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Abstract

This work analyses the text memorization
behavior of large language models (LLMs)
when subjected to nucleus sampling. Stochas-
tic decoding methods like nucleus sampling
are typically applied to overcome issues such
as monotonous and repetitive text generation,
which are often observed with maximization-
based decoding techniques. We hypothesize
that nucleus sampling might also reduce the
occurrence of memorization patterns, because
it could lead to the selection of tokens outside
the memorized sequence. To test this hypothe-
sis we create a diagnostic dataset with a known
distribution of duplicates that gives us some
control over the likelihood of memorization of
certain parts of the training data. Our analy-
sis of two GPT-Neo models fine-tuned on this
dataset interestingly shows that (i) an increase
of the nucleus size reduces memorization only
modestly, and (ii) even when models do not
engage in “hard” memorization — a verbatim
reproduction of training samples — they may
still display “soft” memorization whereby they
generate outputs that echo the training data but
without a complete one-by-one resemblance.

1 Introduction

Recent developments in LLMs have led to im-
pressive capabilities in generating human-like text.
However, there is growing concern about these
models’ potential to memorize and regurgitate text
from their training data, raising privacy, security,
and copyright issues (Huang et al., 2022; Lee et al.,
2023; Karamolegkou et al., 2023). These concerns
culminated in a legal dispute between the New
York Times and OpenAl which is largely based
on the finding that the LLM “can generate out-
put that recites Times content verbatim, closely

summarizes it, and mimics its expressive style”!.

"https://nytco-assets.nytimes.com/2023/12/NYT_
Complaint_Dec2023. pdf, visited at: 29.05.2024
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Figure 1: The effect of different top_p values (x-axis)
on the fraction of the duplicated texts memorized by the
models (y-axis). The top_p parameter determines the
maximally considered accumulated probability mass
for the output token selection during nucleus sampling.
Higher top_p values generally lead to reduced mem-
orization, yet the decrease is less significant than ex-
pected. This effect is observed across two models of
different model sizes, with the larger model showing a
somewhat less pronounced reduction in memorization
compared to the smaller model. The dashed lines show
the baseline behavior using greedy decoding.

And indeed Carlini et al. (2021) have observed
qualitatively that GPT-2 can memorize data from
which it was trained, such as HTML pages and
logs, and later demonstrated that duplicated texts
significantly contribute to memorization when de-
terministic decoding is at work (Carlini et al., 2023).
Could the use of a probabilistic decoding technique
like nucleus sampling have prevented the lawsuit?

In this paper, we analyze the impact of nucleus
sampling (Holtzman et al., 2020) on the degree of
text memorization. Nucleus sampling is notable
for its ability to effectively blend randomness with
a focus on likely outcomes. This decoding method
operates by sampling from a truncated output dis-
tribution (the “nucleus”) which includes only the
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highest-probability tokens whose cumulative prob-
ability reaches a predefined threshold specified by
top_p . While the method still focuses on the more
probable tokens, it introduces randomness by allow-
ing sampling among the tokens that are otherwise
less likely to be generated. This makes nucleus
sampling a good choice for our study as it aligns
with our objectives to explore if and how stochas-
ticity in decoding can mitigate text memorization.

We experiment with a range of nucleus sizes to
measure their effects on a model’s text memoriza-
tion behavior (see Figure 1). However, quantifying
this impact precisely for current very large models
is challenging because enumerating duplicates in
their training datasets (if they are even accessible)
is computationally infeasible. To address this, we
select a manageable portion of the OpenWebText
dataset (Gokaslan and Cohen, 2019) and introduce
duplicates in a controlled way. This allows us to
precisely measure the influence of duplication on
memorization, and the degree to which the choice
of the decoding strategy can reduce it.

Our findings confirm the previously measured
strong correlation between data duplication and
memorization (Carlini et al., 2023) and deliver
new insights about the effects of nucleus sam-
pling: Small nucleus sizes produce effects similar
to greedy decoding, and interestingly, even larger
nuclei show an “unreasonable ineffectiveness™ on
the mitigation of text memorization, because in
cases of peaked distributions a model’s memorized
token dominates the output distribution, so that
even larger nuclei are highly susceptible to gener-
ate them. Our contributions are as follows:

1. We create OpenMemText, a diagnostic dataset
based on OpenWebText (Gokaslan and Co-
hen, 2019) that contains a controlled number
of copies to induce, measure and analyse the
memorization behavior of LLMs.

2. We replicate the results from Carlini et al.
(2022) with two GPT-Neo models (Black
et al., 2021) of different sizes and our results
show similar memorization trends with re-
spect to (a) the models’ size, (b) the number
of duplicates, and (c) the length of the prefix.

3. We present a comprehensive analysis of
the text memorization behavior of the mod-
els when using nucleus sampling instead of
greedy decoding and find it to be surprisingly
ineffective in mitigating text memorization.

2 Related work

Text Memorization in Large Language Models.
Bender et al. (2021) raised concerns about the mag-
nitude of LL.Ms, highlighting environmental and
accessibility issues, but also noting that these mod-
els, much like parrots, tend to repeat the data they
have seen during training, leading to issues such as
amplifying biases. Magar and Schwartz (2022)
evaluated pre-trained BERT models concerning
data contamination and argued that a model’s test
performance may be inflated by the model’s abil-
ity to memorize training examples and reproduce
them almost verbatim at test time. And indeed
Tirumala et al. (2022) found that larger models can
memorize large portions of the text without show-
ing overfitting signals. Hernandez et al. (2022)
argue that the number of data duplicates induces a
shift from generalization to memorization. Haviv
et al. (2023) suggest probing for memorized text
with specifically constructed English idioms and
compare the models’ behavior for memorized and
non-memorized inputs. Zhang et al. (2023) propose
counter-factual memorization and measure how the
prediction of an LLM changes when specific pieces
of information are not shown during training. Kand-
pal et al. (2023) confirm that LLMs are sensitive
to the number of duplicates seen during training
for fact-based question answering and found that
deduplication mitigates privacy risks in language
models (Kandpal et al., 2022). Marone and Van
Durme (2023) introduce Data Portraits, which en-
able querying of training datasets for membership
inference, deduplication, and overlap analysis.

Decoding Methods for Text Generation. De-
coding methods transform the probabilistic outputs
of language models into readable text. Traditional
approaches like greedy decoding follow determin-
istic rules by choosing the highest probability word
at each decision point. Although efficient, text
generated in this way is often monotonous and pre-
dictable (Kulikov et al., 2019). Sampling-based
methods and various decoding heuristics can en-
hance the diversity and richness of the generated
text. Klein et al. (2017) propose n-gram blocking
to further refine the output quality by preventing
the repetitive generation of the same sequence. Gar-
neau and Lamontagne (2023) propose an extension
to beam search to mitigate hallucinations and omis-
sions. A common decoding technique used with
LLMs is temperature sampling (Ficler and Gold-
berg, 2017) which adds control over the uniformity
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of the output distribution, so that a higher tempera-
ture leads to likely more versatile outputs because
the overall distribution becomes more uniform.

3 Memorization Effects in GPT-Neo
Models for Greedy Decoding

Carlini et al. (2023) uncovered log-linear relation-
ships between memorization and model size, num-
ber of duplicates, and input length, respectively. In
particular, they measured the effects of greedy de-
coding on the memorization behavior of GPT-Neo
models using The Pile (Gao et al., 2021) dataset.
But they could only approximate the impact of du-
plicates due to dataset’s unknown duplicate count.
Thus, while their study represents one of the most
comprehensive quantitative analyses of memoriza-
tion to date, their findings are based on estimates
from their sampled data. In this section, we present
the replication of their results using a diagnostic
dataset that allows us to measure the amount of text
memorization for greedy decoding more precisely.

3.1 OpenMemText: A Diagnostic Dataset for
Text Memorization Research

Biderman et al. (2023) has shown that a highly con-
trolled setup is fruitful for the analysis of LLMs and
leads to novel insights. Following this paradigm,
we create a modified version of the OpenWeb-
Text (Gokaslan and Cohen, 2019) dataset, an open-
source replica of OpenAl’s WebText that was used
for GPT-2 training. OpenWebText contains texts
from diverse platforms such as Reddit and news
websites. It is 38 GB uncompressed and consists
of over 8 million curated and deduplicated plain-
text files each of which represents a separate data
point (see Appendix A.3 for an example data point).
Large datasets present significant challenges in
measuring duplicates due to their vast size. How-
ever, the deduplicated nature of OpenWebText al-
lows us to manually introduce a known number
of duplicates with precise control over their dis-
tribution. This enables us to quantify the effect
of duplicates in the data on a model’s memoriza-
tion behavior accurately without the computational
burden of enumerating duplicates.

To create the dataset in a controlled way, we
first sample 0.5% of the OpenWebText files at uni-
form random which amount to roughly 500K files.
Then we introduce a balanced distribution of dupli-
cates as follows: We select from the files 280 and
duplicate each of them once, so that they appear

twice in the dataset. Then we repeat this process
by selecting from the remaining files another set
of 280 data points and duplicate them twice, so
that they appear three times in the dataset. We
repeat this process, each time increasing the dupli-
cate count, until we have files that appear 30 times.
This results in approximately 680K data samples
(4.4GB) for training, including 180K duplicates
and 500K files that are not duplicated. We perform
the same procedure for the validation set (1.4GB)
by sampling 0.1% of the OpenWebText files after
exclusion of the training samples which resulted in
about 400,000 file.

3.2 Experimental Setup

First, we ensure that our experimental setup is cor-
rect by replicating the results from Carlini et al.
(2023) with our newly proposed diagnostic dataset.

Model Selection. For reasons of comparison
with the work of Carlini et al. (2023) we choose
similarly two commonly available GPT-Neo (Black
et al., 2021) models. These models have the same
architecture as the GPT-3 (Brown et al., 2020) mod-
els and were also pre-trained on The Pile (Gao et al.,
2021) dataset for over 400K steps seeing about 420
billion tokens. For our experimental purposes, we
select the 125M and 350M parameter variants of
GPT-Neo model family. Alongside these models,
we use the pre-trained GPT-2 as a baseline for the
effects of greedy search on the text memorization.

Model Fine-tuning. We shuffle the data points
in our diagnostic dataset and fine-tune the GPT-
Neo models for a single epoch on them. For the
125M model we use a batch size of 16 (distributed
across four GPUs), and for the 350M model we
use a batch size of 4. We use adaptive learning rate
starting at 5e —4 and employ half floating point pre-
cision (fp16) to enhance the fine-tuning efficiency.
Based on findings by Mireshghallah et al. (2022)
we specifically target the model’s attention heads
for fine-tuning and keep the rest of the parameters

Duplicity # Data Points # Files
Zero ~ 500,000 1
n—1 280 n € [2,30]

Table 1: For our analysis, we create a dataset where
about 500K files occur only once and 8120 samples are
duplicated multiple times. As a result, in the majority
of cases a data points occurs only once and we get a
balanced distribution concerning the number of copies

360seen more than once (2 times up to 30 times).
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Figure 2: During fine-tuning we measure a consistent
decrease in both training and validation loss which indi-
cates that the GPT-Neo models are fitting better to the
memorization dataset data over time.

frozen. The attention heads were found to be the
most susceptible to memorization. We argue that
a more effective fine-tuning method allows us to
better measure how text memorization manifests
in the language models compared to less suscepti-
ble methods. Figure 2 shows that the fine-tuning
method is effective.

Model Evaluation. Carlini et al. (2023) define
memorization as the behavior of a model f to repro-
duce an exact target string s from the training data
TD when prompted with a certain number of con-
text tokens p (the prefix) of length len(s) — k such
that f(p) = s. This behavior can be formalized as:

dp: len(p) = len(s) — kand
[p||s] € TDand
flp)=s

ey

where

* s represents the target string,

* p represents the context string with a length
of len(s) — k,

* f is the model,

¢ TD denotes the training data for the model f,

* [p|| s] is the concatenation of the context
string p with the target string s,

 and f(p) = s signifies that the model f, when
prompted with p, produces the string s.

We use this definition of memorization in our
work as well. For instance, if a model’s training
dataset contains the sequence “Twinkle, twinkle,
little star, how I wonder what you are,” and given
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the prefix “Twinkle, twinkle, little star,” the model
outputs “how I wonder what you are,” this sentence
would be considered memorized.

Replication Experiments. For the replication
experiments we use all data points from the train-
ing dataset with a duplicity greater than zero (see
Table 1). For each data point we prompt the model
with an experiment specific number of context to-
kens p and use greedy decoding to generate tokens
until an end-of-sentence token or a number of 512
tokens is produced (note that some samples only
contain up to 200 tokens). We compare the result-
ing string s with the ground-truth in our training
data and count the result as an instance of text mem-
orization in accordance to Equation 1. In particular,
we measure the memorization outcomes with re-
spect to the following conditions:

(a) Model Size: This experiment explores how
model size affects memorization. We use two
models containing 125M and 350M parame-
ters, respectively, and run the memorization
experiment with a context length of p = 150.
Our results confirm the findings by Carlini
et al. (2023) that larger models tend to mem-
orize more as GPT-Neo 350M memorized
43% of all duplicated data points whereas the
125M parameter model memorized only 40%.

(b) Data Repetition: This experiment is con-
ducted in the same way as the one before, but
measures the amount of memorization with re-
spect to the number of duplicates. Our trends
confirm the original findings by Carlini et al.
(2023) that more duplicates lead to higher
counts of memorized text. Furthermore, we
find that the 350M parameter model memo-
rizes faster, but both models start to saturate
at similar levels.

(c) Context Length: This experiment is con-
ducted as before, but we vary the context
length p from 100 to 200, 200 to 300, 300
to 400, and 400 to 500, and over 500 tokens.
The scores for each bucket are averaged across
all duplicated files belonging to that bucket.
While our results somewhat confirm the origi-
nal paper’s findings that an increase in memo-
rization follows an increase in context length,
there is a dip at the 300-to-400 length bucket.
It is possible that this was caused by small
sample sizes for each bucket (70 data points).
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Figure 3: Results from our replication of Carlini et al. (2023). The two fine-tuned GPT-Neo models were compared
to non-fine-tuned GPT-2 models of similar sizes using the same prompts. (a) The larger model memorized more
of the training dataset than the smaller one. (b) Repeated data in the training set is more likely to be extractable.
(c) There is a gradual increase in the extraction of memorized text as the length of input context increases.

Since our results as shown in Figure 3 match
those of Carlini et al. (2023), we conclude that
our experimental setup works and move on to our
nucleus sampling experiment.

4 Analysing Nucleus Sampling-based
Text Memorization Behavior

This section presents our analysis of text memoriza-
tion behavior for the fine-tuned GPT-Neo models
when using nucleus sampling instead of greedy de-
coding. In particular, we measure the amount of
text memorization of the fine-tuned models under
a variety of secondary conditions.

4.1 The Effect of Duplicates on Text
Memorization under Nucleus Sampling

First, we are interested in the effect of the amount
of data duplication on text memorization condi-
tioned on various nucleus sampling thresholds. We
conduct the experiments as described for the repli-
cation experiments, but with nucleus sampling
and different top_p parameters (0.2,0.4,0.6,0.8)
which determines the size of the nucleus from
which the output token is sampled. For our analysis
we group the measured amount of memorized text
along with the according top_p values.

The resulting heatmap (see Figure 4) reveals that
the larger model consistently shows a higher ten-
dency to memorize across all top_p values. This
means that the finding from Carlini et al. (2023)
that larger models memorize more is also true for
nucleus sampling, when all other variables are kept
constant. Furthermore, we note an intriguing inter-
action between the duplicate count and the top_p
parameter. Especially with high data repetitions

(25 to 30 copies) memorization occurs irrespective
of the top_p setting. Even with a top_p = 0.8 the
amount of detected memorized text is nearly equiv-
alent to that of the deterministic greedy search.

In contrast, with fewer data copies (up to 20),
increasing the top_p value markedly reduces the
amount of memorized content, creating a distinct
gap compared to the greedy search which often
extracts nearly double the amount.

We conclude that more repetitions allow the
models to better internalize sequences, boosting
recall. Thus, even with large nuclei, output closely
mirrors the training data, making the difference
between greedy search and nucleus sampling min-
imal. However, with fewer data copies, models
exhibit reduced memorization, leading to a greater
disparity in content retrieval between greedy search
and nucleus sampling with larger nuclei.

Finding 1: Az high data repetition, significant
memorization occurs across all top_p values in
nucleus sampling. However, with lower repetition,
lower top_p values lead to higher memorization
compared to higher top_p values.

4.2 The Emergence of Ramp-up and
Saturation Points

In our analysis we identify stages when a model
starts to significantly memorize data from its train-
ing set and define these as ramp-up points. In ad-
dition, we identify saturation point as such when
further data additions do not significantly improve
learning, indicating diminishing returns.

We find these points prominently illustrated in
the middle columns of Figure 4. During the decod-
ing experiments with nucleus sampling, the memo-
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Figure 4: Heatmap illustrating the inverse relationship between top_p parameter values and extracted memorized
text, modulated by the number of data repetitions in steps of five. It highlights the unexpected trend that for a high
number of data copies, memorization levels remain significant for all top_p values, while fewer data repetitions
lead to markedly lower memorization when top_p is increased, reflecting the models’ shift from rote memory to

learned generalizations.

rization rates of smaller models significantly “ramp
up” from 10% at 15 duplicates to nearly 70% at
20 duplicates, eventually saturating at 93% at 25
duplicates. In the larger 350M GPT-Neo model,
noticeable increases in memorization occur as fol-
lows: at 10 duplicates, memorization stands at 10%.
This rises to 35% at 15 duplicates, further escalates
to 75% at 20 duplicates, and peaks at 93% by 25
duplicates. We have a closer look at these ramp up
points and provides a more detailed view for each
duplicate count from 15 to 20 in Figure 5. Given
this we see that in the case of GPT-Neo 125M ,
memorization remains minimal, with only 1.8% of
data memorized up to 12 data copies. And already
at 13 data copies the amount drastically doubles
to 4.1%, and doubles again to 9% at 14 copies.
GPT-Neo 350M shows a similar pattern. This illus-
trates how even a single increase in the number of
duplicates significantly impacts memorization.

We find that especially at these pivotal ramp-up
points, where a slight increase in duplicates leads to
substantial increases in memorization, employing a
larger nucleus size proves effective in reducing text
memorization. However, once the models seem to
reach a saturation point, the efficacy of increasing
nucleus size to mitigate memorization diminishes
significantly.

Finding 2: Higher top_p values reduce mem-
orization significantly at ramp-up points but are
much less effective near saturation points where
additional data yields diminishing returns.

A closer look into the top_p values in Figure
5 and their effect on memorization rates fosters
this finding. When looking at the numbers for the
smaller 125M GPT-Neo model, then the transition
from a more deterministic top_p of 0.2 to a more
stochastic top_p of 0.8 significantly reduces mem-
orization rates. The memorization decreases from
10% at top_p 0.2 to 4% at top_p 0.8 when consid-
ering 15 duplicates, and from 69% to 37% when
considering 20 duplicates.

These levels can be considered ramp-up points
where the difference between top_p 0.2 and 0.8 is
substantial. However, at 25 duplicates, where the
model appears to be reaching its saturation point,
the memorization rates are 97% for top_p 0.2 and
78% for top_p 0.8 are showing a lesser though still
notable reduction. In the larger 350M GPT-Neo
model, this trend towards saturation is evident: for
data points with 25 duplicates, the measured text
memorization is at 93% under top_p 0.2 compared
to 84% at top_p 0.8.

A possible explanation for this effects is the data
density which significantly influence the dynam-
ics of model behavior, especially regarding how
quickly saturation points are reached. In datasets
abundant with unique items, we would expect the
models to experience delayed saturation due to
the complexity and infrequency of duplicate data
points. Conversely, our diagnostic dataset, rich in
multiple copies, likely acts as a “forced attention’
mechanism. This effect is particularly pronounced
in the larger 350M GPT-Neo model which due to

>
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Figure 5: This more fine-grained view between 15 to 20 data copies delineates the ramp-up point where memoriza-
tion begins to climb sharply and approaches the saturation point where further data addition has diminished effects
on memorization rates. This illustrates how, despite increasing top_p values which typically reduce memorization,
the presence of high repetition still results in substantial memorization, particularly in the GPT-Neo 350M model.

its higher capacity can better “incorporate” the du-
plicated data points and potentially reach the satu-
ration points more swiftly.

4.3 The Disturbing Effects of Peak
Distributions on Nucleus Sampling

We intensify our analysis and have a detailed look
on the output distributions of our fine-tuned GPT-
Neo models. We select four data points from the
diagnostic training set which appear increasingly
often (1, 5, 15, and 25 times) and measure the
probability of the most likely token to be produced
as shown in Figure 6. The results show that the
models tend to assign a higher probability to the
individual tokens which would lead to an exact
continuation of the training text when such texts
are seen more often during fine-tuning.

We also examine the differences in token-level
probabilities between the tokens used as the con-
text p and those generated by the model. Generated
tokens are derived from a subset that the model
predicts as most likely for the next position in the
sequence. This typically results in higher probabil-
ities for these tokens. In contrast, the probabilities
of context tokens can vary widely, as they are not
constrained to belong to a sorted group of tokens
with cumulative probabilities meet a predefined
threshold. For example, when the nucleus threshold
is set to so that top_p = 0.2, then only tokens (or
sometimes even just a single token) whose cumu-
lative probabilities do not exceed the threshold are
considered for selection. This effectively excludes
other token from being generated. This pattern is

illustrated in Figure 6, where such a selection pro-
cess often occurs for a top_p of 0.2, especially as
the number of duplicate tokens increases.

We conclude that using low top_p values is of-
ten less effective for mitigating memorization is-
sues. This occurs because snippets that the model
has memorized, which usually have high token-
level probabilities, tend to dominate the selec-
tion process. When these probabilities exceed the
top_p threshold, the decoding process essentially
becomes deterministic because the nucleus can con-
sist of only a single token. This is problematic espe-
cially when the objective is to mitigate memoriza-
tion constraints. This can even happen for higher
top_p values, such as 0.4 (see Appendix A.S5).

Finding 3: Models that strongly memorize texts
assign very high probabilities to single tokens so
that even nucleus sampling becomes deterministic.
This happens when the token’s probability exceeds
the top_p threshold, so that nucleus to sample from
contains only a single candidate token.

4.4 The Emergence of “Soft” Memorization

In the previous analysis we mainly considered text
memorization as defined under Equation 1 (ver-
batim memorization) i.e. when every generated
token for some context can be found in the train-
ing dataset following the same output. However,
we argue that measuring memorization in terms of
degrees rather than binaries would be helpful.
Inspired by McCoy et al. (2023) who propose to
measure the novelty of generated text with n-grams,
we suggest to use an n-gram overlap metric (BLEU,
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Figure 6: The measured token-level probabilities for four randomly sampled data points with an increasing amount
of duplicates (1, 5, 15, and 25 times) in the training dataset. The thin lines represent the context token probabilities,
whereas the bold lines show the probabilities during nucleus sampling with top_p = 0.2 for an input context
length of 250. The horizontal lines on top indicate that a token might be deterministically chosen even for nucleus
sampling because its probability exceeds the size of the nucleus.

Papineni et al. (2002)) as a weaker, but still mean-
ingful constraint to measure memorization. We
again sampled continuations given prefixes from
the duplicated material and then measured the over-
lap of the predicted with the actual continuations,
using BLEU-4. To ensure that the scores are not
inflated, the initial 250 tokens used to prompt the
model are excluded, focusing solely on the comple-
tion. An interesting observation from the results in
Table 2 is the positive correlation between the num-
ber of duplicated data and the measured BLEU-4
scores, especially a very high BLEU-4 score for
samples represented 20 and 30 times. This trend
suggests a “soft memorization” behavior of the
models. A possible explanation is that a higher
number of data copies leads the models to alternate
between recalling memorized and novel tokens,
rather than directly reproducing memorized con-
tent. This finding echoes on a recent concerns on
“a false sense of privacy” when verbatim memoriza-
tion is not recognized (Ippolito et al., 2023; Brown
et al., 2022).

Finding 4: Data with many duplicates leads
to abnormally high BLEU scores, indicating “soft
memorization” whereby models alternate between
recalling memorized and novel tokens, resulting
in outputs that closely resemble the training data
without being exact copies.

5 Conclusion

We created a diagnostic dataset to measure the
memorization behavior of two Neo-GPT models
more precisely than previous work (Carlini et al.,
2023) that relied on an estimate of duplicates in the
training data. Given this we fine-tuned the GPT-

Model top_p Number of copies
1 10 20 30
0.2 0.02 | 0.24 | 040 | 0.84
Neo 125M 0.4 0.01 | 0.26 | 044 | 0.84
0.6 0.01 | 0.26 | 0.37 | 0.84
0.8 0.00 | 0.27 | 0.34 | 0.71
0.2 0.01 | 0.28 | 042 | 0.74
Neo 350M 0.4 0.01 | 0.28 | 0.44 | 0.76
0.6 0.02 | 0.28 | 0.40 | 0.73
0.8 0.02 | 0.27 | 0.40 | 0.67

Table 2: BLEU-4 scores for non-verbatim memorized
outputs, considering both the top_p value and the du-
plicate count of the texts within the training dataset.

Neo models on our dataset and confirmed with
our replication experiments the other results under
greedy decoding. With this experimental setup we
analysed the language models productions when
nucleus sampling is used for decoding.

The results show that for models with strongly
memorized texts low top_p values in nucleus sam-
pling converge to greedy decoding. We note that
even the experiments using large top_p values
often fail to substantially mitigate memorization.
This at the first glance “unreasonable ineffective-
ness” of nucleus sampling to mitigate text memo-
rization is mostly caused by high peak distributions
— specifically, when a single token’s probability ex-
ceeds the cumulative threshold set by the nucleus
size, causing nucleus sampling to operate determin-
istically. Larger nucleus sizes only modestly miti-
gate memorization, and even when outputs are not
exact reproductions, we find that n-gram overlap
scores indicate a “soft memorization” phenomena.

In further work we will explore the impact of
other duplicate distributions in the training dataset
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on the memorization behavior. Furthermore, more
research is needed to confirm if the strategy of
fine-tuning the attention heads will generalize to
less susceptible methods like adapter-based or full-
model fine-tuning and to even bigger models.

6 Limitations

Limitations on the range of chosen top_p val-
ues. Our analysis evaluated a spectrum of top_p
values: {0.2,0.4,0.6,0.8}. Although this chosen
range is sufficient to make the presented observa-
tions, it is not exhaustive. Text generation tasks
that demand high precision and do not necessar-
ily value lexical diversity, such as code generation,
allow for relatively low top_p values to be effi-
cient. This is evident in the case of Li et al. (2022),
who, in their experiments with a code generation
system that solves competitive programming prob-
lems, used top_p values starting from 0.5 and did
not see significant changes in performance beyond
0.8. Nevertheless, an interesting addition to our ex-
periments would be top_p values of 0.9 and 0.95,
as proposed by Holtzman et al. (2020), who demon-
strated that these values increase the lexical diver-
sity of generated texts as measured by Self-BLEU
(Zhu et al., 2018), a metric that evaluates diver-
sity by comparing generated text samples from the
same model.

Limitations on model sizes. Our study covered
language models of size and capability that show
comparable behaviors to those chosen by Carlini
et al. (2023). Nevertheless, we were limited by
resource constraints and featured primarily smaller
models. An interesting addition would be to use
low-rank adapters (LoRA) (Hu et al., 2021) to ap-
ply our presented analysis to large-scale models
with billions of parameters as they become pub-
licly available in the future.

Supplementary Materials The source code is
available at https://github.com/lukaborec/
memorization-nucleus-sampling. We pub-
lished the OpenMemText dataset at https://doi.
org/10.5281/zenodo.13318542.
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A Appendix

A.1 Hardware Specifications

The experiments were performed on a system
equipped with four NVIDIA GeForce GTX 1080 Ti
GPUs, 250 GB of RAM, and 12 Intel(R) Xeon(R)
CPU E5-2650 v4 @ 2.20GHz cores.

A.2 Dataset Creation Details

To ensure uniformity across different file lengths
and facilitate the successful execution of our ex-
periment on input context length, during the ini-
tial sampling of the dataset we made sure that the
dataset consisted of equal parts texts of lengths up
to 200 tokens, 200 to 300 tokens, 300 to 400 to-
kens, and over 400 tokens. We then sampled 70
files from each bucket, combining them to form the
280 files used for duplication. Figure 7 shows the
step-by-step process.

Start

‘ Sample a % of dataset ‘

‘ Split into buckets by length ‘

—>‘ Sample 70 files from each bucket (up to 280) ‘

‘ Create n (n=1 at beginning) duplicates ‘

Is n=30?

n=n+1 %— No

Yes

‘ Combine duplicated and unique files

End

Figure 7: The dataset creation process depicted as a
flowchart. We first sample a percentage of the over-
all data. Then we split them into buckets by different
lengths. From each bucket we sample 70 files repeat-
edly until we have chosen 280 files. For these chosen
file we create duplicates respectively.

A.3 Example Data Point

An example of a randomly chosen data point show-
ing the tone and the style of the dataset. The text is
shown as it appears in the text file, i.e., full length,
with the punctuation intact.

Came home today to find a package in
my mailbox (giggidy). Opened it up
to find two nicely wrapped
presents. The first one I opened
felt like a movie (I love movies)
so I eagerly tore off the
packaging to find Amelie. A movie
I've heard about but have yet to
watch. Attached was a note saying
it was my Santa's favorite movie
and I should watch it, too. I plan
on it, Santa, I plan on it.

Then I saw the more oddly shaped

package and sat in confusion for a
while. I decided to open it right
away instead of waiting for
Christmas. Upon ripping the
wrapping paper off, I saw a Doctor
Who TARDIS monitor mate. I'm
super excited to use it at work. I
haven't decorated my new office
yet and this will be perfect!

Thank you, Santa!

A.4 Training Details

We assess the fine-tuning effectiveness of the GPT-
Neo models by monitoring loss and perplexity.
We notice a consistent decrease in both training
and validation loss which indicates that the mod-
els are fitting better to the training data over time.
However, the validation loss decreases significantly
slower than the training loss. This is expected given
the abundance of duplicates in the training dataset
which the models are overfitting to. As with the
loss, Table 3 shows a discrepancy between the train-
ing and validation perplexities, reinforcing the ear-
lier assumption of the models overfitting to the
duplicates.

Model Training | Validation
GPT Neo 125M 26.44 7.05
GPT Neo 350M 27.66 6.67

Table 3: Calculated perplexities of the fine-tuned mod-
els for training and validation splits.
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A.5 Evaluation Details

The following figure shows the variation of word-level probabilities in four randomly sampled texts
appearing 1, 5, 15, and 25 times in the training dataset. In nucleus sampling, if the probability of a single
token exceeds the size of the nucleus (parameterized by top_p ), the entire probability distribution is
assigned to that single token while all other tokens are discarded. This seems to happen often at low
top_p values and especially so for sentences with a large number of repetitions.
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