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Abstract

Scene context is well known to facilitate hu-
mans’ perception of visible objects. In this pa-
per, we investigate the role of context in Refer-
ring Expression Generation (REG) for objects
in images, where existing research has often fo-
cused on distractor contexts that exert pressure
on the generator. We take a new perspective
on scene context in REG and hypothesize that
contextual information can be conceived of as a
resource that makes REG models more resilient
and facilitates the generation of object descrip-
tions, and object types in particular. We train
and test Transformer-based REG models with
target representations that have been artificially
obscured with noise to varying degrees. We
evaluate how properties of the models’ visual
context affect their processing and performance.
Our results show that even simple scene con-
texts make models surprisingly resilient to per-
turbations, to the extent that they can identify
referent types even when visual information
about the target is completely missing.!

1 Introduction

Objects do not appear randomly in the world that
surrounds us, but they occur in predictable spatial,
semantic, or functional configurations and relations
to their environment. Research on human percep-
tion shows that we “see the world in scenes” (Bar,
2004), and that prior experience and knowledge
of the world helps us to efficiently process visual
stimuli. Even with an extremely short glimpse at
an image, humans remember essential semantic as-
pects of the scene and object arrangement (Oliva
and Torralba, 2006). This rapid scene understand-
ing allows us to handle the complexity of the vi-
sual world and to recognize objects in context, e.g.,
when they are not fully visible (V0, 2021).
Today’s systems for Vision and Language (V&L)
commonly process visual inputs that represent

!Code, models and data for this project are available at:
https://github.com/clause-bielefeld/ REG-Scene-Context
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Figure 1: Example from RefCOCO (displayed with
noise level 0.5) with generated expressions and human
judgments. Visual or symbolic scene context allows to
identify even fully occluded targets (noise 1.0).

“real-world” scenes (e.g. Lin et al. 2014; Antol
et al. 2015; Krishna et al. 2016; Das et al. 2017)
which, to some extent, exhibit the regularities that
human perception is known to be exploiting. Yet,
it is not clear how current V&L systems process
context and whether they rely on strategies of scene
understanding similar to humans. In this paper, we
aim to investigate this question for Referring Ex-
pression Generation (REG, Dale and Reiter 1995;
Mao et al. 2016), a controlled set-up that is well
established in NLG research, by testing how scene
context supports reference generation for objects
that are difficult to recognize.

Whereas classical REG algorithms mostly build
on pre-defined symbolic representations (Krahmer
and van Deemter, 2012), neural generation mod-
els in visual REG have to extract object proper-
ties from low-level visual representations (i.e., pho-
tographs) of the target and its context (Schiiz et al.,
2023). This even applies to properties as funda-
mental as the type of an object, i.e. how it is named
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in the expression. Under ideal conditions, deter-
mining a referent’s type and properties can be re-
garded as a relatively simple task, but it becomes
non-trivial in the presence of imperfect visual in-
formation, occlusion or noise. Here, in light of
previous findings on human scene understanding
(cf. Section 2), scene context can be expected to be
of great support. However, to date, little is known
as to how processes of scene understanding and
object type identification interact in REG.

In this work, we hypothesize that visual scene
context makes REG models more resilient, i.e., it
allows them to recalibrate predictions that were
based on imperfect target representations. To test
this, we use a novel and highly controllable ex-
perimental setup for REG: we train and test dif-
ferent Transformer-based model architectures with
target representations that have been artificially ob-
scured with varying degrees of noise (cf. Figure 1),
simulating scenarios that are common in the real
world but insufficiently represented in current REG
datasets. We provide the models with different
context representations and compare their perfor-
mance on common quality metrics and a focused
human evaluation of their ability to determine ref-
erent types. Our results show that context makes
models surprisingly resilient to perturbations in tar-
get representations, to the extent that they can iden-
tify referent types even when information about
the objects themselves is completely missing. We
believe that these results open up new perspectives
on how information about the structure and content
of surrounding scenes facilitate the description of
objects in REG and related tasks.

2 Background

Human scene understanding Research on hu-
man vision and perception emphasizes the fact that
scenes are not mere collections of objects (V4,
2021). When humans view a scene, they do not sim-
ply recognize the objects in it, but understand it as a
coherent whole. Oliva and Torralba (2006) observe
that humans perceive the so-called gist of a scene
rapidly and even when local information is missing
(e.g. blurred). Other experiments indicate that con-
textual information can facilitate the recognition
of visible objects across different tasks (Oliva and
Torralba, 2007; Divvala et al., 2009; Galleguillos
and Belongie, 2010; Parikh et al., 2012), and that
incongruent context can also be misleading (Zhang
et al., 2020; Gupta et al., 2022) demonstrating that

the human vision exploits learned knowledge about
regularities of the visual word for visual process-
ing (Biederman, 1972; Bar, 2004; Greene, 2013;
Pereira and Castelhano, 2014; Sadeghi et al., 2015;
Vo, 2021).

Scenes, objects, and image captioning Much
research on V&L is concerned with modeling the
generation and understanding of image descrip-
tions, e.g. in image captioning (Xu et al. 2015;
Anderson et al. 2018; Cornia et al. 2020, among
many others). Yet, many captioning tasks focus on
rather object-centric descriptions that mention ob-
jects and their spatial relationships (Cafagna et al.,
2021). A common representation of scene context
in image captioning is scene graphs (Yang et al.,
2023), which are usually modeled via spatial rela-
tions between bounding boxes of objects. Cafagna
et al. 2023 propose a new task and dataset that
foregrounds scene-level instead of object-centric
descriptions. Another perspective on scene knowl-
edge in captioning models is coming from work
that focuses on probing them with perturbed or sys-
tematically varied images: Yin and Ordonez (2017)
find that captioning with extremely reduced inputs
of labeled object layouts performs surprisingly well.
Related to this, Nikolaus et al. (2019) show that
image captioning models often rely on regulari-
ties in object occurrences, to the extent that they
fail to generalize to new combinations of objects.
Their solution is to generate unseen combinations
and challenge models on these. Our goal in this
work is complementary: we aim to understand how
exactly generation models may be able to lever-
age regular scene knowledge and patterns of object
co-occurrence, and how this may facilitate the han-
dling of imperfect visual information.

REG and scene context REG is concerned with
the generation of descriptions that distinguish a par-
ticular object in a given visual context, cf. Krahmer
and van Deemter 2012. In past years, REG research
has largely transitioned from symbolic settings to
visual REG, focusing on referring expressions for
objects in photographs (Kazemzadeh et al., 2014;
Mao et al., 2016). Recent models usually build on
image captioning models but are adapted to gen-
erate more pragmatically informative expressions,
using e.g. training objectives (Mao et al., 2016),
comprehension modules (Luo and Shakhnarovich,
2017), reinforcement agents (Yu et al., 2017) or
decoding strategies (Schiiz and Zarrie$3, 2021).
Visual REG models usually process different
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forms of context information. Whereas some mod-
els encode differences in appearance between tar-
gets and surrounding objects (Yu et al., 2016, 2017;
Tanaka et al., 2019; Kim et al., 2020; Liu et al.,
2020), others use representations of the global im-
age (Mao et al., 2016; Luo and Shakhnarovich,
2017; Zarrie3 and Schlangen, 2018; Panagiaris
et al., 2020, 2021), both commonly supplemented
with the relative position and size of the target in
the image. On a conceptual level, however, recent
work in visual REG generally follows the tradi-
tional paradigm by Dale and Reiter 1995, i.e. con-
text is mainly considered in terms of so-called dis-
tractor or competitor objects, that are similar to the
target and must therefore be excluded by naming
differences (Schiiz et al. 2023, but see Ilinykh and
Dobnik 2023 for context influences in object nam-
ing). In this view, context “exerts pressure”, as the
speaker needs to reason about which attributes and
words make the expression unambiguous (Cohn-
Gordon et al., 2018; Schiiz and Zarrie3, 2021). In
this paper, we investigate how contextual informa-
tion can be conceived as a resource that makes the
generation of descriptions easier rather than harder.

Research gap Little is known about how visual
REG models internally exploit their context rep-
resentations and in what way context exactly en-
hances the generation of expressions. A key differ-
ence to symbolic REG is that in visual REG failures
in scene and object understanding due to e.g. im-
perfect visual input can lead to semantic errors, cf.
Schiiz et al. (2023). This is especially evident for
the type of objects: this attribute had a privileged
role in early works (Dale and Reiter, 1995) as it
is essential as the head of referential noun phrases.
In visual REG, referents must first be correctly
identified to name them appropriately (Zarrief3 and
Schlangen, 2017; Silberer et al., 2020a,b; Ilinykh
and Dobnik, 2023), which is challenging in cases
of deficient input, e.g. small or partially occluded
objects (Yao and Fei-Fei, 2010). In this paper, we
aim to close this gap and investigate how visual
context information helps REG models to be more
resilient to deficits in their target inputs.

3 Experimental Set-Up
3.1 Outline and Research Hypotheses

The main idea of this work is to train and test stan-
dard REG models on visual target representations
occluded with varying amounts of noise, to investi-
gate how different combinations of target and con-

text can compensate for this perturbation. For this,
we draw on existing model architectures, and eval-
uate the trained models using both out-of-the-box
quality metrics and more fine-grained human eval-
uation capturing the validity of assigned referent
type labels, given the challenges of type identi-
fication in visual REG discussed in the previous
section. The evaluation results are also supported
by supplementary analyses.

Generally, we expect that automatic metrics and
human evaluation scores will drop for increasing
amounts of target noise. However, we also hy-
pothesize that visual context makes models more
resilient, i.e., for the same amount of noise, mod-
els supplied with context outperform variants with
only target information. While we expect this gen-
eral effect across all conditions, it should be more
pronounced as the amount of occlusion increases.

3.2 Models

We set up two transformer-based REG models:
TRF is a transformer model trained from scratch on
REG data, CC builds upon a pre-trained language
model. We define variants of both models using
a) different combinations of target and context rep-
resentations as the respective model inputs, and
b) the amount of target noise during training and
inference. Implementation and training details for
our models can be found in appendix B.

Target representations include the visual con-
tents of the target bounding box (V}) and its loca-
tion and size relative to the global image (Loc;).
As context representations, we use the embedding
of the global image with the target masked out (V7).
We also experiment with symbolic representations
about what kinds of objects the surrounding scene
is composed of (scene summaries, S.). Incorporat-
ing symbolic scene features renders the task a mul-
timodal fusion problem, i.e. the model has to align
information from low-level visual and location in-
formation and symbolic scene summaries. Models
processing only target information are indicated
with the subscript tgt, whereas models processing
V. and S, context information are indexed with vis
and sym, respectively.

To test our systems for perturbed target repre-
sentations, we randomly replace a fixed proportion
of the pixels in the bounding box with random
noise during both training and inference. With
this, we simulate cases of occlusion or other visual
disturbances, which are common in real-world sce-
narios but rarely found in RefCOCO objects. We
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opted for pixel-wise occlusion for controllability
reasons: Masking continuous sections would ar-
guably be more akin to real-world occlusion by
other objects, but could raise further questions, for
example whether the parts masked out are impor-
tant for determining the target class. All systems
are trained and tested with three noise settings: 0.0
as our baseline setting, where no pixels are per-
turbed; 0.5, where 50% of the pixels are replaced
with noise; and 1.0, where the entire content of
the target bounding box is occluded, i.e. no visual
target information is available, similar in spirit to
the Context-Obj condition in Ilinykh and Dobnik
(2023). Importantly, models are trained separately
for noise levels, i.e. a model evaluated for noise
0.5 is trained with the same noise level.

REG Transformer (TRF) We train a standard
transformer architecture from scratch, which al-
lows to carefully control and probe the effects of
different target and context information. We use
the model from Schiiz and Zarriefl (2023), which
is based on an existing implementation for image
captioning.> The model builds on ResNet (He et al.,
2015) encodings for targets and context, which are
passed on to an encoder/decoder transformer in the
style of Vaswani et al. (2017), and is largely compa-
rable to the system in Panagiaris et al. (2021), but
without self-critical sequence training and layer-
wise connections between encoder and decoder.
Unlike e.g. Mao et al. (2016), we train the model
using Cross Entropy Loss.

We compare three variants of this model,
which take as input concatenated feature vec-
tors comprised of the representations described
above. TRF;y receives only target information,
i.e. an input vector [V;; Loc;]. TRF,;, addition-
ally receives visual context representations, namely
[Vi; Locy; Ve]. TRFgy,, takes symbolic scene sum-
maries as context, i.e. [V; Locg; Se).

For both V; and V., the respective parts of the
image are scaled to 224 x 224 resolution (keeping
the original ratio and masking out the padding)
and encoded with ResNet-152 (He et al., 2015),
resulting in 196 features (14 x 14) with hidden size
512 for both target and context. Loc; is a vector of
length 5 with the corner coordinates of the target
bounding box and its area relative to the whole
image, projected to the model’s hidden size.

The scene summary input for TRF,,,, consists
of 134 features, representing the relative area each

*https://github.com/saahiluppal/catr

of the object or stuff categories in COCO occupies
in the visual context. S, features are based on 2D
panoptic segmentation maps (cf. Section 3.3): We
mask out the target bounding box and calculate the
number of pixels assigned to each COCO category
in the remaining image, then normalize the number
of pixels assigned to each class by the total number
of pixels. In TRF,,,,, we add a further layer with
jointly trained embeddings for all object and stuff
types. In the model’s forward pass, we concatenate
all 134 embeddings, weighted by the respective
coverage in the input image.

Fine-tuned GPT-2 (CC) We adapt the ClipCap
model in Mokady et al. (2021) to the REG task.
The authors use a simple MLP-based mapping net-
work to construct fixed-size prefixes for GPT-2
(Radford et al., 2019) from CLIP encodings (Rad-
ford et al., 2021), and fine-tune both the mapping
network and the language model for the image cap-
tioning task. To the best of our knowledge, this
is the first model tested for REG which utilizes a
pre-trained language model.

As for the TRF model, we compare different
variants of this base architecture. First, in CCyy,
GPT-2 prefixes are constructed as [V;; Loc;|, where
V; is computed like the CLIP prefix in the original
paper (but for the contents of the target bounding
box) and Loc; is the location features described
above, projected into a single prefix token. In
CC,;s, prefixes contain visual context representa-
tions, i.e. [V;; Ve; Locy]. Here, V. is computed like
V4, but with a separate mapping network and with
the global image (minus the target) as the visual
input. Finally, CC,,,, includes symbolic scene
summaries, i.e. [V; S¢; Loc]. Similar to the visual
inputs, we use a mapping network to project the
features before concatenation.

3.3 Data

We use RefCOCO and RefCOCO+ (Kazemzadeh
et al., 2014) for training and evaluation. Both con-
tain bounding boxes and expressions for the same
objects in MSCOCO images (Lin et al., 2014), but
while the location attributes left and right are highly
frequent in RefCOCO, they have been excluded in
RefCOCO+. The datasets contain separate festA
and festB splits (1.9k and 1.8k items), where festA
only contains humans as referents and zestB all
other object classes (but not humans). To construct
scene summaries (S.) and analyze attention allo-
cation patterns, we use annotations for panoptic
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segmentation (Kirillov et al., 2018), i.e. dense
pixel-level segmentation masks for thing and stuff
classes in MSCOCO images (Caesar et al., 2016).

3.4 Evaluation

Generation Quality / N-Gram Metrics To esti-
mate the general generation capabilities of our mod-
els we rely on BLEU (Papineni et al., 2002) and
CIDEr (Vedantam et al., 2014) as established met-
rics for automatic evaluation. As target occlusion
involves random processes, we repeat inference ten
times for all settings and average the results.

Referent Type Assignment / Human Evaluation
To test whether our models succeed in assigning
valid types to referents, we collect human judg-
ments for generated expressions for a subset of
200 items from the RefCOCO ftestB split, which is
restricted to non-human referents. Unlike for the
automatic metrics, we use the results of a single
inference run for each system. The annotators were
instructed to rate only those parts of the expressions
that refer to the type of the referential target. For
example, “the black dog” should be rated as correct
if the target is of the type dog, but is actually white.
All items should be assigned exactly one of the
following categories:

* Adequate / A: The generated expression con-
tains a valid type description for the referent.

* Misaligned / M: Type designators do not ap-
ply to the intended target, but to other objects
(partially) captured by the bounding box.

* Omission / O: Omission of the target type, e.g.
description via non-type attributes, pronomi-
nalization or general nouns such as “thing”.

* False / F: Type designations that do not apply
to the intended target or other objects captured
by the bounding box.

Previous research has shown considerable vari-
ation in object naming (Silberer et al. 2020a,b,
among others). Therefore, for the A category, type
descriptions do not have to match the ground truth
annotations, but different labels can be considered
adequate if they represent valid descriptions of the
target type. For example, dog, pet and animal
would be considered equally correct for depicted
dogs. Subsequent to the human evaluation, we
investigate correlations between the evaluation re-
sults and further properties of the visual context.

Attention Allocation We also examine how our
TRF,;s model allocates attention over different
parts of the input as a result of different noise levels
during training. First, we follow Schiiz and Zarrie$3
(2023) in measuring the attention directed to the tar-
get and its context in both the encoder and decoder.
For this, we compute o4, a; and . as the cumula-
tive attention weights directed to V;, Loc; and V.,
respectively, normalized such that oz + o7+ = 1.
We report the difference of attention directed to tar-
get and context, calculated as A; . = (o +oq)—ag,
ie. 0 < Ay < 1if there is relative focus on the
target, —1 < A; . < 0 if there is relative focus on
the context, and A; . = 0 when both are weighted
equally. Second, we measure the model attention
allocated to different classes of objects in the visual
context, using the panoptic segmentation data de-
scribed in Section 3.3. Here, we first interpolate the
model attention map to fit the original dimensions
of the image and retrieve the respective segmen-
tation masks. For each category x € X, we then
compute the cumulative attention weight o, by
computing the sum of pixels attributed to this cate-
gory, weighted by the model attention scores over
the image and normalized such that ) -y a; = 1.
We report «;—4¢, 1.€. attention allocated to areas
of the visual context assigned the same category as
the referential target.

4 Results

4.1 Automatic Quality Metrics

Table 1 shows the results of the automatic evalu-
ation of our systems on the testA and testB splits
in RefCOCO and RefCOCO+. Interestingly, the
simpler TRF model outperforms CC, although the
latter builds on pre-trained CLIP and GPT-2 which
are known to be effective for image captioning
(Mokady et al., 2021). Possible reasons for this can
be seen in structural differences between bounding
box contents and full images as used in the CLIP
pre-training, or in higher compression when con-
structing the GPT prefixes. Without target occlu-
sion, model variants with access to visual context
generally achieve the highest scores for both ar-
chitectures (TRF,;s and CC,;s, although CCygyp,
exceeds the latter on testB+).

As expected, scores consistently drop with in-
creasing target noise. However, this is mitigated if
context is available: For both TRF and CC, vari-
ants incorporating visual context are substantially
more robust against target noise, even if target rep-
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testA testB testA+ testB+

noise | Bly Bl CDr | Bl Bl CDr | Bl Bl CDr | Bl Bl CDr
TRF:g: 055 035 086|057 035 128|049 031 077 | 036 0.19 0.68
TRF,is 0.0 | 058 039 093|061 039 136|050 032 083|037 020 0.73
TRFsym 054 034 084|057 035 127|046 029 078 [ 037 0.19 0.72
TRF:g: 049 032 073|052 032 1.06 | 042 027 064 | 029 0.14 0.53
TRF,is 051|053 035 081 |05 036 124|043 026 0.67 | 0.34 0.18 0.62
TRFsym 0.53 035 081|057 035 128|045 029 071 ] 036 0.19 0.68
TRFg: 0.35 0.17 034 ] 030 0.14 020 ] 029 0.15 020 | 007 0.01 0.04
TRF,;s 1.0 | 046 029 0.60 | 055 036 1.14 | 032 0.17 034 | 029 0.14 047
TRFsym 042 024 0511053 033 1.12 | 031 0.15 031|030 0.14 048
CCgt 048 030 070 | 047 028 0.88 | 042 0.27 070 ] 029 0.14 0.53
CClyis 0.0 | 057 038 092|058 037 125|045 029 0.77 | 033 0.18 0.62
CCsym 045 028 066 | 056 036 122|044 028 073|037 020 0.70
CCigt 0.38 021 048 | 036 020 0.51 | 040 025 064 | 027 0.14 047
CCyis 0.5 1] 051 032 075|050 031 097|041 026 0.68 | 030 0.16 0.55
CCsym 044 027 061|057 036 1.17 | 035 021 046|033 0.17 0.57
CCigt 035 0.16 037|029 0.12 0.16 | 027 0.14 020 | 0.10 0.02 0.06
CClyis 1.0 | 040 023 046 | 038 021 046|029 0.15 030 | 020 0.09 0.27
CCsym 042 025 0521|055 034 1.17 | 031 0.16 032|032 0.16 0.53

Table 1: BLEU;, BLEU, and CIDETr scores on RefCOCO testA and testB for all TRF and CC variants. Systems
indicated with 7g7 can only access target information, vis and sym models are supplied with visual context and
symbolic scene summaries, respectively. Generally, context information leads to improved results, especially for

high noise settings.

resentations are entirely occluded, cf. Figure 2.
For example, for RefCOCO testB, CIDEr drops to
0.20 for TRF;4; with noise 1.0 but TRF,;5 achieves
scores as high as 1.14, indicating that visual con-
text combined with location features provides valu-
able information for describing (occluded) targets.
Generally, TRF,;; appears to be more effective at
exploiting the visual context, e.g. CC,;s with noise
1.0 drastically underperforms with CIDEr 0.46 on
testB. Although CC;; is still outperformed (CIDEr
0.16), this suggests problems for extracting rele-
vant information from the visual context.

Similar patterns emerge when replacing visual
context with symbolic scene summaries: For both
TRF and CC, model variants incorporating sym-
bolic context features outperform their target-only
counterparts in most cases, highlighting the poten-
tial of object co-occurrence information for making
predictions robust to noise. For example, TRF,,,,
achieves CIDEr 1.12 for noise 1.0 in testB, compa-
rable to TRF ;5. CCygy,,, even outperforms CC
for high noise settings (and all settings on testB+).
On testB, CCygyy, scores are almost constant across
noise levels, suggesting that the model is strongly
relying on the scene summary information.

Interestingly, we see considerable differences
between testA and testB: For both RefCOCO and

RefCOCO+, target-only variants suffer less from
occlusion on the testA splits (containing references
to humans), but context is more effective on testB
(containing references to other objects). We hy-
pothesize that models without meaningful visual
input but access to location and size information
can often guess right on the frequent human classes
in testA, but struggle with the higher variation in
testB. Conversely, while human referents appear
in a wide range of environments, other objects in
testB rather tend to occur in specific surroundings,
making context information more informative re-
garding their identity.

4.2 Target Identification

Human judgments were collected from 6 expert
annotators, including the first author. Every system
was evaluated independently by three annotators,
with a Fleiss’ Kappa of 0.85, indicating almost
perfect agreement (Landis and Koch, 1977). The
final judgments are determined by majority vote.
The human evaluation results for the 200-item
subset of RefCOCO testB are shown in Table 2.
Generally, we see similar patterns as in the BLEU
and CIDEr scores discussed previously: Ratios of
Adequate descriptions drop if noise ratios increase,
while False ratios increase at the same time. For
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Figure 2: Relative CIDETr scores with respect to noise
0.0 for RefCOCO testA and testB. For both TRF and
CC, model variants with access to context are more
robust against noise, especially for testB.

Misalignments and Omissions, higher noise gener-
ally leads to higher rates than the baseline setting.
TRFsy,, and CCgy,,, show particularly high M rates
for high noise settings, suggesting that the models
often select object types that appear in the image,
but not as the referent. In the vast majority of
cases, TRF variants outperform their CC counter-
parts. Again, the systems show large differences
in exploiting visual context: Whereas CC,;s as-
signs adequate types in almost 20% of all cases
for noise 1.0 (as compared to 0.5% without context
information), TRF,;s scores an impressive 66%.

Interestingly, symbolic scene summaries appear
to be more effective for identification than visual
context features: In most cases, models taking .S,
as input generate more adequate descriptions and
fewer false descriptions and omissions than corre-
sponding variants with visual context. For TRFy,,,
this even extends to cases without target occlu-
sion, unlike for BLEU and CIDEr (cf. Section
4.1). Surprisingly, CCygy, achieves very similar A
scores across all noise settings, narrowly exceeding
TRF,,,, with noise 1.0. In line with the diminished
influence of target occlusion observed for CIDEr
and BLEU on testB, this indicates heavy reliance
on symbolic scene representations (irrespective of
the availability of visual target information), possi-
bly due to problems with fusing symbolic (scene)
and visual (target) information, a process that has
received much attention in e.g. Visual Question
Answering (Zhang et al., 2019; Lu et al., 2023).

noise | A %F %O %M
TRF; 4 84.0 10.5 5.0 0.5
TRF,;s 00 | 81.0 11.5 5.5 2.0
TRFsym 89.0 7.0 3.5 0.5
TRF; 4 66.5 28.0 4.0 1.5
TRFyis 05 | 70.5 18.5 7.0 4.0
TRFsym 81.5 145 2.5 1.5
TRF4¢ 1.5 755 19.5 3.5
TRF ;s 1.0 | 66.0 26.5 4.0 3.5
TRFym 68.0 220 1.5 8.5
CCiygt 46.0 46.5 7.0 0.5
CChuis 00| 755 215 3.0 0.0
CCsym 70.5 175 5.5 6.5
CCiy: 230 610 130 3.0
CChuis 05| 555 355 6.5 2.5
CCsym 69.0 195 2.5 9.0
CCiyt 05 845 11.0 4.0
CCuis 1.0 | 19.5 685 9.0 3.0
CCsym 70.5 16.0 4.5 9.0
human 0.0 ‘ 90.5 2.5 6.0 1.0

Table 2: Ratios of Adequate, False, Omitted and
Misaligned type descriptions (human annotation for
200 items from RefCOCO testB). Generally, contextual
information leads to more adequate type descriptions,
even if target representations are entirely occluded.

4.3 How do models exploit scene context?

So far, our results indicate that the scene context of
referential targets greatly improves the resilience
of REG models, to the extent that correct predic-
tions are possible to a surprising rate even if target
information is missing. Here, we aim to analyze
how exactly contextual information is exploited
by the models. As discussed in Section 2, previ-
ous research indicates that regularities of object
co-occurrence and scene properties facilitate e.g.
object recognition in context. However, qualitative
inspection indicates that for high noise, our sys-
tems often copy from context, i.e. predict referent
types that are also present in the surrounding scene,
given that many classes of objects tend to appear
in groups. To investigate this, we (a) perform sta-
tistical tests to check whether similar objects in
context support identification performance and (b)
analyze the attention distribution for TRF,;, to see
how the respective context objects are weighted by
the model.

Statistical analysis: Target categories in con-
text We hypothesize that recalibration through
context is more effective when the target class is
also present in the scene. To test this, we conduct
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noise | corr. p
TRFyy 0128 -
TRF,;s 0.0 0.109 -
TRF.ym 0.154 < 0.05
TRF, ¢ 0.071 -
TRF,is 0.5 0.186 < 0.01
TRFsym 0.157 < 0.05
TRF, ¢ 0.046 -
TRF ;s 1.0 0.321 < 0.001
TRF.ym 0.277 < 0.001
CCigt 0.156 < 0.05
CClyis 0.0 0.142 < 0.05
CCsym 0.353 < 0.001
CCtyt 0.049 -
CClyis 0.5 0.145 < 0.05
CCaym 0249 < 0.001
CCiye 0.045 -
CCyis 1.0 0.136 -
CCsym 0.246 < 0.001

Table 3: Correlation between identification accuracy
and relative coverage of the target class in context. For
most model variants with access to context, higher preva-
lence of the target class in the visual context leads to
significantly higher scores in human evaluation.

a correlation analysis between identification accu-
racy and the relative coverage of the target class
in the context. For this, we again rely on panop-
tic segmentation annotations (cf. Section 3.3) to
compute the proportion of pixels of the same class
as the referential target, normalized by the total
size of the context. We binarize the human eval-
uation scores (True if rated as A, else False) and
compute the Point-biserial correlation coefficient
between the relative coverage of the target class
in context and the identification accuracy. The re-
sults are shown in Table 3. In almost all systems
including visual or symbolic context representa-
tions, a higher prevalence of the target class in the
visual context leads to significantly higher scores
in human evaluation (p < 0.05 or higher signif-
icance for all systems except TRF,;s / noise 0.0
and CC,;5 / noise 1.0), i.e. systems can easier com-
pensate a lack of visual target information if the
context contains similar objects. For TRF variants,
the correlation is increasing with higher noise ra-
tios, whereas it is more stable for CC. Interestingly,
without access to context, both CCyy; and TRF; ¢
show weak correlation for the noise 0.0 setting (al-
beit only the former is significant), indicating the
possibility of more general biases in the data.
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Encoder Decoder
noise | Aiec  Qa=tgt | At Qao=tge
TRFy;s 0.0 | 0.07 36.70 | 0.25 26.94
TRFy;s 0.5 | -0.30 35.27 | -0.06 40.56
TRFy;s 1.0 | -0.17 35.63 | -0.12 43.66

Table 4: Attention allocation scores for TRF,;,, aver-
aged over RefCOCO testB. A, . is the attention ratio
between target and context, o,—g4¢ is the % of context
attention directed to instances of the target class.

Model attention to target category in context
In Table 4, we report the results of our attention
analysis for TRF,;5 (cf. Section 3.4), averaged over
all items in RefCOCO testB. For the target/context
deltas A;., we expect that context is weighted
more (i.e., scores are decreasing) as noise levels
increase. Surprisingly, in the encoder, context is
attended most in the 0.5 noise setting. Decoder
attention, however, follows our expected pattern.
Similarly, as shown by the a;—4¢ scores in Table
4, target noise does not seem to have a consistent
effect on encoder attention to context objects shar-
ing the target category. For the decoder, however,
we see a notable increase: Whereas the baseline
model assigns an average of 26.94 % of its attention
mass on context objects with the target class, this
is significantly increased for higher noise settings
(40.56 % and 43.66 %), suggesting that the TRF
model learns to exploit the occurrence of similar
objects in target and context as a common property
of scenes in RefCOCO.

4.4 Qualitative Examples and Error Analysis

Figure 3 shows expressions generated by all TRF
variants and human identification judgments for
three examples from RefCOCO.? We identify both
recognition errors, where visual representations
are incorrectly categorized, and inference errors,
where contextual information is misinterpreted.
Examples of recognition errors can be seen in
Figure 3a, where TRF; ; predicts incorrect but vi-
sually related object types for noise 0.5 (horse) and
mostly unrelated types for noise 1.0 (man). Here,
both symbolic and visual context allow for robust
predictions across noise levels. This is different in
Example 3b: While similar problems can be seen
for TRF;4; (monitor instead of microwave for noise
0.5), symbolic context leads to inference errors, i.e.

3For brevity, we present only expressions generated by
TRF. For CC we observe similar patterns, the expressions can
be found in Appendix E.



B 8

i i
top left micro (A)
top left microwave (A)
TRFy . top left microwave (A)

TRF;4¢ top book (A)
noise 0.0 TRF,;s top book (A)
TRFsym paper on top (A)

TRF gt cow (A)
noise 0.0 TRF,;s left cow (A)
TRF;y., cow on left (A)

TRF;g¢
noise 0.0 TRF, ;¢

TRF;4¢ white horse (F)
noise 0.5 TRF,;s cow on left (A)
TRFsym cow (A)

TRF;4¢ left monitor (F)
noise 0.5 TRF,;; top microwave (A)
TRFs . top oven (F)

TRF;4¢ white book (A)
noise 0.5 TRF,;s top laptop (F)
TRF.ym, open book (A)

TRF;4¢ man (F)
noise 1.0 TRF,;s left cow (A)
TRF;y.m cow on left (A)

TRF;g4¢ top left donut (F)
noise 1.0 TRF, ;s top microwave (A)
TRFgy . stove top (F)

TRF;4¢ top left (O)
noise 1.0 TRF,;s left laptop (F)
TRF sy, laptop on left (F)

(a) Recognition errors for TRF;4; with
target noise, mitigated by context.

(b) TRFsym, predictions are incorrect,
but congruent with the scene.

(c) Copying errors (laptop) for TRF,;s
and TRF,y,.

Figure 3: Examples from RefCOCO with generated expressions and human judgments (targets are marked red).

TRF;,,, predicts incorrect object types that how-
ever fit into the general scene surrounding the target
(oven and stove top as examples for kitchen appli-
ances). Finally, in Example 3c we see evidence
for the copying strategy discussed in Section 4.3:
With increasing noise, both TRF,;s and TRFy,
incorrectly predict laptop as an object class present
in the surrounding scene.

5 Discussion and Conclusion

Our findings show that contextual information
about the surroundings of referents makes REG
models more resilient against perturbations in vi-
sual target representations. Even if no target in-
formation is present at all, context allows REG
models to maintain good results in automatic qual-
ity metrics and to identify referent types with high
accuracy, as shown in the human evaluation results.
This holds for different kinds of context: While es-
pecially the TRF,;s model is able to leverage scene
information from ResNet encodings of image con-
tents outside the target bounding box, the same ap-
plies to symbolic scene representations, as included
in TRF,,, and CCygyyy,. This adds another perspec-
tive to basic assumptions of the REG paradigm,
where context information is considered important
mainly to ensure that references can be resolved
without ambiguity. Here, we show, that it is also
a valuable source for further communicative goals,
i.e. the truthfulness of generated expressions.
Interestingly, while related studies on human per-
ception emphasize the importance of e.g. learned
co-occurrence patterns between objects, our sub-
sequent analysis rather points to implicitly learned

copying strategies that appear to be highly effective
for the relatively regular RefCOCO data. While
this can also be seen as exploiting scene patterns, it
is fundamentally different from the ways in which
scene information is interpreted by humans (cf.
Section 2). Therefore, we see an urgent need for
data more representative of real-world scenarios to
further investigate the impact of scene context on
multimodal language generation.

Overall, our results indicate that the influence of
visual context in REG is more multifaceted than re-
flected in previous studies. Importantly, this study
only provides an initial spotlight, as research in
related fields suggests that there are other and more
complex ways in which visual scene context may
facilitate reference production. With this in mind,
we strongly advocate further research into scene
context at the interface of perceptual psychology
and V&L generation.

Risks and Ethical Considerations We do not
believe that there are significant risks associated
with this work, as we consider the generation of
general expressions for generic objects in freely
available datasets with limited scale. When select-
ing samples for human evaluation, we refrain from
descriptions of people (that could potentially be
perceived as hurtful). No ethics review was re-
quired. Our data does not contain any protected
information and is fully anonymized.

Supplementary Materials Availability State-
ment:

¢ RefCOCO and RefCOCO+ annotations and
the RefCOCO API for computing BLEU and
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CIDEr scores are available on GitHub*

* COCO images and panoptic segmen-
tation annotations are available at
https://cocodataset.org/

¢ Source code for the TRF base model are avail-
able on GitHub?

¢ Source code for the CC base model are avail-
able on GitHub®

e Our own code and data are available on
GitHub’
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A Limitations

We identify the following limitations in our study:

First, in both training and evaluation, we do not
consider pragmatic informativeness as a core cri-
terion for the REG task. We train our models us-
ing Cross Entropy Loss and do not test whether
the generated expressions unambiguously describe
the referential target, instead focusing on semantic
adequacy as an important prerequisite for the gen-
eration of successful referential expressions. How-
ever, we acknowledge that a comprehensive view
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RefCOCO RefCOCO+
noise | epochs CIDEr (val) | epochs CIDEr (val)

TRF:4: 0.0 8 1.074 7 0.803
TRF,;s 0.0 6 1.156 7 0.828
TRFsym 0.0 8 1.075 5 0.794
TRF;g¢ 0.5 11 0.936 4 0.647
TRF,;s 0.5 9 1.035 11 0.697
TRFsym 0.5 14 1.032 10 0.74

TRF;g¢ 1.0 5 0.302 3 0.173
TRF,is 1.0 6 0.869 5 0.449
TRFsym 1.0 12 0.818 5 0.45

CGugt 0.0 7 0.824 4 0.673
CGuyis 0.0 4 1.103 5 0.754
CGsym 0.0 8 0.908 8 0.756
CGuygt 0.5 8 0.554 14 0.603
CGuyis 0.5 10 0.894 5 0.679
CGsym 0.5 11 0.89 11 0.553
CGygt 1.0 2 0.294 4 0.174
CGuyis 1.0 7 0.526 11 0.334
CGym 1.0 9 0.823 8 0.45

Table 5: Training information for all TRF and CC variants.

RefCOCO / RefCOCO+.

would require the consideration of both semantic
and pragmatic aspects.

Also, we do not consider recent developments
such as multimodal LLMs, although the high di-
versity of their training data would contribute an
interesting aspect to this study. Here, we selected
our models with a focus on both modifiability and
transparent processing.

Finally, additional vision and language datasets
such as VisualGenome (Krishna et al., 2016) would
have made the results more representative. How-
ever, due to time and space constraints, we leave
this for future research.

B Model implementation and training

For the hyperparameters of our models, we largely
followed Panagiaris et al. (2021) (TRF) and
Mokady et al. (2021) (CC). During inference, we
relied on greedy decoding.

The TRF model has 3 encoder and 3 decoder
layers with 8 attention heads, hidden dimension
and feedforward dimension of 512, and was trained
with an initial learning rate of 0.0001 for the trans-
former encoder and decoder, and 0.00001 for the
pre-trained ResNet-152 backbone. Our TRF mod-
els have approximately 103,000,000 parameters.

For our CC model, we kept the settings defined
by Mokady et al. (2021). From the two models
proposed in this work, we used the variant where a

CIDEr scores are computed for the val splits in

simple MLP is used as a mapping network and the
GPT-2 language model is fine-tuned during train-
ing. However, we have different prefix sizes than in
the original paper: For CC;4;, we have a prefix size
of 11, i.e. 10 for the visual target representation
and 1 for the target location information. For CC,;
and CCy,,,, our prefix size is 21, with additional
10 tokens for the context. The model was trained
using a learning rate of 0.00001. CC,;s has approx-
imately 338,000,000, CCyy;,, has 337,000,000 and
CCyg¢ has 307,000,000 parameters.

We trained our models on an Nvidia RTX A40.
Both RefCOCO and RefCOCO+ contain approxi-
mately 42k items for training. The number of train-
ing epochs per system and the final CIDEr scores
over the validation sets are displayed in Table 5.
We trained all our models for a maximum of 15
epochs, with early stopping if no new maximum for
CIDEr over the validation set has been achieved for
three consecutive epochs. Per epoch, the compute
time was approximately 2.30 h for all systems.

C Scientific Artifacts

In our work, we mainly used scientific artifacts in
the form of existing model implementations, all of
which are cited or referenced in Section 3. The
model implementations were published under per-
missive licences, i.e. MIT (TRF) and Apache 2.0
(CC). We publish our modifications to the model
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CCrgt left one (O)

CCiyt

CCygt ] left bird (F) left monitor (F)
noise 0.0 CC,;s white cow (A) noise 0.0 CC,;s top microwave (A) noise 0.0 CC,;s book on left (A)
CCsym cow on left (A) CCsym left stove (F) CCsym left laptop (F)
CCig¢ left giraffe (F) CCyg¢ leftclock (F) CCtg¢ left monitor (F)
noise 0.5 CC,;s left cow (A) noise 0.5 CC,;s left microwave (A) noise 0.5 CC,;s keyboard on left (F)
CCsym cow on left (A) CCgsym stove top (F) CCsym left laptop (F)
CCigt left guy (F) CCiq¢ top left donut (F) CCtg¢ top left donut (F)
noise 1.0 CC,;s cow on left (A) noise 1.0 CC,;s left umbrella (F) noise 1.0 CC,;s left laptop (F)
CCsym cow on left (A) CCsym top left stove (F) CCsym left laptop (F)

Figure 4: Examples from RefCOCO with expressions generated by CC variants and human judgments (targets are
marked red).

implementations using the same licences, and our
other code and data using permissive licences.

Apart from this, we relied on scikit-learn (ver-
sion 1.2.0, Pedregosa et al. 2011) for our statistic
analysis and the RefCOCO API (Kazemzadeh et al.,
2014; Yu et al., 2016)® for computing BLEU and
CIDEr scores.

D Human Evaluation

We conducted a human evaluation in which the
adequacy of assigned referent types in English re-
ferring expressions was assessed. The annotation
guidelines are published in our code repository.

Our annotators were undergrad student assis-
tants from linguistics and computational linguis-
tics, which were paid by the hour according to
the applicable pay scale. The annotators were in-
formed about the intended use of their produced
data. Along with our code, we publish the fully
anonymized raw and aggregated results of the hu-
man evaluation.

E Qualitative Examples for CC

In Section 4.4 we presented expressions generated
by all TRF variants and discussed different types of
errors in the model outputs. CC responses for the
same examples are shown in Figure 4. In general,
we observe similar patterns as for TRF, but with
some additional errors (especially for CCyg).

8https://github.com/lichengunc/refer
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