eration. Each participant answered 32 questions
(each question containing ratings for one image
sequence and one story across four criteria), re-
sulting in a total of 9600 responses. We evenly dis-
tributed 800 pairs of image sequences and stories
among all participants, ensuring that each question
received ∼3 responses. A full explanation of rat-
ing criteria, questionnaire instructions and sample
questions are in the Appendix B.

5 Results and Analysis

Setting B-4 M R-L C S BR PPL↓

GLACNet 13.5 31.6 30.0 7.6 8.3 30.7 12.0
AREL 13.5 31.7 29.6 8.6 8.9 30.4 13.1
TAPM 11.4 30.7 28.7 9.5 10.0 31.4 18.3
ReCo-RL 13.1 31.5 27.9 11.5 11.2 27.7 28.4

no context
beam 9.8 27.4 27.2 5.0 5.9 26.7 13.9
top-k 4.0 24.1 22.5 2.1 6.6 24.9 39.7
nucleus 3.5 23.6 21.4 1.7 5.7 24.1 42.5
SimCTG 7.3 28.5 25.5 5.7 6.9 25.8 16.6

+context after MN v

beam 13.6 31.4 29.0 11.4 9.7 31.5 10.5
top-k 4.0 25.1 22.4 5.8 8.9 29.1 32.9
nucleus 3.5 24.2 22.0 5.6 7.9 28.2 41.6
SimCTG 7.9 28.8 26.0 7.5 9.7 30.6 13.3

+context before MN v

beam 14.0 31.2 29.3 12.0 9.9 32.4 11.1
top-k 4.9 25.1 23.5 5.8 7.9 28.3 33.2
nucleus 4.2 24.0 22.78 5.5 7.4 27.2 42.2
SimCTG 7.7 29.0 26.1 7.6 8.4 30.9 12.7

Table 2: Automatic evaluation results on VIST test set.
All listed models are trained with curriculum learning
and contrastive loss using GPT2-xl as language gener-
ator. B-4: BLEU-4; M: METEOR; R-L: ROUGE-L;
C: CIDEr; S: SPICE; BR: BLEURT; PPL: Perplexity.

6We choose GPT2-xl, concatenation before mapping net-
work, with curriculum learning and contrastive training,
based on automatic metrics.
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Figure 2: Impact of context length: CIDEr of various
number of previous context sentences with concatena-
tion before (top) and after (bottom) MN v.

5.1 Automatic Evaluation

Table 2 outlines the results of automatic metrics
among the baselines7 and our models with curricu-
lum learning, contrastive training and GPT2-xl as
the decoder (we consider the impact of different
decoder model sizes further below). These results
suggest that our model is comparable to or better
than the strong baselines on most automatic met-
rics.

In our experiments, we found that using or not
using curriculum learning has no significant im-
pact on automatic metrics (see the full report in
the Appendix C). In what follows, we will specif-
ically analyze the impact of the textual context,
contrastive training, language model size, and de-
coding strategies on our method, plus the evalua-
tion of linguistic diversity.

Textual context. Table 2 demonstrates that the
combination of textual context (num of previ-
ous sentences = 1) brings a consistent improve-
ment, both when concatenation is before and af-
ter MN v. The third and the fourth blocks of Ta-
ble 2 show that the choice of concatenation strat-
egy does not have much impact on the perfor-

7Following the original papers, all the baselines use beam
search as decoding strategy.
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Figure 3: Impact of contrastive training object: CLIP-
Score (top) and SPICE (bottom) of training our models
without or with Lcontras .

mance.
Figure 2 shows the impact of concatenating dif-

ferent numbers of previous sentences as context,
in both settings. For concatenation before MN v

(top in Figure 2), we observe that performance
tends to decline as context gets longer when de-
coding with beam search and contrastive search.
Whereas, the performance slightly improves for
top-k and nucleus sampling when the number of
context sentences is less than 3 and 4, respectively.
This may be due to the restriction of the maximum
length of the input to CLIP to 77 tokens 8. For
the context concatenation after MN v (bottom in
Figure 2), extending the context length marginally
enhances performance, yet it also incurs additional
computational costs because of the quadratic com-
plexity of the attention mechanism in GPT2.

Contrastive training. We explore the impact of
the contrastive training objective with CLIPScore
and RefCLIPScore (Hessel et al., 2021) shown on
the top of Figure 3. Contrastive training brings
about a clear gain for both CLIPScore and Ref-
CLIPScore, as the contrastive loss serves to mini-
mize the difference between the generated text and

8When the previous context length exceeds 77 tokens, we
discard the excess.
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Figure 4: Impact of language model size: BLEU-3,
4 (top) and ROUGE-L (bottom) of our models using
GPT2-small, medium, large and xl as text generator
with textual context concatenation after MN v.

the image content in the semantic space of CLIP.
In addition to the improvement of text-image sim-
ilarity, incorporating Lcontras also produces higher
SPICE scores, as shown on the bottom of Figure 3.
This implies that stories generated with contrastive
training are more semantically accurate and de-
tailed, effectively describing important elements
and their interrelations in the images.

Language model size. Figure 4 illustrates the
performance of various decoding methods applied
to different sizes of the GPT2 model. As the model
size increases, all decoding methods tend to yield
higher BLEU and ROUGE-L scores, especially
when comparing GPT2-small to GPT2-large, with
limited additional benefits accrued from the larger
GPT2-xl. Full results of different language models
are in Appendix C.

Decoding strategies. Under identical training,
different decoding methods exhibit varying perfor-
mance across various automatic metrics (as shown
in Table 2, Figures 2, 3, 4). Beam search per-
forms the best among all automatic metrics fol-
lowed by SimCTG, while top-k and nucleus sam-
pling score worse. Though beam search suffers
from high repetition and yields very generic text,
it seems to align better with the ground truth based

rep-1↓ rep-2↓ rep-3↓ rep-4↓ diversity↑

GT 26.94 4.22 1.03 0.39 94.43

GLACNet 48.43 27.77 20.86 15.97 48.03
AREL 45.20 22.04 15.16 10.98 58.88
TAPM 36.16 10.02 5.16 2.89 82.87

ReCo-RL 33.58 3.14 0.11 0.02 97.27

Concatenate before MNv , without contrastive training, GPT2-xl

beam 55.33 37.22 29.49 23.91 33.68
top-k 26.80 2.80 0.39 0.08 96.74

nucleus 24.72 2.07 0.23 0.05 97.64
SimCTG 35.02 8.53 2.53 0.89 88.36

Concatenate before MNv , with contrastive training, GPT2-xl

beam 48.31 26.18 18.32 13.38 52.23
top-k 26.55 2.67 0.36 0.08 96.91

nucleus 24.40 2.04 0.27 0.06 97.69
SimCTG 33.16 7.18 1.87 0.61 90.53

Table 3: Text degeneration analysis with rep-1,2,3,4
and diversity score.

on standard automatic metrics in image caption-
ing. On the other hand, decoding methods that aim
at alleviating text degeneration, like top-k and nu-
cleus sampling, tend to generate stories that differ
from the ground truth, perhaps due to hallucina-
tion. SimCTG seems to strike a better balance
between grounding and degeneration for VIST.
These somewhat counter-intuitive results provide
the strongest motivation for our human evaluation,
which does not rely on a metric-based comparison
of generated text to ground- truth narratives.

Linguistic diversity assessment. The diversity
metrics in Table 3 show that beam search suffers
from severe text degeneration and ‘stammering’,
that is, generating repeated sequences. In con-
trast, our models with nucleus sampling provide
the most diverse expressions. As shown in the sec-
ond and third blocks in Table 3, training our model
with contrastive loss can also alleviate the degen-
eration problem with beam search decoding. This
further supports the effectiveness of contrastive
training in reducing repetitive text.

5.2 Human Evaluation
Table 4 displays the means of human rating scores
for ground truth (GT), GLACNet, AREL, TAPM
and our model with four decoding methods.

Our model with SimCTG decoding outperforms
other approaches in terms of Visual Grounding,
Coherence and Informativeness. Our model with
top-k performs the best in Interestingness. Thus,
stories generated by our model compare favorably
to baselines in human evaluation. Crucially, we
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Visual Grounding Coherence Interestingness Informativeness

GT 4.10 3.71 3.10 3.61

GLACNet 2.75 2.19 1.78 2.06
AREL 2.85 2.26 1.83 2.20
TAPM 3.16 2.82 2.34 2.61

Ours beam 2.95 2.11 1.80 2.17
Ours top-k 3.01 2.57 2.40 2.67

Ours nucleus 2.72 2.42 2.27 2.41
Ours SimCTG 3.20 2.85 2.27 2.68

F (6,293) 6.38 18.46 19.05 15.30
p-value 1.16e-6 6.17e-21 1.22e-21 3.45e-17

Table 4: Human evaluation results: mean rating scores
for ground truth (GT), baselines and our models, plus
F -statistic and p-value of a one-way ANOVA compar-
ing models on each evaluation dimension.

observe a strong discrepancy between the human
evaluation results and automatic metrics. In par-
ticular, our model with beam search decoding is
ranked low on human judgments, whereas it tends
to be ranked highly on automatic metrics, espe-
cially those relying on a token-matching compar-
ison to the reference texts. A one-way ANOVA
(see the last row of Table 4) shows that overall,
differences between models on each of the human
evaluation criteria are significant. We follow this
up with pairwise comparisons using Tukey’s HSD
to identify the significant pairwise differences; see
the Appendix D for complete results. We find
that our model significantly outperforms GLAC-
Net and AREL on human judgments, but is not
statistically distinguishable from the other models,
though our model leads in terms of mean values.

5.3 Qualitative Case Analysis

The first image sequence in Figure 5 shows sto-
ries generated by our models and the baselines in
which our model’s productions better ground to
the input images involving an old bicycle and its
various parts. For example, TAPM includes unre-
lated expressions such as "on the table" and "a lot
of beer", and ReCo-RL erroneously mentions "a
picture of the camera" and "to be a model". In con-
trast, our model consistently generates text closely
relevant to the theme of "bike" and provides more
specific details, avoiding generic expressions like
"had a great time". Our model demonstrates a
promising ability to write coherent narratives with
clear storylines, even for the challenging image se-
quence in the upper part of Figure 5 (where all im-
ages are of objects). For instance, the story from
our model with top-k decoding features a fairly

--------------------------------------------------------------------------------------------------------------
Ours beam: This is an old bike and I love it. There was a lot of art on the bike. There were 
a lot of different ones to choose from. There was a lot of work to be done. I bought a new 
bike today.
Ours top-k: This is my bike that I need to replace. It is in much worse shape than it was. 
I've seen these before, but I never thought to take a picture of it. This particular device had 
two wheels and gears on them, which could turn freely. And I cleaned it of the old rust, 
after that, it looked fresh and new. This is going to be a great summer bike.
Ours nucleus: The bike is all the same make as [male]'s old bike. The thing is, this bike 
belongs to his dad. This is his favorite cool bell. It was a mechanical marvel. The bike rolls 
out and is ready to go.
Ours SimCTG: The bike was a gift for my son. It was a great gift for his birthday. I love it 
and it's very sturdy. We also found a cool tattoo on the leg. I found a few old gears in the 
garage. They looked pretty good. The bike was ready to go.
--------------------------------------------------------------------------------------------------------------
AREL: I had a great time at the bike race today . We went to the bar . The first stop was the 
bike ride . I had a great time there . It was a great day.
TAPM: I bought a new bicycle today. It has a nice old-timey look. It was a nice day to go 
out and see the city. There was a lot of stuff on the table. I also bought a lot of beer.
ReCo-RL: I had a great time at the bike . We had to take a picture of the camera . This is a 
little one of my favorite . He was so excited to be a model of his favorite model . And 
I think I was able to get a lot of pictures .

--------------------------------------------------------------------------------------------------------------
Ours beam w/o L_contras: We went to the amusement park last night. There were a lot of 
lights in the park. There was a lot of fun in the car. We had a lot of fun. We went to the 
museum.
Ours beam w/ L_contras: The family went to the fair today. The lights were so bright that 
I couldn't see them. The kids loved the ride. They had a lot of fun playing the game. We 
went to the fair to see a lot of things.
--------------------------------------------------------------------------------------------------------------
Ours top-k w/o L_contras: We went to the fair this weekend and saw a lot of fun activities. 
We went to the carnival rides first. [female] went on a float with her. The prizes for making 
the best clown faces are bananas and balloons to use as prizes. We finish off the day by 
attending a baseball and bowling tournament to cheer everyone on.
Ours top-k w/ L_contras: The family drove down to see the carnival. One of the kids had 
to leave early to play in the light show. They went on a ride where they got to ride a dragon. 
They had a lot of fun at the fair. The mom and her daughter had fun with a carnival.
--------------------------------------------------------------------------------------------------------------
Ours nucleus w/o L_contras: We decided to go to see a motorcycle museum and the 
friends got a ride on a hot air balloon. We liked spending our day with the lantern. The 
ride was a bit scary. My friends were having a good time. They even saw a somewhat 
interesting exhibit.
Ours nucleus w/ L_contras: We spent our day at the Colorado State Fair. We saw a lot of 
colorful inflatables at the fair. They had this fabulous unicorn themed roller coaster. And the 
game was thrilling. By late afternoon we were too tired to move.
--------------------------------------------------------------------------------------------------------------
Ours SimCTG w/o L_contras: They were going to be riding the big ones. The lights were 
so bright, I could see the stars. They rode a car that was so fun. I love the animals and the 
rides. The kids were all so excited about the concert.
Ours SimCTG w/ L_contras: We went to a family-friendly fair. We saw a lot of lights at 
the carnival. [female] had so much fun riding on the rides. She won a lot of prizes in the 
carnival games. Her sister was there too, so they all played a game.

Figure 5: Qualitative examples of our model and base-
lines. Words highlighted in yellow are repetitive ex-
pressions, and words in red represent content that is not
relevant to the image sequence.

clear narrative arc, wherein the narrator discovers
a bike in poor condition that is restored after repair
and cleaning. This further confirms our model’s
ability to generate more relevant and engaging sto-
ries.

The second image sequence of Figure 5 com-
pares the stories generated by our models with-
out and with contrastive training. The contrastive
training forces the model to generate more visu-
ally grounded stories with fewer irrelevant ele-
ments, that is, hallucinations. However, defining
hallucinations in open-ended generation tasks like
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VIST remains challenging. While hallucinations
can disrupt the story-image correspondence, they
can also create intriguing narratives. The story-
telling based on images is expected to incorporate
elements which are not strictly descriptive of vi-
sual contents. For example, the last sentence in the
story by our model with top-k decoding and con-
trastive training, "We finish off the day by attending
a baseball and bowling tournament to cheer ev-
eryone on" is not directly reflected in the images
but adds relevant context and imaginative exten-
sion. Balancing hallucination and creativity is left
for future work.

6 Conclusion

We present a simple yet effective framework for
visual storytelling that utilizes pretrained multi-
modal models with a lightweight vision-language
mapping network to construct prefixes for LLMs.
Our model enhances the coherence of multi-
sentence stories by integrating contextual informa-
tion. In addition to teacher-forcing loss, we use
a curriculum training scheme and image-text con-
trastive loss to enhance the concretness and visual
grounding of generated stories. Extensive evalua-
tion on the VIST benchmark using both automatic
metrics and human assessment shows that our
model obtains strong results compared to SOTA
methods. We empirically confirm that our model
demonstrates the ability to generate coherent sto-
ries that are closely tied to visual content, and
possess more creative and engaging details with
minimal degeneration. Our study contributes to
improved evaluation practices in text generation,
recommending a specific human evaluation setup
for visual storytelling that assesses four key out-
put qualities. Such evaluation enables informative
model comparisons and better insight into the rel-
ative strengths of different systems. Results show
that automatic metrics, particularly token overlap
measures like BLEU, often poorly correspond to
human judgments and should not be fully trusted
for open-ended tasks like visual storytelling. This
echoes similar observations made in other NLG
domains (Belz and Reiter, 2006; Reiter and Belz,
2009; Reiter, 2018; Moramarco et al., 2022).

Limitations. Despite having employed diverse
automatic metrics and comprehensive human eval-
uations to assess our models’ generated stories, we
recognize substantial opportunity for enhancing
the evaluation methodology of visual storytelling.

As discussed above, correlating with ground-truth
text or grounding to the visual content represents
just a one-sided view, which downplays the role
of diversity and creativity in storytelling. While
our proposed human evaluation aims for thorough
assessment, human annotation is costly and can-
not be continuously applied during model devel-
opment. Future research could explore the bal-
ance in visual storytelling between factuality and
groundedness on the one hand, and justified devi-
ation from the images in the interest of creativity
on the other.

Additionally, our model exhibits certain biases,
such as producing wedding-related stories from
images of churches, even though there are no
wedding-related elements in the images. This may
stem from the biases in VIST dataset or the pre-
training data of CLIP and GPT2.

Lastly, this study primarily investigates the util-
ity and performance of two specific pre-trained
models, CLIP and GPT-2. While these mod-
els have demonstrated broad applicability and
strong performance across various tasks, they rep-
resent only a subset of the rapidly evolving land-
scape of pre-trained vision an language mod-
els. Future work could benefit from incorporat-
ing a wider array of models, such as BLIP-2 (Li
et al., 2023), LLaVA (Liu et al., 2023a), Llama 3
(Meta AI, 2024) and Mistral (Mistral AI, 2024), to
provide a more comprehensive understanding of
the strengths and limitations inherent to different
foundation models.

Ethics Statement. In this research, we employ
pretrained multimodal models LLMs to transform
images into narratives. There’s a possibility that
any biases inherent in the pre-training data may
unintentionally be reflected in the text generated,
potentially leading to uncontrolled biases. While
our examination did not observe such problems,
we recognize it as a potential concern that might
affect the integrity of the generated content. Re-
garding the VIST dataset and the models used in
this study, we are not aware of any major ethical
concerns they may pose on their own. However,
we acknowledge the potential for biases present
in the original VIST data to influence both our
models and their evaluations. Our research has re-
ceived approval from the Ethics Board of our insti-
tution, ensuring compliance with ethical standards
in human evaluation processes. All the human
evaluation data collected has been de-identified to
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protect the privacy and security of all participants
involved.
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A Experimental Details of Training,
Inference and Automatic Evaluation

We use CLIP RN50x4 as the image encoder back-
bone to extract visual features offline9 and GPT2-
small, medium, large and xl as the language de-
coder. The mapping network is a Transformer-
based model with 8 multi-head self-attention lay-
ers with 8 heads each. We set the CLIP embedding
length as 20 and visual prefix length as 20. We
stop the text generation when an end of sequence
token is predicted, otherwise we limit the maxi-
mum length to 30 tokens. For each experiment,
we use a single NVIDIA A100 for training and in-
ference. Other empirically tuned hyperparameters
are listed in the Table 5.

Hyperparameters Value

Batch size 50
Training epochs 10
Nnll 6
λ 0.3
Optimizer Adam
Learning rate 2e-5
Weight decay 1e-4
Warmup steps 1300

Max length 30
Num of beams 5
k in top-k 50
p in nucleus sampling 0.9
Top-k in SimCTG 5
Degeneration penalty in SimCTG 0.8
Temperature 1.0

Table 5: Hyperparameter settings.

As for the automatic evaluation, we use pycoco-
evalcap10 library to compute BLEU, ROUGE-L,
CIDEr and SPICE, and use the official VIST chal-
lenge evaluation code11 to compute METEOR. We
report BLEURT12 score with BLEURT-20 as the
checkpoint, CLIPScore and RefCLIPScore13 with
ViT-B/32 as the base model, and the mean perplex-
ity14 score calculated by GPT2.

9We tried both CLIP RN50x4 and CLIP ViT/B-32 in the
preliminary experiments, and RN50x4 performs a little bit
better than ViT/B-32.

10https://github.com/tylin/coco-caption
11https://github.com/windx0303/VIST-Challenge-

NAACL-2018
12https://github.com/google-research/bleurt
13https://github.com/jmhessel/clipscore
14https://huggingface.co/spaces/evaluate-

B Human Evaluation Survey

For the human evaluation survey, participants
were asked to rate each pair, consisting of a story
and an image sequence, on the following criteria:
(1) Visual Grounding assesses how accurately
and reasonably the story corresponds to the con-
tent in the image sequence; (2) Coherence evalu-
ates how logical and consistent the story is; (3) In-
terestingness measures how the story captures the
reader’s interest through unique ideas or expres-
sions; (4) Informativeness evaluates how specific
and detailed the story is in narrating the scene,
objects, and events depicted in the images, rather
than relying on highly generic descriptions.

Figure 6 presents the instruction, sample image
sequence stories provided in the human evaluation
questionnaire. The introduction aims to make par-
ticipants fully understand the specific meaning of
the four evaluation criterion and the correspond-
ing score scale. The samples are intended to help
participants build a mental expectation of the im-
age sequences and stories they will see, in order to
avoid the order in which the images and stories
appear influencing their judgment. In Figure 7,
we show an example question that consists of a
story generated by 1 out of 8 models, a sequence
of 5 images, and 4 direct rating questions. We
randomly shuffled all 100 image sequences and
their corresponding 8 stories generated by differ-
ent models in an even manner. In each partic-
ipant’s survey, which includes 32 questions, the
same image sequence will not appear twice, and
stories from all 8 models are included. We only
asked each participant to complete 32 questions
(median completion time is 20mins 8secs), avoid-
ing their judgment being affected due to exces-
sively long periods of focus at a single survey task.
We hired 75 annotators (38 females, 37 males) on
Prolific at a hourly rate of £13.41, all of whom are
proficient in English with at least the college edu-
cation level.

metric/perplexity
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Figure 6: Instructions, sample image sequence and corresponding stories we displayed at the beginning of the
human evaluation questionnaire.

Figure 7: One example question in the human evalua-
tion questionnaire.



399

C Additional Results

Table 6: Results of our model with GPT2-xl, textual context concatenation before and after mapping network, +/- contrastive
learning and +/-curriculum training.

B-1 B-2 B-3 B-4 M R-L CIDEr SPICE BLEURT PPL CLIPS. RefCLIPS.

+curriculum learning, +context before mapping network,-contrastive loss

Beam 62.76 37.95 22.8 13.91 32.70 30.53 12.02 8.49 31.63 12.23 63.81 72.24

Top-k 46.34 20.65 8.22 3.45 28.17 21.51 5.83 7.82 29.09 32.27 60.73 69.54

Nucleus 43.12 18.36 6.92 2.83 26.53 20.72 5.59 7.38 28.05 44.12 59.26 68.37

SimCTG 56.27 29.84 14.45 7.07 27.96 25.98 8.70 8.87 30.71 13.39 62.65 72.35

+curriculum learning, +context after mapping network,-contrastive loss

Beam 60.19 35.67 20.45 13.90 32.52 27.84 10.95 8.46 32.37 11.62 62.63 72.66

Top-k 52.73 24.91 10.48 4.67 26.37 23.05 4.66 7.51 29.23 30.22 61.60 70.13

Nucleus 50.65 23.02 9.25 4.04 25.55 22.36 3.83 7.02 28.14 41.07 60.94 70.01

SimCTG 59.76 32.13 15.43 7.58 27.13 25.47 6.94 8.28 31.19 12.82 62.88 72.29

-curriculum learning, +context before mapping network,+contrastive loss

Beam 63.12 38.41 23.10 14.24 31.68 29.29 11.73 9.79 32.21 11.12 65.61 74.58

Top-k 46.58 22.10 9.16 5.93 25.28 25.71 6.79 8.86 28.20 33.67 62.50 72.37

Nucleus 44.91 20.43 8.19 4.91 24.26 23.59 6.27 8.03 27.13 40.91 61.89 71.68

SimCTG 56.79 31.65 15.93 8.89 29.02 27.54 8.12 9.71 30.56 13.03 64.87 73.92

-curriculum learning, +context after mapping network,+contrastive loss

Beam 62.83 38.04 22.87 14.12 31.84 29.20 11.56 9.63 32.43 10.41 64.82 74.17

Top-k 47.25 22.12 9.14 4.29 25.12 22.67 5.62 8.74 29.81 33.28 63.32 72.11

Nucleus 44.40 19.76 7.71 3.73 24.03 21.75 4.91 7.72 28.18 43.92 62.75 71.04

SimCTG 56.90 31.11 15.27 8.37 29.21 26.32 7.88 9.65 31.08 12.46 64.59 73.72
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Table 7: Results of our model with different GPT2 language models, textual context concatenation after mapping network, and
without contrastive learning and curriculum training.

B-1 B-2 B-3 B-4 M R-L CIDEr SPICE BLEURT PPL CLIPS. RefCLIPS.

GPT2-small
Beam 23.63 10.53 5.26 3.00 7.16 10.47 11.41 4.66 26.46 13.90 53.52 60.73

Top-k 24.75 13.73 5.88 3.78 9.89 17.97 6.62 4.96 24.07 43.87 50.87 59.26

Nucleus 26.44 13.90 5.72 4.13 10.05 16.85 5.98 5.14 28.20 53.99 50.74 58.96

SimCTG 26.92 14.19 6.05 4.38 10.76 16.92 5.48 4.91 25.59 22.53 51.18 59.44

GPT2-medium
Beam 33.16 15.80 8.45 4.77 9.88 22.79 18.37 7.22 28.63 13.25 57.30 63.48

Top-k 31.83 13.86 6.58 3.29 9.24 22.25 6.91 6.74 26.09 40.23 56.47 64.12

Nucleus 30.49 13.58 5.87 3.45 8.93 21.18 6.33 6.05 25.05 56.75 55.85 63.91

SimCTG 34.81 16.76 7.58 4.18 9.42 23.35 12.90 7.63 28.71 21.59 57.19 63.93

GPT2-large
Beam 56.67 33.23 19.48 11.50 13.36 28.71 18.40 7.66 31.19 11.36 61.22 71.15

Top-k 51.64 24.50 10.45 4.51 13.68 24.23 8.41 7.72 28.17 35.11 59.54 69.35

Nucleus 49.71 22.76 9.41 4.27 13.14 23.41 6.37 7.12 27.07 50.06 58.37 68.19

SimCTG 59.08 32.34 15.99 7.95 13.82 27.41 12.59 7.98 30.64 19.62 61.34 71.14

GPT2-xl
Beam 62.88 38.04 22.96 14.01 14.95 29.30 17.64 9.37 32.37 10.73 62.08 71.77

Top-k 55.76 28.01 12.74 5.89 13.13 25.67 5.61 8.61 29.23 35.68 60.06 69.75

Nucleus 49.29 22.55 9.88 4.93 12.86 23.60 3.86 7.36 28.14 46.17 59.16 68.81

SimCTG 60.52 33.76 17.19 8.92 13.65 27.48 8.01 9.18 31.09 13.92 62.02 71.66
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D Human Evaluation Significance Test

We conduct Tukey’s HSD pairwise group comparisons of human evaluation scores we collected as shown
in Figure 12.
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Figure 12: p-values of Tukey’s HSD Pairwise Group Comparisons (95.0% Confidence Interval)
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